1
|
Hammarström M, Gabrielson M, Bergqvist J, Lundholm C, Crippa A, Bäcklund M, Wengström Y, Borgquist S, Eliasson E, Eriksson M, Tapia J, Czene K, Hall P. Influence of endoxifen on mammographic density: results from the KARISMA-Tam trial. J Natl Cancer Inst 2025; 117:629-636. [PMID: 39514025 PMCID: PMC11972671 DOI: 10.1093/jnci/djae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Monitoring metabolites of tamoxifen, such as endoxifen, has been suggested as a strategy to ascertain therapeutic effect of tamoxifen therapy, but clinical guidelines are missing. Herein, we aim to investigate the outcome of endoxifen concentrations of low-dose tamoxifen, using change in mammographic breast density as a proxy for therapy response. METHODS In the randomized KARISMA-Tam (Karolinska Mammography project for risk prediction of breast cancer -Intervention Study with Tamoxifen) trial, including 5 doses of tamoxifen, measurements of plasma endoxifen concentrations, determination of CYP2D6 metabolizer status, and mammographic breast density change over the trial period were carried out. Association between endoxifen concentrations and relative mammographic breast density change after 6 months treatment was analyzed using linear regression in a spline model. RESULTS A total of 824 women (335 premenopausal, 489 postmenopausal) were included. In analyses of premenopausal women, a spline model described a mammographic breast density decrease, equivalent to the mean (-18.5%) seen in women exposed to 20 mg tamoxifen, at endoxifen concentrations of 2-3 ng/mL. The mammographic breast density decrease reached a nadir at endoxifen levels of 3 ng/mL and did not decrease further at higher endoxifen concentrations. Most intermediate and normal tamoxifen metabolizers (about 90% of all participants) reached an endoxifen concentration of more than 2 ng/mL at tamoxifen doses of 5 and 10 mg. No mammographic breast density decrease was seen in the postmenopausal group. CONCLUSIONS We have identified a possible window of effect on mammographic breast density at endoxifen concentrations of 2-3 ng/mL in premenopausal women, which corresponds to the doses of 5 and 10 mg tamoxifen. Because mammographic breast density change was used as a surrogate marker for therapy response, results should be confirmed using clinically established outcomes measures.
Collapse
Affiliation(s)
- Mattias Hammarström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Bergqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Surgery and Oncology, Capio St Görans Hospital, Stockholm, Sweden
| | - Cecilia Lundholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäcklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Wengström
- Department of Neurobiology, Care Science and Society, Division of Nursing and Theme Cancer, Karolinska Comprehensive Cancer Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Erik Eliasson
- Department of Laboratory Medicine, Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - José Tapia
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
2
|
Hoffmann M, Müller JP, Maurer J, Folliot AM, Yamoune S, Stingl JC. Impact of steroid hormone levels on estradiol-mediated regulation of cytochrome P450 2B6 compared to 1B1 in breast cancer cells. Basic Clin Pharmacol Toxicol 2024; 135:429-440. [PMID: 39169535 DOI: 10.1111/bcpt.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Pharmacogenetic variants of the steroid hormone-metabolizing enzyme cytochrome P450 2B6 (CYP2B6) were reported to be associated with breast cancer (BC) risk and prognosis. CYP2B6 expression is inducible by estradiol (E2) but induction was demonstrated only under steroid hormone-deprived medium conditions. Physiological conditions, however, even under endocrinological BC treatment, do not correspond to complete steroid hormone depletion. The aim of this study was to investigate the E2-mediated CYP2B6 and CYP1B1 regulation under various steroid hormone conditions, including physiological concentrations, in human oestrogen receptor positive (T47D, MCF-7) and negative (MDA-MB-231) BC cell lines. We confirm that steroid-deprived pre-cultivation led to CYP2B6 upregulation in T47D, but not in MCF-7. However, when pre-cultivated with steroid-containing medium CYP2B6 was downregulated in T47D and MCF-7, while the addition of physiological E2 concentrations to steroid-deprived medium resulted in a downregulation in T47D. In contrast, CYP1B1 was never downregulated in any culture condition. Thus, we show that E2-mediated CYP2B6 regulation in BC cells depends on steroid hormone exposure in a cell line-specific manner. Our data indicates the importance of being careful with conclusions drawn from CYP2B6 induction findings in vitro, as we demonstrate potential influences of hormonal changes on CYP2B6 expression, which could impact steroid hormone homeostasis and, consequently, BC risk.
Collapse
Affiliation(s)
- Marco Hoffmann
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Jochen Maurer
- Clinic for Gynecology and Obstetrics, University Hospital RWTH Aachen, Aachen, Germany
| | - Anne-Marie Folliot
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Julia Carolin Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH (german: Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| |
Collapse
|
3
|
Sanchez-Spitman AB, Böhringer S, Dezentjé VO, Gelderblom H, Swen JJ, Guchelaar HJ. A Genome-Wide Association Study of Endoxifen Serum Concentrations and Adjuvant Tamoxifen Efficacy in Early-Stage Breast Cancer Patients. Clin Pharmacol Ther 2024; 116:155-164. [PMID: 38501904 DOI: 10.1002/cpt.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Tamoxifen is part of the standard of care of endocrine therapy for adjuvant treatment of breast cancer. However, survival outcomes with tamoxifen are highly variable. The concentration of endoxifen, the 30-100 times more potent metabolite of tamoxifen and bioactivated by the CYP2D6 enzyme, has been described as the most relevant metabolite of tamoxifen metabolism. A genome-wide association study (GWAS) was performed with the objective to identify genetic polymorphisms associated with endoxifen serum concentration levels and clinical outcome in early-stage breast cancer patients receiving tamoxifen. A GWAS was conducted in 608 women of the CYPTAM study (NTR1509/PMID: 30120701). Germline DNA and clinical and survival characteristics were readily available. Genotyping was performed on Infinium Global Screening Array (686,082 markers) and single nucleotide polymorphism (SNP) imputation by using 1000 Genomes. Relapse-free survival during tamoxifen (RFSt) was defined the primary clinical outcome. Endoxifen serum concentration was analyzed as a continuous variable. Several genetic variants reached genome-wide significance (P value: ≤5 × 10-8). Endoxifen concentrations analysis identified 430 variants, located in TCF20 and WBP2NL genes (chromosome 22), which are in strong linkage disequilibrium with CYP2D6 variants. In the RFSt analysis, several SNP were identified (LPP gene: rs77693286, HR 18.3, 95% CI: 15.2-21.1; rs6790761, OR 18.2, 95% CI: 15.5-21.1). Endoxifen concentrations have a strong association with the chromosome 22, which contains the CYP2D6 gene.
Collapse
Affiliation(s)
| | - Stefan Böhringer
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Olaf Dezentjé
- Department of Medical Oncology, Antoni van Leeuwenhoek/Dutch Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse Joachim Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Mahajan P, Palkar M, Pingili RB. Drug reactive metabolite-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2024; 34:607-627. [PMID: 38504503 DOI: 10.1080/15376516.2024.2332613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Nowadays, drug-induced liver toxicity (DILT) is one of the main contributing factors to severe liver disease. In the United States (US) alone, DILT is the cause of more than 50% of instances of acute liver failure. Prescription or over-the-counter drugs, xenobiotics, and herbal and nutritional supplements can cause DILT and could produce anomalies in hepatic function tests. Some drugs induce hepatotoxicity directly, and others induce it indirectly (i. e. through their toxic or reactive metabolites). Currently, the United States Food and Drug Administration (US FDA) has issued black box warnings for about 1279 drugs due to their hepatotoxicity. When we analyzed their mechanism in inducing hepatotoxicity, we found nearly 18 drugs causing hepatotoxicity by their toxic metabolites. In this review, we attempted to highlight the well-known drugs that induce hepatotoxicity indirectly through their toxic metabolites including the enzymes involved in the formation of these metabolites. The Cytochrome P-450 (CYP), Hypoxanthine phosphoribosyltransferase 1, Alcohol oxidase, Uridine diphosphate (UDP)-glucuronosyltransferases, Xanthine dehydrogenase, Purine-nucleoside phosphorylase, Xanthine oxidase, Thiopurine S-methyltransferase, Inosine-5'-monophosphate dehydrogenase, and aldehyde dehydrogenase are involving in the formation of toxic metabolites. The metabolic reactions and enzymes discussed in this review help toxicologists, pharmacologists, and chemists to design and develop hepatotoxicity-free pharmaceutical products containing the inhibitors of these enzymes to reduce hepatotoxicity and improve human health.
Collapse
Affiliation(s)
- Piyush Mahajan
- Department of Pharmaceutical Quality Assurance, SVKM's NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, Maharashtra, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
5
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
7
|
Golubenko EO, Savelyeva MI, Sozaeva ZA, Korennaya VV, Poddubnaya IV, Valiev TT, Kondratenko SN, Ilyin MV. Predictive modeling of adverse drug reactions to tamoxifen therapy for breast cancer on base of pharmacogenomic testing. Drug Metab Pers Ther 2023; 38:339-347. [PMID: 37466310 DOI: 10.1515/dmpt-2023-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/19/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES The present study investigated the analysis of adverse drug reactions (ADRs) to tamoxifen (TAM) in breast cancer patients in relation to the carriage of genetic polymorphisms of genes encoding enzymes of CYP system and transporters of P-glycoprotein (Pg) and predictive models based on it. METHODS A total of 120 women with breast cancer taking adjuvant TAM were examined for the gene polymorphisms such as CYP2D6*4, CYP3A5*3, CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3 and ABCB1 (C3435T). Allelic variants were determined using the real-time polymerase chain reaction method. The research material was double sampling of buccal epithelium. Medical history data and extracts from case histories were used as sources of medical information, on the basis of which questionnaires specially created by us were filled out. RESULTS An associative analysis showed association with the development of ADRs to TAM indicating their clinical significance from different genetic polymorphisms of CYP2D6, CYP3A5, CYP2C9 and ABCB1. The complex associative analysis performed using mathematical modeling made it possible to build predictive risk models for the development of ADRs such as hot flashes, dyspepsia, bone pain, and asthenia. CONCLUSIONS Models that include both genetic and non-genetic determinants of ADRs of TAM may further improve the prediction of individual response to TAM.
