1
|
Orchestration of Immune Cells Contributes to Fibrosis in IgG4-Related Disease. IMMUNO 2022. [DOI: 10.3390/immuno2010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review summarizes recent progress in understanding the pathogenesis of IgG4-related disease (IgG4-RD), with a focus on fibrosis. Several studies reported that CD4+ T cells with cytotoxic activity promoted by the secretion of granzyme and perforin, cytotoxic CD4+ T cells (CD4+CTLs), and disease-specific activated B cells, infiltrated inflamed tissues and cooperated to induce tissue fibrosis in autoimmune fibrotic diseases such as IgG4-RD, systemic sclerosis, and fibrosing mediastinitis. An accumulation of cells undergoing apoptotic cell death induced by CD4+CTLs and CD8+CTLs followed by macrophage-mediated clearing and finally tissue remodeling driven by cytokines released by CD4+CTLs, activated B cells, and M2 macrophages may contribute to the activation of fibroblasts and collagen production. In IgG4-RD, this process likely involves the apoptosis of non-immune, non-endothelial cells of mesenchymal origin and subsequent tissue remodeling. In summary, CD4+CTLs infiltrate affected tissues where they may cooperate with activated B cells, CD8+CTLs, and M2 macrophages, to induce apoptosis by secreting cytotoxic cytokines. These immune cells also drive fibrosis by secreting pro-fibrotic molecules in IgG4-RD.
Collapse
|
2
|
Ji Z, Wu S, Xu Y, Qi J, Su X, Shen L. Obesity Promotes EAE Through IL-6 and CCL-2-Mediated T Cells Infiltration. Front Immunol 2019; 10:1881. [PMID: 31507583 PMCID: PMC6718738 DOI: 10.3389/fimmu.2019.01881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Growing evidence suggests that obesity is associated with the susceptibility and disease severity of multiple sclerosis. The chronic inflammation induced by obesity is believed to contribute to this process. However, the immune mechanisms connecting obesity to the prevalence and pathogenesis of MS are poorly defined. In this study, we show that high fat diet (HFD)-induced obese mice developed an exacerbated EAE as indicated by higher clinical scores and more severe pathological changes in spinal cord than the control mice fed with normal diet (ND), following immunization with myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. The exacerbation of EAE in HFD mice was associated with enhanced microglial activation and increased expansion of Th1 and Th17 cells. The HFD mice also showed aggravated disease in an adoptive T cell transfer EAE model. Mechanistically, HFD augmented the expression level of IL-6 and CCL-2 both in serum and brain, and blockade of IL-6 and CCL-2 signal ameliorated EAE with reduced T cells infiltration in CNS. Taken together, our results suggest that obesity promotes CNS inflammation in EAE through IL-6 and CCL-2 mediated the inflammatory cells infiltration.
Collapse
Affiliation(s)
- Zhe Ji
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaru Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Shahbazi M, Abadi JSA, Roshandel D, Koochaki M, Amiri H, Kohansal R, Baghbanian SM, Zamani M. Combination of interleukin-10 gene promoter polymorphisms with HLA-DRB1*15 allele is associated with multiple sclerosis. Indian J Med Res 2018; 145:746-752. [PMID: 29067976 PMCID: PMC5674544 DOI: 10.4103/ijmr.ijmr_1225_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Multiple sclerosis (MS) is common in some ethnic groups. Interleukin-10 (IL-10) is a potent anti-inflammatory and immunosuppressive cytokine that may be an important regulator in MS disease pathogenesis. IL-10 promoter includes several single nucleotide polymorphisms and the level of IL-10 expression is related to these polymorphisms. Furthermore, loci within the histocompatibility regions are responsible for susceptibility to MS. The aim of this study was to investigate the association of IL-10 gene promoter polymorphisms and HLA-DRB1*15 allele frequencies with MS susceptibility in an Iranian population. METHODS In this study 336 MS patients and 454 healthy controls were included. Genomic DNA was purified from peripheral blood samples by a standard protocol. Genotyping was performed by the sequence-specific primer polymerase chain reaction method. RESULTS IL-10 -1082 G/G and IL-10 -819 C/C genotypes were more frequent in MS patients than healthy individuals. DRB1*15 allele showed a higher frequency among MS patients compared to controls. INTERPRETATION & CONCLUSIONS The IL-10 and HLA-DRB1*15 polymorphisms were associated with the susceptibility to MS in Iranian patients. Our results suggest that gene-gene interaction of IL-10 polymorphisms and HLA-DRB1*15 alleles may be important factors in the development of MS.
Collapse
Affiliation(s)
- Majid Shahbazi
- Medical Cellular and Molecular Research Center, Gorgan, Iran
| | | | | | - Maryam Koochaki
- Medical Cellular and Molecular Research Center, Gorgan, Iran
| | - Hosein Amiri
- Medical Cellular and Molecular Research Center; Department of Neurology, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rahim Kohansal
- Medical Cellular and Molecular Research Center; Department of Neurology, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mahdi Zamani
- Department of Neurogenetics, ian Centre of Neurological Research, Tehran, Iran
| |
Collapse
|
4
|
Ramakrishnan V, Akram Husain RS, Ahmed SS. Genetic predisposition of IL-10 promoter polymorphisms with risk of multiple sclerosis: A meta-analysis. J Neuroimmunol 2017; 306:11-18. [PMID: 28385181 DOI: 10.1016/j.jneuroim.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
Interleukin-10 (IL-10) is a anti-inflammatory cytokine, which controls inflammation by inhibiting the synthesis of several cytokines produced by Th1 cells and macrophages. The association between Interleukin-10 promoter polymorphisms with the risk of multiple sclerosis (MS) remains inconclusive. In this study, a meta-analysis has been performed to assess the relationship between IL-10 gene polymorphisms rs1800896, rs1800871 and rs1800872 with the risk of MS. Nine case-control studies were selected involving 2755 participants. The association between the polymorphisms and MS was examined by the pooled odds ratios (ORs) with 95% confidence intervals (CIs) in allelic, homozygote, heterozygote, dominant and recessive genetic models. Of analyzed genetic models, the pooled ORs and CIs of each SNPs calculated based on random (I2>50) or fixed effects (I2<50) methods, which showed no significant association (p-value>0.05) of genetic predisposition with MS susceptibility across Asian and Caucasian populations. In addition, assessment based on funnel plot and Egger's linear regression test suggests no publication bias in all analyzed genetic models. Overall, our results demonstrated that rs1800896, rs1800871 and rs1800872 polymorphisms may not be the risk factor for the development of MS in both the populations.
Collapse
Affiliation(s)
- V Ramakrishnan
- Genetics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - R S Akram Husain
- Genetics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Shiek Ssj Ahmed
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
5
|
Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun 2017; 83:62-72. [PMID: 28479212 DOI: 10.1016/j.jaut.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
The most recently recognized types of immune cells, the innate lymphoid cells (ILCs), have been sub-divided according to respective distinct expression profiles of regulatory factors or/and cytokines. ILCs have also been shown to participate in a variety of beneficial immune responses, including participation in attack against pathogens and mediation of the pre-inflammatory and inflammatory responses through their production of pro-inflammatory cytokines. As such, while the ILCs exert protective effects they may also become detrimental upon dysregulation. Indeed, recent studies of the ILCs have revealed a strong association with the advent and pathogenesis of several common autoimmune diseases, including psoriasis, inflammatory bowel disease (IBD) and multiple sclerosis (MS). Though the ILCs belong to lineage negative cells that are distinctive from the Th cells, the profiles of secreted cytokines from the ILCs overlap with those of the corresponding Th subsets. Nevertheless, considering that the ILCs belong to the innate immune system and the Th cells belong to the adaptive immune system, it is expected that the ILCs should function at the early stage of diseases and the Th cells should exert predominant effects at the late stage of diseases. Therefore, it is intriguing to consider targeting of ILCs for therapy by targeting the corresponding cytokines at the early stage of diseases, with the late stage cytokine targeting mainly influencing the Th cells' function. Here, we review the knowledge to date on the roles of ILCs in various autoimmune diseases and discuss their potential as new therapeutic targets.
