1
|
Gonelli CA, King HAD, Ko S, Fennessey CM, Iwamoto N, Mason RD, Heimann A, Flebbe DR, Todd JP, Foulds KE, Keele BF, Lifson JD, Koup RA, Roederer M. Antibody prophylaxis may mask subclinical SIV infections in macaques. Nature 2025; 639:205-213. [PMID: 39910294 PMCID: PMC11882457 DOI: 10.1038/s41586-024-08500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
Broadly neutralizing antibodies (bNAbs) show potential to prevent human immunodeficiency virus (HIV-1) infection in humans1. However, there are limited data on the antibody concentrations required to prevent infection. Clinical trials of bNAb prophylaxis have demonstrated partial efficacy2, but the sampling frequency typically does not allow precise timing of infection events and concurrent antibody levels. Here, using simian immunodeficiency virus (SIV) infection of rhesus macaques, we show that although potent bNAbs can delay the onset of acute viremia, subclinical infections occur while bNAb levels remain high. Serial SIV challenge of monkeys given partially and fully neutralizing bNAbs revealed that 'viral blips'-low and transient plasma viremia-often occur while serum bNAb concentrations are well above currently accepted protective levels. To understand the precise timing of the infections resulting in such blips, we performed plasma viral sequencing on monkeys that were serially challenged with genetically barcoded SIV after bNAb administration. These analyses showed that subclinical infections occurred in most animals that were given potent bNAb prophylaxis. These subclinical infections occurred while antibody concentrations were 2- to 400-fold higher than the levels required to prevent fully viremic breakthrough infection. This study demonstrates that immunoprophylaxis can mask subclinical infections, which may affect the interpretation of prophylactic HIV-1 bNAb clinical trials.
Collapse
Affiliation(s)
- Christopher A Gonelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - SungYoul Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nami Iwamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Heimann
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Klenchin VA, Clark NM, Keles NK, Capuano S, Mason R, Gao G, Broman A, Kose E, Immonen TT, Fennessey CM, Keele BF, Lifson JD, Roederer M, Gardner MR, Evans DT. Adeno-associated viral delivery of Env-specific antibodies prevents SIV rebound after discontinuing antiretroviral therapy. Sci Immunol 2025; 10:eadq4973. [PMID: 40020046 DOI: 10.1126/sciimmunol.adq4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
An alternative to lifelong antiretroviral therapy (ART) is needed to achieve durable control of HIV-1. Here, we show that adeno-associated virus (AAV) delivery of two rhesus macaque antibodies to the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) with potent neutralization and antibody-dependent cellular cytotoxicity can prevent viral rebound in macaques infected with barcoded SIVmac239M after discontinuing suppressive ART. After AAV administration, sustained antibody expression with minimal antidrug antibody responses was achieved in all but one animal. After ART withdrawal, SIV replication rebounded within 2 weeks in all control animals but remained <15 copies per milliliter in plasma for more than a year in four of the eight animals that received AAV vectors encoding Env-specific antibodies. Viral sequences from animals that rebounded with delayed kinetics exhibited restricted clonal diversity and antibody escape mutations in Env. Thus, sustained expression of antibodies with potent antiviral activity can afford durable, ART-free containment of pathogenic SIV infection.
Collapse
Affiliation(s)
- Vadim A Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natasha M Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nida K Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aimee Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew R Gardner
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30329, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
3
|
King HAD, Brammer D, Lewitus E, Fennessey CM, Manalang KM, Shrader HR, Andrew S, Kuri P, Lind M, Pham P, Sanders-Buell E, Bai H, Mason R, Song K, McCarthy E, Helmold Hait S, Todd JP, Pegu A, Foulds KE, Lifson JD, Keele BF, Rolland M, Roederer M, Bolton DL. SIV monoclonal antibody administration spanning treatment interruption in macaques delays viral rebound and selects escape variants. Proc Natl Acad Sci U S A 2025; 122:e2404767122. [PMID: 39883843 PMCID: PMC11804569 DOI: 10.1073/pnas.2404767122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination. Each mAb was administered at 15 mg/kg, and both mAb-treated groups received ITS103.01, a highly potent CD4-binding site targeting antibody. mAb treatment delayed viral rebound, lowered rebound viremia setpoint and viral diversity, and extended animal lifespan. Compared to controls, for which viremia rebounded 2 wk following ATI, mAb infusion delayed rebound for both groups (P = 0.0003). Animals that received the 4-mAb regimen rebounded 3 to 6 wk post-ATI while the 2-mAb regimen rebounded 5 to 22 wk post-ATI. Envelope escape mutations emerged in rebound virus of mAb-treated animals that abrogated neutralization by ITS103.01, the most potent in the cocktail. These data demonstrate in vivo antiviral activity of SIV mAbs in the context of ATI via immune pressure dominated by the most potent mAb and highlight their potential in adjunctive therapeutic studies.
