1
|
Soverina S, Gilliland HN, Olive AJ. Pathogenicity and virulence of Mycobacterium abscessus. Virulence 2025; 16:2508813. [PMID: 40415550 PMCID: PMC12118445 DOI: 10.1080/21505594.2025.2508813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus (Mab) are an increasing cause of human disease. While the majority of immunocompetent hosts control Mab infections, the robust survival of Mab within the environment has shaped survival in human cells to help drive persistence and cause inflammatory damage in susceptible individuals. With high intrinsic resistance to antibiotics, there is an important need to fully understand how Mab causes infection, define protective host pathways that control disease, and develop new strategies to treat those at high risk. This review will examine the existing literature related to host-Mab interactions with a focus on virulence, the host response, and therapy development. The goal is to highlight key gaps in our understanding and describe novel approaches to encourage new research avenues that better define the pathogenesis and host response against this increasingly important human pathogen.
Collapse
Affiliation(s)
- Soledad Soverina
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Haleigh N. Gilliland
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Basher M, Gur M, Meir M. Insights on the Pathogenesis of Mycobacterium abscessus Infection in Patients with Cystic Fibrosis. J Clin Med 2025; 14:3492. [PMID: 40429486 PMCID: PMC12112745 DOI: 10.3390/jcm14103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
People with CF (pwCF) have a significant risk for pulmonary infections with non-tuberculous mycobacteria (NTM), particularly Mycobacterium abscessus (Mab). Mab is an emerging pathogen, which causes pulmonary infections in patients with chronic lung diseases, particularly CF; Mab pulmonary disease leads to progressive pulmonary dysfunction and increased morbidity and mortality. Despite advances in CF care, including CFTR modulators (CFTRm), Mab continues to pose a therapeutic challenge, with significant long-term medical burden. This review provides insights into the complex host-pathogen interplay of Mab infections in pwCF. It provides a detailed overview of Mab bacterial virulence factors, including biofilm formation, secretion systems, the virulence-associated rough morphotype, and antibiotic resistance mechanisms. This review also summarizes features conferring susceptibility of the CF host to Mab infections, alongside the contribution of the CF-host environment to the pathogenesis of Mab infection, such as antibiotic-derived microbial selection, within-host mycobacterial evolution, and interactions with co-pathogens such as Pseudomonas aeruginosa (PA). Finally, the therapeutic implications and novel treatments for Mab are discussed, considering the complex host-pathogen interplay.
Collapse
Affiliation(s)
- Mai Basher
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Gur
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Pediatric Pulmonary Institute and CF Center, Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Michal Meir
- Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3525433, Israel; (M.B.); (M.G.)
- Clinical Research Institute Rambam (CRIR), Rambam Health Care Campus, Haifa 3109601, Israel
- Pediatric Infectious Diseases Unit, Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
3
|
Sanders M, Kim SW, Shinde A, Fletcher-Williams D, Quach E, Beringer P. In Vitro Activity of Imipenem/Relebactam Alone and in Combination Against Cystic Fibrosis Isolates of Mycobacterium abscessus. Antibiotics (Basel) 2025; 14:486. [PMID: 40426552 PMCID: PMC12108374 DOI: 10.3390/antibiotics14050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Mycobacterium abscessus (MABS) is an opportunistic pathogen that causes chronic, difficult-to-treat pulmonary infections, particularly in people with cystic fibrosis (PwCF), leading to rapid lung function decline and increased morbidity and mortality. Treatment is particularly challenging due to the pathogen's resistance mechanisms and the need for prolonged multidrug therapy, which is characterized by poor clinical outcomes and highlights the urgent need for novel therapeutic strategies. Imipenem/relebactam, a novel β-lactam-β-lactamase inhibitor combination, demonstrates in vitro activity against resistant MABS strains and effective pulmonary penetration. Prior research indicates synergistic activity of imipenem with various antibiotics against M. abscessus. OBJECTIVES This study aims to evaluate the in vitro activity of imipenem/relebactam, alone and in combination with various antibiotics, against MABS clinical isolates from PwCF (n = 28). METHODS Susceptibility and synergy were assessed using broth microdilution and checkerboard assays. Extracellular time-kill assays were performed to evaluate the bactericidal activity of synergistic three-drug combinations containing imipenem/relebactam. RESULTS Imipenem/relebactam demonstrated potent in vitro activity against clinical MABS isolates, exhibiting substantial synergy with cefuroxime, cefdinir, amoxicillin, and cefoxitin. Rifabutin, azithromycin, moxifloxacin, clofazimine, and minocycline also demonstrated additive effects with imipenem/relebactam. Extracellular time-kill assays identified imipenem/relebactam + cefoxitin + rifabutin and imipenem/relebactam + cefoxitin + moxifloxacin as the most effective combinations. CONCLUSIONS These findings suggest that imipenem/relebactam may offer a significant advancement in the management of MABS infections in PwCF. The promising efficacy of multidrug regimens combining imipenem/relebactam with agents like cefoxitin, azithromycin, moxifloxacin, clofazimine, and rifabutin highlights potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Beringer
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (M.S.); (S.W.K.); (A.S.); (D.F.-W.); (E.Q.)