Collapse
Affiliation(s)
- Sirui Li
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Tingwei Peng
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
6
|
Seledtsova GV, Ivanova IP, Shishkov AA, Seledtsov VI. Immune responses to polyclonal T-cell vaccination in patients with progressive multiple sclerosis. J Immunotoxicol 2016; 13:879-884. [PMID: 27602793 DOI: 10.1080/1547691x.2016.1223767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The overall objective of disease management in autoimmune diseases is to suppress chronic inflammation and prevent organ damage. Therapies often revolve around five drug classes: non-steroidal anti-inflammatory drugs (NSAIDS), anti-malarials, steroids, immunosuppressants, and bio-therapies. However, none of these is a 'cure' and each displays a potential for adverse events. In particular, while all of them suppress harmful autoimmune responses, they also impact on useful protective immune responses. T-Cell receptor (TCR) immunogenicity provides a rationale for T-cell vaccinations to induce anti-idiotypic immune responses with the purpose of down-regulating functionality of idiotype-bearing self-reactive T-cells. To explore this, in this study, 39 patients with progressive (chronic) multiple sclerosis (MS) were multiply immunized with autological polyclonal T-cell vaccines (TCVs). None of the TCV-treated patients experienced any significant side-effects during the entire follow-up period (2 years). T-Cell vaccination had no significant effects on T-cell sub-population contents in the blood of MS patients after 2 years of immunotherapy initiation. However, a substantial reduction in the frequency of CD4+ and CD8+ memory T-cells able to produce interferon (IFN)-γ following activation were noted in the blood of TCV-treated patients. Moreover, significant and sustained reduction in plasma IFNγ levels and concomitant increases in interleukin (IL)-4 levels were documented in these samples. The TCV-treated subjects, however, exhibited no significant changes in plasma IL-17 and IL-18. More importantly was a significant decline in proliferative T-cell responses to myelin antigens in the TCV-treated patients, indicating attenuation of myelin-specific T-cell activity. Collectively, the results suggest that polyclonal T-cell vaccination is safe to use, able to induce measurable, long-lasting, anti-inflammatory immune effects in patients with advanced MS.
Collapse
Affiliation(s)
- Galina V Seledtsova
- a State Research Institute for Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Irina P Ivanova
- a State Research Institute for Fundamental and Clinical Immunology , Novosibirsk , Russia
| | - Alexey A Shishkov
- a State Research Institute for Fundamental and Clinical Immunology , Novosibirsk , Russia
| | | |
Collapse
|
7
|
O'Keeffe J, Podbielska M, Hogan EL. Invariant natural killer T cells and their ligands: focus on multiple sclerosis. Immunology 2015; 145:468-75. [PMID: 25976210 DOI: 10.1111/imm.12481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/10/2015] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an innate population of T cells identified by the expression of an invariant T-cell receptor and reactivity to lipid-based antigens complexed with CD1d. They account for a small percentage of lymphocytes, but are extremely potent and play central roles in immunity to infection, in some cancers, and in autoimmunity. The list of relevant stimulatory lipids and glycolipid antigens now includes a range of endogenous self-antigens including the myelin-derived acetylated galactosylceramides. Recent progress in studies to identify the nature of lipid recognition for iNKT cells in autoimmune diseases like multiple sclerosis is likely to foster the development of therapeutic strategies aimed at harnessing iNKT cell activity.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Life and Physical Sciences, School of Science, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Maria Podbielska
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA.,Laboratory of Signalling Proteins, Ludwik-Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Edward L Hogan
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA.,Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation 2015; 22:181-95. [PMID: 24852748 DOI: 10.1159/000362370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). MS pathogenesis is a complex phenomenon that is influenced by genetic and environmental factors that lead to the dysregulation of immune homeostasis and tolerance. It has been shown that pathogenic T lymphocyte subsets, such as T helper 1 (Th1) and Th17 cells, play a crucial role in the autoimmune cascade influencing disease initiation, progression and subsequent tissue damage during MS. On the other hand, several mechanisms have been described in both patients and animal models of MS with the potential to modulate myelin-specific autoimmune responses and to facilitate amelioration of disease pathology. To this end, regulatory T cells (Tregs) are considered to be a powerful cell subset not only in the maintenance of homeostasis but also in the re-establishment of tolerance. Along these lines, other cell subsets such as dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), γδ T cells and natural killer (NK) cells have been shown to regulate the autoimmune response in the CNS under certain circumstances. This review will attempt to summarize the relevant knowledge of the regulatory mechanisms exerted by immune cells in MS that could hold the promise for the design of novel therapeutic strategies.
Collapse
|
9
|
Donders R, Vanheusden M, Bogie JFJ, Ravanidis S, Thewissen K, Stinissen P, Gyselaers W, Hendriks JJA, Hellings N. Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis. Cell Transplant 2014; 24:2077-98. [PMID: 25310756 DOI: 10.3727/096368914x685104] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability.
Collapse
Affiliation(s)
- Raf Donders
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pannemans K, Broux B, Goris A, Dubois B, Broekmans T, Van Wijmeersch B, Geraghty D, Stinissen P, Hellings N. HLA-E restricted CD8+ T cell subsets are phenotypically altered in multiple sclerosis patients. Mult Scler 2014; 20:790-801. [PMID: 24144875 DOI: 10.1177/1352458513509703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/29/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND The importance of Qa-1 restricted CD8(+) T cells in regulating autoreactive T cell responses has been demonstrated in animal models for autoimmune disorders, including multiple sclerosis (MS). OBJECTIVE We hypothesize that their human variant, HLA-E restricted CD8(+) T cells, fulfills a similar regulatory role in man and that these cells are of importance in MS. METHODS A large cohort of MS patients and healthy controls was genotyped for the two known HLA-E polymorphisms. Flow cytometry was used to determine HLA-E expression kinetics and to phenotype HLA-E restricted CD8(+) T cells. Immunohistochemistry was performed to investigate HLA-E expression in the central nervous system (CNS) of MS patients. RESULTS HLA-E is upregulated on immune cells upon in vitro activation and this upregulation is polymorphism-dependent for T and B cells. T and B cells in lesions of MS patients show enhanced HLA-E expression. Furthermore, NKG2C(+)CD8(+) T cells of MS patients have a significantly lower Foxp3 expression, while NKG2A(+)CD8(+) T cells of MS patients produce higher levels of pro-inflammatory cytokines compared to those of healthy individuals. CONCLUSION Our study indicates that the HLA-E system is altered in MS and could play a regulatory role in disease.
Collapse
Affiliation(s)
- Kim Pannemans
- Biomedical Research Institute, Hasselt University, Belgium
| | - Bieke Broux
- Biomedical Research Institute, Hasselt University, Belgium
| | - An Goris
- Laboratory for Neuroimmunology, KULeuven, Belgium
| | | | - Tom Broekmans
- Biomedical Research Institute, Hasselt University, Belgium Department of Health Care, PHL University College, Belgium
| | | | - Daniel Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, USA
| | - Piet Stinissen
- Biomedical Research Institute, Hasselt University, Belgium
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Belgium
| |
Collapse
|
11
|
Fang M, He D, Zhang F, Hu Z, Yang J, Jiang H, Han S. Antineuroinflammatory and neurotrophic effects of CNTF and C16 peptide in an acute experimental autoimmune encephalomyelitis rat model. Front Neuroanat 2013; 7:44. [PMID: 24416000 PMCID: PMC3874474 DOI: 10.3389/fnana.2013.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
Experimentalallergic encephalomyelitis (EAE) is an animal model for inflammatory demyelinating autoimmune disease, i.e., multiple sclerosis (MS). In the present study, we investigated the antineuroinflammatory/neuroprotective effects of C16, an ανβ3 integrin-binding peptide, and recombinant rat ciliary neurotrophic factor (CNTF), a cytokine that was originally identified as a survival factor for neurons, in an acute rodent EAE model. In this model, C16 peptide was injected intravenously every day for 2 weeks, and CNTF was delivered into the cerebral ventricles with Alzet miniosmotic pumps. Disease severity was assessed weekly using a scale ranging from 0 to 5. Multiple histological and molecular biological assays were employed to assess inflammation, axonal loss, neuronal apoptosis, white matter demyelination, and gliosis in the brain and spinal cord of different groups. Our results showed that the EAE induced rats revealed a significant increase in inflammatory cells infiltration, while C16 treatment could inhibit the infiltration of leukocytes and macrophages down to 2/3–1/3 of vehicle treated EAE control (P < 0.05). The delayed onset of disease, reduced clinical score (P < 0.01) in peak stage and more rapid recovery also were achieved in C16 treated group. Besides impairing inflammation, CNTF treatment also exerted direct neuroprotective effects, decreasing demyelination and axon loss score (P < 0.05 versus vehicle treated EAE control), and reducing the neuronal death from 40 to 50% to 10 to 20% (P < 0.05). Both treatments suppressed the expression of cytokine tumor necrosis factor-α and interferon-γ when compared with the vehicle control (P < 0.05). Combined treatment with C16 and CNTF produced more obvious functional recovery and neuroprotective effects than individually treatment (P < 0.05). These results suggested that combination treatment with C16 and CNTF, which target different neuroprotection pathways, may be an effective therapeutic alternative to traditional therapy.
