1
|
Mellace M, Roncada P, Tilocca B, Ceniti C. Diagnosis and control of brucellosis through food: The contribution of omics sciences. Microb Pathog 2025; 203:107434. [PMID: 40054676 DOI: 10.1016/j.micpath.2025.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
More than 60 percent of emerging infectious diseases in humans are zoonoses, and about 70 percent of these come from wildlife. In this context, infectious diseases in animals are no longer a problem confined to the livestock and animal health sector but have important repercussions in public health-related risk assessment and management. One of the most relevant risks in the transmission of zoonoses is certainly the consumption of food contaminated with pathogens, especially because of the potential epidemiological relevance of foodborne outbreaks. Brucellosis represents one of the most prevalent zoonoses worldwide and one of the most important foodborne zoonoses, particularly in the Mediterranean and developing countries; The European Union has funded numerous eradication and control programs in at-risk herds. This review aims to analyze current diagnostic methods used in the detection of Brucella in food matrices. It will highlight issues related to the timing and specificity of classical diagnostic methods while also analyzing new diagnostic methods in the current literature. The focus of this work is on emphasizing the potential that integrated omics sciences have in developing early and highly sensitive diagnostic tools. It analyzes strengths and weaknesses and underscores, through a review of recent scientific articles in the "PubMed" and "Google Scholar" databases, the importance of current and future research, especially those based on an omics approach, in providing fundamental biological data and knowledge. This, in turn, could play a crucial role in designing innovative diagnostic tests to complement those currently in use.
Collapse
Affiliation(s)
- Matteo Mellace
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Carlotta Ceniti
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Patnaik A, Rai SK, Dhaked RK. Analytical techniques and molecular platforms for detection and surveillance of antimicrobial resistance: advancements of the past decade. 3 Biotech 2025; 15:108. [PMID: 40191453 PMCID: PMC11965067 DOI: 10.1007/s13205-025-04278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Developing countries have been able to control and minimise the mortality rates caused by pathogenic infections by ensuring affordable access to antibiotics. However, a large number of bacterial ailments are treated with wrong antibiotic prescription due to improper disease diagnosis. Apart from healthcare, antibiotics are also imprudently utilised in crop processing and animal husbandry. This unsupervised usage of antibiotics has propelled the generation of multidrug-resistant species of bacteria. Presently, several traditional antimicrobial susceptibility/resistance tests (AST/ART) are available; however, the accuracy and reproducibility of these tests are often debatable. Rigorous efforts are essential to develop techniques and methods which substantially decrease turnaround time for resistance screening. The present review has comprehensively incorporated the improvements in instrumentation and molecular methods for antimicrobial resistance studies. We have enlisted some innovative takes on conventional techniques such as isothermal calorimetry, Raman spectroscopy, mass spectrometry and microscopy. The contributions of modern molecular tools such as CRISPR-Cas, aptamers and Oxford-MinION sequencers have also been discussed. Persistent evolution has been observed towards adding innovation in diagnostic platforms for drug resistome screening, with the major attraction being the involvement of non-conventional analytical methods and technological improvements in existing setups. This review highlights these updates and provides a detailed account of principal developments in molecular methods for the testing of drug resistance in bacteria.
Collapse
Affiliation(s)
- Abhinandan Patnaik
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 MP India
| | - Sharad Kumar Rai
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 MP India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 MP India
| |
Collapse
|
3
|
AL Shizawi N, AL Jabri Z, Khan F, Sami H, AL Siyabi T, AL Muharrmi Z, Sirasanagandla SR, Rizvi M. Mapping Antimicrobial Resistance in Escherichia coli and Klebsiella pneumoniae from Complicated Urinary Tract Infections in Oman: Phenotypic and Genotypic Insights. Diagnostics (Basel) 2025; 15:1062. [PMID: 40361883 PMCID: PMC12071653 DOI: 10.3390/diagnostics15091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs treatment guidelines and empiric management. Whole genome sequencing (WGS) enhances antimicrobial resistance (AMR) surveillance by complementing phenotypic antimicrobial susceptibility testing, offering deeper insights into resistance mechanisms, transmissions, and evolutions. Integrating it into routine AMR monitoring can significantly improve global efforts to combat antimicrobial resistance. Methods: Antimicrobial susceptibility profiles of isolates from cUTI were collected from patients presenting with Sultan Qaboos University Hospital, Muscat and Suhar Hospital, Suhar, Oman. Automated systems as well as manual methods were used for detection of ESBL, AmpC, and CPE. ESBLs, AmpC β-lactamases, and CPEs were further detected by manual methods: double-disk synergy test for ESBL; disk approximation assay and D69C AmpC detection set for AmpC, and mCIM and KPC/IMP/NDM/VIM/OXA-48 Combo test kit for CPE. WGS was carried out in 11 FOX-resistant E. coli and (22 carbapenem-resistant K. pneumoniae) isolates with varying susceptibilities to identify circulating clades, AMR genes, and plasmids. Bioinformatic analysis was performed using online tools. Results: The susceptibility patterns of E. coli from cUTI were as follows: nitrofurantoin (96%), fosfomycin (100%), fluoroquinolones (44%), aminoglycosides (93%), piperacillin-tazobactam (95%), and carbapenems (98%). In comparison, susceptibility rates of K. pneumoniae were far lower: nitrofurantoin (38%), fosfomycin (89%), aminoglycosides (82%), piperacillin-tazobactam (72%), and carbapenems (83%). K. pneumoniae, however, was more susceptible to fluoroquinolones at 47% in comparison to E. coli. The prevalence of ESBL among E. coli and K. pneumoniae was 37.2% and CRE was 6.2% while the estimated prevalence of AmpC was 5.4%. It was observed that E. coli was the predominant ESBL and AmpC producer, while K. pneumoniae was the major carbapenem-resistant Enterobacterales (CREs) producer. No predominant multi-locus sequence typing (MLST) lineage was observed in AmpC-producing E. coli with nine E. coli MLST lineages being identified from eleven isolates: ST-10, ST-69, ST-77, ST-131, ST-156, ST-167, ST-361, ST-1125, and ST-2520. On the other hand, a less diverse MLST spectrum (ST-2096, ST-231, ST-147, ST-1770, and ST-111) was observed in the CRE K. pneumoniae. Among the five MLST lineages, ST-2096 (twelve isolates) and ST-147 (seven isolates) predominated. WGS revealed that DHA-1 was the predominant plasmid-mediated AmpC gene in E. coli, while OXA-232 and NDM-5 were the most common carbapenemase genes in K. pneumoniae. All E. coli DHA-1-positive isolates co-harbored the quinolone resistance gene qnrB4 and the sulfonamide resistance gene sul1 while no aminoglycoside resistance genes were detected. The majority of CPE CRE K. pneumoniae carried other β-lactamase genes, such as blaCTX-M-15, blaSHV, and blaTEM; all co-harbored the quinolone resistance gene OqxAB; and 77% carried the aminoglycoside resistance gene armA. Conclusions: Our results suggest that fosfomycin is an excellent empiric choice for treating complicated cystitis caused by both E. coli and K. pneumoniae, while nitrofurantoin is an appropriate choice for E. coli cystitis but not for K. pneumoniae. Aminoglycosides and piperacillin-tazobactam are excellent intravenous alternatives that spare carbapenems. DHA-1 was the predominant AmpC in E. coli, while OXA-232 and NDM-5 were the predominant carbapenemases in K. pneumoniae. In AmpC-producing E. coli, no MLST predominated, suggesting a significant flux in E. coli with lack of stable clades in this region. In contrast, ST-2096 and ST-147 predominated in CRE Klebsiella pneumoniae, suggesting a stable circulation of these in Oman. WGS profiling provides a deeper understanding of the genetic basis of resistance and enhances surveillance and offers comprehensive insights into pathogen evolution and transmission patterns.
Collapse
Affiliation(s)
- Nawal AL Shizawi
- Department of Microbiology, Suhar Hospital, Ministry of Health, Sohar 100, Oman;
| | - Zaaima AL Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Fatima Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India; (F.K.); (H.S.)
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202001, India; (F.K.); (H.S.)
| | - Turkiya AL Siyabi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Zakariya AL Muharrmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University and Sultan Qaboos University Hospital, Muscat 123, Oman; (Z.A.J.); (T.A.S.); (Z.A.M.)
| |
Collapse
|
4
|
Liu X, Niu H, Guo D, Gao H, Wu L, Liu J, Bai C, Li Y, Wang P, Zhou Z, Wang Y, Liang J, Gong W. Application value of nucleic acid MALDI-TOF MS in mycobacterial species identification and drug resistance detection in Mycobacterium tuberculosis. Microbiol Spectr 2025; 13:e0154524. [PMID: 40131854 PMCID: PMC12054002 DOI: 10.1128/spectrum.01545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Tuberculosis (TB) and non-tuberculous mycobacteria (NTM) infections pose global health threats, requiring swift and accurate identification for effective treatment. This study aims to assess the ability of nucleic acid matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to rapidly identify Mycobacterium tuberculosis (MTB), NTM, and the drug resistance of MTB. A comparative analysis of 133 clinical samples was performed using acid-fast bacilli (AFB) staining, Lowenstein-Jensen (LJ) culture, GeneXpert, real-time PCR, and nucleic acid MALDI-TOF MS. The study focused on the diagnostic performance of nucleic acid MALDI-TOF MS in detecting MTB and NTM, as well as its accuracy in identifying the drug resistance profiles of MTB. The positive detection rate of nucleic acid MALDI-TOF MS for mycobacterium was 84.96%, which was significantly higher than that of AFB staining (29.32%). For NTM, nucleic acid MALDI-TOF MS had 89.29% sensitivity and 97.14% specificity, with an area under the curve (AUC) of 0.932, which was superior to other methods. The nucleic acid MALDI-TOF MS identified 28 NTM species, while real-time PCR identified only 12. Drug resistance detection showed concordance rates of 80% to 95% compared with drug sensitivity tests of LJ culture. Nucleic acid MALDI-TOF identified mutations, like KatG315 AGC-ACC for low-level isoniazid resistance, rpoB 531 TCG-TTG for high-level rifampicin resistance, and the InhA-15 C-T mutations, were also found in six isoniazid resistance cases and prothionamide resistance cases. Nucleic acid MALDI-TOF MS is a valuable diagnostic tool for the rapid and precise identification of mycobacterial species and the drug resistance profiles of MTB. With high sensitivity and specificity, it can guide the early initiation of effective anti-tuberculosis treatment in clinical settings.IMPORTANCETuberculosis (TB) remains a critical global health challenge, exacerbated by the emergence of drug-resistant strains. Accurate, rapid diagnosis is imperative for effective treatment and control of TB. The ability to discern MTB from NTM is equally vital, as they demand distinct therapeutic approaches. This study underscores the significance of nucleic acid matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) technology in providing a swift and precise diagnostic tool. Its high sensitivity and specificity in identifying mycobacterial species and their resistance profiles are paramount for guiding targeted anti-tuberculosis therapy. By potentially reducing the time to diagnosis and enabling personalized treatment plans, this technology could revolutionize TB management, ultimately mitigating its impact on public health.
