1
|
Rong Y, Tang M, Liu L, Ma X, Liu M, Qu L, Liao X, Jiang Q, Zhang N, Xu X. Artemisia argyi essential oil alleviates asthma by regulating 5-LOX-CysLTs and IDO-1-KYN pathways: Insights from metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118458. [PMID: 38871010 DOI: 10.1016/j.jep.2024.118458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi essential oil (AAEO) is a traditional herbal remedy for asthma. However, the potential effect of AAEO on asthma has not been elucidated. AIM OF THE STUDY To investigate the protective properties of AAEO upon asthma and elucidate its mechanism. MATERIALS AND METHODS The effects of AAEO in asthma were assessed by histology and biochemical analysis. Then, we integrated real-time reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry and metabolomics analysis to reveal its mechanism. RESULTS In vivo, AAEO reduced the counts of white blood cells (WBCs) and cytokines in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of OVA-sIgE and muc5ac. Metabolomics results showed that AAEO can exert therapeutic effects on asthmatic mice by regulating disordered arachidonic acid metabolism and tryptophan metabolism. Further studies shown that AAEO inhibited the expression of 5-LOX and reduced the accumulation of CysLTs in mice. Meanwhile, AAEO promoted the activity of IDO-1, facilitated the conversion of tryptophan to kynurenine, and regulated the imbalance of Treg/Th17 immunity. Immunohistochemical results showed that AAEO promoted the expression of IDO-1. RT-qPCR results showed that AAEO promoted the expression of IL-10 and Foxp3 mRNA, and inhibited the expression of IL-17A and RORγt mRNA, thus regulated the imbalance of Treg/Th17 immunity and exerted its therapeutic effects. CONCLUSION AAEO treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating lung tissue metabolism. The anti-asthmatic activity of AAEO may be achieved by reprogramming 5-LOX-CysLTs and IDO-1-KYN pathways.
Collapse
Affiliation(s)
- Ying Rong
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Mengqi Tang
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Luyao Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xiaoge Ma
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Mengge Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lingbo Qu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xinglin Liao
- Nanyang LANHAISENYUAN Medical Technology Ltd.,CO, Nanyang, Henan, 473000, PR China
| | - Qiman Jiang
- Nanyang LANHAISENYUAN Medical Technology Ltd.,CO, Nanyang, Henan, 473000, PR China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xia Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
2
|
Patoine D, Bouchard K, Blais-Lecours P, Courtemanche O, Huppé CA, Marsolais D, Bissonnette EY, Lauzon-Joset JF. CD200Fc limits dendritic cell and B-cell activation during chronic allergen exposures. J Leukoc Biol 2023; 114:84-91. [PMID: 37032534 DOI: 10.1093/jleuko/qiad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Abstract
Allergic asthma is a chronic inflammatory disease characterized by Th2, conventional dendritic cell, and B-cell activation. In addition to excessive inflammation, asthma pathogenesis includes dysregulation of anti-inflammatory pathways, such as the CD200/CD200R pathway. Thus, we investigated whether a CD200R agonist, CD200Fc, could disrupt the inflammatory cascade in chronic allergic asthma pathogenesis using a mice model of experimental asthma. Mice were exposed to house dust mites for 5 wk, and CD200Fc treatment was initiated after chronic inflammation was established (starting on week 4). We demonstrate that chronic house dust mite exposure altered CD200 and CD200R expression on lung immune cell populations, including upregulation of CD200 on alveolar macrophages and reduced expression of CD200 on conventional dendritic cells. CD200Fc treatment does not change bronchoalveolar cellular infiltration, but it attenuates B-cell activation and skews the circulating immunoglobulin profile toward IgG2a. This is accompanied by reduced activation of conventional dendritic cells, including lower expression of CD40, especially on conventional dendritic cell subset 2 CD200R+. Furthermore, we confirm that CD200Fc can directly modulate conventional dendritic cell activation in vitro using bone marrow-derived dendritic cells. Thus, the CD200/CD200R pathway is dysregulated during chronic asthma pathogenesis, and the CD200R agonist modulates B-cell and dendritic cell activation but, in our chronic model, is not sufficient to alter inflammation measured in bronchoalveolar lavage.