| |
Collapse
|
4
|
Touré H, Durand N, Orgeur M, Galindo LA, Girard-Misguich F, Guénal I, Herrmann JL, Szuplewski S. ENaC is a host susceptibility factor to bacterial infections in cystic fibrosis context. Commun Biol 2025; 8:653. [PMID: 40269088 PMCID: PMC12019357 DOI: 10.1038/s42003-025-07877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/25/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by dysfunction in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. Patients with CF are hypersusceptible to Mycobacterium abscessus infection, a fast-growing mycobacterium and harmful opportunistic pathogen. Although CFTR dysfunction is known as a host susceptibility factor for M. abscessus infection, the functional impact of the trimeric Epithelial sodium Channel (ENaC), whose activity is negatively regulated by CFTR, towards M. abscessus infection has not been explored yet. To address this issue, we took advantage of miR-263a deficient Drosophila presenting a CF-like phenotype due to ENaC hyperactivity (ENaC+ ). We observed that the ENaC+ flies were as hypersusceptible to M. abscessus infection as the Cftr-deficient flies. The hypersensitivity of ENaC+ flies to M. abscessus infection was fully rescued by blocking ENaC hyperactivity, both chemically and genetically. Furthermore, we observed that ENaC hyperactivity per se was detrimental to ENaC+ Drosophila, as they were unable to mount an efficient humoral immune response. Upon infection, ENaC+ flies failed to upregulate 20-hydroxyecdysone production, which subsequently altered the production of protective antimicrobial peptides against M. abscessus. Overall, our results show that ENaC plays a key role in host susceptibility to M. abscessus infection and, correlatively to other CF pathogens.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nicolas Durand
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Lee Ann Galindo
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
- The American University of Paris, Paris, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, EA 4589 Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France.
- Assistance Publique - Hôpitaux de Paris, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France.
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, EA 4589 Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.
| |
Collapse
|
5
|
Ruedas-López A, Tato M, Lerma L, Esteban J, Muñoz-Egea MC, Toro C, Domingo D, Prados-Rosales R, López-Roa P. Infection model of THP-1 cells, growth dynamics, and antimicrobial susceptibility of clinical Mycobacterium abscessus isolates from cystic fibrosis patients: Results from a multicentre study. PLoS One 2025; 20:e0319710. [PMID: 40163512 PMCID: PMC11957364 DOI: 10.1371/journal.pone.0319710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 04/02/2025] Open
Abstract
Mycobacterium abscessus (MABS) is an emerging pathogen causing severe infections, particularly in cystic fibrosis (CF) patients. A prospective multicentre study included CF patients from four hospitals in Madrid between January 2022 and January 2024. Respiratory samples were collected, and MABS isolates were analysed to determine their antibiotic resistance profiles, growth dynamics, infection kinetics, intracellular behaviour, and pathogenicity. Intracellular bacterial growth and macrophage viability were evaluated through THP-1 cell infection experiments, with and without amikacin. Phenotypic susceptibility testing and genotypic susceptibility testing were also conducted. Among 148 patients, 28 MABS isolates were detected from 16 patients (10.8%), and the first isolate from each patient was analysed. Isolation was more prevalent in younger individuals (median age 24.4 vs. 28.4 years, p = 0.049), and most isolates (81.25%) were identified as M. abscessus subsp. abscessus (MABSa). MABS isolates exhibited high resistance rates (>85%) to doxycycline, tobramycin, ciprofloxacin, moxifloxacin (75%) and cotrimoxazole (56.3%). Amikacin resistance (18.8%) was higher than expected, and inducible (10/16 isolates) or acquired (1/16 isolate) macrolide resistance was found in 68.8% of strains. Phenotypic and genotypic testing results were fully concordant. Tigecycline demonstrated strong in vitro activity, and resistance to imipenem, linezolid, and cefoxitin remained low. Rough strains displayed lower optical density values in later growth stages, probably due to their increased aggregation. In THP-1 cell infection experiments, rough strains showed higher intracellular bacterial loads with statistically significant differences observed at 2 hours (both with and without amikacin) and at 72 hours (with amikacin) post infection. Notably, rough strains also exhibited a higher internalisation index and greater impact on THP-1 cell viability, especially in the absence of amikacin.