Collapse
Affiliation(s)
- Xiaofang Liu
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- PLA General Hospital, Beijing, China
| | - Honghong Niu
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Donglin Guo
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Huixia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lihong Wu
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jingyang Liu
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Chunfeng Bai
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yuxi Li
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Peilong Wang
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhengfeng Zhou
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yuling Wang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jianqin Liang
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Chuenngam T, Chermprapai S. First Case Report of Successful Treatment of Mycobacterium abscessus Infection in a Cat in Thailand. Animals (Basel) 2025; 15:925. [PMID: 40218319 PMCID: PMC11987839 DOI: 10.3390/ani15070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
A female domestic shorthair cat aged 2 years was referred with a 1-month history of subcutaneous nodules and multiple sites of draining tracts at the ventral abdomen. Initially, the cat was diagnosed with a fungal infection and treated with oral itraconazole, without improvement. Comprehensive diagnostics, including cytology, which indicated pyogranulomatous inflammation, fungal culture that was negative, and bacterial culture, confirmed the presence of Mycobacterium abscessus. This infection was treated with a combination of oral azithromycin and topical amikacin based on susceptibility testing; later, doxycycline and an immunostimulant supplemented were combined at day 36 of treatment due to mild improvement of the lesions. The cat showed gradual improvement, achieving complete resolution of the lesions after 14 weeks, with no relapse noted 24 weeks post-treatment. This case report demonstrates the diagnostic challenges and the necessity for tailored, multi-drug therapeutic approaches in managing mycobacterial infections in cats. The findings may guide future treatments and raise awareness of mycobacterial diseases in cats.
Collapse
Affiliation(s)
- Thapanee Chuenngam
- Dermatology Center, Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Suttiwee Chermprapai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Liu R, Ji W, Jiang M, Shen J. CRISPR technology combined with isothermal amplification methods for the diagnosis of Candida albicans infection. Clin Chim Acta 2025; 567:120106. [PMID: 39716527 DOI: 10.1016/j.cca.2024.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Since Candida albicans, a type of fungus, causes severe infections that pose a significant threat to human health, its rapid detection is critical in clinical antifungal therapy. Traditional fungal diagnostic approaches are largely based on the culture method. This method is time-consuming and laborious, taking about 48-72 h, and cannot identify emerging species, making it unsuitable for critically ill patients with bloodstream infections, sepsis, and so on. Other antigen or nucleic acid amplification-based methods were also found to be unsuitable for Point-of-Care Testing (POCT) diagnosis due to various limitations. Therefore, establishing a new approach for the rapid diagnosis of Candida spp is imperative. Herein, we proposed a novel diagnostic method for invasive fungi detection. Specifically, we created a new CRISPR diagnostic platform for Candida albicans-specific Internal Transcriptional Spacer 2 (ITS2) gene by combining the DNase cleavage activity of Cas12a with Recombinase Polymerase Amplification (RPA). Furthermore, to achieve rapid on-site detection under low-resource conditions, we used a transverse lateral flow strip with a single target to visualize the Cas12a single enzyme digestion product. We designated the platform as a rapid molecular detection tool that integrates RPA and the CRISPR-Cas12a technology. The entire platform can accurately identify Candida albicans within 50 minwhile remaining unaffected by other fungi or bacteria. Furthermore, the detection limit of the platform could reach 102 CFU/ml. Moreover, this approach offers additional benefits, including easy operation, low set-up cost, and broad applicability for Candida albicans detection across medical institutions at all levels, especially in township health centers in resource-poor regions.
Collapse
Affiliation(s)
- Runde Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Wenxiang Ji
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Min Jiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, People's Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China; Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, People's Republic of China.
| |
Collapse
|
7
|
Coskun FS, Quick J, Toprak E. A Simple, Low-Cost, and Efficient Protocol for Rapid Isolation of Pathogenic Bacteria from Human Blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633023. [PMID: 39868280 PMCID: PMC11760395 DOI: 10.1101/2025.01.14.633023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacteremia is a serious clinical condition in which pathogenic bacteria enter the bloodstream, putting patients at risk of septic shock and necessitating antibiotic treatment. Choosing the most effective antibiotic is crucial not only for resolving the infection but also for minimizing side effects, such as dysbiosis in the healthy microbiome and reducing the selection pressure for antibiotic resistance. This requires prompt identification of the pathogen and antibiotic susceptibility testing, yet these processes are inherently slow in standard clinical microbiology labs due to reliance on growth-based assays. Although alternative methods exist, they are rarely adopted in clinical settings because they involve complex protocols and high costs for training and infrastructure. Here, we present an optimized, simple protocol for rapidly and efficiently isolating bacterial pathogens from blood without altering typical laboratory workflows. Our method is cost-effective and compatible with commonly available laboratory instruments, offering the advantage of isolating bacterial cells directly, which bypasses the delays associated with traditional blood culture methods and enables faster diagnostic results. The protocol achieved over 70% efficiency within 30 minutes, remained effective at low bacterial concentrations (1-10 bacteria/0.3 mL blood), and preserved bacterial viability with no notable change in growth lag times. We validated the protocol on several clinically relevant bacterial strains, including Escherichia coli, Klebsiella pneumoniae , and Staphylococcus aureus . These findings highlight our protocol's potential utility in clinical and research settings, facilitating timely cultures and minimizing diagnostic delays.
Collapse
|
8
|
Zhu L, Yang Y, Xu F, Lu X, Shuai M, An Z, Chen X, Li H, Martin FL, Vikesland PJ, Ren B, Tian ZQ, Zhu YG, Cui L. Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments. SCIENCE ADVANCES 2025; 11:eadp7991. [PMID: 39772685 PMCID: PMC11708874 DOI: 10.1126/sciadv.adp7991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria. Through optimizing OSDL algorithms and training strategies, Raman-OSDL achieves 93% accuracy for five target airborne pathogens, 84% accuracy for untrained air bacteria, and 36% reduction in false positive rates compared to conventional close-set algorithms. It offers a high detection sensitivity down to 1:1000. When applied to real air containing >4600 bacterial species, our method accurately identifies single or multiple pathogens simultaneously within an hour. This single-cell tool advances rapidly surveilling pathogens in complex environments to prevent infection transmission.
Collapse
Affiliation(s)
- Longji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunan Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xinyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingrui Shuai
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- Anhui University, Hefei 230601, China
| | - Zhulin An
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Francis L. Martin
- Biocel UK Ltd., Hull HU10 6TS, UK
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
9
|
Rani P, Alam SI, Singh S, Kumar S. Elucidation of peptide screen for targeted identification of Yersinia pestis by nano-liquid chromatography tandem mass spectrometry. Sci Rep 2025; 15:1096. [PMID: 39774652 PMCID: PMC11707332 DOI: 10.1038/s41598-024-81906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Yersinia pestis, a Gram-negative bacterium is the causative agent of the fatal communicable disease plague. The disease had a profound impact on human history. Plague bacteria are usually transmitted to humans through the bite of an infected rat flea. Earlier studies have indicated that Y. pestis can survive in environmental matrices e.g. water and soil. This study aimed to generate a peptide-based screen for identification of Y. pestis particularly from environmental matrices. We employed a shotgun proteomic approach using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to discover Y. pestis-specific peptides. The pure cultures of Y. pestis and related species were grown, their proteome were delineated and analyzed by in silico tools to discover 61 Y. pestis specific peptides. Additionally, 148 peptides were discovered from proteins of Y. pestis-specific plasmids and chromosomal-associated virulence markers. To validate this screen of 209 peptides, various concentrations of Y. pestis (ranging from 1.3 × 108 to 1.3 × 105 cfu) were spiked into garden soil. Y. pestis could be identified in all samples except un-spiked negative control soil sample. This study offers a valuable method for the identification of Y. pestis, by tandem mass spectrometry which may be used in environmental and clinical matrices.
Collapse
Affiliation(s)
- Priya Rani
- Microbiology Division, Defence Research and Developmental Establishment, Jhansi Road, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Sandeep Singh
- Microbiology Division, Defence Research and Developmental Establishment, Jhansi Road, Gwalior, 474002, India
| | - Subodh Kumar
- Microbiology Division, Defence Research and Developmental Establishment, Jhansi Road, Gwalior, 474002, India.
| |
Collapse
|
10
|
Yefet E, Suleiman A, Colodner R, Battino S, Wattad M, Kuzmin O, Nachum Z. Efficacy of Oral Probiotic Supplementation in Preventing Vulvovaginal Infections During Pregnancy: A Randomized and Placebo-Controlled Clinical Trial. Nutrients 2024; 16:4406. [PMID: 39771026 PMCID: PMC11676156 DOI: 10.3390/nu16244406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE This study aimed to investigate the efficacy of oral probiotic supplementation in preventing vulvovaginal infections (VVIs) in pregnant women, specifically focusing on abnormal vaginal flora (AVF), bacterial vaginosis (BV), and vulvovaginal candidiasis (VVC). METHODS A multicenter-prospective-randomized, double-blind, placebo-controlled trial was conducted during 2016-2019. Women with normal vaginal flora (Nugent score < 4 and no candida) were divided into a research group, receiving 2 capsules/day of oral probiotic formula containing Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Streptococcus thermophilus, or a control group, receiving a placebo until delivery. Once a month and following complaints, a vaginal smear was taken to assess vaginal flora. Vaginal colonization with the specific lactobacilli from the probiotic capsules was detected using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The primary outcome was the rate of women who developed VVI. RESULTS Forty-nine and fifty-one women were analyzed in the probiotic and placebo cohorts, respectively. There was no difference in the rate of VVI between probiotic and placebo groups (14 (29%) versus 14 (27%), respectively; p = 0.80). No woman had vaginal colonization with lactobacilli from the probiotic capsule. CONCLUSIONS The tested oral probiotic product did not reduce the rate of VVI in pregnant women with normal vaginal flora.
Collapse
Affiliation(s)
- Enav Yefet
- Department of Obstetrics and Gynecology, Tzafon Medical Center, Poriya 1528001, Israel
- Women’s Health Center, Clalit Health Services, Afula 1834111, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Abeer Suleiman
- The Holy Family Medical Center, Nazareth 1641100, Israel
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula 1834111, Israel
| | - Raul Colodner
- Microbiology Laboratory, Emek Medical Center, Afula 1834111, Israel
| | - Shlomo Battino
- Women’s Health Center, Clalit Health Services, Afula 1834111, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Malak Wattad
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula 1834111, Israel
| | - Olga Kuzmin
- The Holy Family Medical Center, Nazareth 1641100, Israel
| | - Zohar Nachum
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula 1834111, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109600, Israel
| |
Collapse
|
11
|
Uzuriaga M, Guillén-Grima F, Rua M, Leiva J, Yuste JR. Accelerated Bacterial Identification with MALDI-TOF MS Leads to Fewer Diagnostic Tests and Cost Savings. Antibiotics (Basel) 2024; 13:1163. [PMID: 39766553 PMCID: PMC11672624 DOI: 10.3390/antibiotics13121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Rapid microbiology reporting can enhance both clinical and economic outcomes. MATERIAL AND METHODS This three-year, quasi-experimental study, single-group pretest-posttest study, conducted at a university medical center, aimed to evaluate the clinical and economic impact of rapid microbiological identification reporting using MALDI-TOF MS. A total of 363 consecutive hospitalized patients with bacterial infections were evaluated, comparing a historical control group (CG, n = 183) with an intervention group (IG, n = 180). In the CG, microbiological information (bacterial identification and antibiotic susceptibility) was provided between 18:00 and 22:00 h, while in the IG, bacterial identification was reported between 12:00 and 14:00 h, and antibiotic susceptibility was reported between 18:00 and 22:00 h. RESULTS The IG demonstrated a significant reduction in the number of patients undergoing Microbiology (p = 0.01), Biochemistry (p = 0.05), C-Reactive Protein (p = 0.02), Radiological Tests (p = 0.05), Computed Tomography Tests (p = 0.04), and Pathology (p = 0.01). However, no statistically significant reduction was observed in economic costs related to microbiological testing (p = 0.76) or antibiotic consumption (p = 0.59). The timely reporting of microbiological identification to clinicians resulted in fewer patients undergoing additional diagnostic tests, ultimately contributing to reduced healthcare resource utilization without adversely affecting clinical outcomes.