Collapse
Affiliation(s)
- Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Daqiang He
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Fan Zhang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Zhiying Hu
- Department of Obstetrics and Gyneocology, Hangzhou Red Cross Hospital Hangzhou, China
| | - Jing Yang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Hong Jiang
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| | - Shu Han
- Institute of Neuroscience, Zhejiang University School of Medicine Hangzhou, China
| |
Collapse
|
12
|
Han S, Zhang F, Hu Z, Sun Y, Yang J, Davies H, Yew DTW, Fang M. Dose-dependent anti-inflammatory and neuroprotective effects of an ανβ3 integrin-binding peptide. Mediators Inflamm 2013; 2013:268486. [PMID: 24347822 PMCID: PMC3855988 DOI: 10.1155/2013/268486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Previous studies have shown that prevention of leukocyte infiltration by targeting integrins involved in transendothelial migration may suppress the clinical and pathological features of neuroinflammatory disease. This study was designed to investigate the effects of C16, an ανβ3 integrin-binding peptide, in an acute experimental allergic encephalomyelitis (EAE) rat model. Multiple histological and immunohistochemical staining, electron microscopy observation, ELISA assay, Western blot, and magnetic resonance imaging (MRI) were employed to assess the degree of inflammation, axonal loss, neuronal apoptosis, white matter demyelination, and extent of gliosis in the brain and spinal cord of differently treated EAE models. The results showed that C16 treatment could inhibit extensive leukocyte and macrophage accumulation and infiltration and reduce cytokine tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) expression levels. A significantly lower clinical score at the peak time of disease was also demonstrated in the C16 treated group. Moreover, astrogliosis, demyelination, neuronal death, and axonal loss were all alleviated in C16 treated EAE animals, which may be attributed to the improvement of microenvironment. The data suggests that C16 peptide may act as a protective agent by attenuating inflammatory progression and thus affecting the expression of some proinflammatory cytokines during neuroinflammatory disease.
Collapse
Affiliation(s)
- Shu Han
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fan Zhang
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou 310003, China
| | - Yayi Sun
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Henry Davies
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - David T. W. Yew
- Brain Research Center, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
13
|
High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System. J Neuroimmune Pharmacol 2013; 9:209-17. [DOI: 10.1007/s11481-013-9502-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
|
14
|
Karussis D, Shor H, Yachnin J, Lanxner N, Amiel M, Baruch K, Keren-Zur Y, Haviv O, Filippi M, Petrou P, Hajag S, Vourka-Karussis U, Vaknin-Dembinsky A, Khoury S, Abramsky O, Atlan H, Cohen IR, Abulafia-Lapid R. T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial. PLoS One 2012; 7:e50478. [PMID: 23272061 PMCID: PMC3522721 DOI: 10.1371/journal.pone.0050478] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND T-cell vaccination (TCV) for multiple sclerosis (MS) refers to treatment with autologous anti-myelin T-cells, attenuated by irradiation. Previously published clinical trials have been all open-labeled. AIM To evaluate the safety and efficacy of TCV in progressive MS, in a double-blind, controlled clinical trial. METHODOLOGY Twenty-six patients with relapsing-progressive MS were enrolled in the study (mean age: 39±9.8 years; mean EDSS: 4.4±1.7). T-cell lines reactive to 9 different peptides of the myelin antigens, MBP, MOG and PLP were raised from the patients' peripheral blood. The patients were randomized into two groups: 19 were treated with TCV (four subcutaneous injections of 10-30×10(6) T-cells, attenuated by irradiation, on days 1, 30, 90 and 180) and 7 patients were treated with sham injections. Twenty-four patients (17 in the TCV group and 7 in the placebo) were eligible for per-protocol analysis. RESULTS At one year following the inclusion, an increase in the EDSS (+0.50) and an increase in 10-meter walking time (+0.18 sec), were observed in the placebo group; in the TCV group there was a decrease in the EDSS (-0.44; p<0.01) and in the 10-meter walking time (0.84 sec; p<0.005). Sixteen of the 17 patients (94.1%) in the TCV group remained relapse-free during the year of the study, as compared to 42.9% in the placebo group (p = 0.01 and p = 0.03 with adjustment). The proportion of patients with any relapse during the year of the study in the TCV-group, was reduced by 89.6%., as compared to the placebo-treated group. MRI parameters did not change significantly. CONCLUSIONS This is the first controlled, double-blind trial with TCV in progressive MS. The results demonstrate the feasibility and safety of the procedure, and provide significant indications of clinical efficacy. Further studies with larger groups of subjects are warranted. TRIAL REGISTRATION ClinicalTrials.gov NCT01448252.