Collapse
Affiliation(s)
- Alba Ruedas-López
- Clinical Microbiology and Parasitology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Tato
- Clinical Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Lerma
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jaime Esteban
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- .Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - María-Carmen Muñoz-Egea
- .Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM. Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Carlos Toro
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Diego Domingo
- Clinical Microbiology and Parasitology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula López-Roa
- Clinical Microbiology and Parasitology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
6
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
7
|
Touré H, Durand N, Rincheval V, Girard-Misguich F, Guénal I, Herrmann JL, Szuplewski S. Remote disruption of intestinal homeostasis by Mycobacterium abscessus is detrimental to Drosophila survival. Sci Rep 2024; 14:30775. [PMID: 39730463 DOI: 10.1038/s41598-024-80994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium abscessus (Mabs), an intracellular and opportunistic pathogen, is considered the most pathogenic fast-growing mycobacterium, and causes severe pulmonary infections in patients with cystic fibrosis. While bacterial factors contributing to its pathogenicity are well studied, the host factors and responses that worsen Mabs infection are not fully understood. Here, we report that Mabs systemic infection alters Drosophila melanogaster intestinal homeostasis. Mechanistically, Mabs remotely induces a self-damaging oxidative burst, leading to excessive differentiation of intestinal stem cells into enterocytes. We demonstrated that the subsequent increased intestinal renewal is mediated by both the Notch and JAK/STAT pathways and is deleterious to Drosophila survival. In conclusion, this work highlights that the ability of Mabs to induce an exacerbated and self-damaging response in the host contributes to its pathogenesis.
Collapse
Affiliation(s)
- Hamadoun Touré
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.
| | - Nicolas Durand
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
| | | | - Fabienne Girard-Misguich
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Jean-Louis Herrmann
- Infection et Inflammation, Université Paris-Saclay, UVSQ, INSERM, 78180, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, 92380, Garches, France
| | | |
Collapse
|
8
|
Marshall EKP, Nunes C, Burbaud S, Vincent CM, Munroe NO, Simoes da Silva CJ, Wadhawan A, Pearson WH, Sangen J, Boeck L, Floto RA, S Dionne M. Microbial metabolism disrupts cytokine activity to impact host immune response. Proc Natl Acad Sci U S A 2024; 121:e2405719121. [PMID: 39514319 PMCID: PMC11573640 DOI: 10.1073/pnas.2405719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Host-pathogen interactions are shaped by the metabolic status of both the host and pathogen. The host must regulate metabolism to fuel the immune response, while the pathogen must extract metabolic resources from the host to enable its own survival. In this study, we focus on the metabolic interactions of Mycobacterium abscessus with Drosophila melanogaster. We identify MAB_1132c as an asparagine transporter required for pathogenicity in M. abscessus. We show that this requirement is specifically associated with damage to the host: flies infected with MAB_1132c knockout bacteria, or with wild-type bacteria grown in asparagine-restricted conditions, are longer lived without showing a significant change in bacterial load. This is associated with a reduction in the host innate immune response, demonstrated by the decreased transcription of antimicrobial peptides as well as a significant reduction in the ability of the infection to disrupt systemic insulin signaling. Much of the increase in host survival during infection with asparagine-limited M. abscessus can be attributed to alterations in unpaired cytokine signaling. This demonstrates that asparagine transport in M. abscessus prior to infection is not required for replicative fitness in vivo but does significantly influence the interaction with the host immune responses.