Collapse
Affiliation(s)
- Miriam Uzuriaga
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.); (J.L.)
- Prehospital Emergency Medical Service of Madrid Community, SUMMA112, 28045 Madrid, Spain
| | - Francisco Guillén-Grima
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain;
- Department of Preventive Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, 46980 Madrid, Spain
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain
| | - Marta Rua
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.); (J.L.)
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain;
| | - José Leiva
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.); (J.L.)
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain;
| | - José R. Yuste
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain;
- Service of Infectious Diseases, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
12
|
Zheng J, Sun Q, Zhang M, Liu C, Su Q, Zhang L, Xu Z, Lu W, Ching J, Tang W, Cheung CP, Hamilton AL, Wilson O'Brien AL, Wei SC, Bernstein CN, Rubin DT, Chang EB, Morrison M, Kamm MA, Chan FKL, Zhang J, Ng SC. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease. Nat Med 2024; 30:3555-3567. [PMID: 39367251 PMCID: PMC11645270 DOI: 10.1038/s41591-024-03280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Despite recent progress in our understanding of the association between the gut microbiome and inflammatory bowel disease (IBD), the role of microbiome biomarkers in IBD diagnosis remains underexplored. Here we developed a microbiome-based diagnostic test for IBD. By utilization of metagenomic data from 5,979 fecal samples with and without IBD from different geographies and ethnicities, we identified microbiota alterations in IBD and selected ten and nine bacterial species for construction of diagnostic models for ulcerative colitis and Crohn's disease, respectively. These diagnostic models achieved areas under the curve >0.90 for distinguishing IBD from controls in the discovery cohort, and maintained satisfactory performance in transethnic validation cohorts from eight populations. We further developed a multiplex droplet digital polymerase chain reaction test targeting selected IBD-associated bacterial species, and models based on this test showed numerically higher performance than fecal calprotectin in discriminating ulcerative colitis and Crohn's disease from controls. Here we discovered universal IBD-associated bacteria and show the potential applicability of a multibacteria biomarker panel as a noninvasive tool for IBD diagnosis.
Collapse
Affiliation(s)
- Jiaying Zheng
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianru Sun
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jessica Ching
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Amy L Hamilton
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy L Wilson O'Brien
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shu Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Charles N Bernstein
- Department of Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David T Rubin
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Zhao Y, Zhu Y, Zhai W, Yang L, Peng C, Mi J, Wu R, Xie Y, Liu D, Li J. Genomic insights into qnrVC1 gene located on an IncP6 plasmid carried by multidrug resistant Pseudomonas aeruginosa from clinical asinine isolates. Vet Microbiol 2024; 298:110285. [PMID: 39481269 DOI: 10.1016/j.vetmic.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen, causing significant global health threat due to its antimicrobial resistance. Among equines, P. aeruginosa can cause infections, particularly in the reproductive tract, leading to reproductive failure. Multidrug-resistant (MDR) P. aeruginosa has been a major concern in animal husbandry, including the donkey industry. The study aims to elucidate the phylogenetic relationship of P. aeruginosa strains isolated from donkeys with endometritis farmed in a large intensive unit in Hebei Province, China. Genes coding for multiple antimicrobial resistances were predicted by whole genomic sequencing. Multilocus sequence typing (MLST) revealed that all strains belonged to the same sequence type (ST1058). An IncP6 plasmid encoding the qnrVC1 gene, associated with quinolone resistance, was identified. Comparative genomic analysis illustrated the characteristics of the strains and genetic context of qnrVC1. This study is the first to report that these MDR P. aeruginosa asinine strains exhibited high levels of antimicrobial and metal resistance conferred by a qnrVC1-carrying plasmid. Additionally, P. aeruginosa strains with integrated mega-plasmids were identified. From a One Health perspective, the study underlined the significance of monitoring antimicrobial resistance genes in food animals, including donkeys.
Collapse
Affiliation(s)
- Yufei Zhao
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| | - Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weishuai Zhai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Luo Yang
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cong Peng
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junpeng Mi
- School of Veterinary Science, The University of Sydney, Sydney, NSW 2000, Australia
| | - Rongzheng Wu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuxin Xie
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Ito M, Furuuchi K, Fujiwara K, Kodama T, Tanaka Y, Yoshiyama T, Ogata H, Kurashima A, Ohta K, Morimoto K. Epidemiological trends and clinical relevance of nontuberculous mycobacterial pulmonary disease in a referral hospital in Japan, 2017-2021. Respir Investig 2024; 62:1064-1071. [PMID: 39306905 DOI: 10.1016/j.resinv.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Epidemiological trends and clinical relevance of NTM species in Japan following the adoption of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry remain unclear. METHODS We analyzed the results of mycobacterial culture tests of respiratory specimens collected between January 2017 and December 2021. We assessed the clinical relevance of NTM species by analyzing the proportion of patients diagnosed with NTM pulmonary infection (NTM-PI). We illustrated the incidence and clinical relevance of each NTM species using a two-dimensional scatter plot. Medical chart review and radiological analysis were also performed for less common species. RESULTS Among 65,368 respiratory specimens tested for acid-fast bacilli, NTM were identified in 12,802 specimens from 3177 patients. The number of incident cases with NTM-PI has continued to increase. Notably, the number of incident cases with M. abscessus species (MABS) was continuously increasing and accounted for 10.6% of all incident cases with NTM-PI. The clinical relevance of the common NTM species, M. avium complex, MABS and M. kansasii, ranged from 57 to 72%. Seven other species exhibited a higher clinical relevance than these common NTM species, with M. shinjukuense (100%) having the highest clinical relevance. On the other hand, 11 species, including M. fortuitum (32.4%), M. xenopi (20.0%), and M. gordonae (22.9%), showed clinical relevance below 50%. CONCLUSIONS The present study clarified the incidence and clinical relevance of NTM species using a two-dimensional scatter plot, which could serve as a useful tool for clinical decision-making and future epidemiological research.
Collapse
Affiliation(s)
- Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan; Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Koji Furuuchi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan
| | - Keiji Fujiwara
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Tatsuya Kodama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Yoshiaki Tanaka
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan
| | - Takashi Yoshiyama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan
| | - Hideo Ogata
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan
| | - Ken Ohta
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan; Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan; Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, 204-8522, Japan.
| |
Collapse
|
15
|
Koritnik T, Cvetkovikj I, Zendri F, Blum SE, Chaintoutis SC, Kopp PA, Hare C, Štritof Z, Kittl S, Gonçalves J, Zdovc I, Paulshus E, Laconi A, Singleton D, Allerton F, Broens EM, Damborg P, Timofte D. Towards harmonized laboratory methodologies in veterinary clinical bacteriology: outcomes of a European survey. Front Microbiol 2024; 15:1443755. [PMID: 39450288 PMCID: PMC11499178 DOI: 10.3389/fmicb.2024.1443755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Veterinary clinical microbiology laboratories play a key role in antimicrobial stewardship, surveillance of antimicrobial resistance and prevention of healthcare associated-infections. However, there is a shortage of international harmonized guidelines covering all steps of veterinary bacterial culture from sample receipt to reporting. Methods In order to gain insights, the European Network for Optimization of Veterinary Antimicrobial Treatment (ENOVAT) designed an online survey focused on the practices and interpretive criteria used for bacterial culture and identification (C&ID), and antimicrobial susceptibility testing (AST) of animal bacterial pathogens. Results A total of 241 microbiology laboratories in 34 European countries completed the survey, representing a mixture of academic (37.6%), governmental (27.4%), and private (26.5%) laboratories. The C&ID turnaround varied from 1 to 2 days (77.8%) to 3-5 days (20%), and 6- 8 days (1.6%), with similar timeframes for AST. Individual biochemical tests and analytical profile index (API) biochemical test kits or similar were the most frequent tools used for bacterial identification (77% and 56.2%, respectively), followed by PCR (46.6%) and MALDI-TOF MS (43.3%). For AST, Kirby-Bauer disk diffusion (DD) and minimum inhibitory concentration (MIC) determination were conducted by 43.8% and 32.6% of laboratories, respectively, with a combination of EUCAST and CLSI clinical breakpoints (CBPs) preferred for interpretation of the DD (41.2%) and MIC (47.6%) results. In the absence of specific CBPs, laboratories used human CBPs (53.3%) or veterinary CBPs representing another body site, organism or animal species (51.5%). Importantly, most laboratories (47.9%) only report the qualitative interpretation of the result (S, R, and I). As regards testing for AMR mechanisms, 48.5% and 46.7% of laboratories routinely screened isolates for methicillin resistance and ESBL production, respectively. Notably, selective reporting of AST results (i.e. excluding highest priority critically important antimicrobials from AST reports) was adopted by 39.5% of laboratories despite a similar proportion not taking any approach (37.6%) to guide clinicians towards narrower-spectrum or first-line antibiotics. Discussion In conclusion, we identified a broad variety of methodologies and interpretative criteria used for C&ID and AST in European veterinary microbiological diagnostic laboratories. The observed gaps in veterinary microbiology practices emphasize a need to improve and harmonize professional training, innovation, bacterial culture methods and interpretation, AMR surveillance and reporting strategies.
Collapse
Affiliation(s)
- Tom Koritnik
- Department for Public Health Microbiology Ljubljana, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Ljubljana, Slovenia
| | - Iskra Cvetkovikj
- Department of Microbiology and Immunology, Faculty of Veterinary medicine-Skopje, Ss Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Flavia Zendri
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
| | - Shlomo Eduardo Blum
- Department of Bacteriology and Mycology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Serafeim Christos Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Cassia Hare
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zrinka Štritof
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Sonja Kittl
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - José Gonçalves
- MARE−Marine and Environmental Sciences Centre, ARNET−Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Irena Zdovc
- Veterinary Faculty of Ljubljana, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Erik Paulshus
- Department of Analysis and Diagnostics, Microbiology, Norwegian Veterinary Institute, Ås, Norway
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - David Singleton
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
| | - Fergus Allerton
- Willows Veterinary Centre and Referral Service, Shirley, United Kingdom
| | - Els M. Broens
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Peter Damborg
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dorina Timofte
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, School of Veterinary Science, Leahurst Campus, University of Liverpool, Neston, United Kingdom
- ESCMID Study Group for Veterinary Microbiology (ESGVM), Basel, Switzerland
| |
Collapse
|
16
|
Manikandan R, Rajagunalan S, Malmarugan S, Gupta C. First report on whole genome sequencing and comparative genomics of Salmonella enterica serovar Abortusequi isolated from Donkey in India. Sci Rep 2024; 14:23455. [PMID: 39379477 PMCID: PMC11461527 DOI: 10.1038/s41598-024-73904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi) is a leading cause of abortion in equines that hinders the rapid growth of equine industry. S. Abortusequi infection in equids has re-emerged over last ten years. In the present study, S. Abortusequi was isolated and characterized from donkeys during an abortion storm in the southern peninsular region of India. Further, whole genome sequencing and phylogenomic analysis revealed that the present isolate was clustered among S. Abortusequi clade. The core genome MLST (cgMLST) analysis based on hierarchical clustering and single nucleotide polymorphism (SNP) core-genome dendrogram of the present isolate against 10 S. Abortusequi isolates revealed that the present isolate established a distinct clade compared to all previously reported isolates. A comparison of cgMLST and SNP analyses revealed the same clustering concordance between isolates. In addition, comparative genomics and phylogenetic analysis was carried out with six S. Abortusequi serovars showed a higher number of core genes than accessory genes. Further, comparative analysis of phenotype and genotype antimicrobial resistance revealed a concordance of 32% and discordance of 68% respectively.