Collapse
Affiliation(s)
- Dany Patoine
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Karine Bouchard
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Pascale Blais-Lecours
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Olivier Courtemanche
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Carole-Ann Huppé
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - David Marsolais
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| | - Elyse Y Bissonnette
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| | - Jean-Francois Lauzon-Joset
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
3
|
Asthma and COVID-19: Emphasis on Adequate Asthma Control. Can Respir J 2021; 2021:9621572. [PMID: 34457096 PMCID: PMC8397565 DOI: 10.1155/2021/9621572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Asthmatics are at an increased risk of developing exacerbations after being infected by respiratory viruses such as influenza virus, parainfluenza virus, and human and severe acute respiratory syndrome coronaviruses (SARS-CoV). Asthma, especially when poorly controlled, is an independent risk factor for developing pneumonia. A subset of asthmatics can have significant defects in their innate, humoral, and cell-mediated immunity arms, which may explain the increased susceptibility to infections. Adequate asthma control is associated with a significant decrease in episodes of exacerbation. Because of their wide availability and potency to promote adequate asthma control, glucocorticoids, especially inhaled ones, are the cornerstone of asthma management. The current COVID-19 pandemic affects millions of people worldwide and possesses mortality several times that of seasonal influenza; therefore, it is necessary to revisit this subject. The pathogenesis of SARS-CoV-2, the virus that causes COVID-19, can potentiate the development of acute asthmatic exacerbation with the potential to worsen the state of chronic airway inflammation. The relationship is evident from several studies that show asthmatics experiencing a more adverse clinical course of SARS-CoV-2 infection than nonasthmatics. Recent studies show that dexamethasone, a potent glucocorticoid, and other inhaled corticosteroids significantly reduce morbidity and mortality among hospitalized COVID-19 patients. Hence, while we are waiting for more studies with higher level of evidence that further narrate the association between COVID-19 and asthma, we advise clinicians to try to achieve adequate disease control in asthmatics as it may reduce incidences and severity of exacerbations especially from SARS-CoV-2 infection.
Collapse
|
4
|
Infection-Associated Mechanisms of Neuro-Inflammation and Neuro-Immune Crosstalk in Chronic Respiratory Diseases. Int J Mol Sci 2021; 22:ijms22115699. [PMID: 34071807 PMCID: PMC8197882 DOI: 10.3390/ijms22115699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive airway diseases are characterized by airflow obstruction and airflow limitation as well as chronic airway inflammation. Especially bronchial asthma and chronic obstructive pulmonary disease (COPD) cause considerable morbidity and mortality worldwide, can be difficult to treat, and ultimately lack cures. While there are substantial knowledge gaps with respect to disease pathophysiology, our awareness of the role of neurological and neuro-immunological processes in the development of symptoms, the progression, and the outcome of these chronic obstructive respiratory diseases, is growing. Likewise, the role of pathogenic and colonizing microorganisms of the respiratory tract in the development and manifestation of asthma and COPD is increasingly appreciated. However, their role remains poorly understood with respect to the underlying mechanisms. Common bacteria and viruses causing respiratory infections and exacerbations of chronic obstructive respiratory diseases have also been implicated to affect the local neuro-immune crosstalk. In this review, we provide an overview of previously described neuro-immune interactions in asthma, COPD, and respiratory infections that support the hypothesis of a neuro-immunological component in the interplay between chronic obstructive respiratory diseases, respiratory infections, and respiratory microbial colonization.
Collapse
|
5
|
Bonner K, Scotney E, Saglani S. Factors and mechanisms contributing to the development of preschool wheezing disorders. Expert Rev Respir Med 2021; 15:745-760. [PMID: 33881953 DOI: 10.1080/17476348.2021.1913057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Half of all children will experience an episode of wheezing by their sixth birthday and acute episodes of wheezing in preschool children account for the majority of all childhood hospital admissions for wheeze. Recurrent preschool wheezing associates with early loss of lung function and a life-long impact on lung health. AREAS COVERED We reviewed the literature on PubMed from August 2010-2020 focussing on factors associated with wheeze inception and persistence, paying specific attention to mechanistic studies that have investigated the impact of early life exposures in shaping immune responses in children with underlying susceptibility to wheezing. In particular, the role of early allergen sensitization, respiratory infections, and the impact of the environment on shaping the airway microbiome and resulting immune responses are discussed. EXPERT OPINION There is an abundance of associative data showing the role of in utero and postnatal factors influencing wheeze onset and persistence. However, mechanistic and stratified, biomarker-based interventional studies that confirm these associations are now needed if we are to impact the significant healthcare burden resulting from preschool wheezing disorders.