Collapse
Affiliation(s)
- Eleanor K P Marshall
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Catarina Nunes
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sophie Burbaud
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Artificial Intelligence in Medicine, Cambridge CB3 0WA, United Kingdom
| | - Crystal M Vincent
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Natalie O Munroe
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carolina J Simoes da Silva
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ashima Wadhawan
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - William H Pearson
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jasper Sangen
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Artificial Intelligence in Medicine, Cambridge CB3 0WA, United Kingdom
| | - Lucas Boeck
- Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - R Andres Floto
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Cambridge Centre for Artificial Intelligence in Medicine, Cambridge CB3 0WA, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, United Kingdom
| | - Marc S Dionne
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Ektnitphong V, Dias BRS, Campos PC, Shiloh MU. An alveolus lung-on-a-chip model of Mycobacterium fortuitum lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610530. [PMID: 39257817 PMCID: PMC11383683 DOI: 10.1101/2024.08.30.610530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Lung disease due to non-tuberculous mycobacteria (NTM) is rising in incidence. While both two dimensional cell culture and animal models exist for NTM infections, a major knowledge gap is the early responses of human alveolar and innate immune cells to NTM within the human alveolar microenvironment. Here we describe development of a humanized, three-dimensional, alveolus lung-on-a-chip (ALoC) model of Mycobacterium fortuitum lung infection that incorporates only primary human cells such as pulmonary vascular endothelial cells in a vascular channel, and type I and II alveolar cells and monocyte-derived macrophages in an alveolar channel along an air-liquid interface. M. fortuitum introduced into the alveolar channel primarily infected macrophages, with rare bacteria inside alveolar cells. Bulk-RNA sequencing of infected chips revealed marked upregulation of transcripts for cytokines, chemokines and secreted protease inhibitors (SERPINs). Our results demonstrate how a humanized ALoC system can identify critical early immune and epithelial responses to M. fortuitum infection. We envision potential application of the ALoC to other NTM and for studies of new antibiotics.
Collapse
Affiliation(s)
- Victoria Ektnitphong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| | - Beatriz R S Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| | - Priscila C Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Y9.308, Dallas, TX 75390-9113
| |
Collapse
|
10
|
Lagune M, Kremer L, Herrmann JL. Mycobacterium abscessus, a complex of three fast-growing subspecies sharing virulence traits with slow-growing mycobacteria. Clin Microbiol Infect 2024; 30:726-731. [PMID: 37797823 DOI: 10.1016/j.cmi.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Mycobacterium abscessus belongs to the largest group of mycobacteria, the rapid-growing saprophytic mycobacteria, and is one of the most difficult-to-treat opportunistic pathogen. Several features pertain to the high adaptability of M. abscessus to the host. These include the capacity to survive and persist within amoebae, to transition from a smooth to a rough morphotype that occurs during the course of the disease and to express of a wide array of virulence factors. OBJECTIVES The main objective of this narrative review consists to report major assets of M. abscessus that contribute to the virulence of these rapid-growing saprophytic mycobacteria. Strikingly, many of these determinants, whether they are from a mycobacterial origin or acquired by horizontal gene transfer, are known virulence factors found in slow-growing and strict pathogens for humans and animals. SOURCES In the light of recent published work in the field we attempted to highlight major features characterizing M. abscessus pathogenicity and to explain why this led to the emergence of this mycobacterial species in patients with cystic fibrosis. CONTENT M. abscessus genome plasticity, the smooth-to-rough transition, and the expression of a panel of enzymes associated with virulence in other bacteria are key players in M. abscessus virulence. In addition, the very large repertoire of lipid transporters, known as mycobacterial membrane protein large and small (MmpL and MmpS respectively), deeply influences the pathogenicity of M. abscessus, as exemplified here for some of them. IMPLICATIONS All these traits largely contribute to make M. abscessus a unique mycobacterium regarding to its pathophysiological processes, ranging from the early colonization steps to the establishment of severe and chronic pulmonary diseases.
Collapse
Affiliation(s)
- Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France.