Collapse
Affiliation(s)
- Rajendran Manikandan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India.
- Department of Veterinary Microbiology, Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India.
| | - Sithanandam Rajagunalan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| | - Shanmugasamy Malmarugan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| | - Chhavi Gupta
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| |
Collapse
|
17
|
Endo G, Kanai S, Nishio H, Hashimoto H, Higurashi Y, Nomura Y, Nakai Y, Fujishiro M. Kluyvera georgiana Bacteremia Due to Acute Cholangitis: A Report of the First Known Case and a Literature Review. Intern Med 2024; 63:2689-2693. [PMID: 38403769 PMCID: PMC11518605 DOI: 10.2169/internalmedicine.3036-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
We herein present the first known case of bacteremia caused by Kluyvera georgiana in a 67-year-old female undergoing chemotherapy for recurrent pancreatic cancer. The patient underwent choledochojejunotomy and thereafter developed ascending cholangitis. The diagnosis of K. georgiana was confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A literature review of Kluyvera spp. infections indicated potential risk factors including an underlying malignancy and immunosuppression. Although Kluyvera spp. infections are typically sensitive to antibiotics, multidrug resistance is possible. This case highlights the importance of the early diagnosis and treatment of K. georgiana and its associated risk factors.
Collapse
Affiliation(s)
- Go Endo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Sachiko Kanai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Japan
| | - Hiroto Nishio
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Yoshimi Higurashi
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Japan
| | - Yusuke Nomura
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
18
|
Carvalho CS, de Aquino VMS, Meyer R, Seyffert N, Castro TLP. Diagnosis of bacteria from the CMNR group in farm animals. Comp Immunol Microbiol Infect Dis 2024; 113:102230. [PMID: 39236397 DOI: 10.1016/j.cimid.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
The CMNR group comprises bacteria of the genera Corynebacterium, Mycobacterium, Nocardia, and Rhodococcus and share cell wall and DNA content characteristics. Many pathogenic CMNR bacteria cause diseases such as mastitis, lymphadenitis, and pneumonia in farmed animals, which cause economic losses for breeders and represent a threat to public health. Traditional diagnosis in CMNR involves isolating target bacteria on general or selective media and conducting metabolic analyses with the assistance of laboratory biochemical identification systems. Advanced mass spectrometry may also support diagnosing these bacteria in the clinic's daily routine despite some challenges, such as the need for isolated bacteria. In difficult identification among some CMNR members, molecular methods using polymerase chain reaction (PCR) emerge as reliable options for correct specification that is sometimes achieved directly from clinical samples such as tracheobronchial aspirates and feces. On the other hand, immunological diagnostics such as the skin test or Enzyme-Linked Immunosorbent Assay (ELISA) for Mycobacterium tuberculosis yield promising results in subclinical infections with no bacterial growth involved. In this review, we present the methods most commonly used to diagnose pathogenic CMNR bacteria and discuss their advantages and limitations, as well as challenges and perspectives on adopting new technologies in diagnostics.
Collapse
Affiliation(s)
- Cintia Sena Carvalho
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Vitória M S de Aquino
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Núbia Seyffert
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Thiago L P Castro
- Department of Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
19
|
Isla A, Aguilar M, Flores-Martin SN, Barrientos CA, Soto-Rauch G, Mancilla-Schulz J, Almendras F, Figueroa J, Yañez AJ. Advancements in rapid diagnostics and genotyping of Piscirickettsia salmonis using Loop-mediated Isothermal Amplification. Front Microbiol 2024; 15:1392808. [PMID: 39380674 PMCID: PMC11458457 DOI: 10.3389/fmicb.2024.1392808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/20/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Piscirickettsia salmonis, the causative agent of Piscirickettsiosis, poses a significant threat to the Chilean aquaculture industry, resulting in substantial economic losses annually. The pathogen, first identified as specie in 1992, this pathogen was divided into two genogroups: LF-89 and EM-90, associated with different phenotypic mortality and pathogenicity. Traditional genotyping methods, such as multiplex PCR, are effective but limited by their cost, equipment requirements, and the need for specialized expertise. Methods This study validates Loop-mediated Isothermal Amplification (LAMP) as a rapid and specific alternative for diagnosing P. salmonis infections. We developed the first qPCR and LAMP assay targeting the species-conserved tonB receptor gene (tonB-r, WP_016210144.1) for the specific species-level identification of P. salmonis. Additionally, we designed two genotyping LAMP assays to differentiate between the LF-89 and EM-90 genogroups, utilizing the unique coding sequences Nitronate monooxygenase (WP_144420689.1) for LF-89 and Acid phosphatase (WP_016210154.1) for EM-90. Results The LAMP assays demonstrated sensitivity and specificity comparable to real-time PCR, with additional benefits including rapid results, lower costs, and simplified operation, making them particularly suitable for field use. Specificity was confirmed by testing against other salmonid pathogens, such as Renibacterium salmoninarum, Vibrio ordalii, Flavobacterium psychrophilum, Tenacibaculum maritimum, and Aeromonas salmonicida, with no cross-reactivity observed. Discussion The visual detection method and precise differentiation between genogroups underscore LAMP's potential as a robust diagnostic tool for aquaculture. This advancement in the specie detection (qPCR and LAMP) and genotyping of P. salmonis represents a significant step forward in disease management within the aquaculture industry. The implementation of LAMP promises enhanced disease surveillance, early detection, and improved management strategies, ultimately benefiting the salmonid aquaculture sector.
Collapse
Affiliation(s)
- Adolfo Isla
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile
- Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Marcelo Aguilar
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sandra N. Flores-Martin
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia A. Barrientos
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Genaro Soto-Rauch
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Felipe Almendras
- Departamento de Investigación y Desarrollo, Greenvolution SpA., Puerto Varas, Chile
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro J. Yañez
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Departamento de Investigación y Desarrollo, Greenvolution SpA., Puerto Varas, Chile
| |
Collapse
|
20
|
Lin H, Yan Y, Deng C, Sun N. Engineered Bimetallic MOF-Crafted Bullet Aids in Penetrating Serum Metabolic Traits of Chronic Obstructive Pulmonary Disease. Anal Chem 2024; 96:14688-14696. [PMID: 39208069 DOI: 10.1021/acs.analchem.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Metabolomics analysis based on body fluids, combined with high-throughput laser desorption and ionization mass spectrometry (LDI-MS), holds great potential and promising prospects for disease diagnosis and screening. On the other hand, chronic obstructive pulmonary disease (COPD) currently lacks innovative and powerful diagnostic and screening methods. In this work, CoFeNMOF-D, a metal-organic framework (MOF)-derived metal oxide nanomaterial, was synthesized and utilized as a matrix to assist LDI-MS for extracting serum metabolic fingerprints of COPD patients and healthy controls (HC). Through machine learning algorithms, successful discrimination between the COPD and HC was achieved. Furthermore, four potential biomarkers significantly downregulated in COPD were screened out. The disease diagnostic models based on the biomarkers demonstrated excellent diagnostic performance across different algorithms, with area under the curve (AUC) values reaching 0.931 and 0.978 in the training and validation sets, respectively. Finally, the potential metabolic pathways and disease mechanisms associated with the identified markers were explored. This work advances the application of LDI-based molecular diagnostics in clinical settings.
Collapse
Affiliation(s)
- Hairu Lin
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Liborio MP, Harris PNA, Ravi C, Irwin AD. Getting Up to Speed: Rapid Pathogen and Antimicrobial Resistance Diagnostics in Sepsis. Microorganisms 2024; 12:1824. [PMID: 39338498 PMCID: PMC11434042 DOI: 10.3390/microorganisms12091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Time to receive effective therapy is a primary determinant of mortality in patients with sepsis. Blood culture is the reference standard for the microbiological diagnosis of bloodstream infections, despite its low sensitivity and prolonged time to receive a pathogen detection. In recent years, rapid tests for pathogen identification, antimicrobial susceptibility, and sepsis identification have emerged, both culture-based and culture-independent methods. This rapid narrative review presents currently commercially available approved diagnostic molecular technologies in bloodstream infections, including their clinical performance and impact on patient outcome, when available. Peer-reviewed publications relevant to the topic were searched through PubMed, and manufacturer websites of commercially available assays identified were also consulted as further sources of information. We have reviewed data about the following technologies for pathogen identification: fluorescence in situ hybridization with peptide nucleic acid probes (Accelerate PhenoTM), microarray-based assay (Verigene®), multiplex polymerase chain reaction (cobas® eplex, BioFire® FilmArray®, Molecular Mouse, Unyvero BCU SystemTM), matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (Rapid MBT Sepsityper®), T2 magnetic resonance (T2Bacteria Panel), and metagenomics-based assays (Karius©, DISQVER®, Day Zero Diagnostics). Technologies for antimicrobial susceptibility testing included the following: Alfed 60 ASTTM, VITEK® REVEALTM, dRASTTM, ASTar®, Fastinov®, QuickMIC®, ResistellTM, and LifeScale. Characteristics, microbiological performance, and issues of each method are described, as well as their clinical performance, when available.
Collapse
Affiliation(s)
- Mariana P. Liborio
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Patrick N. A. Harris
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD 4029, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
| | - Chitra Ravi
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
| | - Adam D. Irwin
- UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.P.L.); (C.R.)
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| |
Collapse
|
22
|
Benwan KA, Jamal W, Shahin M. Third Kuwaiti Multicenter Survey of Antibiotic Susceptibility of Anaerobic Bacteria: A Comparative Analysis of 20-Year Data. Microb Drug Resist 2024; 30:372-384. [PMID: 39250785 DOI: 10.1089/mdr.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Objective: This study aimed to evaluate antibiotic susceptibility and antimicrobial resistance trends among clinically significant anaerobes in Kuwait hospitals from 2013 to 2022, comparing these findings with data from 2002 to 2012. Methods: The study prospectively collected 2,317 anaerobic isolates from various body sites across four Kuwaiti hospitals between January 2013 and December 2022. The minimum inhibitory concentrations for 11 antianaerobic antibiotics were determined using E-test methodology. The study analyzed trends and resistance rates across two periods: 2013-2017 and 2018-2022, using statistical analysis for resistance comparison. Results: Of the 2,317 isolates, most were from wounds (42.2%), fluids (28.0%), and tissues (20.5%). Bacteroides fragilis was the most common pathogen (34.0%), followed by Prevotella bivia (13.4%). Over 90% of isolates were susceptible to imipenem, meropenem, tigecycline, and metronidazole, whereas lower susceptibility was observed for penicillin, amoxicillin-clavulanic acid, and clindamycin. Notable differences in resistance profiles since 2002 were observed, especially in amoxicillin-clavulanic acid, piperacillin, piperacillin-tazobactam, and clindamycin. Conclusion: Owing to detected resistance to all antibiotics, susceptibility testing for anaerobic isolates is recommended in severe infections to ensure effective antimicrobial therapy. Continuous surveillance is crucial for developing antibiotic policies to manage invasive anaerobic infections.
