1
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025; 19:15189-15219. [PMID: 40249331 PMCID: PMC12045021 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Miyahara K, Hino M, Yu Z, Ono C, Nagaoka A, Hatano M, Shishido R, Yabe H, Tomita H, Kunii Y. The influence of tissue pH and RNA integrity number on gene expression of human postmortem brain. Front Psychiatry 2023; 14:1156524. [PMID: 37520228 PMCID: PMC10379646 DOI: 10.3389/fpsyt.2023.1156524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background Evaluating and controlling confounders are necessary when investigating molecular pathogenesis using human postmortem brain tissue. Particularly, tissue pH and RNA integrity number (RIN) are valuable indicators for controlling confounders. However, the influences of these indicators on the expression of each gene in postmortem brain have not been fully investigated. Therefore, we aimed to assess these effects on gene expressions of human brain samples. Methods We isolated total RNA from occipital lobes of 13 patients with schizophrenia and measured the RIN and tissue pH. Gene expression was analyzed and gene sets affected by tissue pH and RIN were identified. Moreover, we examined the functions of these genes by enrichment analysis and upstream regulator analysis. Results We identified 2,043 genes (24.7%) whose expressions were highly correlated with pH; 3,004 genes (36.3%) whose expressions were highly correlated with RIN; and 1,293 genes (15.6%) whose expressions were highly correlated with both pH and RIN. Genes commonly affected by tissue pH and RIN were highly associated with energy production and the immune system. In addition, genes uniquely affected by tissue pH were highly associated with the cell cycle, whereas those uniquely affected by RIN were highly associated with RNA processing. Conclusion The current study elucidated the influence of pH and RIN on gene expression profiling and identified gene sets whose expressions were affected by tissue pH or RIN. These findings would be helpful in the control of confounders for future postmortem brain studies.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masataka Hatano
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Investigation of the lipidomic profile of royal jelly from different botanical origins using UHPLC-IM-Q-TOF-MS and GC-MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Fu Q, Zhang H, Li Y, Zhang P, Gao C, Li J, Li X, Cao M, Li C. Transcriptomic characterization of Atlantic salmon (Salmo salar) head kidney following administration of Aeromonas salmonicida subsp. masoucida vaccine. FISH & SHELLFISH IMMUNOLOGY 2022; 126:150-163. [PMID: 35580798 DOI: 10.1016/j.fsi.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Atlantic salmon is one of the most famous and economically important fish species globally. However, bacterial diseases constantly constrain salmon aquaculture. Thereinto, Aeromonas salmonicida subsp. masoucida (ASM), classified as atypical A. salmonicida, caused huge losses to salmonid industry in China. In this regard, we conducted transcriptome analysis in Atlantic salmon head kidney following the administration of ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune responses. A total of 448.71 million clean reads were obtained, and 397.69 million reads were mapped onto the Atlantic salmon reference genome. In addition, 117, 1891, 741, 207, and 377 genes were significantly up-regulated, and 183, 1920, 695, 83, and 539 genes were significantly down-regulated post ASM vaccination at 12 h, 24 h, 1 m, 2 m, and 3 m, respectively. Furthermore, KEGG pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cell adhesion molecules (H2-Aa-l and CD28-l),cytokine-cytokine receptor interaction (IL10, CXCL9, CXCL11, CXCR3, and CCL19), herpes simplex infection (IL1B, SOCS3-l, and C3-l), HTLV-I infection (Il1r2 and BCL2L1), influenza A (CXCL8 and Il12b), and PI3K-Akt signaling pathway (PIK3R3-l and Ddit4-l). Finally, the results of qRT-PCR showed a significant correlation with RNA-Seq results, suggesting the reliability of RNA-Seq for gene expression analysis. This study sets the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Female obesity: Association with endocrine disruption and reproductive dysfunction. OBESITY MEDICINE 2021; 28:100375. [DOI: 10.1016/j.obmed.2021.100375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, Starešinić M, Sabalić S, Dobričić B, Petrović T, Antičević D, Borić I, Košir R, Zmrzljak UP, Primorac D. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci 2021; 22:9208. [PMID: 34502117 PMCID: PMC8431625 DOI: 10.3390/ijms22179208] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis is a common cause of disability worldwide. Although commonly referred to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis of this degenerative process is not completely understood; however, a low-grade inflammation leading to an imbalance between anabolic and katabolic processes is a well-established factor. The complex network of cytokines regulating these processes and cell communication has a central role in the development and progression of osteoarthritis. Concentrations of both proinflammatory and anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and activity. In this review, we analyzed individual cytokines involved in the immune processes with an emphasis on their function in osteoarthritis.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Roko Bjelica
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Nursing, University North, 48000 Varaždin, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
- Department of Health Studies, University of Split, 21000 Split, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Dinko Vidović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | | | - Srećko Sabalić