Collapse
Affiliation(s)
- Hannah A. D. King
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Daniel Brammer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Lewitus
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kimberly M. Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Hannah R. Shrader
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shayne Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Phillip Kuri
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Matthew Lind
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Phuc Pham
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Hongjun Bai
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| |
Collapse
|
4
|
Gorman J, Du R, Lai YT, Ahmadi MS, King HAD, Song K, Manalang K, Gonelli CA, Schramm CA, Cheng C, Nguyen R, Ambrozak D, Druz A, Shen CH, Yang Y, Douek DC, Kwong PD, Roederer M, Mason RD. Isolation and structure of broad SIV-neutralizing antibodies reveal a proximal helical MPER epitope recognized by a rhesus multi-donor class. Cell Rep 2025; 44:115163. [PMID: 39792559 PMCID: PMC11979902 DOI: 10.1016/j.celrep.2024.115163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques. The nAbs displayed low potency but up to 90% breadth on a 20-strain SIV panel. Crystal structures of representative nAbs in complex with SIV MPER peptides revealed the SIV antibodies to bind a helical epitope at the N-terminal (proximal) region of the MPER, defining a reproducible multi-donor class encompassing all four lineages. HIV-1 comparison showed that this class of SIV MPER-directed antibodies targets a helical region overlapping that targeted by human vaccine-elicited ones. Thus, a prevalent and reproducible class of SIV bnAbs recognizes an epitope similar to that recently observed in an HIV-1-vaccine trial.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Renguang Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammed S Ahmadi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Gonelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Mason RD, Zhang B, Morano NC, Shen CH, McKee K, Heimann A, Du R, Nazzari AF, Hodges S, Kanai T, Lin BC, Louder MK, Doria-Rose NA, Zhou T, Shapiro L, Roederer M, Kwong PD, Gorman J. Structural development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage. Cell Rep 2025; 44:115223. [PMID: 39826122 PMCID: PMC11883830 DOI: 10.1016/j.celrep.2024.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the apex of the HIV-1-envelope (Env) trimer comprise the most potent category of HIV-1 bNAbs and have emerged as promising therapeutics. Here, we investigate the development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage and report cryo-EM structures at 3.4 Å resolution of PGDM1400 and of an improved PGT145 variant (PGT145-R100aS), each bound to the BG505 Env trimer. Cross-species-based engineering improves PGT145 IC80 breadth to near that of PGDM1400. Despite similar breadth and potency, the two antibodies differ in their residue-level interactions with important apex features, including N160 glycans and apex cavity, with residue 100i of PGT145 (sulfated tyrosine) penetrating ∼7 Å farther than residue 100i of PGDM1400 (aspartic acid). While apex-directed bNAbs from other donors use maturation pathways that often converge on analogous residue-level recognition, our results demonstrate that divergent residue-level recognition can occur within the same lineage, thereby enabling improved coverage of escape variants.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley Heimann
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renguang Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelby Hodges
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tapan Kanai
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
6
|
Farinre O, Anaya T, King AC, Endrias K, Hébert AH, Hill AL, Jean S, Wood JS, Ehnert S, Liang S, Laird GM, Mason RD, Roederer M, Safrit JT, Mavigner M, Chahroudi A. SIV Env RhmAbs + N-803 at ART initiation prolongs viral decay without disrupting reservoir establishment in SIV-infected infant macaques. PLoS Pathog 2025; 21:e1012863. [PMID: 39792949 PMCID: PMC11756789 DOI: 10.1371/journal.ppat.1012863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/23/2025] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
The latent viral reservoir remains the major barrier to HIV cure, placing the burden of strict adherence to antiretroviral therapy (ART) on people living with HIV to prevent recrudescence of viremia. For infants with perinatally acquired HIV, adherence is anticipated to be a lifelong need. In this study, we tested the hypothesis that administration of ART and viral Envelope-specific rhesus-derived IgG1 monoclonal antibodies (RhmAbs) with or without the IL-15 superagonist N-803 early in infection would limit viral reservoir establishment in SIV-infected infant rhesus macaques. Following initiation of ART at 1-2 weeks after oral SIVmac251 infection, we observed biphasic decay of viremia, with first phase decay significantly faster in the ART + SIV RhmAbs-treated group compared to controls that received only ART. In contrast, the addition of N-803 to ART + SIV RhmAbs significantly slowed both the first and second phase viral decay compared to the ART only group. Treatment with a single dose of N-803 resulted in increased frequency of Ki67 expressing NK, CD8+, and CD4+ T cells. Levels of intact SIV proviruses in CD4+ T cells from blood, lymph nodes, and rectum at week 48 of ART did not differ across groups. Similarly, the time to viral rebound following ART interruption was not impacted by the experimental treatments. These results support the concept that the rebound-competent viral reservoir is formed within days after infection and that targeting only productively infected cells for clearance near the time of ART initiation, even during acute infection, may be insufficient to limit reservoir establishment.