Collapse
Affiliation(s)
- Ekaterina Olegovna Golubenko
- Department of Obstetrics and Gynecology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Marina Ivanovna Savelyeva
- Department of Therapy, Institute of Continuous Professional Education, Yaroslavl State Medical University of the Ministry of Health of Russia, Yaroslavl, Russia
| | - Zhannet Alimovna Sozaeva
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Vera Vyacheslavovna Korennaya
- Department of Obstetrics and Gynecology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Irina Vladimirovna Poddubnaya
- Oncology Department, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Timur Tejmurazovich Valiev
- Department of Pediatric Oncology and Hematology Research Institute, Blokhin' National Medical Research Cancer Center of the Ministry of Health of Russia, Moscow, Russia
| | - Svetlana Nikolaevna Kondratenko
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov' First Moscow State Medical University of the Ministry of Health of Russia, Moscow, Russia
| | - Mikhail Vitalyevich Ilyin
- Department of Therapy, Institute of Continuous Professional Education, Yaroslavl State Medical University of the Ministry of Health of Russia, Yaroslavl, Russia
| |
Collapse
|
8
|
Mbavha BT, Thelingwani RS, Chikwambi Z, Nyakabau AM, Masimirembwa C. Pharmacogenetics and pharmacokinetics of tamoxifen in a Zimbabwean breast cancer cohort. Br J Clin Pharmacol 2023; 89:3209-3216. [PMID: 37337448 PMCID: PMC10529681 DOI: 10.1111/bcp.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Tamoxifen is the most used hormonal therapy for oestrogen receptor-positive breast cancer. CYP2D6 is the main enzyme in the metabolic pathway of tamoxifen to endoxifen. Variations in endoxifen plasma concentrations are associated with CYP2D6 polymorphisms. This study aimed to determine the association between the CYP2D6 polymorphisms and endoxifen plasma concentrations in a cohort of Zimbabwean breast cancer patients (n = 40). TaqMan genotyping and copy number assays were done to determine CYP2D6 genotypes. Tamoxifen and metabolites were quantitated using LC-MS/MS. The population had high frequencies of the CYP2D6 reduced function alleles, *17 (15%) and *29 (18%). The median endoxifen concentration was 4.78 ng/mL, and in 55% of the patients, mostly intermediate metabolizers were below the endoxifen therapeutic threshold of 5.97 ng/mL. The CYP2D6 phenotypes and activity scores were significantly associated with endoxifen plasma concentrations (P = 0.0151) and with endoxifen to N-desmethyl-tamoxifen ratios (P = 0.0006).
Collapse
Affiliation(s)
- Bianza Tinotenda Mbavha
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Roslyn Stella Thelingwani
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
| | - Zedias Chikwambi
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Anna Mary Nyakabau
- Parirenyatwa Hospital Radiotherapy and Oncology Center, Harare, Zimbabwe
| | - Collen Masimirembwa
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg 2000, South Africa
| | | |
Collapse
|
9
|
Spalenkova A, Ehrlichova M, Wei S, Peter Guengerich F, Soucek P. Effects of 7-ketocholesterol on tamoxifen efficacy in breast carcinoma cell line models in vitro. J Steroid Biochem Mol Biol 2023; 232:106354. [PMID: 37343688 PMCID: PMC10529436 DOI: 10.1016/j.jsbmb.2023.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Oxysterols play significant roles in many physiological and pathological processes including cancer. They modulate some of the cancer hallmarks pathways, influence the efficacy of anti-cancer drugs, and associate with patient survival. In this study, we aimed to analyze the role of 7-ketocholesterol (7-KC) in breast carcinoma cells and its potential modulation of the tamoxifen effect. 7-KC effects were studied in two estrogen receptor (ER)-positive (MCF-7 and T47D) and one ER-negative (BT-20) breast cancer cell lines. First, we tested the viability of cells in the presence of 7-KC. Next, we co-incubated cells with tamoxifen and sublethal concentrations of 7-KC. We also tested changes in caspase 3/7 activity, deregulation of the cell cycle, and changes in expression of selected genes/proteins in the presence of tamoxifen, 7-KC, or their combination. Finally, we analyzed the effect of 7-KC on cellular migration and invasion. We found that the presence of 7-KC slightly decreases the efficacy of tamoxifen in MCF-7 cells, while an increased effect of tamoxifen and higher caspase 3/7 activity was observed in the BT-20 cell line. In the T47D cell line, we did not find any modulation of tamoxifen efficacy by the presence of 7-KC. Expression analysis showed the deregulation in CYP1A1 and CYP1B1 with the opposite trend in MCF-7 and BT-20 cells. Moreover, 7-KC increased cellular migration and invasion potential regardless of the ER status. This study shows that 7-KC can modulate tamoxifen efficacy as well as cellular migration and invasion, making 7-KC a promising candidate for future studies.
Collapse
Affiliation(s)
- Alzbeta Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic; Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Marie Ehrlichova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic
| | - Shouzou Wei
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic.
| |
Collapse
|
10
|
Jabeur R, Corbel C, Loyer P, Le Parc A, Le Grand A, Comte A, Bach S, André-Leroux G, Sire O, Ben Mansour H, Le Tilly V. Identification of Novel Compounds Inhibiting the Kinase Activity of the CDK5/p25 Complex via Direct Binding to p25. Biochemistry 2023; 62:1452-1463. [PMID: 37074084 DOI: 10.1021/acs.biochem.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Riheb Jabeur
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | - Caroline Corbel
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Pascal Loyer
- Univ Rennes, INSERM, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, F-35000 Rennes, France
| | | | | | - Arnaud Comte
- Compound Library, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, 2520 Potchefstroom, South Africa
| | | | - Olivier Sire
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | | |
Collapse
|
11
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of Cytochrome P450, a Family of Xenobiotic Metabolizing Enzymes, in Cancer Therapy. Antioxid Redox Signal 2023; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcomes, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. Recent Advances: Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYP-based drugs with a better therapeutic index. Critical Issues: Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. Future Directions: Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers. Antioxid. Redox Signal. 38, 853-876.
Collapse
Affiliation(s)
- Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gaurav Sharma
- Department of Physiology, All India Institute of Medical Sciences, Rajkot, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, India
| |
Collapse
|
12
|
Sanchez-Spitman A, Guchelaar HJ. Personalizing tamoxifen therapy in adjuvant therapy: a brief summary of the ongoing discussion. Expert Rev Clin Pharmacol 2023; 16:93-95. [PMID: 36461813 DOI: 10.1080/17512433.2023.2154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Anabel Sanchez-Spitman
- Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Pharmacokinetics of Tamoxifen and Its Major Metabolites and the Effect of the African Ancestry Specific CYP2D6*17 Variant on the Formation of the Active Metabolite, Endoxifen. J Pers Med 2023; 13:jpm13020272. [PMID: 36836506 PMCID: PMC9961245 DOI: 10.3390/jpm13020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Tamoxifen (TAM) is widely used in the treatment of hormone receptor-positive breast cancer. TAM is metabolized into the active secondary metabolite endoxifen (ENDO), primarily by CYP2D6. We aimed to investigate the effects of an African-specific CYP2D6 variant allele, CYP2D6*17, on the pharmacokinetics (PK) of TAM and its active metabolites in 42 healthy black Zimbabweans. Subjects were grouped based on CYP2D6 genotypes as CYP2D6*1/*1 or *1/*2 or *2/*2 (CYP2D6*1 or *2), CYP2D6*1/*17 or 2*/*17, and CYP2D6*17/*17. PK parameters for TAM and three metabolites were determined. The pharmacokinetics of ENDO showed statistically significant differences among the three groups. The mean ENDO AUC0-∞ in CYP2D6*17/*17 subjects was 452.01 (196.94) h·*ng/mL, and the AUC0-∞ in CYP2D6*1/*17 subjects was 889.74 h·ng/mL, which was 5-fold and 2.8-fold lower than in CYP2D6*1 or *2 subjects, respectively. Individuals who were heterozygous or homozygous for CYP2D6*17 alleles showed a 2- and 5-fold decrease in Cmax, respectively, compared to the CYP2D6*1 or *2 genotype. CYP2D6*17 gene carriers have significantly lower ENDO exposure levels than CYP2D6*1 or *2 gene carriers. Pharmacokinetic parameters of TAM and the two primary metabolites, N-desmethyl tamoxifen (NDT) and 4-hydroxy tamoxifen (4OHT), did not show any significant difference in the three genotype groups. The African-specific CYP2D6*17 variant had effects on ENDO exposure levels that could potentially have clinical implications for patients homozygous for this variant.