Collapse
Affiliation(s)
- Khalifa Al Benwan
- Department of Microbiology, College of Medicine, Kuwait University, Safat, Kuwait
| | - Wafaa Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Safat, Kuwait
| | - May Shahin
- Department of Microbiology, College of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
23
|
Gómez-Gaviria M, Mora-Montes HM. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr Res 2024; 543:109220. [PMID: 39038396 DOI: 10.1016/j.carres.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chitin is a polymer of N-acetylglucosamine and an essential component of the fungal cell wall. Chitosan is the deacetylated form of chitin and is also important for maintaining the integrity of this structure. Both polysaccharides are widely distributed in nature and have been shown to have a variety of applications in biomedicine, including their potential in immune sensing and as potential antifungal agents. In addition, chitin has been reported to play an important role in the pathogen-host interaction, involving innate and adaptive immune responses. This paper will explore the role of chitin and chitosan when incorporated into nanobiocomposites to improve their efficacy in detecting fungi of medical interest and inhibiting their growth. Potential applications in diagnostic and therapeutic medicine will be discussed, highlighting their promise in the development of more sensitive and effective tools for the early diagnosis of fungal infections. This review aims to highlight the importance of the convergence of nanotechnology and biology in addressing public health challenges.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
24
|
Shuai J, Song S, Wang Z, Zeng R, Han X, Zhang X. MALDI-TOF nucleic acid mass spectrometry for simultaneously detection of fourteen porcine viruses and its application. J Virol Methods 2024; 329:114990. [PMID: 38925439 DOI: 10.1016/j.jviromet.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Mixed infections of multiple viruses significantly contribute to the prevalence of swine diseases, adversely affecting global livestock production and the economy. However, effectively monitoring multiple viruses and detecting mixed infection samples remains challenging. This study describes a method that combines single-base extension PCR with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect important porcine viruses. RESULTS Our approach accurately and simultaneously identified 14 porcine viruses, including porcine circovirus types 1-3, porcine bocaviruses groups 1-3, African swine fever virus, pseudorabies virus, porcine parvovirus, torque teno sus virus, swine influenza virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. The low limit of detection for multiplex identification ranges from 13.54 to 1.59 copies/μL. Inter- and intra-assay stability was found to be ≥98.3 %. In a comprehensive analysis of 114 samples, the assay exhibited overall agreement with qPCR results of 97.9 %. CONCLUSIONS The developed MALDI-TOF NAMS assay exhibits high sensitivity, specificity, and reliability in detecting and distinguishing a wide spectrum of porcine viruses in complex matrix samples. This underscores its potential as an efficient diagnostic tool for porcine-derived virus surveillance and swine disease control.
Collapse
Affiliation(s)
- Jiangbing Shuai
- Hangzhou Customs Technical Center, Hangzhou 311202, China; Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou 310016, China
| | - Shiqi Song
- Zhejiang Digena Diagnostic Technology Co., Ltd., Hangzhou 311100, China
| | - Zhongcai Wang
- Hangzhou Customs Technical Center, Hangzhou 311202, China
| | - Ruoxue Zeng
- Hangzhou Customs Technical Center, Hangzhou 311202, China
| | - Xiao Han
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou 310016, China
| | - Xiaofeng Zhang
- Hangzhou Customs Technical Center, Hangzhou 311202, China; Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou 310016, China.
| |
Collapse
|
25
|
Shi D, Grey AC, Guo G. An isotopically-labelled temporal mass spectrometry imaging data analysis workflow to reveal glucose spatial metabolism patterns in bovine lens tissue. Sci Rep 2024; 14:18843. [PMID: 39138264 PMCID: PMC11322647 DOI: 10.1038/s41598-024-69507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Application of stable isotopically labelled (SIL) molecules in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) over a series of time points allows the temporal and spatial dynamics of biochemical reactions to be tracked in a biological system. However, these large kinetic MSI datasets and the inherent variability of biological replicates presents significant challenges to the rapid analysis of the data. In addition, manual annotation of downstream SIL metabolites involves human input to carefully analyse the data based on prior knowledge and personal expertise. To overcome these challenges to the analysis of spatiotemporal MALDI-MSI data and improve the efficiency of SIL metabolite identification, a bioinformatics pipeline has been developed and demonstrated by analysing normal bovine lens glucose metabolism as a model system. The pipeline consists of spatial alignment to mitigate the impact of sample variability and ensure spatial comparability of the temporal data, dimensionality reduction to rapidly map regional metabolic distinctions within the tissue, and metabolite annotation coupled with pathway enrichment modules to summarise and display the metabolic pathways induced by the treatment. This pipeline will be valuable for the spatial metabolomics community to analyse kinetic MALDI-MSI datasets, enabling rapid characterisation of spatio-temporal metabolic patterns from tissues of interest.
Collapse
Affiliation(s)
- Dingchang Shi
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - George Guo
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
26
|
Zhang M, Shi F, Chen Y, Yang C, Zhang X, Deng C, Sun N. Straightforward Creation of Multishell Hollow Hybrids for an Integrated Metabolic Monitoring System in Disease Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400941. [PMID: 38529737 DOI: 10.1002/smll.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Multidimensional metabolic analysis has become a new trend in establishing efficient disease monitoring systems, as the constraints associated with relying solely on a single dimension in refined monitoring are increasingly pronounced. Here, coordination polymers are employed as derivative precursors to create multishell hollow hybrids, developing an integrated metabolic monitoring system. Briefly, metabolic fingerprints are extracted from hundreds of serum samples and urine samples, encompassing not only membranous nephropathy but also related diseases, using high-throughput mass spectrometry. With optimized algorithm and initial feature selection, the established combined panel demonstrates enhanced accuracy in both subtype differentiation (over 98.1%) and prognostic monitoring (over 95.6%), even during double blind test. This surpasses the serum biomarker panel (≈90.7% for subtyping, ≈89.7% for prognosis) and urine biomarker panel (≈94.4% for subtyping, ≈76.5% for prognosis). Moreover, after attempting to further refine the marker panel, the blind test maintains equal sensitivity, specificity, and accuracy, showcasing a comprehensive improvement over the single-fluid approach. This underscores the remarkable effectiveness and superiority of the integrated strategy in discriminating between MN and other groups. This work has the potential to significantly advance diagnostic medicine, leading to the establishment of more effective strategies for patient management.
Collapse
Affiliation(s)
- Man Zhang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fangying Shi
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yijie Chen
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chenyu Yang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xiangmin Zhang
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Chemistry, Department of Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
27
|
Singh S, Ahmed AI, Almansoori S, Alameri S, Adlan A, Odivilas G, Chattaway MA, Salem SB, Brudecki G, Elamin W. A narrative review of wastewater surveillance: pathogens of concern, applications, detection methods, and challenges. Front Public Health 2024; 12:1445961. [PMID: 39139672 PMCID: PMC11319304 DOI: 10.3389/fpubh.2024.1445961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The emergence and resurgence of pathogens have led to significant global health challenges. Wastewater surveillance has historically been used to track water-borne or fecal-orally transmitted pathogens, providing a sensitive means of monitoring pathogens within a community. This technique offers a comprehensive, real-time, and cost-effective approach to disease surveillance, especially for diseases that are difficult to monitor through individual clinical screenings. Methods This narrative review examines the current state of knowledge on wastewater surveillance, emphasizing important findings and techniques used to detect potential pathogens from wastewater. It includes a review of literature on the detection methods, the pathogens of concern, and the challenges faced in the surveillance process. Results Wastewater surveillance has proven to be a powerful tool for early warning and timely intervention of infectious diseases. It can detect pathogens shed by asymptomatic and pre-symptomatic individuals, providing an accurate population-level view of disease transmission. The review highlights the applications of wastewater surveillance in tracking key pathogens of concern, such as gastrointestinal pathogens, respiratory pathogens, and viruses like SARS-CoV-2. Discussion The review discusses the benefits of wastewater surveillance in public health, particularly its role in enhancing existing systems for infectious disease surveillance. It also addresses the challenges faced, such as the need for improved detection methods and the management of antimicrobial resistance. The potential for wastewater surveillance to inform public health mitigation strategies and outbreak response protocols is emphasized. Conclusion Wastewater surveillance is a valuable tool in the fight against infectious diseases. It offers a unique perspective on the spread and evolution of pathogens, aiding in the prevention and control of disease epidemics. This review underscores the importance of continued research and development in this field to overcome current challenges and maximize the potential of wastewater surveillance in public health.
Collapse
Affiliation(s)
- Surabhi Singh
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Amina Ismail Ahmed
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Sumayya Almansoori
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Shaikha Alameri
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Ashraf Adlan
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Giovanni Odivilas
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Marie Anne Chattaway
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Laboratory, London, United Kingdom
| | - Samara Bin Salem
- Central Testing Laboratory, Abu Dhabi Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| | - Grzegorz Brudecki
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Wael Elamin
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Takayama T, Inoda S, Watanabe A, Kawashima H. Nigrospora oryzae causing human corneal keratitis: A case report. Am J Ophthalmol Case Rep 2024; 34:102062. [PMID: 38665418 PMCID: PMC11043860 DOI: 10.1016/j.ajoc.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Purpose We report a rare case of microbial keratitis caused by Nigrospora oryzae. Observations A 72-year-old Japanese woman was injured by plant debris and developed oval corneal ulcers and hypopyon in the anterior chamber. After 5 days, she complained of pain, redness, and vision loss in her left eye and was treated with antibacterial eye drops and an ointment (1.5 % levofloxacin hydrate, cefmenoxime hydrochloride, and sterilization and disinfection eye drops; SAN-IODE and ofloxacin ophthalmic ointment). Examination revealed a worsening oval corneal ulcer with Descemet's folds and a faint hypopyon. Considering the infection from soil or plants and the poor response to intensive antibacterial eye drops, topical antifungal eye drops, i.e., 1 % voriconazole eye drops, and 1 % natamycin ointment were applied. Direct microscopy of the corneal scraping with Gram staining was performed and the result was negative. Cultures from corneal scrapings showed the growth of dark colonies after several days. The colony was identified as Nigrospora oryzae by sequencing of the fungal internal transcribed spacer region. Pain and vision loss improved with improvement in corneal ulcers. The antifungal treatment was administered for 37 days. Discontinuation of the eye drops after 1 month did not result in keratitis recurrence. At the final follow-up at 70 days, the best-corrected visual acuity was 20/25, with persistent small corneal opacity. Conclusions and importance Here, we report a case of fungal keratitis caused by Nigrospora oryzae. Microbiological identification of the causes of rare infections is difficult in clinical laboratories, necessitating the use of advanced molecular techniques based on amplification and sequencing of appropriate phylogenetic markers. Nigrospora oryzae responds to topical voriconazole and natamycin.