Collapse
Affiliation(s)
- Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tzoalli Anaya
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alexis C. King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kedan Endrias
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anne H. Hébert
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alison L. Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sherrie Jean
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jennifer S. Wood
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stephanie Ehnert
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Shan Liang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Gregory M. Laird
- Accelevir Diagnostics, Baltimore, Maryland, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mario Roederer
- ImmunoTechnology Section, National Institutes of Allergy and Infectious Diseases, Bethesda, Massachusetts, United States of America
| | | | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, United States of America
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Klenchin VA, Clark NM, Keles NK, Capuano S, Mason R, Gao G, Broman A, Kose E, Immonen TT, Fennessey CM, Keele BF, Lifson JD, Roederer M, Gardner MR, Evans DT. Adeno-associated viral delivery of Env-specific antibodies prevents SIV rebound after discontinuing antiretroviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.593694. [PMID: 38895320 PMCID: PMC11185534 DOI: 10.1101/2024.05.30.593694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
An alternative to lifelong antiretroviral therapy (ART) is needed to achieve durable control of HIV-1. Here we show that adeno-associated virus (AAV)-delivery of two rhesus macaque antibodies to the SIV envelope glycoprotein (Env) with potent neutralization and antibody-dependent cellular cytotoxicity can prevent viral rebound in macaques infected with barcoded SIVmac239M after discontinuing suppressive ART. Following AAV administration, sustained antibody expression with minimal anti-drug antibody responses was achieved in all but one animal. After ART withdrawal, SIV replication rebounded within two weeks in all of the control animals but remained below the threshold of detection in plasma (<15 copies/mL) for more than a year in four of the eight animals that received AAV vectors encoding Env-specific antibodies. Viral sequences from animals with delayed rebound exhibited restricted barcode diversity and antibody escape. Thus, sustained expression of antibodies with potent antiviral activity can afford durable, ART-free containment of pathogenic SIV infection.
Collapse
Affiliation(s)
- Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, WI, 53715, USA
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, 20892, USA
| | - Guangping Gao
- Deparment of Microbiology and Physiological Systems, University of Massachusetts Medical School; Worcester, MA, 01605, USA
| | - Aimee Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, 20892, USA
| | - Matthew R. Gardner
- Division of Infectious Diseases, Department of Medicine, Emory University; Atlanta, GA, 30329, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, WI, 53715, USA
| |
Collapse
|
8
|
Tenggara MK, Oh SH, Yang C, Nariya HK, Metz AM, Upadhyay AA, Gudipati DR, Guo L, McGhee EG, Gill K, Viox EG, Mason RD, Doria-Rose NA, Foulds KE, Mascola JR, Du Y, Fu H, Altman JD, Yan Q, Sheng Z, Bosinger SE, Kong R. Frequency-potency analysis of IgG+ memory B cells delineates neutralizing antibody responses at single-cell resolution. Cell Rep 2024; 43:113948. [PMID: 38483908 PMCID: PMC11003769 DOI: 10.1016/j.celrep.2024.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Identifying individual functional B cell receptors (BCRs) is common, but two-dimensional analysis of B cell frequency versus BCR potency would delineate both quantity and quality of antigen-specific memory B cells. We efficiently determine quantitative BCR neutralizing activities using a single-cell-derived antibody supernatant analysis (SCAN) workflow and develop a frequency-potency algorithm to estimate B cell frequencies at various neutralizing activity or binding affinity cutoffs. In an HIV-1 fusion peptide (FP) immunization study, frequency-potency curves elucidate the quantity and quality of FP-specific immunoglobulin G (IgG)+ memory B cells for different animals, time points, and antibody lineages at single-cell resolution. The BCR neutralizing activities are mainly determined by their affinities to soluble envelope trimer. Frequency analysis definitively demonstrates dominant neutralizing antibody lineages. These findings establish SCAN and frequency-potency analyses as promising approaches for general B cell analysis and monoclonal antibody (mAb) discovery. They also provide specific rationales for HIV-1 FP-directed vaccine optimization.