| |
Collapse
|
11
|
Hanson MA. When the microbiome shapes the host: immune evolution implications for infectious disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230061. [PMID: 38497259 PMCID: PMC10945400 DOI: 10.1098/rstb.2023.0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 03/19/2024] Open
Abstract
The microbiome includes both 'mutualist' and 'pathogen' microbes, regulated by the same innate immune architecture. A major question has therefore been: how do hosts prevent pathogenic infections while maintaining beneficial microbes? One idea suggests hosts can selectively activate innate immunity upon pathogenic infection, but not mutualist colonization. Another idea posits that hosts can selectively attack pathogens, but not mutualists. Here I review evolutionary principles of microbe recognition and immune activation, and reflect on newly observed immune effector-microbe specificity perhaps supporting the latter idea. Recent work in Drosophila has found a surprising importance for single antimicrobial peptides in combatting specific ecologically relevant microbes. The developing picture suggests these effectors have evolved for this purpose. Other defence responses like reactive oxygen species bursts can also be uniquely effective against specific microbes. Signals in other model systems including nematodes, Hydra, oysters, and mammals, suggest that effector-microbe specificity may be a fundamental principle of host-pathogen interactions. I propose this effector-microbe specificity stems from weaknesses of the microbes themselves: if microbes have intrinsic weaknesses, hosts can evolve effectors that exploit those weaknesses. I define this host-microbe relationship as 'the Achilles principle of immune evolution'. Incorporating this view helps interpret why some host-microbe interactions develop in a coevolutionary framework (e.g. Red Queen dynamics), or as a one-sided evolutionary response. This clarification should be valuable to better understand the principles behind host susceptibilities to infectious diseases. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mark A Hanson
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9FE, UK
| |
Collapse
|
12
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
13
|
Admella J, Torrents E. Investigating bacterial infections in Galleria mellonella larvae: Insights into pathogen dissemination and behavior. J Invertebr Pathol 2023; 200:107975. [PMID: 37541571 DOI: 10.1016/j.jip.2023.107975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
The insect Galleria mellonella is an alternative animal model widely used for studying bacterial infections. It presents a wide range of advantages, including its low cost, easy maintenance and lack of ethical constraints. Among other features, their innate immune system is very similar to that of mammals. In this study, we dissected several larvae infected with important human pathogens: Mycobacterium abscessus, Staphylococcus aureus and Pseudomonas aeruginosa. By observing the fat body, gut, trachea, and hemolymph under the microscope, we were able to describe where bacteria tend to disseminate. We also quantified the number of bacteria in the hemolymph throughout the infection course and found significant differences between the different pathogens. With this work, we aimed to better understand the behavior and dissemination of bacteria in the infected larvae.
Collapse
Affiliation(s)
- Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
14
|
Touré H, Durand N, Guénal I, Herrmann JL, Girard-Misguich F, Szuplewski S. Mycobacterium abscessus Opsonization Allows an Escape from the Defensin Bactericidal Action in Drosophila. Microbiol Spectr 2023; 11:e0077723. [PMID: 37260399 PMCID: PMC10434004 DOI: 10.1128/spectrum.00777-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Mycobacterium abscessus, an intracellular nontuberculous mycobacterium, is considered the most pathogenic species among the group of rapidly growing mycobacteria. The resistance of M. abscessus to the host innate response contributes to its pathogenicity in addition to several virulence factors. We have recently shown in Drosophila that antimicrobial peptides (AMPs), whose production is induced by M. abscessus, are unable to control mycobacterial infection. This could be due to their inability to kill mycobacteria and/or the hidden location of the pathogen in phagocytic cells. Here, we demonstrate that the rapid internalization of M. abscessus by Drosophila macrophages allows it to escape the AMP-mediated humoral response. By depleting phagocytes in AMP-deficient flies, we found that several AMPs were required for the control of extracellular M. abscessus. This was confirmed in the Tep4 opsonin-deficient flies, which we show can better control M. abscessus growth and have increased survival through overproduction of some AMPs, including Defensin. Furthermore, Defensin alone was sufficient to kill extracellular M. abscessus both in vitro and in vivo and control its infection. Collectively, our data support that Tep4-mediated opsonization of M. abscessus allows its escape and resistance toward the Defensin bactericidal action in Drosophila. IMPORTANCE Mycobacterium abscessus, an opportunistic pathogen in cystic fibrosis patients, is the most pathogenic species among the fast-growing mycobacteria. How M. abscessus resists the host innate response before establishing an infection remains unclear. Using Drosophila, we have recently demonstrated that M. abscessus resists the host innate response by surviving the cytotoxic lysis of the infected phagocytes and the induced antimicrobial peptides (AMPs), including Defensin. In this work, we demonstrate that M. abscessus resists the latter response by being rapidly internalized by Drosophila phagocytes. Indeed, by combining in vivo and in vitro approaches, we show that Defensin is able to control extracellular M. abscessus infection through a direct bactericidal action. In conclusion, we report that M. abscessus escapes the host AMP-mediated humoral response by taking advantage of its internalization by the phagocytes.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Nicolas Durand
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | | |
Collapse
|