Collapse
Affiliation(s)
- Katie Bonner
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Elizabeth Scotney
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| |
Collapse
|
6
|
Wang W, Yang Z, Li M, Wang Z, Shan Y, Qu Z. Six1 Promotes Epithelial-Mesenchymal Transition in Bronchial Epithelial Cells via the TGFβ1/Smad Signalling Pathway. Int Arch Allergy Immunol 2021; 182:479-488. [PMID: 33631753 DOI: 10.1159/000512873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The homeodomain transcription factor sine oculis homeobox homolog 1 (Six1) plays a crucial role in embryogenesis and is not expressed in normal adult tissue but is expressed in many pathological processes, including airway remodelling in asthma. The current study aimed to reveal the effects of Six1 in regulating the airway remodelling and its possible mechanism. METHODS A mouse model of ovalbumin-induced asthma-associated airway wall remodelling and a bronchial epithelial cell (16HBE) model of transforming growth factor β1 (TGFβ1)-induced epithelial-mesenchymal transition (EMT) were used to investigate the role of Six1. Then, 16HBE cells were transformed with Six1 expression vectors and treated with a TGFβ1 pathway inhibitor to determine the role of Six1 in EMT. The effect of Six1 and its possible mechanism were assessed by immunohistochemistry, RT-PCR, and Western blot. RESULTS Six1 expression was elevated in the lungs in an OVA mouse model of allergic asthma and in 16HBE cells treated with TGFβ1. Six1 overexpression promoted an EMT-like phenotype with a decreased protein expression of E-cadherin and increased protein expression of α-smooth muscle actin (α-SMA) as well as fibronectin in 16HBE cells; these effects appeared to promote TGFβ1 and phospho-Smad2 (pSmad2) production, which are the main products of the TGFβ1/Smad signalling pathway, which could be reduced by a TGFβ1 inhibitor. CONCLUSION These data reveal that Six1 and TGFβ1 are potentially a part of an autocrine feedback loop that induces EMT, and these factors can be reduced by blocking the TGFβ1/Smad signalling pathway. As such, these factors may represent a promising novel therapeutic target for airway remodelling in asthma.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaochuan Yang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixiang Li
- Department of Pediatrics, Municipal Hospital of Heze, Heze, China
| | - Zhenhong Wang
- Education and Training Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanchun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China,
| |
Collapse
|
7
|
Heidari H, Mohammadbeigi A, Soltanzadeh A, Darabi M, Asadi-Ghalhari M. Respiratory effects of occupational exposure to low concentration of hydrochloric acid among exposed workers: a case study in steel industry. Med Gas Res 2020; 9:208-212. [PMID: 31898605 PMCID: PMC7802423 DOI: 10.4103/2045-9912.273958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Occupational exposure to hydrochloric acid in pickling of steel for remove rust or iron oxide scale from iron processing occurs at low concentration. This study aimed to investigate the respiratory symptoms and pulmonary dysfunction caused by exposure to low concentration of hydrochloric acid in acid washing unit in one of the steel industries. A case control study was carried out in the acid washing unit of the cold rolling of the steel industry in 2017. The exposed group included 45 male workers, and another 41 unexposed employees from official employees were enrolled as control group. A questionnaire was used to collect personal and occupational data and pulmonary function tests, including forced vital capacity (FVC), forced expiratory volume in the first second and peak expiratory flow rate followed guidelines given by the American Thoracic Society and measured with a portable calibrated vitalograph spirometer. For determination of acid concentration, 21 breathing zone air samples were collected in accordance with Method 7903 NIOSH. The findings showed that nose sensitivity, throat irritation and shortness of breath were the highest prevalence symptoms among exposed persons (30.4% to 32.6%). Also, the results showed that FVC and forced expiratory volume in the first second had highest and direct or positive correlation with height (0.965 and 0.927, respectively). Age and weight put in the next priorities (P < 0.01). On the other hand, based on the results of multivariate linear regression, exposing to the acid and job history are two main predictor factors for FVC. So that, the exposing to acid, by itself can reduce FVC as 4.386 units. This value is equal to 1.117 for the job history. Exposure to low concentrations of hydrochloric acid alone could increase the risk of respiratory tract damage and pulmonary function disorders. But the extent to which it can cause respiratory complications for occupational exposure is still unknown and requires further study. This study was approved by Ethical Committee of Qom University of Medical Sciences (approval No. IR.MUQ.REC.1397.118) on November 6, 2018.
Collapse
Affiliation(s)
- Hamidreza Heidari
- Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Science, Qom, Iran
| | - Abolfazl Mohammadbeigi
- Neuroscience Research Center, Faculty of Health, Qom University of Medical Science, Qom, Iran
| | - Ahmad Soltanzadeh
- Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Science, Qom, Iran
| | - Mohadese Darabi
- Research Student Committee, School of Health, Qom University of Medical Sciences, Qom, Iran
| | - Mahdi Asadi-Ghalhari
- Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Science, Qom, Iran
| |
Collapse
|
8
|
Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional development and asthma trajectories. Semin Immunopathol 2020; 42:17-27. [PMID: 31989229 DOI: 10.1007/s00281-020-00784-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Early life environmental risk factors are associated with chronic respiratory morbidity in child- and adulthood. A possible mechanism for this sustained effect is their influence on early life lung functional growth and development, a susceptible phase of rapid lung growth with increased plasticity. We summarize evidence of hereditary and environmental ante-, peri-, and early postnatal factors on lung functional development, such as air pollution, tobacco exposure, nutrition, intrauterine growth retardation, prematurity, early life infections, microbiome, and allergies and their effect on lung functional trajectories. While some of the factors (e.g., prematurity) directly impair lung growth, the influence of many environmental factors is mediated through inflammatory processes (e.g., recurrent infections or oxidative stress). The timing and nature of these influences and their impact result in degrees of impaired maximal lung functional capacity in early adulthood; and they potentially impact future long-term respiratory morbidity such as chronic asthma or chronic obstructive airway disease (COPD). We discuss possibilities to prevent or modify such early abnormal lung functional growth trajectories and the need for future studies and prevention programs.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Jakob Usemann
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Respiratory Medicin, University Children's Hospital Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| |
Collapse
|
9
|
The Role of the Microbiome in Asthma: The Gut⁻Lung Axis. Int J Mol Sci 2018; 20:ijms20010123. [PMID: 30598019 PMCID: PMC6337651 DOI: 10.3390/ijms20010123] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Asthma is one of the most common chronic respiratory diseases worldwide. It affects all ages but frequently begins in childhood. Initiation and exacerbations may depend on individual susceptibility, viral infections, allergen exposure, tobacco smoke exposure, and outdoor air pollution. The aim of this review was to analyze the role of the gut⁻lung axis in asthma development, considering all asthma phenotypes, and to evaluate whether microbe-based therapies may be used for asthma prevention. Several studies have confirmed the role of microbiota in the regulation of immune function and the development of atopy and asthma. These clinical conditions have apparent roots in an insufficiency of early life exposure to the diverse environmental microbiota necessary to ensure colonization of the gastrointestinal and/or respiratory tracts. Commensal microbes are necessary for the induction of a balanced, tolerogenic immune system. The identification of commensal bacteria in both the gastroenteric and respiratory tracts could be an innovative and important issue. In conclusion, the function of microbiota in healthy immune response is generally acknowledged, and gut dysbacteriosis might result in chronic inflammatory respiratory disorders, particularly asthma. Further investigations are needed to improve our understanding of the role of the microbiome in inflammation and its influence on important risk factors for asthma, including tobacco smoke and host genetic features.