Collapse
|
14
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
15
|
Yen C, Zhao F, Yu Z, Zhu X, Li CG. Interactions Between Natural Products and Tamoxifen in Breast Cancer: A Comprehensive Literature Review. Front Pharmacol 2022; 13:847113. [PMID: 35721162 PMCID: PMC9201062 DOI: 10.3389/fphar.2022.847113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Tamoxifen (TAM) is the most commonly used hormone therapeutic drug for the treatment of estrogen receptor-positive (ER+) breast cancer. 30%–70% of clinical breast cancer patients use natural products, which may increase the likelihood of drug interactions. Objective: To evaluate the evidence for the interactions between natural products and TAM in breast cancer. Methods: Electronic databases, including PubMed, CINAHL Plus (via EbscoHost), European PMC, Medline, and Google Scholar, were searched for relevant publications. The search terms include complementary and alternative medicine, natural products, plant products, herbs, interactions, tamoxifen, breast cancer, and their combinations. Results: Various in vitro and in vivo studies demonstrated that the combined use of natural products with TAM produced synergistic anti-cancer effects, including improved inhibition of tumor cell growth and TAM sensitivity and reduced side effects or toxicity of TAM. In contrast, some natural products, including Angelica sinensis (Oliv.) Diels [Apiaceae], Paeonia lactiflora Pall., Rehmannia glutinosa (Gaertn.) DC., Astragalus mongholicus Bunge, and Glycyrrhiza glabra L. [Fabaceae], showed estrogen-like activity, which may reduce the anti-cancer effect of TAM. Some natural products, including morin, silybin, epigallocatechin gallate (EGCG), myricetin, baicalein, curcumin, kaempferol, or quercetin, were found to increase the bioavailability of TAM and its metabolites in vivo. However, three are limited clinical studies on the combination of natural products and TAM. Conclusion: There is evidence for potential interactions of various natural products with TAM in pre-clinical studies, although the relevant clinical evidence is still lacking. Further studies are warranted to evaluate the potential interactions of natural products with TAM in clinical settings.
Collapse
Affiliation(s)
- Christine Yen
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - Fan Zhao
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Yu
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,College of the First Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| |
Collapse
|
16
|
Zhao YT, Yin H, Hu C, Zeng J, Zhang S, Chen S, Zheng W, Li M, Jin L, Liu Y, Wu W, Liu S. Tilapia Skin Peptides Ameliorate Cyclophosphamide-Induced Anxiety- and Depression-Like Behavior via Improving Oxidative Stress, Neuroinflammation, Neuron Apoptosis, and Neurogenesis in Mice. Front Nutr 2022; 9:882175. [PMID: 35719151 PMCID: PMC9201437 DOI: 10.3389/fnut.2022.882175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Anxiety- and depression-like behavior following chemotherapy treatment occurs in cancer patients with high probability and no specific therapeutics are available for treatment and prevention of this complication. Here, tilapia skin peptides (TSP), a novel enzymatically hydrolyzed bioactive peptide mixture, obtained from tilapia (Oreochromis mossambicus) scraps, were studied on cyclophosphamide (CP)-induced anxiety- and depression-like behavior in mice. Mice were received intraperitoneal injection of CP for 2 weeks, while TSP was administered for 4 weeks. After the end of the animal experiment, behavioral, biochemical, and molecular tests were carried out. The mice decreased preference for sugar water, increased immobility time in the forced swimming and tail suspension test, and decreased travel distance in the open field test in the Model group, compared with the Control group. Abnormal changes in behavioral tests were significantly improved after the TSP treatment. Additionally, abnormalities on superoxide dismutase, malondialdehyde, glutathione peroxidase were rescued by administration of 1000 mg/kg/d TSP in mice than that of the Model group. TSP has normalized the expression of Iba-1 and the levels of TNF-α and IL-1β in the hippocampus of mice, which indicated that TSP could observably ameliorate neuroinflammatory response in the hippocampus of mice. TSP ameliorated the apoptosis of hippocampal neurons of CA1 and CA3 regions in the TSP group vs. the Model group. The number of doublecortin positive cells was drastically increased by administering 1000 mg/kg/d TSP in mice vs. the Model group. Furthermore, TSP reversed the Nrf2/HO-1 signaling pathway, BDNF/TrkB/CREB signaling pathway, and reduced the Bcl-2/Bax/caspase-3 apoptosis pathway. In conclusion, TSP could restore CP-induced anxiety- and depression-like behavior via improving oxidative stress, neuroinflammation, neuron apoptosis, and neurogenesis in mice hippocampus.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Haowen Yin
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, China
| | - Jian Zeng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Shilin Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Shaohong Chen
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Wenjing Zheng
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Mengjiao Li
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - You Liu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
- You Liu,
| | - Wenjin Wu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Wenjin Wu,
| | - Shucheng Liu
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Shucheng Liu,
| |
Collapse
|
17
|
Unten Y, Murai M, Koshitaka T, Kitao K, Shirai O, Masuya T, Miyoshi H. Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148520. [PMID: 34896079 DOI: 10.1016/j.bbabio.2021.148520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Tamoxifen has been widely used in the treatment of estrogen receptor (ER)-positive breast cancer, whereas it also exhibits ER-independent anticancer effects in various cancer cell types. As one of the convincing mechanisms underlying the ER-independent effects, induction of apoptosis through mitochondrial dysfunction has been advocated. However, the mechanism of action of tamoxifen even at the isolated mitochondrial level is not fully understood and remains controversial. Here, we attempted to comprehensively understand tamoxifen's multiple actions in isolated rat liver mitochondria through not only revisiting the actions hitherto reported but also conducting originally designed experiments. Using submitochondrial particles, we found that tamoxifen has potential as an inhibitor of both respiratory complex I and ATP synthase. However, these inhibitory effects were not elicited in intact mitochondria, likely because penetration of tamoxifen across the inner mitochondrial membrane is highly restricted owing to its localized positive charge (-N+H(CH3)2). This restricted penetration may also explain why tamoxifen is unable to function as a protonophore-type uncoupler in mitochondria. Moreover, tamoxifen suppressed opening of the mitochondrial permeability transition pore induced by Ca2+ overload through enhancing phosphate uptake into the matrix. The photoaffinity labeling experiments using a photolabile tamoxifen derivative (pTAM1) indicated that pTAM1 specifically binds to voltage-dependent anion channels (VDACs) 1 and 3, which regulate transport of various substances into mitochondria. The binding of tamoxifen to VDAC1 and/or VDAC3 could be responsible for the enhancement of phosphate uptake. Taking all the results together, we consider the principal impairment of mitochondrial functions caused by tamoxifen.
Collapse
Affiliation(s)
- Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoki Koshitaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kotaro Kitao
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
18
|
Miranda C, Galleguillos M, Torres R, Tardón K, Cáceres DD, Lee K, Redal MA, Varela NM, Quiñones LA. Preliminary Pharmacogenomic-Based Predictive Models of Tamoxifen Response in Hormone-dependent Chilean Breast Cancer Patients. Front Pharmacol 2021; 12:661443. [PMID: 34899282 PMCID: PMC8656167 DOI: 10.3389/fphar.2021.661443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen (TAM), a selective oestrogen receptor modulator, is one of the most used treatments in oestrogen receptor-positive (ER+) early and metastatic breast cancer (BC) patients. The response to TAM has a high degree of inter-individual variability. This is mainly due to genetic variants in CYP2D6 gene, as well as other genes encoding proteins involved in the TAM pharmacokinetic and/or pharmacodynamic. Therefore, prediction of the TAM response using these genetic factors together with other non-genetic variables may be relevant to improve breast cancer treatment. Thus, in this work, we used genetic polymorphisms and clinical variables for TAM response modelling. One hundred sixty-two ER + BC patients with 2 years of TAM treatment were retrospectively recruited, and the genetic polymorphisms CYP2D6*4, CYP3A4*1B (CYP3A4*1.001), CYP3A5*3, UGT2B7*2, UGT2B15*2, SULT1A1*2, and ESRA V364E were analyzed by PCR-RFLP. Concomitantly, the therapeutic response was obtained from clinical records for association with genotypes using univariate and multivariate biostatistical models. Our results show that UGT2B15*1/*2 genotype protects against relapse (OR = 0.09; p = 0.02), CYP3A5*3/*3 genotype avoids endometrial hyperplasia (OR = 0.07; p = 0.01), SULT1A1*1/*2 genotype avoids vaginal bleeding (OR = 0.09; p = 0.03) and ESRA 364E/364E genotype increases the probability of vaginal bleeding (OR = 5.68; p = 0.02). Logistic regression models, including genomic and non-genomic variables, allowed us to obtain preliminary predictive models to explain relapse (p = 0.010), endometrial hyperplasia (p = 0.002) and vaginal bleeding (p = 0.014). Our results suggest that the response to TAM treatment in ER + BC patients might be associated with the presence of the studied genetic variants in UGT2B15, CYP3A5, SULT1A1 and ESRA genes. After clinical validation protocols, these models might be used to help to predict a percentage of BC relapse and adverse reactions, improving the individual response to TAM-based treatment.
Collapse
Affiliation(s)
- Carla Miranda
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Macarena Galleguillos
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Dante D Cáceres
- Institute of Population Health, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Kuen Lee
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Faculty of Medicine, University of Chile, Santiago, Chile
| | - María A Redal
- Genetic Division, Department of Medicine, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Nelson M Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Luis A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
19
|
Kronfol MM, Abudahab S, Dozmorov MG, Jahr FM, Halquist MS, McRae M, Wijesinghe DS, Price ET, Slattum PW, McClay JL. Histone acetylation at the sulfotransferase 1a1 gene is associated with its hepatic expression in normal aging. Pharmacogenet Genomics 2021; 31:207-214. [PMID: 34320608 PMCID: PMC8490294 DOI: 10.1097/fpc.0000000000000443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Phase II drug metabolism is poorly studied in advanced age and older adults may exhibit significant variability in their expression of phase II enzymes. We hypothesized that age-related changes to epigenetic regulation of genes involved in phase II drug metabolism may contribute to these effects. METHODS We examined published epigenome-wide studies of human blood and identified the SULT1A1 and UGT1A6 genes as the top loci showing epigenetic changes with age. To assess possible functional alterations with age in the liver, we assayed DNA methylation (5mC) and histone acetylation changes around the mouse homologs Sult1a1 and Ugt1a6 in liver tissue from mice aged 4-32 months. RESULTS Our sample shows a significant loss of 5mC at Sult1a1 (β = -1.08, 95% CI [-1.8, -0.2], SE = 0.38, P = 0.011), mirroring the loss of 5mC with age observed in human blood DNA at the same locus. We also detected increased histone 3 lysine 9 acetylation (H3K9ac) with age at Sult1a1 (β = 0.11, 95% CI [0.002, 0.22], SE = 0.05, P = 0.04), but no change to histone 3 lysine 27 acetylation (H3K27ac). Sult1a1 gene expression is significantly positively associated with H3K9ac levels, accounting for 23% of the variation in expression. We did not detect any significant effects at Ugt1a6. CONCLUSIONS Sult1a1 expression is under epigenetic influence in normal aging and this influence is more pronounced for H3K9ac than DNA methylation or H3K27ac in this study. More generally, our findings support the relevance of epigenetics in regulating key drug-metabolizing pathways. In the future, epigenetic biomarkers could prove useful to inform dosing in older adults.