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | - Borut Dobričić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedics and Traumatology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Tadija Petrović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Darko Antičević
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
| | - Rok Košir
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Uršula Prosenc Zmrzljak
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, State College, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Wang S, Zhu H, Li Y, Ding J, Wang F, Ding L, Wang X, Zhao J, Zhang Y, Yao Y, Zhou T, Li N, Wu A, Yang Z. First-in-human DR5 PET reveals insufficient DR5 expression in patients with gastrointestinal cancer. J Immunother Cancer 2021; 9:jitc-2021-002926. [PMID: 34301815 PMCID: PMC8728342 DOI: 10.1136/jitc-2021-002926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Death receptor 5 (DR5) is a promising therapeutic target for cancer therapy. However, many clinical trials of DR5 agonists failed to show significant therapeutic efficacy in patients with cancer. The study aimed to investigate the feasibility of using 89Zr-CTB006 positron emission tomography (PET) for noninvasive imaging of DR5 expression in preclinical models and patients with gastrointestinal (GI) cancers. METHODS Balb/c, Sp2/0 xenograft and patient-derived tumor xenograft were employed for micro-PET/CT imaging in vivo. In the clinical study, patients with GI cancers planning to undergo surgical operation were enrolled and underwent 18F-FDG and 89Zr-CTB006 PET/CT. The tumor tissues were obtained through surgical operation and DR5 expression levels were confirmed by RNAscope. RESULTS Preclinical studies showed that 89Zr-CTB006 PET could specifically detect DR5 expression levels in vivo. Twenty-one patients, including nine gastric cancers and 12 colorectal cancers, were enrolled. The biodistribution showed high uptake in the liver and spleen and low uptake in the brain, lung and muscle with an acceptable whole-body dosimetry of 0.349 mSv/MBq. Strikingly, the adrenal glands maintained stable high uptake over the entire examination in all patients. The tumor lesions showed different levels of uptake of 89Zr-CTB006 with a mean maximum standardized uptake value (SUVmax) of 6.63±3.29 (range 1.8-13.8). Tumor tissue was obtained from 18 patients, and 89Zr-CTB006 uptake in patients with RNAscope scores of 3-4 was significantly higher than that in patients with scores of 0-2. An SUVmax of 9.3 at 48 hours and 6.3 at 72 hours could be used to discriminate the DR5 expression status of tumors both with a sensitivity and specificity of 100% and 92.9%, respectively. CONCLUSIONS 89Zr-CTB006 PET/CT is capable of detecting DR5 expression in cancer patients and is a promising approach to screen patients with DR5 overexpression.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yingjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Feng Wang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Lixin Ding
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Xinyu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yunfeng Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Zhou
- Department of Cell Biology and Divisions of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nan Li
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| |
Collapse
|
9
|
de Araújo NC, de Souza OF, Morais MJDD, Leitão FNC, Bezerra IMP, de Abreu LC, Rodrigues LMR. Osteomuscular symptoms on motorcycles in the city of Rio Branco, Acre, Brazil, West Amazon. Medicine (Baltimore) 2021; 100:e25549. [PMID: 33879704 PMCID: PMC8078344 DOI: 10.1097/md.0000000000025549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Musculoskeletal disorders gradually affect workers in different parts of the world, compromising their occupational health and quality of life. Professionals exposed to these symptoms include the motorcycle taxi driver, whose pain is due to the overuse of the musculoskeletal system and little time to recover it.To identify the prevalence of musculoskeletal symptoms in motorcycle taxi drivers in the city of Rio Branco, Acre, Brazil, West Amazon.Cross-sectional study, involving 296 motorcycle taxi drivers in the city of Rio Branco-Acre, Brazil, male, from December 2016 to February 2017. The Nordic Musculoskeletal Questionnaire was used to collect information related to symptoms (pain, discomfort, or numbness) in the last 7 days of work. For the exclusion criteria were, being female; not reside outside the city of Rio Branco, Acre; having less than 3 months of work activity; not be carrying out their work activities at the time of application of the protocol; be limited by clinical or physical issues at the time of application of the protocol. The data obtained in the questionnaire were entered into the Epidata program (Epidata Association, Odense, Denmark) and then transferred to the STATA 10 statistical program (Stata Corp., College Station), for categorization and statistical analysis.The study population is over 36 years old; most reported having a partner and a higher education level. The average daily working hours of the participants were 12 hours, with the majority working over 12 hours daily. Most of the epidemiological variables factors were associated with musculoskeletal pain when the prevalence and prevalence ratio analyzes were performed. Higher prevalence of musculoskeletal symptoms in the lumbar region is with 17.9%. In the lower limbs, the most affected joint was the ankle (5.7%), followed by the hip (5.07%) and knee (5.07%), respectively. Insomnia was present in 55.35% and self-reported headache in 49.4% of participants.The musculoskeletal disorders generated by the daily service of motorcycle taxi drivers are directly affecting the quality of life of these professionals.