Collapse
|
10
|
Lauzon-Joset JF, Jones AC, Mincham KT, Thomas JA, Rosenthal LA, Bosco A, Holt PG, Strickland DH. Atopy-Dependent and Independent Immune Responses in the Heightened Severity of Atopics to Respiratory Viral Infections: Rat Model Studies. Front Immunol 2018; 9:1805. [PMID: 30150981 PMCID: PMC6099265 DOI: 10.3389/fimmu.2018.01805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/04/2022] Open
Abstract
Allergic (Th2high immunophenotype) asthmatics have a heightened susceptibility to common respiratory viral infections such as human rhinovirus. Evidence suggests that the innate interferon response is deficient in asthmatic/atopic individuals, while other studies show no differences in antiviral response pathways. Unsensitized and OVA-sensitized/challenged Th2high (BN rats) and Th2low immunophenotype (PVG rats) animals were inoculated intranasally with attenuated mengovirus (vMC0). Sensitized animals were exposed/unexposed during the acute viral response phase. Cellular and transcriptomic profiling was performed on bronchoalveolar lavage cells. In unsensitized PVG rats, vMC0 elicits a prototypical antiviral response (neutrophilic airways inflammation, upregulation of Th1/type I interferon-related pathways). In contrast, response to infection in the Th2high BN rats was associated with a radically altered intrinsic host response to respiratory viral infection, characterized by macrophage influx/Th2-associated pathways. In sensitized animals, response to virus infection alone was not altered compared to unsensitized animals. However, allergen exposure of sensitized animals during viral infection unleashes a notably exaggerated airways inflammatory response profile orders of magnitude higher in BN versus PVG rats despite similar viral loads. The co-exposure responses in the Th2high BN incorporated type I interferon/Th1, alternative macrophage activation/Th2 and Th17 signatures. Similar factors may underlie the hyper-susceptibility to infection-associated airways inflammation characteristic of the human Th2high immunophenotype.
Collapse
Affiliation(s)
| | - Anya C Jones
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Jenny A Thomas
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Louis A Rosenthal
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
11
|
Spann K, Snape N, Baturcam E, Fantino E. The Impact of Early-Life Exposure to Air-borne Environmental Insults on the Function of the Airway Epithelium in Asthma. Ann Glob Health 2018; 82:28-40. [PMID: 27325066 DOI: 10.1016/j.aogh.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The airway epithelium is both a physical barrier protecting the airways from environmental insults and a significant component of the innate immune response. There is growing evidence that exposure of the airway epithelium to environmental insults in early life may lead to permanent changes in structure and function that underlie the development of asthma. Here we review the current published evidence concerning the link between asthma and epithelial damage within the airways and identify gaps in knowledge for future studies.
Collapse
Affiliation(s)
- Kirsten Spann
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia.
| | - Natale Snape
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| | - Engin Baturcam
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| | - Emmanuelle Fantino
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| |
Collapse
|
12
|
Lynch JP, Sikder MAA, Curren BF, Werder RB, Simpson J, Cuív PÓ, Dennis PG, Everard ML, Phipps S. The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma-Food for Thought? Front Immunol 2017; 8:156. [PMID: 28261214 PMCID: PMC5311067 DOI: 10.3389/fimmu.2017.00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
Severe viral lower respiratory infections are a major cause of infant morbidity. In developing countries, respiratory syncytial virus (RSV)-bronchiolitis induces significant mortality, whereas in developed nations the disease represents a major risk factor for subsequent asthma. Susceptibility to severe RSV-bronchiolitis is governed by gene-environmental interactions that affect the host response to RSV infection. Emerging evidence suggests that the excessive inflammatory response and ensuing immunopathology, typically as a consequence of insufficient immunoregulation, leads to long-term changes in immune cells and structural cells that render the host susceptible to subsequent environmental incursions. Thus, the initial host response to RSV may represent a tipping point in the balance between long-term respiratory health or chronic disease (e.g., asthma). The composition and diversity of the microbiota, which in humans stabilizes in the first year of life, critically affects the development and function of the immune system. Hence, perturbations to the maternal and/or infant microbiota are likely to have a profound impact on the host response to RSV and susceptibility to childhood asthma. Here, we review recent insights describing the effects of the microbiota on immune system homeostasis and respiratory disease and discuss the environmental factors that promote microbial dysbiosis in infancy. Ultimately, this knowledge will be harnessed for the prevention and treatment of severe viral bronchiolitis as a strategy to prevent the onset and development of asthma.