Collapse
Affiliation(s)
- Michelle K Tenggara
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Seo-Ho Oh
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Catherine Yang
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Hardik K Nariya
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Amanda M Metz
- Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Amit A Upadhyay
- Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Dedeepya R Gudipati
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Lizheng Guo
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Emily G McGhee
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Kiran Gill
- Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Elise G Viox
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - John D Altman
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Steven E Bosinger
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rui Kong
- Emory Vaccine Center, Atlanta, GA 30329, USA; Emory National Primate Research Center, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
10
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
11
|
Dashti A, Sukkestad S, Horner AM, Neja M, Siddiqi Z, Waller C, Goldy J, Monroe D, Lin A, Schoof N, Singh V, Mavigner M, Lifson JD, Deleage C, Tuyishime M, Falcinelli SD, King HAD, Ke R, Mason RD, Archin NM, Dunham RM, Safrit JT, Jean S, Perelson AS, Margolis DM, Ferrari G, Roederer M, Silvestri G, Chahroudi A. AZD5582 plus SIV-specific antibodies reduce lymph node viral reservoirs in antiretroviral therapy-suppressed macaques. Nat Med 2023; 29:2535-2546. [PMID: 37783968 PMCID: PMC10579098 DOI: 10.1038/s41591-023-02570-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
The main barrier to HIV cure is a persistent reservoir of latently infected CD4+ T cells harboring replication-competent provirus that fuels rebound viremia upon antiretroviral therapy (ART) interruption. A leading approach to target this reservoir involves agents that reactivate latent HIV proviruses followed by direct clearance of cells expressing induced viral antigens by immune effector cells and immunotherapeutics. We previously showed that AZD5582, an antagonist of inhibitor of apoptosis proteins and mimetic of the second mitochondrial-derived activator of caspases (IAPi/SMACm), induces systemic reversal of HIV/SIV latency but with no reduction in size of the viral reservoir. In this study, we investigated the effects of AZD5582 in combination with four SIV Env-specific Rhesus monoclonal antibodies (RhmAbs) ± N-803 (an IL-15 superagonist) in SIV-infected, ART-suppressed rhesus macaques. Here we confirm the efficacy of AZD5582 in inducing SIV reactivation, demonstrate enhancement of latency reversal when AZD5582 is used in combination with N-803 and show a reduction in total and replication-competent SIV-DNA in lymph-node-derived CD4+ T cells in macaques treated with AZD5582 + RhmAbs. Further exploration of this therapeutic approach may contribute to the goal of achieving an HIV cure.
Collapse
Affiliation(s)
- Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sophia Sukkestad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna M Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zain Siddiqi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Chevaughn Waller
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Goldy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dominique Monroe
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Lin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Shane D Falcinelli
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nancie M Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard M Dunham
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Traingle Park, NC, USA
| | | | - Sherrie Jean
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David M Margolis
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Sutton MS, Pletnev S, Callahan V, Ko S, Tsybovsky Y, Bylund T, Casner RG, Cerutti G, Gardner CL, Guirguis V, Verardi R, Zhang B, Ambrozak D, Beddall M, Lei H, Yang ES, Liu T, Henry AR, Rawi R, Schön A, Schramm CA, Shen CH, Shi W, Stephens T, Yang Y, Florez MB, Ledgerwood JE, Burke CW, Shapiro L, Fox JM, Kwong PD, Roederer M. Vaccine elicitation and structural basis for antibody protection against alphaviruses. Cell 2023; 186:2672-2689.e25. [PMID: 37295404 PMCID: PMC10411218 DOI: 10.1016/j.cell.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.
Collapse
Affiliation(s)
- Matthew S Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria Callahan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungyoul Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan G Casner
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christina L Gardner
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Veronica Guirguis
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Beddall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Burgos Florez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Crystal W Burke
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|