Collapse
Affiliation(s)
- Dimitrios Karussis
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
- * E-mail: (DK); (RAL)
| | - Hagai Shor
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Julia Yachnin
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Naama Lanxner
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Merav Amiel
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Keren Baruch
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Yael Keren-Zur
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Ofra Haviv
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | - Panayiota Petrou
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Shalom Hajag
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Urania Vourka-Karussis
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Salim Khoury
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Oded Abramsky
- Department of Neurology, MS Center and the Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Henri Atlan
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Irun R. Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Abulafia-Lapid
- Department of Biophysics and Nuclear Medicine, Human Biology Research Center, Hadassah-Hebrew University Hospital, Jerusalem, Israel
- * E-mail: (DK); (RAL)
| |
Collapse
|
15
|
Bogie JFJ, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJM, Gustafsson JÅ, Steffensen KR, Mulder M, Stinissen P, Hellings N, Hendriks JJA. Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS One 2012; 7:e44998. [PMID: 22984598 PMCID: PMC3440367 DOI: 10.1371/journal.pone.0044998] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University/Transnational University Limburg, Biomedical Research Institute, School of Life Sciences, Diepenbeek, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Aharoni R, Saada R, Eilam R, Hayardeny L, Sela M, Arnon R. Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 251:14-24. [PMID: 22749337 DOI: 10.1016/j.jneuroim.2012.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/22/2012] [Accepted: 06/07/2012] [Indexed: 12/13/2022]
Abstract
Laquinimod is an orally active molecule that showed efficacy in clinical trials in multiple sclerosis. We studied its effects in the CNS, when administered by therapeutic regimen to mice inflicted with experimental autoimmune encephalomyelitis (EAE). Laquinimod reduced clinical and inflammatory manifestations and elevated the prevalence of T-regulatory cells in the brain. In untreated mice, in the chronic disease stage, brain derived neurotrophic factor (BDNF) expression was impaired. Laquinimod treatment restored BDNF expression to its level in healthy controls. Furthermore, CNS injury, manifested by astrogliosis, demyelination and axonal damages, was significantly reduced following laquinimod treatment, indicating its immunomodulatory and neuroprotective activity.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
17
|
Levy-Barazany H, Frenkel D. Expression of scavenger receptor A on antigen presenting cells is important for CD4+ T-cells proliferation in EAE mouse model. J Neuroinflammation 2012; 9:120. [PMID: 22676725 PMCID: PMC3466445 DOI: 10.1186/1742-2094-9-120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by damage to the neuronal myelin sheath. One of the key effectors for inflammatory injury is the antigen-presenting cell (APC). The class A scavenger receptor (SRA), constitutively expressed by APCs, such as macrophages and dendritic cells in peripheral tissues and the CNS, was shown to play a role in the phagocytosis of myelin; however, the role of SRA in the development of experimental autoimmune encephalomyelitis (EAE) and autoimmune reaction in the periphery has not yet been studied. METHODS We investigated EAE progression in wild-type (WT) vs. SRA-/- mice using clinical score measurements and characterized CNS pathology using staining. Furthermore, we assessed SRA role in mediating anti myelin pro-inflammatory response in cell cultures. RESULTS We discovered that EAE progression and CNS demyelination were significantly reduced in SRA-/- mice compared to WT mice. In addition, there was a reduction of infiltrating peripheral immune cells, such as T cells and macrophages, in the CNS lesion of SRA-/- mice, which was associated with reduced astrogliosis. Immunological assessment showed that SRA deficiency resulted in significant reduction of pro-inflammatory cytokines that play a major role in EAE progression, such as IL-2, IFN-gamma, IL-17 and IL-6. Furthermore, we discovered that SRA-/- APCs showed impairments in activation and in their ability to induce pro-inflammatory CD4+ T cell proliferation. CONCLUSION Expression of SRA on APCs is important for CD4+ T-cells proliferation in EAE mouse model. Further studies of SRA-mediated cellular pathways in APCs may offer useful insights into the development of MS and other autoimmune diseases, providing future avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hilit Levy-Barazany
- Department of Neurobiology, George S, Wise Faculty of Life Sciences, Sherman Building, Room 424, Tel Aviv 69978, Israel
| | | |
Collapse
|
18
|
Bogie JFJ, Stinissen P, Hellings N, Hendriks JJA. Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflammation 2011; 8:85. [PMID: 21781347 PMCID: PMC3149992 DOI: 10.1186/1742-2094-8-85] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/25/2011] [Indexed: 01/05/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) in which macrophages play a central role. Initially, macrophages where thought to be merely detrimental in MS, however, recent evidence suggests that their functional phenotype is altered following myelin phagocytosis. Macrophages that have phagocytosed myelin may be less inflammatory and may exert beneficial effects. The presence of myelin-containing macrophages in CNS-draining lymph nodes and perivascular spaces of MS patients suggests that these cells are ideally positioned to exert an immune regulatory role. Therefore we evaluated in this study the effect of myelin-phagocytosing macrophages on lymphocyte reactivity. Methods Thioglycolate-elicited rat peritoneal macrophages were loaded with myelin and cocultured with myelin-basic protein (MBP) or ovalbumin (OVA) reactive lymphocytes. Lymphocyte proliferation was determined by CFSE-labeling. The role of nitric oxide in regulating lymphocyte proliferation was assessed by addition of an inhibitor of inducible nitric oxide synthase to the coculture. In vivo immune regulation was investigated by treating MBP- and OVA-immunized animals subcutaneously with myelin. Cognate antigen specific lymphocyte proliferation and nitric oxide production were determined 9d post-immunization. Results In this study we demonstrate that myelin-phagocytosing macrophages inhibit TCR-triggered lymphocyte proliferation in an antigen-independent manner. The observed immune suppression is mediated by an increase in NO production by myelin-phagocytosing macrophages upon contact with lymphocytes. Additionally, myelin delivery to primarily CD169+ macrophages in popliteal lymph nodes of OVA-immunized animals results in a reduced cognate antigen specific proliferation. In contrast to OVA-immunized animals, lymphocytes from MBP-immunized animals displayed an increased proliferation after stimulation with their cognate antigen, indicating that myelin-phagocytosing macrophages have dual effects depending on the specificity of surrounding lymphocytes. Conclusions Collectively our data show that myelin phagocytosis leads to an altered macrophage function that inhibits lymphocyte proliferation. Additionally, results from this study indicate that myelin-phagocytosing macrophages fulfill a dual role in vivo. On one hand they aggravate autoimmunity by activating myelin-reactive lymphocytes and on the other hand they suppress lymphocyte reactivity by producing NO.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University/Transnational University Limburg, School of Life Sciences, Biomedical Research Institute, Diepenbeek, Belgium
| | | | | | | |
Collapse
|
19
|
Association of IL1A, IL1B, ILRN, IL6, IL10 and TNF-α polymorphisms with risk and clinical course of multiple sclerosis in a Polish population. J Neuroimmunol 2011; 236:87-92. [DOI: 10.1016/j.jneuroim.2011.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/02/2011] [Accepted: 04/28/2011] [Indexed: 12/11/2022]
|
20
|
Boster A, Ankeny DP, Racke MK. The Potential Role of B Cell-Targeted Therapies in Multiple Sclerosis. Drugs 2010; 70:2343-2356. [DOI: 10.2165/11585230-000000000-00000] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
21
|
Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol 2010; 232:136-44. [PMID: 21111489 DOI: 10.1016/j.jneuroim.2010.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 10/25/2010] [Indexed: 11/24/2022]
Abstract
We recently showed that B cells reduce CNS inflammation in mice with experimental allergic encephalomyelitis (EAE). Here, we demonstrate that adoptively transferred CD5/CD19+ B cells protect against EAE severity. Furthermore, we show that glatiramer acetate (GA), a therapeutic for relapsing multiple sclerosis treatment, amplifies this effect. Transfer of GA-conditioned B cells leads to increased production of immunoregulatory cytokines and reduced CNS inflammation, as well as decreased expression of the chemokine receptor, CXCR5, and elevated BDNF expression in the CNS. Thus B cells can protect against EAE, and GA augments this effect in maintaining immune homeostasis and controlling EAE disease progression.
Collapse
|
22
|
Hellings N, Raus J, Stinissen P. T-cell-based immunotherapy in multiple sclerosis: induction of regulatory immune networks by T-cell vaccination. Expert Rev Clin Immunol 2010; 2:705-16. [PMID: 20477626 DOI: 10.1586/1744666x.2.5.705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with presumed autoimmune origin. Pathogenic autoimmune responses in MS are thought to be the result of a breakdown of self tolerance. Several mechanisms account for the natural state of immunological tolerance to self antigens, including clonal deletion of self-reactive T cells in the thymus. However, autoimmune T cells are also part of the normal T-cell repertoire, supporting the existence of peripheral regulatory mechanisms that keep these potentially pathogenic T cells under control. One such mechanism involves active suppression by regulatory T cells. It has been indicated that regulatory T cells do not function properly in autoimmune disease. Immunization with attenuated autoreactive T cells, T-cell vaccination, may enhance or restore the regulatory immune networks to specifically suppress autoreactive T cells, as shown in experimental autoimmune encephalomyelitis, an animal model for MS. In the past decade, T-cell vaccination has been tested for MS in several clinical trials. This review summarizes these clinical trials and updates our current knowledge on the induction of regulatory immune networks by T cell vaccination.
Collapse
Affiliation(s)
- Niels Hellings
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium.
| | | | | |
Collapse
|
23
|
Govarts C, Somers K, Hupperts R, Stinissen P, Somers V. Analysis of antibody reactivity in paired cerebrospinal fluid and serum of a relapsing remitting multiple sclerosis patient. Autoimmunity 2010; 42:699-704. [PMID: 19835487 DOI: 10.3109/08916930903176513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing evidence indicates an involvement of B cells in multiple sclerosis (MS). However, little is known about antigenic targets recognized by antibodies present in blood and cerebrospinal fluid (CSF) of MS patients. This study was therefore aimed at identifying the antigen reactivity of antibodies present in CSF and compares the identified antibody profile with that of the serum of the same patient using cDNA phage display. Selection rounds on paired CSF and serum of this patient identified 13 antigenic targets of which 5 were enriched by serum antibodies and 2 were identified by CSF antibodies. Interestingly, the six remaining antigenic targets were shown to be recognized by both CSF and serum antibodies. These findings point towards both common as well as distinct antibody profiles in CSF and serum of MS patients.