Collapse
Affiliation(s)
- Jason P. Lynch
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Md. Al Amin Sikder
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bodie F. Curren
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rhiannon B. Werder
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Simpson
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Páraic Ó Cuív
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Paul G. Dennis
- The School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Mark L. Everard
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Simon Phipps
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
13
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
14
|
Green RJ. Viral Lower Respiratory Tract Infections. VIRAL INFECTIONS IN CHILDREN, VOLUME II 2017. [PMCID: PMC7122336 DOI: 10.1007/978-3-319-54093-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lower respiratory tract infections in children are often viral in origin. Unfortunately in this time of significant antimicrobial resistance of infectious organisms, especially bacteria, there is still a tendency for clinicians to manage a child who coughs with antibiotics. In addition, the World Health Organization (WHO) has defined “pneumonia” as a condition that only occurs in children who have “fast breathing or chest wall indrawing”. That would delineate upper respiratory tract infections from those in the lower airway. However, in addition to pneumonia another important entity exists in the lower respiratory tract that is almost always viral in origin. This condition is acute viral bronchiolitis. The concept of “acute lower respiratory tract infection” (ALRTI) has emerged and it is becoming increasing evident from a number of studies that the infectious base of both acute pneumonia (AP) and acute bronchiolitis in children has a mixed etiology of microorganisms. Therefore, whilst certain clinical phenotypes do not require antibiotics the actual microbial etiology is much less distinct.
Collapse
Affiliation(s)
- Robin J. Green
- Department of Paediatrics and Child Health, University of Pretoria, School of Medicine, Pretoria, ZA, South Africa
| |
Collapse
|
15
|
Holt PG, Snelling T, White OJ, Sly PD, DeKlerk N, Carapetis J, Biggelaar AVD, Wood N, McIntyre P, Gold M. Transiently increased IgE responses in infants and pre-schoolers receiving only acellular Diphtheria-Pertussis-Tetanus (DTaP) vaccines compared to those initially receiving at least one dose of cellular vaccine (DTwP) - Immunological curiosity or canary in the mine? Vaccine 2016; 34:4257-4262. [PMID: 27265452 DOI: 10.1016/j.vaccine.2016.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/06/2016] [Accepted: 05/18/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several previous studies have highlighted the strong Th2-polarising and IgE-promoting activity of the DTaP vaccine, but there is no evidence that this has pathological consequences and accordingly there is no current interest amongst vaccine developers in reformulating DTaP to attenuate these properties. In light of an apparent resurgence in pertussis in many countries, and emerging evidence from other areas of paediatric immunology of IgE-mediated interference with host defence mechanisms, this issue requires more detailed clarification. METHODS We have re-evaluated the impact of DTaP-only versus mixed DTwP/DTaP vaccination on Th2-dependent "bystander" IgE responses in three cohorts of children under different priming conditions, encompassing both vaccine-targeted and unrelated antigens including food allergens. RESULTS We confirm the generalised IgE-trophic activity of the DTaP vaccine in pre-schoolers and demonstrate similar (albeit transient) effects in infants. We additionally demonstrate that use of an alternative mixed infant priming schedule encompassing an initial dose of DTwP significantly attenuates this property. INTERPRETATION Central to our interpretation of these findings are studies demonstrating: (i) mixed DTwP/DTaP priming improves resistance to pertussis disease and attenuates the IgE-stimulatory component of long term vaccine-specific memory; (ii) IgE-mediated mechanisms can interfere with innate antiviral immunity and accordingly exacerbate airway symptoms in infected children. These observations, taken together with the data presented here, suggest a plausible mechanistic link between baseline pertussis-specific IgE titres in DTaP vaccinees and susceptibility to pertussis disease, which merits testing. Retrospective IgE analyses on sera collected from children at the time of presentation with pertussis could resolve this issue.