Collapse
Affiliation(s)
- Narjara Campos de Araújo
- ABC Medical School (FMABC) – Santo André – SP
- Multidisciplinary Laboratory of Studies and Scientific Writing in Health Sciences – LAMEECCS, Center for Health Sciences and Sports, Federal University of Acre – UFAC, Rio Branco, AC
| | - Orivaldo Florêncio de Souza
- Multidisciplinary Laboratory of Studies and Scientific Writing in Health Sciences – LAMEECCS, Center for Health Sciences and Sports, Federal University of Acre – UFAC, Rio Branco, AC
| | - Mauro José de Deus Morais
- Multidisciplinary Laboratory of Studies and Scientific Writing in Health Sciences – LAMEECCS, Center for Health Sciences and Sports, Federal University of Acre – UFAC, Rio Branco, AC
- Laboratory of Scientific Writing, Faculty of Medicine of ABC, Santo André, SP
| | - Francisco Naildo Cardoso Leitão
- ABC Medical School (FMABC) – Santo André – SP
- Multidisciplinary Laboratory of Studies and Scientific Writing in Health Sciences – LAMEECCS, Center for Health Sciences and Sports, Federal University of Acre – UFAC, Rio Branco, AC
- Laboratory of Scientific Writing, Faculty of Medicine of ABC, Santo André, SP
| | - Italla Maria Pinheiro Bezerra
- Multidisciplinary Laboratory of Studies and Scientific Writing in Health Sciences – LAMEECCS, Center for Health Sciences and Sports, Federal University of Acre – UFAC, Rio Branco, AC
- Laboratory of Scientific Writing, Faculty of Medicine of ABC, Santo André, SP
- Public Policy and Local Development Program of the School of Sciences Superior of Santa Casa de Misericórdia de Vitória, Vitória, ES, Brazil
| | - Luiz Carlos de Abreu
- ABC Medical School (FMABC) – Santo André – SP
- Multidisciplinary Laboratory of Studies and Scientific Writing in Health Sciences – LAMEECCS, Center for Health Sciences and Sports, Federal University of Acre – UFAC, Rio Branco, AC
- Laboratory of Scientific Writing, Faculty of Medicine of ABC, Santo André, SP
- Public Policy and Local Development Program of the School of Sciences Superior of Santa Casa de Misericórdia de Vitória, Vitória, ES, Brazil
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, United Kingdom
| | - Luciano Miller Reis Rodrigues
- ABC Medical School (FMABC) – Santo André – SP
- Laboratory of Scientific Writing, Faculty of Medicine of ABC, Santo André, SP
| |
Collapse
|
10
|
Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci 2019; 20:ijms20236008. [PMID: 31795299 PMCID: PMC6929211 DOI: 10.3390/ijms20236008] [Citation(s) in RCA: 1113] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
This review aims to briefly discuss a short list of a broad variety of inflammatory cytokines. Numerous studies have implicated that inflammatory cytokines exert important effects with regard to various inflammatory diseases, yet the reports on their specific roles are not always consistent. They can be used as biomarkers to indicate or monitor disease or its progress, and also may serve as clinically applicable parameters for therapies. Yet, their precise role is not always clearly defined. Thus, in this review, we focus on the existing literature dealing with the biology of cytokines interleukin (IL)-6, IL-1, IL-33, tumor necrosis factor-alpha (TNF-α), IL-10, and IL-8. We will briefly focus on the correlations and role of these inflammatory mediators in the genesis of inflammatory impacts (e.g., shock, trauma, immune dysregulation, osteoporosis, and/or critical illness).