Collapse
Affiliation(s)
- C Govarts
- Hasselt University, Biomedical Research Institute, and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | |
Collapse
|
24
|
Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 2010; 16:58-68. [PMID: 20159585 DOI: 10.1016/j.molmed.2009.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022]
Abstract
The pathological features of multiple sclerosis (MS), a chronic inflammatory disorder of the central nervous system, support an autoimmune etiology. Strong evidence has been provided for a potential functional defect of CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) in patients with relapsing-remitting MS. More recently, alterations in homeostatic parameters related to the development and function of naive and memory-like Tregs were discovered in MS patients. In this review, we evaluate the evidence for disturbed Treg homeostasis in MS and discuss the role of potential compensatory mechanisms in the chronic disease phase. Better insights into the processes underlying the compromised immune regulation in MS patients will be important to understand the potential of Treg-based therapies.
Collapse
|
25
|
Taşdemir N, Karaca EE, Ece A, Yücel Y, Dikici S, Taşdemir MS. Multiple Sclerosis: Relationships Between Cytokines, MRI Lesion Burden, Visual Evoked Potentials and Disability Scores. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2010. [DOI: 10.29333/ejgm/82845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm (Vienna) 2009; 116:1443-9. [DOI: 10.1007/s00702-009-0272-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
27
|
García-Merino A, Barcenilla H, Díaz D, Monserrat J, Prieto A, Álvarez-Mon M. IFNβ therapy progressively normalizes the increased ex vivo T lymphocyte apoptosis observed in active patients with multiple sclerosis. Clin Immunol 2009; 132:195-202. [DOI: 10.1016/j.clim.2009.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 04/03/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|
28
|
Dam-Tuxen R, Riise E. Antibodies against a class II HLA-peptide complex raised by active immunization of mice with antigen mimicking peptides. Scand J Immunol 2009; 70:93-100. [PMID: 19630914 DOI: 10.1111/j.1365-3083.2009.02275.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease linked to the human leucocyte antigen (HLA) class II genes DRB1*1501, DRB5*0101 and DQB1*0602. T cells reactive towards the DRB1*1501 in complex with various peptides derived from myelin basic protein (MBP), which is the major component of myelin, have been found in the peripheral blood of MS patients. These autoreactive T cells are believed to play a role in the pathogenesis of MS. In this article, antibodies against the HLA complex DR2b (DRA1*0101/DRB1*1501) in complex with the MBP-derived peptide MBP(85-99) have been generated by immunization of NMRI mice with three different antigen mimicking peptides displayed on M13 bacteriophages. The peptides mimick the epitope of a monoclonal antibody specific for the DR2b-MBP(85-99) complex. The mice developed IgG antibodies not only against the peptides injected, but they also developed antibodies against the DR2b complex and specific antibodies against the DR2b-MBP(85-99) complex. These data open up the possibility of designing antigen mimicking peptides for vaccination against MS.
Collapse
Affiliation(s)
- R Dam-Tuxen
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen OE, Denmark
| | | |
Collapse
|
29
|
Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol 2009; 129:1628-42. [PMID: 19262602 DOI: 10.1038/jid.2009.30] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that express NK cell markers such as CD161 and CD94, as well as a T-cell receptor (TCR) alpha/beta, with a restricted repertoire, which distinguishes them from NK cells, which lack a TCR. In contrast to conventional T-lymphocytes, the TCR of NKT cells does not interact with that of peptide antigens presented by classical major histocompatibility complex-encoded class I or II molecules. Instead, this TCR recognizes glycolipids presented by CD1d, a non-classical antigen-presenting molecule. The rapid response of NKT cells to their cognate antigens is characteristic of an innate immune response, and allows the polarizing cytokines (IFN-gamma and/or IL-4) to regulate adaptive immunity. NKT cells have been found to be critical in the immune response against viral infections and malaria, as well as in tumor immunity, and certain autoimmune diseases. NKT cells have been assessed to represent the "trait d'union" between innate and adaptive immunity. They play an active role in skin diseases, such as contact sensitivity, which have been implicated in UV-induced immunosuppression and psoriasis. Thus, NKT-cells are emerging as an important subset of lymphocytes, with a protective role in host defense and a pathogenic role in certain immune-mediated disease states.
Collapse
Affiliation(s)
- Anna Balato
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
30
|
Pigard N, Elovaara I, Kuusisto H, Paalavuo R, Dastidar P, Zimmermann K, Schwarz HP, Reipert B. Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression. J Neuroimmunol 2009; 209:114-20. [PMID: 19217671 DOI: 10.1016/j.jneuroim.2009.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 01/12/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
The objective of this study was to identify genes that are differentially expressed in peripheral T cells of patients with MS exacerbation receiving treatment with IVIG. Using microarray analysis, we identified 360 genes that were at least two-fold up- or down-regulated. The expression of four representative genes (PTGER4, CXCL5, IL11 and CASP2) was confirmed by quantitative PCR. Four of the differentially expressed genes encode chemokines (CXCL3, CXCL5, CCL13 and XCL2) that are involved in directing leukocyte migration. We suggest that the modulation of chemokine expression in peripheral T cells contributes to the beneficial activity of IVIG in patients with MS exacerbation.
Collapse
|
31
|
Vandenbark AA, Abulafia-Lapid R. Autologous T-cell vaccination for multiple sclerosis: a perspective on progress. BioDrugs 2008; 22:265-73. [PMID: 18611069 DOI: 10.2165/00063030-200822040-00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T-cell vaccination (TCV) is a unique approach to induce immune regulation that may have importance in the treatment of autoimmune diseases, including multiple sclerosis (MS). TCV employs a classic vaccine strategy of injecting an attenuated form of the disease-causing agent--in this case, myelin-reactive T cells--that have been selected and expanded from each MS donor and then re-injected after irradiation to induce protective immunity. This anti-T-cell immunity consistently results in selective deletion or regulation of the targeted pathogenic T cells in vivo. Longitudinal studies have established that TCV is safe and often results in a reduced relapse rate and clinical stability or improvement, at least temporarily, in the majority of treated MS patients. These results lend direct support to the involvement of inflammatory myelin-reactive T cells in the MS disease process. However, these hopeful trends reported in a number of pilot trials await validation in larger proof-of-principle trials that are now in progress.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, Veterans Affairs Medical Center, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97207, USA.
| | | |
Collapse
|
32
|
T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to alpha-galactosylceramide are impaired. J Neurol Sci 2008; 275:22-8. [PMID: 18706662 DOI: 10.1016/j.jns.2008.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/25/2008] [Accepted: 07/02/2008] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterised by clinical relapse and remission and pathological demyelination with varying inflammation. Because it is suggested that T-cells expressing natural killer cell receptors (NKR) play important roles in regulating human autoimmune diseases, we have quantified populations of T-cells expressing the NKR CD56, CD161 and CD94 in the peripheral blood of MS patients, in healthy control subjects (HS) and in patients with other neurological diseases (OND). CD161(+) T-cells and CD94(+) T-cells were significantly decreased in MS patients with primary progressive disease and secondary progressive disease respectively whereas CD56(+) T-cell numbers were unchanged. In contrast NKT-cells that express the invariant Valpha24-Jalpha18(+) T-cell receptor identified here by specific receptor antibody and CD1d-tetrameric PBS57-loaded complexes, were increased in MS patients compared with HS. Reductions in CD161(+) T-cells and CD94(+) T-cells relative to HS were also observed in the OND group and this was particularly prominent in Parkinsonian patients. A striking functional finding was that while NKT-cells in unfractionated peripheral blood from healthy subjects expanded in number and produced IFN-gamma upon stimulation with alpha-galactosylceramide, NKT-cells from MS patients did not. Thus we have identified alterations in a number of potentially important lymphocyte sub-populations warranting further investigation in the immune response in MS.