Collapse
Affiliation(s)
- Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - Tom Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Olivia J White
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas DeKlerk
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Jonathan Carapetis
- Telethon Kids Institute, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Anita Van Den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, Sydney, Australia
| | - Peter McIntyre
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, Sydney, Australia
| | - Michael Gold
- Discipline of Paediatrics, School of Medicine, University of Adelaide, Australia
| |
Collapse
|
16
|
Sly PD, Bush A. From the Cradle to the Grave: The Early-Life Origins of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2016; 193:1-2. [PMID: 26720781 DOI: 10.1164/rccm.201509-1801ed] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter D Sly
- 1 University of Queensland Queensland Children's Medical Research Institute Brisbane, Queensland, Australia and
| | - Andrew Bush
- 2 Imperial College and Royal Brompton Hospital London, United Kingdom
| |
Collapse
|
17
|
Shi YQ, Li P, Wu T, Ding Y, Shi Y, Wylam ME, Su X. Integrated Therapy for Invasive Pulmonary Aspergillosis in a Patient with Asthma and Chronic Obstructive Pulmonary Disease Overlap Syndrome. Chin Med J (Engl) 2016; 128:2265-6. [PMID: 26265625 PMCID: PMC4717979 DOI: 10.4103/0366-6999.162511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| |
Collapse
|
18
|
Holt PG, Strickland D, Bosco A, Belgrave D, Hales B, Simpson A, Hollams E, Holt B, Kusel M, Ahlstedt S, Sly PD, Custovic A. Distinguishing benign from pathologic TH2 immunity in atopic children. J Allergy Clin Immunol 2015; 137:379-87. [PMID: 26518094 DOI: 10.1016/j.jaci.2015.08.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although most children with asthma and rhinitis are sensitized to aeroallergens, only a minority of sensitized children are symptomatic, implying the underlying operation of efficient anti-inflammatory control mechanisms. OBJECTIVE We sought to identify endogenous control mechanisms that attenuate expression of IgE-associated responsiveness to aeroallergens in sensitized children. METHODS In 3 independent population samples we analyzed relationships between aeroallergen-specific IgE and corresponding allergen-specific IgG (sIgG) and associated immunophenotypes in atopic children and susceptibility to asthma and rhinitis, focusing on responses to house dust mite and grass. RESULTS Among mite-sensitized children across all populations and at different ages, house dust mite-specific IgG/IgE ratios (but not IgG4/IgE ratios) were significantly lower in children with asthma compared with ratios in those without asthma and lowest among the most severely symptomatic. This finding was mirrored by relationships between rhinitis and antibody responses to grass. Depending on age/allergen specificity, 20% to 40% of children with allergen-specific IgE (sIgE) of 0.35 kU/L or greater had negative skin test responses, and these children also expressed the high sIgG/sIgE immunophenotype. sIgG1 from these children inhibited allergen-induced IgE-dependent basophil activation in a dose-dependent fashion. Profiling of aeroallergen-specific CD4(+) TH memory responses revealed positive associations between sIgG/sIgE ratios and IL-10-dependent gene signatures and significantly higher IL-10/TH2 cytokine (protein) ratios among nonsymptomatic children. CONCLUSION In addition to its role in blocking TH2 effector activation in the late-phase allergic response, IL-10 is a known IgG1 switch factor. We posit that its production during allergen-induced memory responses contributes significantly to attenuation of inflammation through promoting IgG1-mediated damping of the FcεRI-dependent acute-phase reaction. sIgG1/sIgE balance might represent a readily accessible therapeutic target for asthma/rhinitis control.
Collapse
Affiliation(s)
- Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, Australia; Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Australia.
| | - Deborah Strickland
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Danielle Belgrave
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| | - Belinda Hales
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Angela Simpson
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| | - Elysia Hollams
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Barbara Holt
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Merci Kusel
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Staffan Ahlstedt
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Peter D Sly
- Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Australia
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Abstract
Asthma is the most common inflammatory disease of the lungs. The prevalence of asthma is increasing in many parts of the world that have adopted aspects of the Western lifestyle, and the disease poses a substantial global health and economic burden. Asthma involves both the large-conducting and the small-conducting airways, and is characterized by a combination of inflammation and structural remodelling that might begin in utero. Disease progression occurs in the context of a developmental background in which the postnatal acquisition of asthma is strongly linked with allergic sensitization. Most asthma cases follow a variable course, involving viral-induced wheezing and allergen sensitization, that is associated with various underlying mechanisms (or endotypes) that can differ between individuals. Each set of endotypes, in turn, produces specific asthma characteristics that evolve across the lifecourse of the patient. Strong genetic and environmental drivers of asthma interconnect through novel epigenetic mechanisms that operate prenatally and throughout childhood. Asthma can spontaneously remit or begin de novo in adulthood, and the factors that lead to the emergence and regression of asthma, irrespective of age, are poorly understood. Nonetheless, there is mounting evidence that supports a primary role for structural changes in the airways with asthma acquisition, on which altered innate immune mechanisms and microbiota interactions are superimposed. On the basis of the identification of new causative pathways, the subphenotyping of asthma across the lifecourse of patients is paving the way for more-personalized and precise pathway-specific approaches for the prevention and treatment of asthma, creating the real possibility of total prevention and cure for this chronic inflammatory disease.