Collapse
Affiliation(s)
- Mohamad M. Kronfol
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Sara Abudahab
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail G. Dozmorov
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Fay M. Jahr
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew S. Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dayanjan S. Wijesinghe
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Elvin T. Price
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Geriatric Pharmacotherapy Program, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Institute for Inclusion, Inquiry and Innovation: Health and Wellness in Aging Populations Core, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia W. Slattum
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Geriatric Pharmacotherapy Program, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Institute for Inclusion, Inquiry and Innovation: Health and Wellness in Aging Populations Core, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph L. McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
van der Lee M, Allard WG, Vossen RHAM, Baak-Pablo RF, Menafra R, Deiman BALM, Deenen MJ, Neven P, Johansson I, Gastaldello S, Ingelman-Sundberg M, Guchelaar HJ, Swen JJ, Anvar SY. Toward predicting CYP2D6-mediated variable drug response from CYP2D6 gene sequencing data. Sci Transl Med 2021; 13:13/603/eabf3637. [PMID: 34290055 DOI: 10.1126/scitranslmed.abf3637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.
Collapse
Affiliation(s)
- Maaike van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - William G Allard
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rolf H A M Vossen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Renée F Baak-Pablo
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Roberta Menafra
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Birgit A L M Deiman
- Clinical Laboratory, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Department of Clinical Pharmacy, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Seyed Yahya Anvar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
21
|
Chen Y, Marcath LA, Eliassen FM, Lende TH, Soiland H, Mellgren G, Helland T, Hertz DL. Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites. J Pers Med 2021; 11:jpm11060507. [PMID: 34199712 PMCID: PMC8228634 DOI: 10.3390/jpm11060507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Tamoxifen, as a treatment of estrogen receptor positive (ER+) breast cancer, is a weak anti-estrogen that requires metabolic activation to form metabolites with higher anti-estrogenic activity. Endoxifen is the most-studied active tamoxifen metabolite, and endoxifen concentrations are highly associated with CYP2D6 activity. Associations of tamoxifen efficacy with measured or CYP2D6-predicted endoxifen concentrations have been inconclusive. Another active metabolite, 4-OHtam, and other, less active metabolites, Z-4'-endoxifen and Z-4'-OHtam, have also been reported to be associated with tamoxifen efficacy. METHOD Genotype for 20 pharmacogenes was determined by VeriDose® Core Panel and VeriDose®CYP2D6 CNV Panel, followed by translation to metabolic activity phenotype following standard activity scoring. Concentrations of tamoxifen and seven metabolites were measured by UPLC-MS/MS in serum samples collected from patients receiving 20 mg tamoxifen per day. Metabolic activity was tested for association with tamoxifen and its metabolites using linear regression with adjustment for upstream metabolites to identify genes associated with each step in the tamoxifen metabolism pathway. RESULTS A total of 187 patients with genetic and tamoxifen concentration data were included in the analysis. CYP2D6 was the primary gene associated with the tamoxifen metabolism pathway, especially the conversion of tamoxifen to endoxifen. CYP3A4 and CYP2C9 were also responsible for the metabolism of tamoxifen. CYP2C9 especially impacted the hydroxylation to 4-OHtam, and this involved the OATP1B1 (SLCO1B1) transporter. CONCLUSION Multiple genes are involved in tamoxifen metabolism and multi-gene panels could be useful to predict active metabolite concentrations and guide tamoxifen dosing.
Collapse
Affiliation(s)
- Yuanhuang Chen
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA; (Y.C.); (T.H.)
| | - Lauren A. Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy & Pharmaceutical Sciences, Spokane, WA 99202, USA;
| | - Finn Magnus Eliassen
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, P.O. Box 8100, 4068 Stavanger, Norway; (F.M.E.); (T.H.L.)
| | - Tone Hoel Lende
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, P.O. Box 8100, 4068 Stavanger, Norway; (F.M.E.); (T.H.L.)
| | - Havard Soiland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.S.); (G.M.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.S.); (G.M.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA; (Y.C.); (T.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.S.); (G.M.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA; (Y.C.); (T.H.)
- Correspondence: ; Tel.: +1-734-763-0015; Fax: +1-734-763-4480
| |
Collapse
|
22
|
Khandelwal Gilman KA, Han S, Won YW, Putnam CW. Complex interactions of lovastatin with 10 chemotherapeutic drugs: a rigorous evaluation of synergism and antagonism. BMC Cancer 2021; 21:356. [PMID: 33823841 PMCID: PMC8022429 DOI: 10.1186/s12885-021-07963-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Evidence bearing on the role of statins in the prevention and treatment of cancer is confounded by the diversity of statins, chemotherapeutic agents and cancer types included in the numerous published studies; consequently, the adjunctive value of statins with chemotherapy remains uncertain. Methods We assayed lovastatin in combination with each of ten commonly prescribed chemotherapy drugs in highly reproducible in vitro assays, using a neutral cellular substrate, Saccharomyces cerevisiae. Cell density (OD600) data were analyzed for synergism and antagonism using the Loewe additivity model implemented with the Combenefit software. Results Four of the ten chemotherapy drugs – tamoxifen, doxorubicin, methotrexate and rapamycin – exhibited net synergism with lovastatin. The remaining six agents (5-fluorouracil, gemcitabine, epothilone, cisplatin, cyclophosphamide and etoposide) compiled neutral or antagonistic scores. Distinctive patterns of synergism and antagonism, often coexisting within the same concentration space, were documented with the various combinations, including those with net synergism scores. Two drug pairs, lovastatin combined with tamoxifen or cisplatin, were also assayed in human cell lines as proof of principle. Conclusions The synergistic interactions of tamoxifen, doxorubicin, methotrexate and rapamycin with lovastatin – because they suggest the possibility of clinical utility - merit further exploration and validation in cell lines and animal models. No less importantly, strong antagonistic interactions between certain agents and lovastatin argue for a cautious, data-driven approach before adding a statin to any chemotherapeutic regimen. We also urge awareness of adventitious statin usage by patients entering cancer treatment protocols. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07963-w.
Collapse
Affiliation(s)
| | - Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Young-Wook Won
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Charles W Putnam
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. .,Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
23
|
Sanchez-Spitman AB, Swen JJ, Dezentjé VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Effect of CYP2C19 genotypes on tamoxifen metabolism and early-breast cancer relapse. Sci Rep 2021; 11:415. [PMID: 33432065 PMCID: PMC7801676 DOI: 10.1038/s41598-020-79972-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
CYP2C19*2 and CYP2C19*17 might influence tamoxifen metabolism and clinical outcome. Our aim was to investigate the effect of CYP2C19 genotypes on tamoxifen concentrations and metabolic ratios (MRs) and breast cancer recurrence in a large cohort of Caucasian women. Genetic variants (CYP2D6 and CYP2C19 genotypes), tamoxifen and metabolites concentrations, baseline characteristics, and breast cancer recurrence from the CYPTAM study (NTR1509) were used. CYP2C19*2 and CYP2C19*17 genotypes were evaluated as alleles and as groups based on CYP2D6 genotypes (high, intermediate and low activity). Log-rank test and Kaplan–Meier analysis were used to evaluate differences in recurrence defined as relapse-free survival (RFS). Classification tree analyses (CTAs) were conducted to assess the levels of interactions per polymorphism (CYP2D6 and CYP2C19 genotypes) on endoxifen concentrations. No differences in mean concentrations and MRs were observed when comparing CYP2C19 genotypes (CYP2C19*1/*1; CYP2C19*1/*2; CYP2C19*2/*2; CYP2C19*1/*17; CYP2C19*17/*17; CYP2C19*2/*17). Only significant differences (p value < 0.05) in mean concentrations and MRs were observed when comparing tamoxifen activity groups (high, intermediate and low activity). A log-rank test did not find an association across CYP2C19 genotypes (p value 0.898). CTAs showed a significant relationship between CYP2D6 and endoxifen (p value < 0.0001), but no association with CYP2C19 genotypes was found. CYP2C19 polymorphisms do not have a significant impact on tamoxifen metabolism or breast cancer relapse.