Collapse
|
33
|
The innate immune response to adjuvants dictates the adaptive immune response to autoantigens. J Neuropathol Exp Neurol 2008; 67:543-54. [PMID: 18520773 DOI: 10.1097/nen.0b013e31817713cc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To elucidate the role of innate immunity in susceptibility to the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we induced EAE by immunization with spinal cord homogenate (SCH) plus complete Freund adjuvant or carbonyl iron in 3 inbred rat strains. Lewis are considered "susceptible," PVG/c-Rt7a (PVG) as "semisusceptible," and Brown Norway (BN) as "resistant" to EAE. Immunization with SCH-carbonyl iron resulted in clinical disease in all 3 strains, but the pathologic features of EAE in the resistant BN and the semisusceptible PVG rats differed from those in the Lewis and PVG model of EAE induced with SCH-complete Freund adjuvant. In BN and PVG rats, there were numerous inflammatory lesions with prominent involvement of microglia and, to a lesser extent, perivascular macrophages. These data suggest that different levels of activation of the innate immune system by different adjuvants determine whether EAE will or will not develop. Accordingly, the widely accepted scale of susceptibility to EAE development (Lewis > PVG > BN) should be revised because it does not take into account the important contribution of the composition of the adjuvant to the quality and quantity of the innate immune response and, consequently, to the generation and extent of the pathogenic T-cell-mediated, that is, adaptive, autoimmune disease.
Collapse
|
34
|
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system with no clear etiology. Until recently, most studies have emphasized the role of T cells in the pathogenesis of multiple sclerosis. Data suggesting that B cells play a role in the pathogenesis of multiple sclerosis have been accumulating for the past five decades, demonstrating that the cerebrospinal fluid and central nervous system tissues of multiple sclerosis patients contain B cells, plasma cells, antibodies, and immunoglobulins. Data suggest that B cells are involved in antigen capture and presentation to T cells, cytokine production, antibody secretion, demyelination, tissue damage, and remyelination in multiple sclerosis. These advances in the understanding of B-cell and antibody roles in the pathophysiology of multiple sclerosis provide a strong rationale for B-cell-targeted therapies.
Collapse
|
35
|
Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. J Neuroimmunol 2008; 195:1-6. [DOI: 10.1016/j.jneuroim.2007.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 11/23/2022]
|
36
|
Thewissen M, Somers V, Hellings N, Fraussen J, Damoiseaux J, Stinissen P. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:6514-23. [PMID: 17982040 DOI: 10.4049/jimmunol.179.10.6514] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To determine the role of expanded CD4(+)CD28(null) T cells in multiple sclerosis and rheumatoid arthritis pathology, these cells were phenotypically characterized and their Ag reactivity was studied. FACS analysis confirmed that CD4(+)CD28(null) T cells are terminally differentiated effector memory cells. In addition, they express phenotypic markers that indicate their capacity to infiltrate into tissues and cause tissue damage. Whereas no reactivity to the candidate autoantigens myelin basic protein and collagen type II was observed within the CD4(+)CD28(null) T cell subset, CMV reactivity was prominent in four of four HC, four of four rheumatoid arthritis patients, and three of four multiple sclerosis patients. The level of the CMV-induced proliferative response was found to be related to the clonal diversity of the response. Interestingly, our results illustrate that CD4(+)CD28(null) T cells are not susceptible to the suppressive actions of CD4(+)CD25(+) regulatory T cells. In conclusion, this study provides several indications for a role of CD4(+)CD28(null) T cells in autoimmune pathology. CD4(+)CD28(null) T cells display pathogenic features, fill up immunological space, and are less susceptible to regulatory mechanisms. However, based on their low reactivity to the autoantigens tested in this study, CD4(+)CD28(null) T cells most likely do not play a direct autoaggressive role in autoimmune disease.
Collapse
Affiliation(s)
- Marielle Thewissen
- Hasselt University, Biomedical Research Institute, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Arnon R, Aharoni R. Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders. Mol Neurobiol 2007; 36:245-53. [DOI: 10.1007/s12035-007-8002-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/09/2006] [Indexed: 12/18/2022]
|
38
|
Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL, Medaer R, Hupperts R, Stinissen P. Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 2007; 123:79-89. [PMID: 17897326 PMCID: PMC2433271 DOI: 10.1111/j.1365-2567.2007.02690.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CD4+ CD25(high) regulatory T cells (Tregs) of patients with relapsing-remitting (RR) multiple sclerosis (MS), in contrast to those of patients with secondary progressive (SP) MS, show a reduced suppressive function. In this study, we analysed forkhead box P3 (FOXP3) at the single-cell level in MS patients and controls (healthy individuals and patients with other neurological diseases) by means of intracellular flow cytometry. Our data revealed a reduced number of peripheral blood CD4+ CD25(high) FOXP3+ T cells and lower FOXP3 protein expression per cell in RR-MS patients than in SP-MS patients and control individuals, which was correlated with the suppressive capacity of Tregs in these patients. Interestingly, interferon (IFN)-beta-treated RR-MS patients showed restored numbers of FOXP3+ Tregs. Furthermore, a higher percentage of CD4+ CD25(high) FOXP3+ Tregs in RR-MS patients, as compared with controls and SP-MS patients, expressed CD103 and CD49d, adhesion molecules involved in T-cell recruitment towards inflamed tissues. This was consistent with a significantly increased number of CD27+ CD25(high) CD4+ T cells in the cerebrospinal fluid (CSF), as compared with peripheral blood, in RR-MS patients. Taken together, these data show aberrant FOXP3 expression at the single-cell level correlated with Treg dysfunction in RR-MS patients. Our results also suggest that Tregs accumulate in the CSF of RR-MS patients, in an attempt to down-regulate local inflammation in the central nervous system.
Collapse
Affiliation(s)
- Koen Venken
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeek, Belgium
| | - Niels Hellings
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeek, Belgium
| | - Marielle Thewissen
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeek, Belgium
| | - Veerle Somers
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeek, Belgium
| | - Karen Hensen
- Clinical Laboratory of Experimental Hematology, Virga Jesse HospitalHasselt, Belgium
| | - Jean-Luc Rummens
- Clinical Laboratory of Experimental Hematology, Virga Jesse HospitalHasselt, Belgium
| | - Robert Medaer
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeek, Belgium
| | - Raymond Hupperts
- Department of Neurology, University Hospital MaastrichtMaastricht, the Netherlands
| | - Piet Stinissen
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life SciencesDiepenbeek, Belgium
| |
Collapse
|
39
|
Bons JAP, van Dieijen-Visser MP, Wodzig WKWH. Clinical proteomics in chronic inflammatory diseases: A review. Proteomics Clin Appl 2007; 1:1123-33. [DOI: 10.1002/prca.200700067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Indexed: 11/10/2022]
|
40
|
Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2007; 209:378-88. [PMID: 17662717 PMCID: PMC2692462 DOI: 10.1016/j.expneurol.2007.06.009] [Citation(s) in RCA: 742] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/19/2007] [Indexed: 12/26/2022]
Abstract
Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent functions, immune-based therapies are becoming a therapeutic focus. This review will address the complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In addition, current therapies designed to target neuroinflammatory cascades will be discussed.
Collapse
Affiliation(s)
- Dustin J Donnelly
- The Integrated Biomedical Science Graduate Program, Department of Molecular Virology, Immunology & Medical Genetics, The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | |
Collapse
|
41
|
Abstract
Advances in stem cell biology of the adult brain and the discovery of adult neurogenesis have raised the hope that neurodegenerative disorders might ultimately become amenable to causal therapy. Stem cells contribute to cellular plasticity during the lifespan, and in some sense, brain development never ends. However, neurodegeneration is not just a lack of neuroregeneration, and cell genesis in the adult brain does not apparently lead to successful endogenous responses to neurodegeneration. The brain heals poorly; nevertheless, the onset, severity and progression of neurodegenerative disorders show large variation and can often be influenced by cognitive training and physical activity. Rather than providing endogenous repair, cellular plasticity, including adult neurogenesis might thus contribute to the 'cognitive reserve' that determines how well an organism can compensate for neurodegeneration. From this perspective, neurodegenerative disorders, such as Alzheimer's, Parkinson's, Lewy body and Huntington's diseases, might share a relevant biological principle that even links them to psychiatric disorders, like depression, which are not considered 'neurodegenerative' in a classical sense. However, the integration of neuroregenerative phenomena and most notably adult neurogenesis into the concepts of neurodegeneration is not without problems and remains speculative at present. Adult neurogenesis might be part of the physiological regenerative response and might thereby alter or alleviate symptoms, but it might also become impaired by the disease mechanism and thereby contribute to the symptoms of neurodegeneration. In any case, the extent to which effects on the level of cellular plasticity, be it degenerative or regenerative, are relevant functionally remains to be determined. The present review gives an overview of what is known about cell genesis and adult neurogenesis in neurodegenerative disorders and discusses how cellular plasticity might be part of concepts that integrate aspects of development and cellular plasticity into neurodegeneration.