Collapse
Affiliation(s)
- Takuya Takayama
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Satoru Inoda
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hidetoshi Kawashima
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| |
Collapse
|
29
|
Fujiwara K, Watanabe F, Uesugi F, Furuuchi K, Ito M, Kodama T, Tanaka Y, Yoshiyama T, Mitarai S, Kurashima A, Ohta K, Morimoto K. Beyond Symptoms: Radiologic identification of asymptomatic Mycobacterium avium complex pulmonary infections. Respir Med 2024; 226:107627. [PMID: 38604553 DOI: 10.1016/j.rmed.2024.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Although international nontuberculous mycobacterial pulmonary disease (NTM-PD) guidelines highlight symptom presence at diagnosis, the clinical characteristics of asymptomatic Mycobacterium avium complex pulmonary infection (MAC-PI) patients remain understudied. We clarified the clinical characteristics and course of asymptomatic MAC-PI patients. METHODS We retrospectively analyzed 200 consecutive patients with MAC-PIs and adequate available data who newly met the microbiological and radiological criteria for NTM-PD at Fukujuji Hospital from January 2018 to June 2020. We compared the clinical characteristics and course of asymptomatic patients with symptomatic patients and evaluated factors influencing treatment initiation through multivariate analysis. RESULTS 111 patients were symptomatic and 89 were asymptomatic at diagnosis. While the proportion was significantly lower than that in the symptomatic group (28.8 %), 15.7 % of asymptomatic group patients had cavitary lesions (P = 0.042). In the asymptomatic group, treatments were initiated in 38 (42.7 %) patients, and cavitary lesions, a positive acid-fast bacilli smear, and younger age were independent risk factors for treatment initiation. Among 22 (57.9 %) patients who experienced disease progression necessitating treatment during follow-up, 13 (34.2 %) displayed radiological progression without any worsening of symptoms. Agents used for treatment were consistent across the groups, with no significant differences in culture conversion, microbiological recurrence rates, or spontaneous culture conversion rates. CONCLUSION Routine health checkups and radiological examinations can detect clinically important MAC-PIs even in the absence of symptoms. Considering that the clinical course of asymptomatic MAC-PI patients is largely similar to that of symptomatic patients, timely and appropriate management and intervention are essential for all MAC-PI patients.
Collapse
Affiliation(s)
- Keiji Fujiwara
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumiya Watanabe
- Department of Pharmacometrics and Pharmacokinetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Fumiko Uesugi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Koji Furuuchi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tatsuya Kodama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yoshiaki Tanaka
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takashi Yoshiyama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Ken Ohta
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| |
Collapse
|
30
|
Geremia N, Giovagnorio F, Colpani A, De Vito A, Caruana G, Meloni MC, Madeddu G, Panese S, Parisi SG. What do We Know about Cryptic Aspergillosis? Microorganisms 2024; 12:886. [PMID: 38792716 PMCID: PMC11124275 DOI: 10.3390/microorganisms12050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Cryptic Aspergillus species are increasingly recognized as pathogens involved in human disease. They are ubiquitarian fungi with high tenacity in their environment and can express various resistance mechanisms, often due to exposure to antifungal agents employed in agriculture and farming. The identification of such species is increasing thanks to molecular techniques, and a better description of this type of pathogen is granted. Nevertheless, the number of species and their importance in the clinical setting still need to be well studied. Furthermore, their cross-sectional involvement in animal disease, plants, and human activities requires a multidisciplinary approach involving experts from various fields. This comprehensive review aims to provide a sharp vision of the cryptic Aspergillus species, from the importance of correct identification to the better management of the infections caused by these pathogens. The review also accentuates the importance of the One Health approach for this kind of microorganism, given the interconnection between environmental exposure and aspergillosis, embracing transversely the multidisciplinary process for managing the cryptic Aspergillus species. The paper advocates the need for improving knowledge in this little-known species, given the burden of economic and health implications related to the diffusion of these bugs.
Collapse
Affiliation(s)
- Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell’Angelo, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | - Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
- Biomedical Science Department, School in Biomedical Science, University of Sassari, 07100 Sassari, Italy
| | - Giorgia Caruana
- Department of Laboratory Medicine and Pathology, Institute of microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Maria Chiara Meloni
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Sandro Panese
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell’Angelo, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | | |
Collapse
|
31
|
López-Cortés XA, Manríquez-Troncoso JM, Hernández-García R, Peralta D. MSDeepAMR: antimicrobial resistance prediction based on deep neural networks and transfer learning. Front Microbiol 2024; 15:1361795. [PMID: 38694798 PMCID: PMC11062410 DOI: 10.3389/fmicb.2024.1361795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global health problem that requires early and effective treatments to prevent the indiscriminate use of antimicrobial drugs and the outcome of infections. Mass Spectrometry (MS), and more particularly MALDI-TOF, have been widely adopted by routine clinical microbiology laboratories to identify bacterial species and detect AMR. The analysis of AMR with deep learning is still recent, and most models depend on filters and preprocessing techniques manually applied on spectra. Methods This study propose a deep neural network, MSDeepAMR, to learn from raw mass spectra to predict AMR. MSDeepAMR model was implemented for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus under different antibiotic resistance profiles. Additionally, a transfer learning test was performed to study the benefits of adapting the previously trained models to external data. Results MSDeepAMR models showed a good classification performance to detect antibiotic resistance. The AUROC of the model was above 0.83 in most cases studied, improving the results of previous investigations by over 10%. The adapted models improved the AUROC by up to 20% when compared to a model trained only with external data. Discussion This study demonstrate the potential of the MSDeepAMR model to predict antibiotic resistance and their use on external MS data. This allow the extrapolation of the MSDeepAMR model to de used in different laboratories that need to study AMR and do not have the capacity for an extensive sample collection.
Collapse
Affiliation(s)
- Xaviera A. López-Cortés
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile
- Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca, Chile
| | | | - Ruber Hernández-García
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Chile
| | - Daniel Peralta
- IDLab, Department of Information Technology, Ghent University-imec, Ghent, Belgium
| |
Collapse
|
32
|
Manzulli V, Schiavone A, Castellana S, Albenzio M, Cafiero MA, Camarda A, Capozzi L, D'Angelo F, Parisi A, Vasco I, Sciancalepore D, Marino L, Serrecchia L, Rondinone V, Campaniello M, Crescenzo G, Galante D, Pugliese N. Psychrobacter raelei sp. nov., isolated from a dog with peritonitis. Int J Syst Evol Microbiol 2024; 74. [PMID: 38683659 DOI: 10.1099/ijsem.0.006353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
A strain belonging to the genus Psychrobacter, named PraFG1T, was isolated from the peritoneal effusion of a stray dog during necropsy procedures. The strain was characterized by the phylogenetic analyses based on the nucleotide sequences of 16S and 23S rRNA genes and of gyrB, which placed the strain in the genus Psychrobacter. The nucleotide sequence of the chromosome confirmed the placement, showing an average nucleotide identity of 72.1, 77.7, and 77.5 % with the closest related species, namely Psychrobacter sanguinis, Psychrobacter piechaudii, and Psychrobacter phenylpyruvicus, respectively, thus indicating a novel species. The polyphasic characterization by biochemical and fatty acid profiling as well as MALDI-TOF supported those findings. The strain was halotolerant, capable of growing within a temperature range between 4 and 37 °C, it was positive for catalase and oxidase, indole producing, nitrate reducing, and not able to use 5-keto-d-gluconic acid as a carbon source. Taken together, the data suggest that strain PraFG1T could be considered as representing a novel species, with the name Psychrobacter raelei sp. nov. (type strain PraFG1T=CIP 111873T=LMG 32233T).
Collapse
Affiliation(s)
- Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Antonella Schiavone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
- Moredun Research Institute, Edinburgh, UK
| | - Stefano Castellana
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Putignano, Italy
| | - Marzia Albenzio
- Dipartimento di Scienze Agrarie, Alimenti, Risorse naturali e Ingegneria, Università di Foggia, Foggia, Italy
| | - Maria Assunta Cafiero
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Antonio Camarda
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Putignano, Italy
| | - Francesca D'Angelo
- Dipartimento di Scienze Agrarie, Alimenti, Risorse naturali e Ingegneria, Università di Foggia, Foggia, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Putignano, Italy
| | - Ilaria Vasco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Dario Sciancalepore
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| | - Leonardo Marino
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Maria Campaniello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Giuseppe Crescenzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Nicola Pugliese
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| |
Collapse
|
33
|
Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. FRONTIERS IN BIOINFORMATICS 2024; 4:1278228. [PMID: 38560517 PMCID: PMC10978663 DOI: 10.3389/fbinf.2024.1278228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Metagenomic sequencing has revolutionized our understanding of microbiology. While metagenomic tools and approaches have been extensively evaluated and benchmarked, far less attention has been given to the reference sequence database used in metagenomic classification. Issues with reference sequence databases are pervasive. Database contamination is the most recognized issue in the literature; however, it remains relatively unmitigated in most analyses. Other common issues with reference sequence databases include taxonomic errors, inappropriate inclusion and exclusion criteria, and sequence content errors. This review covers ten common issues with reference sequence databases and the potential downstream consequences of these issues. Mitigation measures are discussed for each issue, including bioinformatic tools and database curation strategies. Together, these strategies present a path towards more accurate, reproducible and translatable metagenomic sequencing.
Collapse
|
34
|
Iyengar SN, Robinson JP. Spectral analysis and sorting of microbial organisms using a spectral sorter. Methods Cell Biol 2024; 186:189-212. [PMID: 38705599 DOI: 10.1016/bs.mcb.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This chapter discusses the problems related to the application of conventional flow cytometers to microbiology. To address some of those limitations, the concept of spectral flow cytometry is introduced and the advantages over conventional flow cytometry for bacterial sorting are presented. We demonstrate by using ThermoFisher's Bigfoot spectral sorter where the spectral signatures of different stains for staining bacteria are demonstrated with an example of performing unmixing on spectral datasets. In addition to the Bigfoot's spectral analysis, the special biosafety features of this instrument are discussed. Utilizing these biosafety features, the sorting and patterning at the single cell level is optimized using non-pathogenic bacteria. Finally, the chapter is concluded by presenting a novel, label free, non-destructive, and rapid phenotypic method called Elastic Light Scattering (ELS) technology for identification of the patterned bacterial cells based on their unique colony scatter patterns.
Collapse
Affiliation(s)
- Sharath Narayana Iyengar
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - J Paul Robinson
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
35
|
Jung N, Schommers P, Leisse C. [Precision medicine in infectious diseases]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:220-227. [PMID: 38038764 DOI: 10.1007/s00108-023-01620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Infectious medicine faces a variety of challenges, such as the increase in antibiotic resistance and the emergence and spread of infectious diseases fueled by climate change and globalization. Precision medicine can provide solutions to many of these challenges. Since an untargeted request for diagnostic tests can lead to test results without clinical relevance, which can increase the use of non-indicated antibiotics, the principle aimed at is: targeted diagnostics (the right test) and consideration of patient characteristics (the right person) to optimize management (the right action). At the same time, one must always decide whether empirical therapy must be immediately initiated, even if the results of the initiated diagnostics are not yet available. In addition, many new diagnostics as well as therapies have recently been developed for the rapid detection and more specific treatment of bacterial infections. Molecular genetic methods, which offer more rapid results than classical bacterial cultures, are gaining ground as new diagnostics. New therapeutics such as bacteriophages, antibodies or antibacterial peptides allow increasingly precise treatment of certain bacterial infections. Precision medicine will also play an increasingly important role in infectious medicine in the future.