Collapse
Affiliation(s)
- A B Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - V O Dezentjé
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
24
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
25
|
Crandall CJ, Diamant AL, Maglione M, Thurston RC, Sinsheimer J. Genetic Variation and Hot Flashes: A Systematic Review. J Clin Endocrinol Metab 2020; 105:dgaa536. [PMID: 32797194 PMCID: PMC7538102 DOI: 10.1210/clinem/dgaa536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Approximately 70% of women report experiencing vasomotor symptoms (VMS, hot flashes and/or night sweats). The etiology of VMS is not clearly understood but may include genetic factors. EVIDENCE ACQUISITION We searched PubMed and Embase in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. We included studies on associations between genetic variation and VMS. We excluded studies focused on medication interventions or prevention or treatment of breast cancer. EVIDENCE SYNTHESIS Of 202 unique citations, 18 citations met the inclusion criteria. Study sample sizes ranged from 51 to 17 695. Eleven of the 18 studies had fewer than 500 participants; 2 studies had 1000 or more. Overall, statistically significant associations with VMS were found for variants in 14 of the 26 genes assessed in candidate gene studies. The cytochrome P450 family 1 subfamily A member 1 (CYP1B1) gene was the focus of the largest number (n = 7) of studies, but strength and statistical significance of associations of CYP1B1 variants with VMS were inconsistent. A genome-wide association study reported statistically significant associations between 14 single-nucleotide variants in the tachykinin receptor 3 gene and VMS. Heterogeneity across trials regarding VMS measurement methods and effect measures precluded quantitative meta-analysis; there were few studies of each specific genetic variant. CONCLUSIONS Genetic variants are associated with VMS. The associations are not limited to variations in sex-steroid metabolism genes. However, studies were few and future studies are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Carolyn J Crandall
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Allison L Diamant
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | | | - Rebecca C Thurston
- University of Pittsburgh School of Medicine & Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Janet Sinsheimer
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| |
Collapse
|
26
|
Nile Red-Poly(Methyl Methacrylate)/Silica Nanocomposite Particles Increase the Sensitivity of Cervical Cancer Cells to Tamoxifen. Polymers (Basel) 2020; 12:polym12071516. [PMID: 32650474 PMCID: PMC7408027 DOI: 10.3390/polym12071516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 12/02/2022] Open
Abstract
Tamoxifen (TAM) is a hormonal drug and is mainly used as an anti-estrogen in breast cancer patients. TAM binds to estrogen receptors (ERs), resulting in inhibition of estrogen signaling pathways and thus, a downregulation of cell proliferation. Cancer cells with negative or low ER expression will not uptake TAM and will show low response. Poly (methyl methacrylate) (PMMA) nanoparticles were prepared using surfactant-free emulsion polymerization, then were loaded with Nile red (NR), which resulted in PMMA-NR. To enhance TAM delivery to cervical cancer cells (HELA), which is considered ER-negative, we loaded TAM and polymethyl methacrylate nanoparticles-Nile-red into silica (PMMA-NR-Si-TAM). The uptake and intracellular distribution were visualized by confocal laser scanning microscopy, and the in vitro cytotoxic activity was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay using HELA and non-tumorigenic cell line HFF-1. The sensitivity of HELA (LC50: 207.31 µg/mL) and HFF-1 (LC50: 234.08 µg/mL) to free TAM was very low. However, after the encapsulation of TAM with PMMA-NR, the sensitivity significantly increased HELA (LC50: 71.83 µg/mL) and HFF-1 (LC50: 37.36 µg/mL). This indicates that TAM can be used for the treatment of ER-negative cervical cancer once conjugated to PMMA-NR nanoparticles. In addition, the PMMA-NR formulation appears to be highly suitable for cancer imaging and drug delivery.
Collapse
|
27
|
Mohr CJ, Schroth W, Mürdter TE, Gross D, Maier S, Stegen B, Dragoi A, Steudel FA, Stehling S, Hoppe R, Madden S, Ruth P, Huber SM, Brauch H, Lukowski R. Subunits of BK channels promote breast cancer development and modulate responses to endocrine treatment in preclinical models. Br J Pharmacol 2020; 179:2906-2924. [PMID: 32468618 DOI: 10.1111/bph.15147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Pore-forming α subunits of the voltage- and Ca2+ -activated K+ channel with large conductance (BKα) promote malignant phenotypes of breast tumour cells. Auxiliary subunits such as the leucine-rich repeat containing 26 (LRRC26) protein, also termed BKγ1, may be required to permit activation of BK currents at a depolarized resting membrane potential that frequently occur in non-excitable tumour cells. EXPERIMENTAL APPROACH Anti-tumour effects of BKα loss were investigated in breast tumour-bearing MMTV-PyMT transgenic BKα knockout (KO) mice, primary MMTV-PyMT cell cultures, and in a syngeneic transplantation model of breast cancer derived from these cells. The therapeutic relevance of BK channels in the context of endocrine treatment was assessed in human breast cancer cell lines expressing either low (MCF-7) or high (MDA-MB-453) levels of BKα and BKγ1, as well as in BKα-negative MDA-MB-157. KEY RESULTS BKα promoted breast cancer onset and overall survival in preclinical models. Conversely, lack of BKα and/or knockdown of BKγ1 attenuated proliferation of murine and human breast cancer cells in vitro. At low concentrations, tamoxifen and its major active metabolites stimulated proliferation of BKα/γ1-positive breast cancer cells, independent of the genomic signalling controlled by the oestrogen receptor. Finally, tamoxifen increased the relative survival time of BKα KO but not of wild-type tumour cell recipient mice. CONCLUSION AND IMPLICATIONS Breast cancer initiation, progression, and tamoxifen sensitivity depend on functional BK channels thereby providing a rationale for the future exploration of the oncogenic actions of BK channels in clinical outcomes with anti-oestrogen therapy.
Collapse
Affiliation(s)
- Corinna J Mohr
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Alice Dragoi
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Friederike A Steudel
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Severine Stehling
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Stephen Madden
- RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
28
|
Bicer T, Imamoglu GI, Caliskan S, Bicer BK, Gurdal C. The Effects of Adjuvant Tamoxifen Use on Macula Pigment Epithelium Optical Density, Visual Acuity and Retinal Thickness in Patients with Breast Cancer. Curr Eye Res 2019; 45:623-628. [PMID: 31684771 DOI: 10.1080/02713683.2019.1687725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: We aimed to compare best corrected visual acuity, macular pigment optical density and macular thickness in patients with breast cancer, who received oral adjuvant hormone therapy.Materials and Methods: We enrolled consecutive eligible patients with breast cancer who were receiving regular medical tamoxifen treatment. The participants were divided into two groups as cases and controls. Best-corrected visual acuity and retinal thickness were examined. Macular pigment optical density was measured by fundus reflectometry using the one-wavelength reflection method. The output parameters included max optical density, mean optical density, volume and area of the right eye.Results: A total of 104 eyes, cases (n: 50) and controls (n: 54) were included in the study. Mean age in cases was 49.95 ± 9.2 years and 50.21 ± 9.3 years in controls (p = .151). The mean foveal optical density and the maximum optical density differed between cases (0.13 ± 0.03 density units (DU)/0.35 ± 0.07 DU) and controls (0.18 ± 0.04 DU/0.41 ± 0.06 DU) (p = .002/p = .009). Macular pigment optical density volume was 8102.84 ± 2412.67 in cases versus 8280.18 ± 2904.56 in controls (p = .034), and mean MPOD area was 59567.79 ± 11538.06 in cases versus 61748.14 ± 10591.19 in controls (p = .023). The best corrected visual acuity and retinal thickness were similar in both groups (p > .05).Conclusions: Patients in care of oral tamoxifen therapy were found to have significantly reduced macular pigment optical density. In addition, higher drug use duration correlated significantly with reduced macular pigment optical density, suggesting that the poor long-term effects may play a role in macular pigment absorption and incorporation in the retinal tissue.
Collapse
Affiliation(s)
- Tolga Bicer
- Department of Ophthalmology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Goksen Inanc Imamoglu
- Department of Medical Oncology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Sinan Caliskan
- Department of Ophthalmology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | | | - Canan Gurdal
- Department of Ophthalmology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
29
|
Daeg J, Xu X, Zhao L, Boye S, Janke A, Temme A, Zhao J, Lederer A, Voit B, Shi X, Appelhans D. Bivalent Peptide- and Chelator-Containing Bioconjugates as Toolbox Components for Personalized Nanomedicine. Biomacromolecules 2019; 21:199-213. [DOI: 10.1021/acs.biomac.9b01127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Daeg
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoying Xu
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, Universitätsklinikum Carl Gustav Carus, Dresden 01307, Germany
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
| | - Xiangyang Shi
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| |
Collapse
|
30
|
Lepri SR, Sartori D, Semprebon SC, Baranoski A, Coatti GC, Mantovani MS. Genistein Affects Expression of Cytochrome P450 (CYP450) Genes in Hepatocellular Carcinoma (HEPG2/C3A) Cell Line. Drug Metab Lett 2019; 12:138-144. [PMID: 29984664 PMCID: PMC6350198 DOI: 10.2174/1872312812666180709150440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genistein (5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is the most abundant isoflavone in soybean, which has been associated with a lower risk of development of cancer and cardiovascular diseases. Of particular interest regarding cancer preventive properties of flavonoids is their interaction with cytochrome P450 enzymes (CYPs). However, contradictory data report the effect of genistein on expression of СYPs enzymes. OBJECTIVE The aim of this study was to investigate the effects of genistein on cytochrome P450 (CYP) gene expression levels in human hepatocellular carcinoma (HepG2/C3A) and colon adenocarcinoma (HT29) cells. METHODS Real-time RT-PCR was used to examine the expression of genes families involved in xenobiotic metabolism, such as CYP1 (CYP1A1, CYP1B1), CYP2 (CYP2E1, CYP2D6), CYP3 (CYP3A4); and of a family involved in the catabolism of the all-trans-retinoic acid (ATRA), CYP26 (CYP26A1, CYP26B1). RESULTS RT-qPCR data analysis showed that after 12 h of exposure of HepG2/C3A cells to genistein (5 and 50 µM) there was an upregulation of CYP1A1 and CYP1B1 and downregulation of CYP2D6, CYP26A1 and CYP26B1 mRNA levels. There was no change in the mRNA levels of CYP P450 genes in HT29 cells. CONCLUSION Our results suggest that treatment with genistein in non-toxic concentrations may impact the expression level of CYPs involved in the biotransformation of xenobiotics and drug metabolizing enzymes. Moreover, the downregulation of ATRA metabolism-related genes opens a new research path for the study of genistein as retinoic acid metabolism blocking agent for treating cancer and other pathologies.