Collapse
Affiliation(s)
- Stephen T. Holgate
- Clinical and Experimental Sciences, Mail Point 810, Level F, Sir Henry Wellcome Building
- Southampton General Hospital, Southampton, SO16 6YD UK
| | - Sally Wenzel
- Subsection Chief of Allergy, Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Asthma Institute at UPMC/UPSOM, Pittsburgh, Pennsylvania USA
| | - Dirkje S. Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH, Campus Marburg, Marburg, Germany
| | - Peter D. Sly
- Queensland Children's Medical Research Institute and Centre for Child Health Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Abstract
Allergic diseases have a strong environmental component, illustrated by the rapid rise of their prevalence in the Western world. Environmental exposures have been consistently shown to either promote or protect against allergic disease. Here we focus on protective exposures and the pathways they regulate. Traditional farming, natural environments with high biodiversity, and pets in the home (particularly dogs) have the most potent and consistent allergy-protective effects and are actively investigated to identify the environmental and host-based factors that confer allergy protection. Recent work emphasizes the critical protective role of microbial diversity and its interactions with the gut/lung and skin/lung axes-a cross-talk through which microbial exposure in the gut or skin powerfully influences immune responses in the lung.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize recent studies of the lower respiratory microbiome in asthma, the role of innate immunity in asthma and strategies to understand complex microbiome-immune interactions in asthma. RECENT FINDINGS Recent evidence indicates that the composition of lower respiratory microbiota in asthmatic individuals, across a spectrum of disease severity, is altered compared with healthy individuals. Attributes of this altered airway microbiome have been linked to clinical and inflammatory features of asthma. The importance of innate immune cells and mucosal defense systems in asthma is increasingly appreciated and may be dysregulated in the disease. SUMMARY Interactions between the respiratory microbiome and innate mucosal immunity in asthma are complex and a challenge to dissect. Multiple avenues of investigation, leveraging a variety of methodologies, will need to be pursued to understand functional relationships to clinical and inflammatory phenotypes seen in asthma.
Collapse
|
22
|
Campbell DE, Boyle RJ, Thornton CA, Prescott SL. Mechanisms of allergic disease - environmental and genetic determinants for the development of allergy. Clin Exp Allergy 2015; 45:844-858. [DOI: 10.1111/cea.12531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- D. E. Campbell
- Children's Hospital Westmead; Sydney NSW Australia
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney NSW Australia
| | - R. J. Boyle
- Section of Paediatrics; Faculty of Medicine; Imperial College; London UK
| | - C. A. Thornton
- Institute of Life Science; College of Medicine; Swansea University; Swansea UK
| | - S. L. Prescott
- School of Paediatrics and Child Health and Telethon KIDS Institute; c/o Princess Margaret Hospital; University of Western Australia; Perth WA Australia
| |
Collapse
|
23
|
Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales BJ, Walker ML, Hollams E, Bochkov YA, Grindle K, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17:704-15. [PMID: 25865368 PMCID: PMC4433433 DOI: 10.1016/j.chom.2015.03.008] [Citation(s) in RCA: 678] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/09/2015] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory infections (ARIs). Lung inflammation resulting from ARIs during infancy is linked to asthma development. We examined the NP microbiome during the critical first year of life in a prospective cohort of 234 children, capturing both the viral and bacterial communities and documenting all incidents of ARIs. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella. Transient incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns. In the absence of effective anti-viral therapies, targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma. The nasopharynx microbiome of infants has a simple structure dominated by six genera Microbiome composition affects infection severity and pathogen spread to lower airways Early asymptomatic colonization with Streptococcus increases risk of asthma Antibiotic usage disrupts asymptomatic colonization patterns
Collapse
Affiliation(s)
- Shu Mei Teo
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Kym Pham
- Melbourne Translational Genomics Platform, Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Merci Kusel
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Niamh Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Belinda J Hales
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Michael L Walker
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elysia Hollams
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Yury A Bochkov
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Kristine Grindle
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Sebastian L Johnston
- Airway Disease Infection Section and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - James E Gern
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4059, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia; Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4059, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
24
|
Abstract
BACKGROUND Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. METHODS Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. RESULTS Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. CONCLUSIONS Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.
Collapse
|
25
|
Early origins of chronic obstructive lung diseases across the life course. Eur J Epidemiol 2014; 29:871-85. [PMID: 25537319 DOI: 10.1007/s10654-014-9981-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022]
Abstract
Chronic obstructive lung diseases, like asthma and chronic obstructive pulmonary disease, have high prevalences and are a major public health concern. Chronic obstructive lung diseases have at least part of their origins in early life. Exposure to an adverse environment during critical periods in early life might lead to permanent developmental adaptations which results in impaired lung growth with smaller airways and lower lung volume, altered immunological responses and related inflammation, and subsequently to increased risks of chronic obstructive lung diseases throughout the life course. Various pathways leading from early life factors to respiratory health outcomes in later life have been studied, including fetal and early infant growth patterns, preterm birth, maternal obesity, diet and smoking, children's diet, allergen exposure and respiratory tract infections, and genetic susceptibility. Data on potential adverse factors in the embryonic and preconception period and respiratory health outcomes are scarce. Also, the underlying mechanisms how specific adverse exposures in the fetal and early postnatal period lead to chronic obstructive lung diseases in later life are not yet fully understood. Current studies suggest that interactions between early environmental exposures and genetic factors such as changes in DNA-methylation and RNA expression patterns may explain the early development of chronic obstructive lung diseases. New well-designed epidemiological studies are needed to identify specific critical periods and to elucidate the mechanisms underlying the development of chronic obstructive lung disease throughout the life course.