Collapse
Affiliation(s)
- Barbara Steiner
- Volkswagenstiftung Research Group, Dept of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
42
|
Venken K, Thewissen M, Hellings N, Somers V, Hensen K, Rummens JL, Stinissen P. A CFSE based assay for measuring CD4+CD25+ regulatory T cell mediated suppression of auto-antigen specific and polyclonal T cell responses. J Immunol Methods 2007; 322:1-11. [PMID: 17368474 DOI: 10.1016/j.jim.2007.01.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 11/27/2006] [Accepted: 01/07/2007] [Indexed: 11/18/2022]
Abstract
CD4(+)CD25(+) regulatory T cells (Tregs) are considered to play a key role as suppressors of immune mediated reactions. The analysis of Treg function in patients with autoimmune, allergic or oncogenic diseases has emerged over the past years. In the present study we describe a CFSE based protocol to measure Treg mediated suppression of CD4(+) T cells. Measuring Treg suppressive capacity towards proliferation of anti-CD3 Ab stimulated CD4(+)CD25(-) T cells in coculture experiments by means of a CFSE based and a classical [(3)H]thymidine incorporation assay gave similar results, provided that CD4(+)CD25(+) T cells were anergic. However, when CD4(+)CD25(+) T cells proliferated upon mitogenic stimulation, data obtained by the CFSE assay allowed the detection of a significant Treg suppression whereas this was clearly underestimated using the [(3)H]thymidine assay. In addition, an indirect CFSE based method was developed to analyze antigen specific responses of total CD4(+) T cells and Treg depleted CD4(+) T cells (i.e. CD4(+)CD25(-) T cells). Our results indicate that, in healthy individuals, CD4(+) T cell responses against the multiple sclerosis (MS) auto-antigens, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG), were increased in Treg depleted CD4(+) T cells as compared to total CD4(+) T cells. Our initial data suggest that Tregs in MS patients show an impaired suppression of myelin reactive T cells when compared to healthy controls. Moreover, this experimental setup permits the measurement of cytokine production of the antigen proliferated CFSE(low) T cells by additional flow cytometric analyses. In conclusion, the described CFSE based Treg suppression assay is a valuable tool to study suppressor T cells in (auto)immune disorders.
Collapse
Affiliation(s)
- Koen Venken
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Thewissen M, Somers V, Venken K, Linsen L, van Paassen P, Geusens P, Damoiseaux J, Stinissen P. Analyses of immunosenescent markers in patients with autoimmune disease. Clin Immunol 2007; 123:209-18. [PMID: 17317320 DOI: 10.1016/j.clim.2007.01.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/04/2007] [Accepted: 01/10/2007] [Indexed: 12/12/2022]
Abstract
The objective of this study was to evaluate the degree of immunosenescence in patients with autoimmune disease. T cell receptor excision circles (TREC) and the percentage of CD4+CD28null T cells were studied as markers of immunosenescence in 175 patients with chronic autoimmune arthritis, other connective tissue autoimmune diseases, multiple sclerosis and 60 healthy controls. In both the rheumatoid arthritis (RA) and multiple sclerosis patient group, TREC numbers were age-inappropriately declined which points to an accelerated thymic output. Furthermore, enhanced percentages of CD4+CD28null T cells could be detected in a significant proportion of patients included in this study. These immunosenescent phenomena seemed to be present already early in the disease process. High percentages of CD4+CD28null T cells were associated with the presence of RA linked HLA DR4 alleles and with plasma reactivity to cytomegalovirus. Further analysis of CD4+CD28null T cells provided indications for a restricted T cell receptor (TCR) BV gene expression and cytoplasmic stores of various cytotoxic molecules. This study indicates that the immune system of patients with autoimmune diseases shows signs of an accelerated aging. Both genetic factors, such as HLA DR4, and environmental factors, like CMV infection, might speed up this immunosenescence and contribute in this way to disease pathogenesis.
Collapse
Affiliation(s)
- Marielle Thewissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Agoralaan, Diepenbeek, Belgium, and Department of Clinical and Experimental Immunology, University Hospital Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Romero JM, Bizzozero OA. Extracellular S-nitrosoglutathione, but not S-nitrosocysteine or N(2)O(3), mediates protein S-nitrosation in rat spinal cord slices. J Neurochem 2006; 99:1299-310. [PMID: 17018024 DOI: 10.1111/j.1471-4159.2006.04180.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is evidence that protein S-nitrosothiols (PrSNOs) accumulate in inflammatory demyelinating disorders like multiple sclerosis and experimental allergic encephalomyelitis. However, very little is known regarding the mechanism by which PrSNOs are formed in target cells. The present study compares the ability of potential intercellular mediators of nitrosative damage including S-nitrosoglutathione (GSNO), S-nitrosocysteine and N(2)O(3) to induce protein S-nitros(yl)ation in the spinal cord, a CNS region that is commonly affected in multiple sclerosis and experimental allergic encephalomyelitis. The results clearly demonstrate that while all three NO-donors cause S-nitrosation of proteins in cell-free systems, only GSNO is a viable S-nitrosating agent in rat spinal cord slices. Generation of PrSNOs with GSNO occurs by S-transnitrosation as the process was not inhibited by either the NO-scavenger rutin or the N(2)O(3)-scavenger azide. Contrary to other cell types, nerve cells incorporate intact GSNO and neither functional l-amino acid transporters nor cell-surface thiols are required. We also found that there is a restricted number of proteins available for S-nitrosation, even at high, non-physiological concentrations of GSNO. These proteins are highly concentrated in mitochondria and mitochondria-rich subcellular compartments. This study is relevant to those CNS disorders characterized by excessive nitric oxide production.
Collapse
Affiliation(s)
- Jorge M Romero
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
45
|
Venken K, Hellings N, Hensen K, Rummens JL, Medaer R, D'hooghe MB, Dubois B, Raus J, Stinissen P. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006; 83:1432-46. [PMID: 16583400 DOI: 10.1002/jnr.20852] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Accumulating evidence indicates an immunosuppressive role for CD4(+)CD25(+) regulatory T cells (Tregs) in autoimmune diseases. Although an impaired Treg function in patients with relapsing-remitting multiple sclerosis (RR-MS) has been reported recently, no information is available so far about Treg function in the progressive stage of the disease. In the present study, the phenotypic and functional characteristics of CD4(+)CD25(+) T cells isolated from the peripheral blood of patients with RR-MS and secondary progressive multiple sclerosis (SP-MS) were investigated. No significant quantitative or phenotypic abnormalities in CD4(+)CD25(+) T cells from RR- and SP-MS patients were detected. However, whereas a reduced suppressor function of CD4(+)CD25(+) T cells toward proliferation and interferon-gamma production of CD4(+)CD25(-) responder T cells was found in RR-MS patients, SP-MS patients showed a normal Treg function. The suppressive capacity of MS-derived CD4(+)CD25(+) T cells was correlated with disease duration but not with age, indicating that Treg function is more affected in the early phase of the disease process. Consistently with the suppressive capacity, CD4(+)CD25(+) T cells from SP-MS patients showed normal levels of FOXP3 mRNA in contrast to RR-MS patients that had a reduced FOXP3 expression. These data are the first to demonstrate differences in function and FOXP3 expression of CD4(+)CD25(+) T cells from patients with RR- and SP-MS.