Collapse
Affiliation(s)
- Sandra R Lepri
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Daniele Sartori
- Departamento de Bioquimica, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Simone C Semprebon
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Adrivanio Baranoski
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Giuliana C Coatti
- Instituto de Biociencias. Centro de Pesquisas sobre o Genoma Humano e Celulas-Tronco, Universidade de Sao Paulo (USP), Sao Paulo, Brazil
| | - Mario S Mantovani
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| |
Collapse
|
31
|
Khalaj Z, Baratieh Z, Nikpour P, Schwab M, Schaeffeler E, Mokarian F, Khanahmad H, Salehi R, Mürdter TE, Salehi M. Clinical Trial: CYP2D6 Related Dose Escalation of Tamoxifen in Breast Cancer Patients With Iranian Ethnic Background Resulted in Increased Concentrations of Tamoxifen and Its Metabolites. Front Pharmacol 2019; 10:530. [PMID: 31178724 PMCID: PMC6543868 DOI: 10.3389/fphar.2019.00530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/26/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: The polymorphic enzyme cytochrome P450 2D6 (CYP2D6) catalyzes a major step in the bioactivation of tamoxifen. Genotyping of clinically relevant CYP2D6 alleles and subsequent dose adjustment is a promising approach to individualize breast cancer therapy. The aim of this study was to investigate the relationship between the plasma levels of tamoxifen and its metabolites and different CYP2D6 genotypes under standard (20 mg/day) and dose-adjusted therapy (Registration ID in Iranian Registry of Clinical Trials: IRCT2015082323734N1). Materials and Methods: Using TaqMan® assays common alleles of CYP2D6 (∗1, ∗2, ∗4, ∗5, ∗6, ∗10, ∗17, and ∗41) and gene duplication were identified in 134 breast cancer patients. Based on CYP2D6 genotypes patients with an activity score 1 (n = 15) and 0-0.5 (n = 2) were treated with tamoxifen adjusted dosage of 30 and 40 mg/day, respectively. The concentration of tamoxifen and its metabolites before and after 4 and 8 months of dose adjustment were measured using LC-MS/MS technology. Results: At baseline, (Z)-endoxifen plasma concentrations (33 ± 15.5, 28.1 ± 14, 26.6 ± 23.4, 14.3 ± 8.6, and 10.7 ± 5.5 nmol/l for EM/EM, EM/IM, EM/PM, IM/IM and PM/PM, respectively) and the metabolic ratio (Z)-Endoxifen/N-desmethyltamoxifen (0.0558 ± 0.02, 0.0396 ± 0.0111, 0.0332 ± 0.0222, 0.0149 ± 0.0026, and 0.0169 ± 0.0177 for EM/EM, EM/IM, EM/PM, IM/IM, and PM/PM, respectively) correlated with CYP2D6 genotype (Kruskal-Wallis p = 0.013 and p < 0.0001, respectively). Dose escalation to 30 and 40 mg/day in patients with a CYP2D6 activity score of 1 (n = 15) and 0-0.5 (n = 2) resulted in a significant increase in (Z)-endoxifen plasma levels (22.17 ± 24.42, 34.43 ± 26.54, and 35.77 ± 28.89 nmol/l at baseline, after 4 and 8 months, respectively, Friedman p = 0.0388) along with the plasma concentrations of tamoxifen and its other metabolites. No severe side effects were recorded during dose escalation. Conclusion: For the first time, we show the feasibility of dose escalation of tamoxifen in breast cancer patients with compromised CYP2D6 activity and Iranian ethnic background to increase the plasma concentrations of (Z)-endoxifen.
Collapse
Affiliation(s)
- Zahra Khalaj
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Baratieh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Fariborz Mokarian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Plasma Concentration of Tamoxifen and Its Metabolites in a Neonate and Mother Receiving Tamoxifen: A Case Report of a Pregnant Woman. Ther Drug Monit 2019; 41:405-406. [PMID: 31083042 DOI: 10.1097/ftd.0000000000000608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Mou P, Wang H, An L, Yin Q, Chang J. RS7435335 located in the UGT2B7 gene may be a possible genetic marker for the clinical response and prognosis of breast cancer patients receiving neoadjuvant chemotherapy. J Cell Biochem 2019; 120:7167-7173. [PMID: 30552707 DOI: 10.1002/jcb.27990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the predictive efficacy and prognostic value of rs7435335 located in the UGT2B7 gene as a genetic marker in breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS A total of 190 patients with breast cancer treated with NAC were enrolled to detect the rs7435335 SNP by sequenom. Miller-Payne grades were used to evaluate the treatment efficacy. The association between rs7435335 and chemotherapy efficacy and prognosis was analyzed. RESULTS Altogether, 42 cases (22.1%) achieved pathologic complete response (pCR). The results of the univariate analysis showed that rs7435335 had no statistically significant difference with pCR and Miller-Payne grades (P > 0.05). When grouping was done in accordance with the ER status, the pCR and Miller-Payne grades significantly associated with rs7435335 ( P < 0.05) only in the ER-negative group. Multivariate logistic regression analysis suggested that rs7435335 in the ER-negative group was an independent predictor of pCR ( P < 0.05). Survival analysis showed that the disease-free survival (DFS) time in patients with GA genotype was longer than that of GG genotype, and rs7435335 predicted the DFS in the ER-negative group. CONCLUSION The UGT2B7 rs7435335 is associated with the NAC efficacy and prognosis. Patients with GA genotype have better efficacy and prognosis. Rs7435335 was found to be a possible gene marker for pCR and prognosis in ER-negative patients who received NAC.
Collapse
Affiliation(s)
- Peng Mou
- Breast Surgery Department, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - HuiJun Wang
- Breast Surgery Department, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Liping An
- Oncology Department, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Qiang Yin
- Breast Surgery Department, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Juan Chang
- Department of Nursing, Rizhao LanShan of People's Hospital, Rizhao, Shandong, China
| |
Collapse
|
34
|
Sanchez-Spitman A, Swen J, Dezentje V, Moes D, Gelderblom H, Guchelaar H. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol 2019; 12:523-536. [DOI: 10.1080/17512433.2019.1610390] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- A.B. Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J.J. Swen
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - V.O. Dezentje
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - D.J.A.R. Moes
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H.J. Guchelaar
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Weissenstein U, Kunz M, Oufir M, Wang JT, Hamburger M, Urech K, Regueiro U, Baumgartner S. Absence of herb-drug interactions of mistletoe with the tamoxifen metabolite (E/Z)-endoxifen and cytochrome P450 3A4/5 and 2D6 in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:23. [PMID: 30658716 PMCID: PMC6339413 DOI: 10.1186/s12906-019-2439-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/14/2019] [Indexed: 01/16/2023]
Abstract
Background Women diagnosed with breast cancer frequently seek complementary and alternative (CAM) treatment options that can help to cope with their disease and the side effects of conventional cancer therapy. Especially in Europe, breast cancer patients use herbal products containing mistletoe (Viscum album L.). The oldest and one of the most prescribed conventional drugs for the treatment of estrogen receptor positive breast cancer is tamoxifen. Aside from positive clinical experience with the combination of tamoxifen and mistletoe, little is known about possible herb-drug interactions (HDIs) between the two products. In the present in vitro study, we investigated the effect of standardized commercial mistletoe preparations on the activity of endoxifen, the major active metabolite of tamoxifen. Methods The estrogen receptor positive human breast carcinoma cell line MCF-7 was treated with (E/Z)-endoxifen hydrochloride in the presence and absence of a defined estradiol concentration. Each concentration of the drug was combined with fermented Viscum album L. extracts (VAE) at clinically relevant doses, and proliferation, apoptosis and cell cycle were analyzed. In parallel, possible inhibition of CYP3A4/5 and CYP2D6 was investigated using 50-donor mixed gender pooled human liver microsomes (HLMs). Results VAE did not inhibit endoxifen induced cytostasis and cytotoxicity. At higher concentrations, VAE showed an additive inhibitory effect. VAE preparations did not cause inhibition of CYP3A4/5 and CYP2D6 catalyzed tamoxifen metabolism. Conclusions The in vitro results suggest that mistletoe preparations can be used in combination with tamoxifen without the risk of HDIs. Electronic supplementary material The online version of this article (10.1186/s12906-019-2439-2) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Suzuki T, Asami M, Patel SG, Luk LYP, Tsai YH, Perry ACF. Switchable genome editing via genetic code expansion. Sci Rep 2018; 8:10051. [PMID: 29968790 PMCID: PMC6030211 DOI: 10.1038/s41598-018-28178-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
Multiple applications of genome editing by CRISPR-Cas9 necessitate stringent regulation and Cas9 variants have accordingly been generated whose activity responds to small ligands, temperature or light. However, these approaches are often impracticable, for example in clinical therapeutic genome editing in situ or gene drives in which environmentally-compatible control is paramount. With this in mind, we have developed heritable Cas9-mediated mammalian genome editing that is acutely controlled by the cheap lysine derivative, Lys(Boc) (BOC). Genetic code expansion permitted non-physiological BOC incorporation such that Cas9 (Cas9BOC) was expressed in a full-length, active form in cultured somatic cells only after BOC exposure. Stringently BOC-dependent, heritable editing of transgenic and native genomic loci occurred when Cas9BOC was expressed at the onset of mouse embryonic development from cRNA or Cas9BOC transgenic females. The tightly controlled Cas9 editing system reported here promises to have broad applications and is a first step towards purposed, spatiotemporal gene drive regulation over large geographical ranges.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, England
| | - Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, England
| | - Sanjay G Patel
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales.