Collapse
|
26
|
Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J 2014; 44:1682-96. [PMID: 25323240 DOI: 10.1183/09031936.00084114] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease often originate early in life. In addition to a genetic predisposition, prenatal and early-life environmental exposures have a persistent impact on respiratory health. Acting during a critical phase of lung development, these factors may change lung structure and metabolism, and may induce maladaptive responses to harmful agents, which will affect the whole lifespan. Some environmental factors, such as exposure to cigarette smoke, type of childbirth and diet, may be modifiable, but it is more difficult to influence other factors, such as preterm birth and early exposure to viruses or allergens. Here, we bring together recent literature to analyse the critical aspects involved in the early stages of lung development, going back to prenatal and perinatal events, and we discuss the mechanisms by which noxious factors encountered early on may have a lifelong impact on respiratory health. We briefly comment on the need for early disease biomarkers and on the possible role of "-omic" technologies in identifying risk profiles predictive of chronic respiratory conditions. Such profiles could guide the ideation of effective preventive strategies and/or targeted early lifestyle or therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| | - Nienke Scheltema
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louis Bont
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eugenio Baraldi
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Holtzman MJ, Byers DE, Alexander-Brett J, Wang X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 2014; 14:686-98. [PMID: 25234144 PMCID: PMC4782595 DOI: 10.1038/nri3739] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases.
Collapse
Affiliation(s)
- Michael J Holtzman
- 1] Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA. [2] Department of Cell Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Jennifer Alexander-Brett
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Xinyu Wang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
28
|
Walker ML, Holt KE, Anderson GP, Teo SM, Sly PD, Holt PG, Inouye M. Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy. Front Immunol 2014; 5:447. [PMID: 25295037 PMCID: PMC4172064 DOI: 10.3389/fimmu.2014.00447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 01/16/2023] Open
Abstract
Asthma is a genetically complex, chronic lung disease defined clinically as episodic airflow limitation and breathlessness that is at least partially reversible, either spontaneously or in response to therapy. Whereas asthma was rare in the late 1800s and early 1900s, the marked increase in its incidence and prevalence since the 1960s points to substantial gene × environment interactions occurring over a period of years, but these interactions are very poorly understood (1-6). It is widely believed that the majority of asthma begins during childhood and manifests first as intermittent wheeze. However, wheeze is also very common in infancy and only a subset of wheezy children progress to persistent asthma for reasons that are largely obscure. Here, we review the current literature regarding causal pathways leading to early asthma development and chronicity. Given the complex interactions of many risk factors over time eventually leading to apparently multiple asthma phenotypes, we suggest that deeply phenotyped cohort studies combined with sophisticated network models will be required to derive the next generation of biological and clinical insights in asthma pathogenesis.
Collapse
Affiliation(s)
- Michael L. Walker
- Medical Systems Biology, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn E. Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Gary P. Anderson
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Shu Mei Teo
- Medical Systems Biology, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter D. Sly
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick G. Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
- Queensland Children’s Medical Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
- Medical Systems Biology, Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Raedler D, Schaub B. Immune mechanisms and development of childhood asthma. THE LANCET RESPIRATORY MEDICINE 2014; 2:647-56. [PMID: 25008972 DOI: 10.1016/s2213-2600(14)70129-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early life influences are crucial for the development of distinct childhood asthma phenotypes, which are currently included under the term asthma syndrome. Improved characterisation of different childhood asthma phenotypes will help to elucidate specific underlying immune mechanisms--namely, endotypes. Besides genetics, epigenetics and environmental factors have an effect on innate and adaptive immune regulatory networks. Crucial determining factors for complex immune regulation and barrier function include family history of atopy, respiratory infections, microbiome, and nutrition. Recent diagnostic approaches, including biomarkers, might offer a unique opportunity to improve definitions of asthma sub-phenotypes, prediction of outcome, and treatment options, by referring to the underlying pathophysiology. For prevention and patient-individualised medicine, a multifactorial approach incorporating deep phenotyping and mathematical models for analysis to extend our present knowledge is needed.
Collapse
Affiliation(s)
- Diana Raedler
- University Children's Hospital Munich, Department of Allergy and Pulmonary, Ludwig-Maximilians University of Munich, Munich, Germany; German Centre for Lung Research, Comprehensive Pneumology Centre, Munich, Germany
| | - Bianca Schaub
- University Children's Hospital Munich, Department of Allergy and Pulmonary, Ludwig-Maximilians University of Munich, Munich, Germany; German Centre for Lung Research, Comprehensive Pneumology Centre, Munich, Germany.
| |
Collapse
|