Collapse
Affiliation(s)
- N Jung
- Universität zu Köln, Medizinische Fakultät und Uniklinik Köln, Klinik I für Innere Medizin, Infektiologie, Köln, Deutschland.
| | - P Schommers
- Universität zu Köln, Medizinische Fakultät und Uniklinik Köln, Klinik I für Innere Medizin, Infektiologie, Köln, Deutschland
| | - C Leisse
- Universität zu Köln, Medizinische Fakultät und Uniklinik Köln, Klinik I für Innere Medizin, Infektiologie, Köln, Deutschland
| |
Collapse
|
36
|
Koehler A, Scroferneker ML, de Souza NMP, de Moraes PC, Pereira BAS, de Souza Cavalcante R, Mendes RP, Corbellini VA. Rapid Classification of Serum from Patients with Paracoccidioidomycosis Using Infrared Spectroscopy, Univariate Statistics, and Linear Discriminant Analysis (LDA). J Fungi (Basel) 2024; 10:147. [PMID: 38392819 PMCID: PMC10890592 DOI: 10.3390/jof10020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis that is diagnosed by visualizing the fungus in clinical samples or by other methods, like serological techniques. However, all PCM diagnostic methods have limitations. The aim of this study was to develop a diagnostic tool for PCM based on Fourier transform infrared (FTIR) spectroscopy. A total of 224 serum samples were included: 132 from PCM patients and 92 constituting the control group (50 from healthy blood donors and 42 from patients with other systemic mycoses). Samples were analyzed by attenuated total reflection (ATR) and a t-test was performed to find differences in the spectra of the two groups. The wavenumbers that had p < 0.05 had their diagnostic potential evaluated using receiver operating characteristic (ROC) curves. The spectral region with the lowest p value was used for variable selection through principal component analysis (PCA). The selected variables were used in a linear discriminant analysis (LDA). In univariate analysis, the ROC curves with the best performance were obtained in the region 1551-1095 cm-1. The wavenumber that had the highest AUC value was 1264 cm-1, achieving a sensitivity of 97.73%, specificity of 76.01%, and accuracy of 94.22%. The total separation of groups was obtained in the PCA performed with a spectral range of 1551-1095 cm-1. LDA performed with the eight wavenumbers with the greatest weight from the group discrimination in the PCA obtained 100% accuracy. The methodology proposed here is simple, fast, and highly accurate, proving its potential to be applied in the diagnosis of PCM. The proposed method is more accurate than the currently known diagnostic methods, which is particularly relevant for a neglected tropical mycosis such as paracoccidioidomycosis.
Collapse
Affiliation(s)
- Alessandra Koehler
- Postgraduate Program of Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre 90035-003, Brazil
| | - Maria Lúcia Scroferneker
- Postgraduate Program of Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre 90035-003, Brazil
- Department of Microbiology, Immunology and Parasitology, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre 90050-170, Brazil
| | | | - Paulo Cezar de Moraes
- Postgraduate Program of Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre 90035-003, Brazil
| | | | - Ricardo de Souza Cavalcante
- Tropical Diseases Area, School of Medicine, Universidade Estadual Paulista-UNESP, Botucatu 18618-687, Brazil
| | - Rinaldo Pôncio Mendes
- Tropical Diseases Area, School of Medicine, Universidade Estadual Paulista-UNESP, Botucatu 18618-687, Brazil
| | - Valeriano Antonio Corbellini
- Department of Sciences, Humanities and Education, Postgraduate Program in Health Promotion, Postgraduate Program in Environmental Technology, Universidade de Santa Cruz do Sul-UNISC, Santa Cruz do Sul 96815-900, Brazil
| |
Collapse
|
37
|
Song M, Li Q, Liu C, Wang P, Qin F, Zhang L, Fan Y, Shao H, Chen G, Yang M. A comprehensive technology strategy for microbial identification and contamination investigation in the sterile drug manufacturing facility-a case study. Front Microbiol 2024; 15:1327175. [PMID: 38410390 PMCID: PMC10895062 DOI: 10.3389/fmicb.2024.1327175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Objective A comprehensive strategy for microbial identification and contamination investigation during sterile drug manufacturing was innovatively established in this study, mainly based on MALDI-TOF MS for the identification and complemented by sequencing technology on strain typing. Methods It was implemented to monitor the bacterial contamination of a sterile drug manufacturing facility, including its bacterial distribution features and patterns. In three months, two hundred ninety-two samples were collected covering multiple critical components of raw materials, personnel, environment, and production water. Results Based on our strategy, the bacterial profile across the production process was determined: 241/292 bacterial identities were obtained, and Staphylococcus spp. (40.25%), Micrococcus spp.(11.20%), Bacillus spp. (8.30%), Actinobacteria (5.81%), and Paenibacillus spp. (4.56%) are shown to be the most dominant microbial contaminants. With 75.8% species-level and 95.4% genus-level identification capability, MALDI-TOF MS was promising to be a first-line tool for environmental monitoring routine. Furthermore, to determine the source of the most frequently occurring Staphylococcus cohnii, which evidenced a widespread presence in the entire process, a more discriminating S. cohnii whole-genome SNP typing method was developed to track the transmission routes. Phylogenetic analysis based on SNP results indicated critical environment contamination is highly relevant to personnel flow in this case. The strain typing results provide robust and accurate information for the following risk assessment step and support effective preventive and corrective measures. Conclusion In general, the strategy presented in this research will facilitate the development of improved production and environmental control processes for the pharmaceutical industry, and give insights about how to provide more sound and reliable evidence for the optimization of its control program.
Collapse
Affiliation(s)
- Minghui Song
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Qiongqiong Li
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Chengzhi Liu
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Peien Wang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Feng Qin
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Lichun Zhang
- Shanghai SPH New Asia Pharmaceutical Co., Ltd., Shanghai, China
| | - Yiling Fan
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
- China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
| | - Hong Shao
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Guiliang Chen
- China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
- Shanghai Center for Drug Evaluation and Inspection, Shanghai, China
| | - Meicheng Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
| |
Collapse
|
38
|
Zhu XM, Dong CX, Xie L, Liu HX, Hu HQ. Brain abscess from oral microbiota approached by metagenomic next-generation sequencing: A case report and review of literature. World J Clin Cases 2024; 12:616-622. [PMID: 38322466 PMCID: PMC10841957 DOI: 10.12998/wjcc.v12.i3.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Brain abscess is a serious and potentially fatal disease caused primarily by microbial infection. Although progress has been made in the diagnosis and treatment of brain abscesses, the diagnostic timeliness of pathogens needs to be improved. CASE SUMMARY We report the case of a 54-year-old male with a brain abscess caused by oral bacteria. The patient recovered well after receiving a combination of metagenomic next-generation sequencing (mNGS)-assisted guided medication and surgery. CONCLUSION Therefore, mNGS may be widely applied to identify the pathogenic microorganisms of brain abscesses and guide precision medicine.
Collapse
Affiliation(s)
- Xue-Min Zhu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Chun-Xia Dong
- Department of Neurology, the 960th Hospital of People′s Liberation Army, Jinan 250031, Shandong Province, China
| | - Lei Xie
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Hao-Xin Liu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Huai-Qiang Hu
- Department of Neurology, the 960th Hospital of People′s Liberation Army, Jinan 250031, Shandong Province, China
| |
Collapse
|
39
|
Pham ML, Van Horn K, Zarate E, Pickering E, Murphy C, Bryant K. A multicenter evaluation of Copan's Colibrí™, an automated instrument for MALDI TOF MS target application for bacterial identification. Diagn Microbiol Infect Dis 2024; 108:116098. [PMID: 37890307 DOI: 10.1016/j.diagmicrobio.2023.116098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The Colibrí™ is a new instrument that automates picking and placement of colonies on target plates for MALDI identification. This study compared the performance of the Colibrí™ to standard manual spotting using the VITEK® MS for bacterial identification. Colonies were selected from cultures of urine, wound, respiratory, and positive blood cultures. The Colibrí™ sampled the colonies, transferred them to a MALDI target slide, and overlayed each spot with matrix. Manual spotting was then performed using the same or similar colonies. A total of 444 bacteria were compared. Identification was achieved with both methods for 432 organisms with only 2 discrepant results, overall agreement of 99.54%. Twelve organisms (2.70%) gave no identification using Colibrí™. The Colibrí™ provides automation to a manual process with a high accuracy. Use of the Colibrí™ instrumentation provides an opportunity to reallocate technologist time to more complicated tasks and provides complete traceability from plating to organism identification.
Collapse
Affiliation(s)
- My Lien Pham
- Kaiser Permanente, Southern California Permanente Medical Group, Regional Reference Laboratories, Chino Hills, CA, USA
| | - Kenneth Van Horn
- Kaiser Permanente, Southern California Permanente Medical Group, Regional Reference Laboratories, Chino Hills, CA, USA.
| | | | | | | | - Kendall Bryant
- Kaiser Permanente, Airport Way Regional Laboratory, Portland, OR, USA
| |
Collapse
|
40
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Tamai S, Suzuki Y. Diversity of Fecal Indicator Enterococci among Different Hosts: Importance to Water Contamination Source Tracking. Microorganisms 2023; 11:2981. [PMID: 38138125 PMCID: PMC10745335 DOI: 10.3390/microorganisms11122981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Enterococcus spp. are common bacteria present in the intestinal tracts of animals and are used as fecal indicators in aquatic environments. On the other hand, enterococci are also known as opportunistic pathogens. Elucidating their composition in the intestinal tracts of domestic animals can assist in estimating the sources of fecal contamination in aquatic environments. However, information on the species and composition of enterococci in animal hosts (except humans) is still lacking. In this study, enterococci were isolated from the feces of cattle, pigs, birds, and humans using selective media. Enterococcal species were identified using mass spectrometry technology, and each host was characterized by diversity and cluster analysis. The most dominant species were E. hirae in cattle, E. faecium in birds, and E. faecalis in pigs and humans. Cattle had the highest alpha diversity, with high interindividual and livestock farm diversity. The dominant enterococcal species in pigs and humans were identical, and cluster analysis showed that the majority of the two hosts' species clustered together.
Collapse
Affiliation(s)
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan;
| |
Collapse
|
42
|
Djambazova KV, van Ardenne JM, Spraggins JM. Advances in Imaging Mass Spectrometry for Biomedical and Clinical Research. Trends Analyt Chem 2023; 169:117344. [PMID: 38045023 PMCID: PMC10688507 DOI: 10.1016/j.trac.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.
Collapse
Affiliation(s)
- Katerina V. Djambazova
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacqueline M. van Ardenne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
43
|
Ahlat M, Aydin C, Kaya S, Baysallar M. Identification of root canal microbiota profiles of periapical tissue diseases using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anaerobe 2023; 84:102791. [PMID: 37925063 DOI: 10.1016/j.anaerobe.2023.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES The purpose of this study was to identify microorganisms isolated from various periapical tissue diseases using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) and classify them via an unsupervised machine learning approach. METHODS A total of 150 patients with various apical conditions and teeth in need of endodontic retreatment were divided into five groups, including Retreatment, Acute Apical Abscess, Chronic Apical Abscess, Acute Apical Periodontitis, and Chronic Apical Periodontitis. Samples were collected from root canals using paper points after agitating with a #10 K file then microorganisms were identified using MALDI-TOF-MS. Data were analyzed using a hierarchical clustering method. Quadruple clusters and dendrograms were formed according to similarities and dissimilarities. RESULTS A total of 80 species were identified representative of six different phyla. The most similar microorganism species identified were: ''Enterococcus faecalis'' between 21 and 23-year-old female cases in Retreatment group; ''Lactobacillus rhamnosus'' between 20 and 18-year-old male cases in Symptomatic Apical Abscess cases; ''Lactobacillus paracasei'' between 26 and 40-year-old male cases in Asymptomatic Apical Abscess cases; ''Enterococcus faecalis'' between 48 and 50-year-old female cases in Symptomatic Apical Periodontitis cases; ''Lactobacillus rhamnosus'' between 48 and 60-year-old male cases in Asymptomatic Apical Periodontitis cases. CONCLUSIONS MALDI-TOF MS can be considered a fast and high-throughput screening technique for microbial species identification in endodontics. Thus, it will provide valuable data for future research designs regarding periapical tissue diseases. As the MALDI-TOF MS database expands and comprehensive data becomes available, the relationship between microbial profiles and disease progression will become increasingly apparent.