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, England.
| |
Collapse
|
37
|
Nakamura T, Toshimoto K, Lee W, Imamura CK, Tanigawara Y, Sugiyama Y. Application of PBPK Modeling and Virtual Clinical Study Approaches to Predict the Outcomes of CYP2D6 Genotype-Guided Dosing of Tamoxifen. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:474-482. [PMID: 29920987 PMCID: PMC6063740 DOI: 10.1002/psp4.12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/11/2022]
Abstract
The Tamoxifen Response by CYP2D6 Genotype‐based Treatment‐1 (TARGET‐1) study (n = 180) was conducted from 2012–2017 in Japan to determine the efficacy of tamoxifen dosing guided by cytochrome P450 2D6 (CYP2D6) genotypes. To predict its outcomes prior to completion, we constructed the comprehensive physiologically based pharmacokinetic (PBPK) models of tamoxifen and its metabolites and performed virtual TARGET‐1 studies. Our analyses indicated that the expected probability to achieve the end point (demonstrating the superior efficacy of the escalated tamoxifen dose over the standard dose in patients carrying CYP2D6 variants) was 0.469 on average. As the population size of this virtual clinical study (VCS) increased, the expected probability was substantially increased (0.674 for n = 260). Our analyses also informed that the probability to achieve the end point in the TARGET‐1 study was negatively impacted by a large variability in endoxifen levels. Our current efforts demonstrate the promising utility of the PBPK modeling and VCS approaches in prospectively designing effective clinical trials.
Collapse
Affiliation(s)
- Toshimichi Nakamura
- DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Chiyo K Imamura
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
38
|
Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther 2018; 186:1-24. [DOI: 10.1016/j.pharmthera.2017.12.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Rahayu ST, Harahap Y, Mun`im A, Sutandyo N. Determination of Tamoxifen and 4-Hydroxytamoxifen Levels in Rat Plasma after Administration of the Ethyl Acetate Fraction of Myrmecodia erinaceae Becc. using Liquid Chromatography Tandem Mass-Spectrometry. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.215.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Abstract
More than one-third of adults in the USA have obesity, which causes, exacerbates or adversely impacts numerous medical comorbidities, including diabetes mellitus and cardiovascular disease. Despite intensive lifestyle modifications, the disease severity warrants further aggressive intervention, including pharmacotherapy, medical devices and bariatric surgery. Noninvasive anti-obesity drugs have thus now resurfaced as targeted adjunctive therapeutic approaches to intensive lifestyle intervention, bridging the gap between lifestyle and bariatric surgery. In this Review, we discuss FDA-approved anti-obesity drugs in terms of safety and efficacy. As most of these drugs have a mean percentage weight loss reported in clinical trials but individual variations in response rates, a future direction of obesity pharmacotherapy research might include the potential for personalized medicine to target early responders to these anti-obesity drugs.
Collapse
Affiliation(s)
- Gitanjali Srivastava
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| | - Caroline M Apovian
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| |
Collapse
|
41
|
Moreno N, Flores-Angulo C, Villegas C, Mora Y. CYP2D6 variability in populations from Venezuela. Drug Metab Pers Ther 2017; 31:181-189. [PMID: 27875317 DOI: 10.1515/dmpt-2016-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022]
Abstract
CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.
Collapse
|
42
|
Sutiman N, Lim JSL, Muerdter TE, Singh O, Cheung YB, Ng RCH, Yap YS, Wong NS, Ang PCS, Dent R, Schroth W, Schwab M, Khor CC, Chowbay B. Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and Their Influence on Tamoxifen Disposition in Asian Breast Cancer Patients. Clin Pharmacokinet 2017; 55:1239-1250. [PMID: 27098059 DOI: 10.1007/s40262-016-0402-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tamoxifen (TAM) is an established endocrine treatment for all stages of oestrogen receptor (ER)-positive breast cancer. Its complex metabolism leads to the formation of multiple active and inactive metabolites. One of the main detoxification and elimination pathways of tamoxifen and its active metabolites, 4-hydroxytamoxifen (4-OHT) and endoxifen, is via glucuronidation catalysed by uridine 5'-diphospho-glucuronosyltransferases (UGTs). However, few studies have comprehensively examined the impact of variations in the genes encoding the major hepatic UGTs on the disposition of tamoxifen and its metabolites. In the present study, we systematically sequenced exons, exon/intron boundaries, and flanking regions of UGT1A4, UGT2B7 and UGT2B15 in 240 healthy subjects of different Asian ethnicities (Chinese, Malays and Indians) to identify haplotype tagging single nucleotide polymorphisms. Subsequently, 202 Asian breast cancer patients receiving tamoxifen were genotyped for 50 selected variants in the three UGT genes to comprehensively investigate their associations with steady-state plasma levels of tamoxifen, its active metabolites and their conjugated counterparts. The UGT1A4 haplotype (containing variant 142T>G, L48 V defining the *3 allele) was strongly associated with higher plasma levels of TAM-N-glucuronide, with a twofold higher metabolic ratio of TAM-N-glucuronide/TAM observed in carriers of this haplotype upon covariate adjustment (P < 0.0001). Variants in UGT2B7 were not associated with altered O-glucuronidation of both 4-OHT and endoxifen, while UGT2B15 haplotypes had a modest effect on (E)-endoxifen plasma levels after adjustment for CYP2D6 genotypes. Our findings highlight the influence of UGT1A4 haplotypes on tamoxifen disposition in Asian breast cancer patients, while genetic variants in UGT2B7 and UGT2B15 appear to be of minor importance.
Collapse
Affiliation(s)
| | - Joanne Siok Liu Lim
- Clinical Pharmacology Laboratory, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Thomas E Muerdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tubingen, Tubingen, Germany
| | - Onkar Singh
- Clinical Pharmacology Laboratory, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Yin Bun Cheung
- Center for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department for International Health, University of Tampere, Tampere, Finland
| | | | - Yoon Sim Yap
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Nan Soon Wong
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Peter Cher Siang Ang
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tubingen, Tubingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital, Tubingen, Germany
| | - Chiea Chuen Khor
- Singapore Eye Research Institute, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Balram Chowbay
- Clinical Pharmacology, SingHealth, Singapore, Singapore. .,Clinical Pharmacology Laboratory, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore. .,Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
43
|
Denlinger CS, Sanft T, Baker KS, Baxi S, Broderick G, Demark-Wahnefried W, Friedman DL, Goldman M, Hudson M, Khakpour N, King A, Koura D, Kvale E, Lally RM, Langbaum TS, Melisko M, Montoya JG, Mooney K, Moslehi JJ, O'Connor T, Overholser L, Paskett ED, Peppercorn J, Rodriguez MA, Ruddy KJ, Silverman P, Smith S, Syrjala KL, Tevaarwerk A, Urba SG, Wakabayashi MT, Zee P, Freedman-Cass DA, McMillian NR. Survivorship, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2017; 15:1140-1163. [PMID: 28874599 PMCID: PMC5865602 DOI: 10.6004/jnccn.2017.0146] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many cancer survivors experience menopausal symptoms, including female survivors taking aromatase inhibitors or with a history of oophorectomy or chemotherapy, and male survivors who received or are receiving androgen-ablative therapies. Sexual dysfunction is also common in cancer survivors. Sexual dysfunction and menopause-related symptoms can increase distress and have a significant negative impact on quality of life. This portion of the NCCN Guidelines for Survivorship provide recommendations for screening, evaluation, and treatment of sexual dysfunction and menopausal symptoms to help healthcare professionals who work with survivors of adult-onset cancer in the posttreatment period.
Collapse
|
44
|
Sanchez-Spitman AB, Moes DJAR, Gelderblom H, Dezentjé VO, Swen JJ, Guchelaar HJ. The effect of rs5758550 on CYP2D6*2 phenotype and formation of endoxifen in breast cancer patients using tamoxifen. Pharmacogenomics 2017; 18:1125-1132. [DOI: 10.2217/pgs-2017-0080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: CYP2D6*2 is considered fully active, but it has been suggested that it only happens in the presence of rs5758550. This study aims to elucidate the impact of this enhancer. Materials & methods: DNA and blood samples from women enrolled in the CYPTAM study (NTR1509) were analyzed. Fourteen CYP2D6*2 carriers without the enhancer were reclassified. The relationship of CYP2D6 phenotypes and drug levels was studied. Results: After correction for the absence of the enhancer, the correlation between CYP2D6 phenotypes and endoxifen did not improve (R2: 0.290 vs 0.279). No difference was observed in mean concentrations between CYP2D6*2 individuals with and without the enhancer. Conclusion: The rs5758550 enhancer does not lead to improved prediction of endoxifen levels in breast cancer patients.