Collapse
Affiliation(s)
- Shinwan Kany
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Department of Cardiology with Emphasis on Electrophysiology, University Heart Centre, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, 60590 Frankfurt, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721395
| |
Collapse
|
11
|
Kany S, Janicova A, Relja B. Innate Immunity and Alcohol. J Clin Med 2019; 8:jcm8111981. [PMID: 31739600 PMCID: PMC6912266 DOI: 10.3390/jcm8111981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
The innate immunity has evolved during millions of years, and thus, equivalent or comparable components are found in most vertebrates, invertebrates, and even plants. It constitutes the first line of defense against molecules, which are either pathogen-derived or a danger signal themselves, and not seldom both. These molecular patterns are comprised of highly conserved structures, a common trait in innate immunity, and constitute very potent triggers for inflammation mediated via extracellular or intracellular pattern recognition receptors. Human culture is often interweaved with the consumption of alcohol, in both drinking habits, its acute or chronical misuse. Apart from behavioral effects as often observed in intoxicated individuals, alcohol consumption also leads to immunological modulation on the humoral and cellular levels. In the last 20 years, major advances in this field of research have been made in clinical studies, as well as in vitro and in vivo research. As every physician will experience intoxicated patients, it is important to be aware of the changes that this cohort undergoes. This review will provide a summary of the current knowledge on the influence of alcohol consumption on certain factors of innate immunity after a hit, followed by the current studies that display the effect of alcohol with a description of the model, the mode of alcohol administration, as well as its dose. This will provide a way for the reader to evaluate the findings presented.
Collapse
|
12
|
Peng H, Yang B, Li B, Cai Z, Cui Q, Chen M, Liu X, Yang X, Jiang C. Comparative transcriptomic analysis reveals the gene expression profiles in the liver and spleen of Japanese pufferfish (Takifugu rubripes) in response to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2019; 90:308-316. [PMID: 31059812 DOI: 10.1016/j.fsi.2019.04.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Japanese pufferfish (Takifugu rubripes) is one of the main marine aquatic fish species cultured in Asia due to its high nutritional value. In recent years, disease caused by Vibrio harveyi infections have led to serious mortality in Japanese pufferfish industry. To understand the complex molecular mechanisms between V. harveyi and Japanese pufferfish, we performed a transcriptome analysis of liver and spleen samples from Japanese pufferfish at 1 and 2 day post-infection. Between-group comparisons revealed 922 genes that were significantly differentially expressed. The altered genes emphasized the function in several immune related pathways including MAPK signaling pathway, JAK-STAT signaling pathway, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and lysosomal pathway. The data generated in this study provided insight into the responses of Japanese pufferfish against V. harveyi at the transcriptome level, promoting our comprehensive understanding of immune responses for aquatic animal against V. harveyi.
Collapse
Affiliation(s)
- Hongyu Peng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boxue Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boyan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Zhonglu Cai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Qianjin Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Mingkang Chen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xia Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xu Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Chen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
13
|
Zhang QL, Zhu QH, Liang MZ, Wang F, Guo J, Deng XY, Chen JY, Wang YJ, Lin LB. Comparative transcriptomic analysis provides insights into antibacterial mechanisms of Branchiostoma belcheri under Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:196-205. [PMID: 29510259 DOI: 10.1016/j.fsi.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/24/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Amphioxus, a basal chordate, is widely considered to be an existing proxy of the invertebrate ancestor of vertebrates, and it exhibits susceptibility to various pathogen infections and pathogenic mimic challenges. Here, in order to understand more clearly its antibacterial mechanisms, we analyzed the ribosomal RNA (rRNA)-depleted transcriptome of Chinese amphioxus (Branchiostoma belcheri) infected with Vibrio parahaemolyticus (V. p.) via next-generation deep sequencing technology (RNA-seq). We identified a total of 3214 differentially expressed genes (DEGs) by comparing V. p.-infected and control transcriptome libraries, including 2219 significantly up-regulated and 995 significantly down-regulated DEGs in V. p.-infected amphioxus. The DEGs with the top 10 most dramatic expression fold changes after V. p. infection, as well as 53 immune-related DEGs (IRDs) belonging to four primary categories of innate immunity were analyzed further. Through gene ontology (GO) and pathway enrichment analysis, DEGs were found to be primarily related to immune processes, apoptosis, catabolic and metabolic processes, binding and enzyme activity, while pathways involving bacterial infection, immune signaling, immune response, cancer, and apoptosis were overrepresented. We validated the RNA-seq results by detecting the expression levels of 10 IRDs using qRT-PCR, and we surveyed the dynamic variation in gene expression for these IRDs at 0, 6, 12, 24, and 48 h after V. p. TREATMENT Subsequently, according to the RNA-seq results, the presence of a primitive Toll-like receptor (TLR)-mediated antibacterial immune signaling pathway was predicted in B. belcheri. This study provides valuable information regarding antibacterial immunity for further research into the evolution of immunity in vertebrates and broadens our understanding of the innate immune response against bacterial invasion in amphioxus.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Qian-Hua Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ming-Zhong Liang
- Department of Marine Science, Qinzhou University, Qinzhou, 535000, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Yuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Yu-Jun Wang
- Department of Marine Science, Qinzhou University, Qinzhou, 535000, China.