Collapse
Affiliation(s)
- Mete Ahlat
- University of Health Sciences, Gulhane Faculty of Dentistry, Department of Endodontics, Ankara, Turkey.
| | - Cumhur Aydin
- University of Health Sciences, Gulhane Faculty of Dentistry, Department of Endodontics, Ankara, Turkey.
| | - Sinem Kaya
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey.
| | - Mehmet Baysallar
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey.
| |
Collapse
|
44
|
Uzuriaga M, Leiva J, Guillén-Grima F, Rua M, Yuste JR. Clinical Impact of Rapid Bacterial Microbiological Identification with the MALDI-TOF MS. Antibiotics (Basel) 2023; 12:1660. [PMID: 38136694 PMCID: PMC10740418 DOI: 10.3390/antibiotics12121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Rapid microbiological reports to clinicians are related to improved clinical outcomes. We conducted a 3-year quasi-experimental design, specifically a pretest-posttest single group design in a university medical center, to evaluate the clinical impact of rapid microbiological identification information using MALDI-TOF MS on optimizing antibiotic prescription. A total of 363 consecutive hospitalized patients with bacterial infections were evaluated comparing a historical control group (CG) (n = 183), in which the microbiological information (bacterial identification and antibiotic susceptibility) was reported jointly to the clinician between 18:00 h and 22:00 h of the same day and a prospective intervention group (IG) (n = 180); the bacterial identification information was informed to the clinician as soon as it was available between 12:00 h and 14:00 h and the antibiotic susceptibility between 18:00 h and 22:00 h). We observed, in favor of IG, a statistically significant decrease in the information time (11.44 h CG vs. 4.48 h IG (p < 0.01)) from the detection of bacterial growth in the culture medium to the communication of identification. Consequently, the therapeutic optimization was improved by introducing new antibiotics in the 10-24 h time window (p = 0.05) and conversion to oral route (p = 0.01). Additionally, we observed a non-statistically significant decrease in inpatient mortality (global, p = 0.15; infection-related, p = 0.21) without impact on hospital length of stay. In conclusion, the rapid communication of microbiological identification to clinicians reduced reporting time and was associated with early optimization of antibiotic prescribing without worsening clinical outcomes.
Collapse
Affiliation(s)
- Miriam Uzuriaga
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.)
| | - José Leiva
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.)
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
| | - Francisco Guillén-Grima
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
- Department of Preventive Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, 46980 Madrid, Spain
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain
| | - Marta Rua
- Clinical Microbiology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (M.U.); (M.R.)
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
| | - José R. Yuste
- Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (F.G.-G.); (J.R.Y.)
- Service of Infectious Diseases, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
45
|
Thelen P, Graeber S, Schmidt E, Hamprecht A. A side-by-side comparison of the new VITEK MS PRIME and the MALDI Biotyper sirius in the clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 2023; 42:1355-1363. [PMID: 37794128 PMCID: PMC10587274 DOI: 10.1007/s10096-023-04666-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE This study aims to evaluate the performance of two latest generation matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems in routine laboratory settings, focusing on turnaround time (TAT), time to results (TTR), hands-on time, and identification rate. METHODS We conducted a time and motion study on three workflow scenarios to simulate different laboratory settings. Overall, 618 bacterial isolates from a tertiary hospital's laboratory were processed using the VITEK MS PRIME (bioMérieux) and the MALDI Biotyper sirius (Bruker Daltonics) and their corresponding databases VITEK IVD Database 3.2 and MBT reference library 12. RESULTS The target preparation process showed no significant difference in TAT, but the Biotyper workflow had a shorter hands-on time by 3 to 6 min. In the measurement process, TTR was three to five times shorter for the Biotyper sirius while hands-on time was significantly shorter for VITEK MS PRIME (approximately 1.5 min per target). The identification rate without retesting was 97.9% for VITEK MS PRIME and 98.9% for Biotyper sirius. Both systems achieved 100% agreement at genus and 96.2% at species level. CONCLUSION Both systems exhibited excellent identification rates for routine bacterial isolates. Due to its high speed, the Biotyper sirius is suited for laboratories with high sample throughput and a workflow designed for processing larger batches. The VITEK MS PRIME, with its "load and go" system accommodating up to 16 targets, reduces hands-on time, making it a reasonable choice for laboratories with fewer identifications overall but a higher number of targets and a workflow designed for parallel processing on different workstations.
Collapse
Affiliation(s)
- Philipp Thelen
- Institute of Medical Microbiology and Virology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
- Institute for Medical Microbiology and Virology, Klinikum Oldenburg, Oldenburg, Germany.
| | - Sandra Graeber
- Institute of Medical Microbiology and Virology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Institute for Medical Microbiology and Virology, Klinikum Oldenburg, Oldenburg, Germany
| | - Erika Schmidt
- Institute for Medical Microbiology and Virology, Klinikum Oldenburg, Oldenburg, Germany
| | - Axel Hamprecht
- Institute of Medical Microbiology and Virology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Institute for Medical Microbiology and Virology, Klinikum Oldenburg, Oldenburg, Germany
| |
Collapse
|
46
|
Cuello L, Alvarez Otero J, Greenwood-Quaintance KE, Chen L, Hanson B, Reyes J, Komarow L, Ge L, Lancaster ZD, Gordy GG, Schuetz AN, Patel R. Poor Sensitivity of the MALDI Biotyper ® MBT Subtyping Module for Detection of Klebsiella pneumoniae Carbapenemase (KPC) in Klebsiella Species. Antibiotics (Basel) 2023; 12:1465. [PMID: 37760762 PMCID: PMC10525285 DOI: 10.3390/antibiotics12091465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid detection of Klebsiella pneumoniae carbapenemase (KPC) in the Klebsiella species is desirable. The MALDI Biotyper® MBT Subtyping Module (Bruker Daltonics) uses an algorithm that detects a peak at ~11,109 m/z corresponding to a protein encoded by the p019 gene to detect KPC simultaneously with organism identification by a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-ToF MS). Here, the subtyping module was evaluated using 795 clinical Klebsiella isolates, with whole genome sequences used to assess for blaKPC and p019. For the isolates identified as KPC positive by sequencing, the overall sensitivity of the MALDI-ToF MS subtyping module was 239/574 (42%) with 100% specificity. For the isolates harboring p019, the subtyping module showed a sensitivity of 97% (239/246) and a specificity of 100%. The subtyping module had poor sensitivity for the detection of blaKPC-positive Klebsiella isolates, albeit exhibiting excellent specificity. The poor sensitivity was a result of p019 being present in only 43% of the blaKPC-positive Klebsiella isolates.
Collapse
Affiliation(s)
- Luz Cuello
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Blake Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá 110121, Colombia
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, MD 20852, USA
| | - Lizhao Ge
- The Biostatistics Center, The George Washington University, Rockville, MD 20852, USA
| | - Zane D. Lancaster
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Garrett G. Gordy
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Audrey N. Schuetz
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
47
|
Kaushal S, Priyadarshi N, Garg P, Singhal NK, Lim DK. Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2529. [PMID: 37764558 PMCID: PMC10536455 DOI: 10.3390/nano13182529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Collapse
Affiliation(s)
- Shimayali Kaushal
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
48
|
Nakatsuji M, Sato N, Sakamoto S, Watanabe K, Teruuchi Y, Takeuchi M, Inui T, Ishihara H. Non-electrostatic interactions associated with aggregate formation between polyallylamine and Escherichia coli. Sci Rep 2023; 13:14793. [PMID: 37684326 PMCID: PMC10491771 DOI: 10.1038/s41598-023-42120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial aggregation by mixing with polymers is applied as pretreatment to identify pathogens in patients with infectious diseases. However, the detailed interaction between polymers and bacteria has yet to be fully understood. Here, we investigate the interaction between polyallylamine and Escherichia coli by isothermal titration calorimetry. Aggregation was observed at pH 10 and the binding was driven by favorable enthalpic gain such as the electrostatic interaction. Neither aggregation nor the apparent heat of binding was observed at pH 4.0, despite the strong positive charge of polyallylamine. These results suggest that intermolecular repulsive forces of the abundant positive charge of polyallylamine cause an increased loss of conformational entropy by binding. Non-electrostatic interaction plays a critical role for aggregation.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Natsuki Sato
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
| | - Shiho Sakamoto
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Koji Watanabe
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima, 963-8061, Japan
| | - Yoko Teruuchi
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima, 963-8061, Japan
| | - Minoru Takeuchi
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
- Laboratory of Biological Macromolecules, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Hideki Ishihara
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan.
| |
Collapse
|
49
|
Muselius B, Roux-Dalvai F, Droit A, Geddes-McAlister J. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1928-1940. [PMID: 37222660 PMCID: PMC10487597 DOI: 10.1021/jasms.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Fungal pathogens are emerging threats to global health with the rise of incidence associated with climate change and increased geographical distribution; factors also influencing host susceptibility to infection. Accurate detection and diagnosis of fungal infections is paramount to offer rapid and effective therapeutic options. For improved diagnostics, the discovery and development of protein biomarkers presents a promising avenue; however, this approach requires a priori knowledge of infection hallmarks. To uncover putative novel biomarkers of disease, profiling of the host immune response and pathogen virulence factor production is indispensable. In this study, we use mass-spectrometry-based proteomics to resolve the temporal proteome of Cryptococcus neoformans infection of the spleen following a murine model of infection. Dual perspective proteome profiling defines global remodeling of the host over a time course of infection, confirming activation of immune associated proteins in response to fungal invasion. Conversely, pathogen proteomes detect well-characterized C. neoformans virulence determinants, along with novel mapped patterns of pathogenesis during the progression of disease. Together, our innovative systematic approach confirms immune protection against fungal pathogens and explores the discovery of putative biomarker signatures from complementary biological systems to monitor the presence and progression of cryptococcal disease.
Collapse
Affiliation(s)
- Benjamin Muselius
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Florence Roux-Dalvai
- Proteomics
platform, CHU de Québec - Université
Laval Research Center, Québec
City, Québec G1
V 4G2, Canada
- Computational
Biology Laboratory, CHU de Québec
- Université Laval Research Center, Québec City, Québec G1 V 4G2, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| | - Arnaud Droit
- Proteomics
platform, CHU de Québec - Université
Laval Research Center, Québec
City, Québec G1
V 4G2, Canada
- Computational
Biology Laboratory, CHU de Québec
- Université Laval Research Center, Québec City, Québec G1 V 4G2, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
50
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|