Collapse
Affiliation(s)
- Anabel B Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk-Jan AR Moes
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent O Dezentjé
- Department of Medical Oncology, Reinier de Graaf, Delft, The Netherlands
| | - Jesse J Swen
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Azuma T, Ishida M, Hisamatsu K, Yunoki A, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y. A method for evaluating the pharmaceutical deconjugation potential in river water environments. CHEMOSPHERE 2017; 180:476-482. [PMID: 28431385 DOI: 10.1016/j.chemosphere.2017.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 05/25/2023]
Abstract
A new enzymatic assay method that uses deconjugation enzymes was developed to evaluate the presence and extent of conjugated pharmaceuticals in the form of glucuronide conjugates or sulphate conjugates in river environments. First, acetaminophen glucuronide (Ace Glu) and acetaminophen sulphate (Ace Sul) were used as model conjugated pharmaceuticals to determine the appropriate combination of deconjugation enzymes and reaction conditions, including temperature, duration and pH. Next, we applied the defined method to 19 pharmaceuticals grouped into nine therapeutic classes that were chosen based on previously detected levels and frequencies in sewage and river water. The enzymatic decomposition profile varied widely depending upon the enzyme preparations available. The effect of the water reaction temperature was small between 5 and 40 °C, and the reaction proceeded in for both glucuronide conjugates and sulphate conjugates at an approximately neutral pH (corresponding to usual river water conditions) within 1 h. Application of the method to environmental samples showed that some pharmaceuticals were present in both glucuronide conjugate and sulphate conjugated forms, although glucuronide conjugates were the primary forms in the river water environment. Water treatment systems at sewage treatment plants were found to be effective for the removal of these conjugated compounds. The present results should be valuable in the environmental risk assessment of conjugated pharmaceuticals and in keeping river environments clean. To the best of our knowledge, this is the first report that enables the evaluation of the pharmaceutical deconjugation potential in a river environment.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Mao Ishida
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kanae Hisamatsu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ayami Yunoki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kana Otomo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mari Kunitou
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Shimizu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kaori Hosomaru
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shiori Mikata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
46
|
Zhang X, Harbeck N, Jeschke U, Doisneau-Sixou S. Influence of vitamin D signaling on hormone receptor status and HER2 expression in breast cancer. J Cancer Res Clin Oncol 2017; 143:1107-1122. [PMID: 28025696 DOI: 10.1007/s00432-016-2325-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Breast cancer is a significant global public health issue. It is the leading cause of death among women around the world, with an incidence increasing annually. In recent years, there has been more and more information in the literature regarding a protective role of vitamin D in cancer. Increasingly preclinical and clinical studies suggest that vitamin D optimal levels can reduce the risk of breast cancer development and regulate cancer-related pathways. METHOD In this review, we focus on the importance of vitamin D in breast cancers, discussing especially the influence of vitamin D signaling on estrogen receptor and human epidermal growth factor receptor 2 (HER2), two major biomarkers of breast cancer today. CONCLUSION We discuss the possibility of actual and future targeted therapeutic approaches for vitamin D signaling in breast cancer.
Collapse
Affiliation(s)
- Xi Zhang
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Nadia Harbeck
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Udo Jeschke
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Sophie Doisneau-Sixou
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany.
- Faculté des Sciences Pharmaceutiques, Université Paul Sabatier Toulouse III, 31062, Toulouse Cedex 09, France.
| |
Collapse
|
47
|
Dickschen KJR, Willmann S, Hempel G, Block M. Addressing Adherence Using Genotype-Specific PBPK Modeling-Impact of Drug Holidays on Tamoxifen and Endoxifen Plasma Levels. Front Pharmacol 2017; 8:67. [PMID: 28382001 PMCID: PMC5361661 DOI: 10.3389/fphar.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022] Open
Abstract
Introduction: Tamoxifen is one of the most common treatment opportunities for hormonal positive breast cancer. Despite its good tolerability, patients demonstrate decreasing adherence over years impacting on therapeutic success. PBPK modeling was applied to demonstrate the impact of drug holidays on plasma levels of tamoxifen and its active metabolite endoxifen for different CYP2D6 genotypes. Materials and Methods: A virtual study with 24,000 patients was conducted in order to investigate the development of tamoxifen steady-state kinetics in patient groups of different CYP2D6 genotypes. The impact of drug holidays on steady-state kinetics was investigated assuming changing drug holiday scenarios. Results: Drug holidays in CYP2D6 extensive and intermediate metabolizers (EMs, IMs) exceeding 1 month lead to a decrease of endoxifen steady-state trough levels below the 5th percentile of the control group. Assuming drug holidays of 1, 2, or 3 months and administering a fixed-dose combination of 20 mg tamoxifen and 3 mg endoxifen EMs demonstrated re-established endoxifen steady-state trough levels after 5, 8, and 9 days. IMs receiving the same fixed-dose combination demonstrated re-established endoxifen steady-state trough levels after 7, 10, and 11 days. Discussion: The PBPK model impressively demonstrates the impact of drug holidays in different CYP2D6 genotypes on PK. Population simulation results indicate that drug holidays of more than 2 weeks cause a tremendous decrease of plasma levels despite the long half-life of tamoxifen. To improve therapeutic success, PBPK modeling allows identifying genotype-specific differences in PK following drug holidays and adequate treatment with loading doses.
Collapse
Affiliation(s)
| | - Stefan Willmann
- Clinical Pharmacometrics, Bayer Pharma AG Wuppertal, Germany
| | - Georg Hempel
- Clinical Pharmacy, Department of Pharmaceutical and Medical Chemistry, University of Muenster Muenster, Germany
| | - Michael Block
- Computational Systems Biology, Bayer AG Leverkusen, Germany
| |
Collapse
|
48
|
Johnson KE, Forward JA, Tippy MD, Ceglowski JR, El-Husayni S, Kulenthirarajan R, Machlus KR, Mayer EL, Italiano JE, Battinelli EM. Tamoxifen Directly Inhibits Platelet Angiogenic Potential and Platelet-Mediated Metastasis. Arterioscler Thromb Vasc Biol 2017; 37:664-674. [PMID: 28153880 DOI: 10.1161/atvbaha.116.308791] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Platelets, which are mainly known for their role in hemostasis, are now known to play a crucial role in metastasis. Tamoxifen is a selective estrogen receptor modulator that is widely used for the treatment of breast cancer. Tamoxifen and its metabolites have been shown to directly impact platelet function, suggesting that this drug has additional mechanisms of action. The purpose of this study was to determine whether tamoxifen exerts antitumor effects through direct platelet inhibition. APPROACH AND RESULTS This study found that pretreatment with tamoxifen leads to a significant inhibition of platelet activation. Platelets exposed to tamoxifen released significantly lower amounts of proangiogenic regulator vascular endothelial growth factor. In vitro angiogenesis assays confirmed that tamoxifen pretreatment led to diminished capillary tube formation and decreased endothelial migration. Tamoxifen and its metabolite, 4-hydroxytamoxifen, also significantly inhibited the ability of platelets to promote metastasis in vitro. Using a membrane-based array, we identified several proteins associated with angiogenesis metastasis that were lower in activated releasate from tamoxifen-treated platelets, including angiogenin, chemokine (C-X-C motif) ligand 1, chemokine (C-C motif) ligand 5, epidermal growth factor, chemokine (C-X-C motif) ligand 5, platelet-derived growth factor dimeric isoform BB, whereas antiangiogenic angiopoietin-1 was elevated. Platelets isolated from patients on tamoxifen maintenance therapy were also found to have decreased activation responses, diminished vascular endothelial growth factor release, and lower angiogenic and metastatic potential. CONCLUSIONS We demonstrate that tamoxifen and its metabolite 4-hydroxytamoxifen directly alter platelet function leading to decreased angiogenic and metastatic potential. Furthermore, this study supports the idea of utilizing targeted platelet therapies to inhibit the platelet's role in angiogenesis and malignancy.
Collapse
Affiliation(s)
- Kelly E Johnson
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Jodi A Forward
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Mason D Tippy
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Julia R Ceglowski
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Saleh El-Husayni
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Rajesh Kulenthirarajan
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Kellie R Machlus
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Erica L Mayer
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Joseph E Italiano
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.)
| | - Elisabeth M Battinelli
- From the Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.E.J., J.A.F., M.D.T., J.R.C., S.E.-H., R.K., K.R.M., J.E.I., E.M.B.); Department of Medicine, Harvard Medical School, Boston, MA (K.E.J., K.R.M., E.L.M., J.E.I., E.M.B.); Vascular Biology Program, Department of Surgery, Children's Hospital Boston, MA (J.E.I.); and Division of Hematology, Dana-Farber Cancer Institute, Boston, MA (E.L.M.).
| |
Collapse
|
49
|
Ota Y, Itoh Y, Kaise A, Ohta K, Endo Y, Masuda M, Sowa Y, Sakai T, Suzuki T. Targeting Cancer with PCPA-Drug Conjugates: LSD1 Inhibition-Triggered Release of 4-Hydroxytamoxifen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yosuke Ota
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Asako Kaise
- Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima Aoba-ku Sendai 981-8558 Japan
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima Aoba-ku Sendai 981-8558 Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima Aoba-ku Sendai 981-8558 Japan
| | - Mitsuharu Masuda
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Yoshihiro Sowa
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Toshiyuki Sakai
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
- CREST Japan Science and Technology Agency (JST); 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
50
|
Ota Y, Itoh Y, Kaise A, Ohta K, Endo Y, Masuda M, Sowa Y, Sakai T, Suzuki T. Targeting Cancer with PCPA-Drug Conjugates: LSD1 Inhibition-Triggered Release of 4-Hydroxytamoxifen. Angew Chem Int Ed Engl 2016; 55:16115-16118. [DOI: 10.1002/anie.201608711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/19/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Yosuke Ota
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Asako Kaise
- Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima Aoba-ku Sendai 981-8558 Japan
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima Aoba-ku Sendai 981-8558 Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima Aoba-ku Sendai 981-8558 Japan
| | - Mitsuharu Masuda
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Yoshihiro Sowa
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Toshiyuki Sakai
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science; Kyoto Prefectural University of Medicine; 1-5 Shimogamohangi-Cho Sakyo-Ku Kyoto 606-0823 Japan
- CREST Japan Science and Technology Agency (JST); 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|