Collapse
MESH Headings
- Adult
- Age Factors
- Age of Onset
- Aged
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Cells, Cultured
- Female
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Predisposition to Disease/genetics
- Genetic Variation/genetics
- Genetic Variation/immunology
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Interferon-gamma/metabolism
- Male
- Middle Aged
- Multiple Sclerosis, Chronic Progressive/blood
- Multiple Sclerosis, Chronic Progressive/immunology
- Multiple Sclerosis, Chronic Progressive/physiopathology
- Multiple Sclerosis, Relapsing-Remitting/blood
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/physiopathology
- RNA, Messenger/metabolism
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Koen Venken
- Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Prieto A, Díaz D, Barcenilla H, Castrillo C, Monserrat J, Merino AG, Alvarez-Mon M. Increased Spontaneous Ex Vivo Apoptosis and Subset Alterations in Peripheral Blood T Cells from Patients with Multiple Sclerosis. J Clin Immunol 2006; 26:101-12. [PMID: 16758338 DOI: 10.1007/s10875-006-9007-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 11/04/2005] [Indexed: 10/24/2022]
Abstract
In order to characterize the immunophenotype and the lymphocyte apoptosis in multiple sclerosis (MS) patients, the peripheral blood lymphocytes of 46 MS patients and 12 healthy volunteers were studied by flow cytometry. Immunophenotypic alterations included significant increases in T CD4+ lymphocytes and reductions in the percentages of CD3+ and CD8+ T cells. After 24 h of culture spontaneous apoptosis was increased in almost T lymphocyte subsets from MS patients and it was significantly higher in those patients who had suffered more than two relapses in the two previous years. The incidence of spontaneous apoptosis was not dependent on FasL-Fas interactions and correlated with the percentages of cells positive for active caspases but not with percentages of Fas+ cells. The increased susceptibility to apoptosis of peripheral blood T lymphocytes from MS patients is difficult to reconcile with the previously proposed role of a defective lymphocyte apoptosis in the pathophysiology of MS.
Collapse
Affiliation(s)
- Alfredo Prieto
- Laboratorio de Inmunología Clínica, Unidad Asociada I+D Consejo Superior Investigaciones Científicas (Centro Nacional de Biotecnología), Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 2006; 25:8217-28. [PMID: 16148229 PMCID: PMC6725544 DOI: 10.1523/jneurosci.1859-05.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain insults such as the autoimmune inflammatory process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) induce a measure of neurogenesis, but its regenerative therapeutic consequence is limited, because it fails to regenerate functional neurons and compensate the damage. Here, we investigated whether peripheral immunomodulatory treatment for MS/EAE, glatiramer acetate (GA), can enhance neurogenesis and generate neuroprotection in the CNS of EAE-inflicted mice. EAE was induced by myelin oligodendrocyte glycoprotein peptide, either in yellow fluorescent protein (YFP) 2.2 transgenic mice, which selectively express YFP on their neuronal population, or in C57BL/6 mice. The in situ effect of GA was studied in various brain regions; neuroprotection and neurogeneration were evaluated and quantified by measuring the expression of different neuronal antigens and in vivo proliferation markers. The results demonstrated that in EAE-inflicted mice, neuroproliferation was initially elevated after disease appearance but subsequently declined below that of naive mice. In contrast, GA treatment in various stages of the disease led to sustained reduction in the neuronal/axonal damage typical to the neurodegenerative disease course. Moreover, three processes characteristic of neurogenesis, namely cell proliferation, migration, and differentiation, were augmented and extended by GA treatment in EAE mice compared with EAE-untreated mice and naive controls. The newborn neuroprogenitors manifested massive migration through exciting and dormant migration pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype. This suggests a direct linkage between immunomodulation, neurogenesis, and an in situ therapeutic consequence in the CNS.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
48
|
Vanderlocht J, Hellings N, Hendriks JJA, Vandenabeele F, Moreels M, Buntinx M, Hoekstra D, Antel JP, Stinissen P. Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-α-induced oligodendrocyte apoptosis. J Neurosci Res 2006; 83:763-74. [PMID: 16477612 DOI: 10.1002/jnr.20781] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In multiple sclerosis (MS), damage to oligodendrocytes is believed to be caused by an aberrant immune response initiated by autoreactive T cells. Increasing evidence indicates that these T cells are not exclusively detrimental but might also exert protective effects. We report for the first time that myelin-reactive T-cell clones from eight MS patients (6/19) and five healthy controls (4/11) produce leukemia inhibitory factor (LIF), a member of the neuropoietic family of neurotrophins. In addition, T-cell clones specific for tetanus toxoid, CD4(+) and CD8(+) T cells, and monocytes, but not B cells, secreted LIF. LIF-producing T lymphocytes and macrophages were also identified immunohistochemically in both active and chronic-active MS lesions. We further demonstrated dose-dependent protective effects of LIF on tumor necrosis factor-alpha-induced apoptosis of oligodendrocytes. In conclusion, our data demonstrate that peripheral and CNS-infiltrating T cells from MS patients produce LIF, a protective factor for oligodendrocytes. This study emphasizes that secretion of LIF may contribute to the neuroprotective effects of autoreactive T cells.
Collapse
Affiliation(s)
- Joris Vanderlocht
- Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005; 102:19045-50. [PMID: 16365293 PMCID: PMC1323190 DOI: 10.1073/pnas.0509438102] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurotrophins (NTs) such as BDNF, NT-3, and NT-4 are important modulators of neuronal function and survival. Their expression in the CNS after various insults is thus of major therapeutic consequence. Glatiramer acetate [(GA) Copaxone], an approved drug for the treatment of multiple sclerosis, has been shown to induce Th2/3 cells that accumulate in the CNS, expressing in situ antiinflammatory cytokines and BDNF. In the present study, we investigated whether s.c. injections of GA, applied at various stages of experimental autoimmune encephalomyelitis, affect the expression of NTs, particularly BDNF, in the brain. In untreated experimental autoimmune encephalomyelitis mice, the expression of NTs was elevated shortly after disease appearance but subsequently declined below that of naive mice. In contrast, GA treatment led to sustained augmentation in the expression of BDNF, NT-3, and NT-4 in various brain regions as demonstrated by histological analysis of immunostained brain sections. GA treatment, even when started 45 days after disease induction, restored the impaired level of NTs to that of healthy mice. BDNF elevation after GA treatment was demonstrated on both protein and mRNA levels. Prominent staining was manifested not only by infiltrating GA-induced T cells, but also by CNS resident cells (neurons and astrocytes), indicative of a bystander therapeutic effect. Of importance, in GA-treated mice, intense BDNF expression was manifested by neuronal progenitors that migrated into lesions in injured regions. These results indicate that the immunomodulator GA exerts not only an antiinflammatory effect, but also enhances neuroprotection and regeneration of neural elements in the diseased brain.
Collapse
Affiliation(s)
- Rina Aharoni
- Departments of Immunology and Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Linsen L, Somers V, Stinissen P. Immunoregulation of Autoimmunity by Natural Killer T Cells. Hum Immunol 2005; 66:1193-202. [PMID: 16690406 DOI: 10.1016/j.humimm.2006.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Indexed: 11/23/2022]
Abstract
Natural killer T (NKT) cells are a conserved subpopulation of lymphocytes that recognize glycolipid antigens in a CD1d context. Upon activation through their semi-invariant T cell receptor, these cells rapidly release large amounts of immunomodulating Th1 and Th2 cytokines. NKT cells have therefore been implicated in immune responses controlling various diseases, including infection, cancer, transplantation, and autoimmunity. Stimulation of the immunoregulatory capacity of NKT cells by the prototypical antigen alpha-galactosylceramide results in amelioration of disease in several animal models. This review will focus on the current knowledge of human NKT cells and their role in autoimmune diseases. The features of these cells and their importance in regulation of autoimmunity suggest that NKT cell-based therapies might be an interesting approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Loes Linsen
- Biomedical Research Institute, Hasselt University, and Transnationale Universiteit Limburg, School of Life Sciences, B-3590 Diepenbeek, Belgium
| | | | | |
Collapse
|