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
14
|
Xiang Z, Xiao S, Wang F, Qin Y, Wu J, Ma H, Li J, Yu Z. Cloning, characterization and comparative analysis of four death receptorTNFRs from the oyster Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2016; 59:288-297. [PMID: 27666188 DOI: 10.1016/j.fsi.2016.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 05/16/2023]
Abstract
Apoptosis plays an important role in homeostasis of the immune systems. The tumor necrosis factor receptors (TNFRs) play critical roles in the extrinsic apoptosis pathways and in determining cell fate. In this study, four death receptors (DR) named ChEDAR, ChTNFR27, ChTNFR5, and ChTNFR16 were identified from the oyster Crassostrea hongkongensis. These ChDRs proteins had 382, 396, 414 and 384 amino acids, respectively, with the typical domains of death receptors, such as the signal peptide (SP), transmembrane helix region (TM) and death domains. Phylogenetic analysis showed that the ChDR proteins clustered into three distinct groups, indicating that these subfamilies had common ancestors. mRNA expression of the ChDRs were detected in all 8 of the selected oyster tissues and at different stages of development. Furthermore, expression of all the genes was increased in the hemocytes of oysters challenged with pathogens or air stress. Fluorescence microscopy revealed that the full-length proteins of the ChDRs were located in the plasma membrane of HEK293T cells. Over-expression of the ChDRs activated the NF-κB-Luc reporter in HEK293T cells in a dose-dependent manner. These results indicate that the ChDRs may play important roles in the extrinsic apoptotic pathways in oysters.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis/immunology
- Base Sequence
- Cloning, Molecular
- Crassostrea/classification
- Crassostrea/genetics
- Crassostrea/immunology
- Crassostrea/microbiology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Immunity, Innate
- Organ Specificity
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Saccharomyces cerevisiae/physiology
- Sequence Alignment
- Signal Transduction
- Staphylococcus haemolyticus/physiology
- Vibrio alginolyticus/physiology
Collapse
Affiliation(s)
- Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fuxuan Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanping Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
15
|
Liu Y, Quang P, Braggio E, Ngo H, Badalian-Very G, Flores L, Zhang Y, Sacco A, Maiso P, Azab AK, Azab F, Carrasco R, Rollins BJ, Roccaro AM, Ghobrial IM. Novel tumor suppressor function of glucocorticoid-induced TNF receptor GITR in multiple myeloma. PLoS One 2013; 8:e66982. [PMID: 23785514 PMCID: PMC3681775 DOI: 10.1371/journal.pone.0066982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/13/2013] [Indexed: 01/20/2023] Open
Abstract
Glucocorticoid-induced TNF receptor (GITR) plays a crucial role in modulating immune response and inflammation, however the role of GITR in human cancers is poorly understood. In this study, we demonstrated that GITR is inactivated during tumor progression in Multiple Myeloma (MM) through promoter CpG island methylation, mediating gene silencing in primary MM plasma cells and MM cell lines. Restoration of GITR expression in GITR deficient MM cells led to inhibition of MM proliferation in vitro and in vivo and induction of apoptosis. These findings were supported by the presence of induction of p21 and PUMA, two direct downstream targets of p53, together with modulation of NF-κB in GITR-overexpressing MM cells. Moreover, the unbalanced expression of GITR in clonal plasma cells correlated with MM disease progression, poor prognosis and survival. These findings provide novel insights into the pivotal role of GITR in MM pathogenesis and disease progression.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phong Quang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Esteban Braggio
- Department of Medicine, Division of Haematology, Mayo Clinic College of Medicine, Scottsdale, Arizona, United States of America
| | - Hai Ngo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gayane Badalian-Very
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ludmila Flores
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yong Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patricia Maiso
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abdel Kareem Azab
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Feda Azab
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruben Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barrett J. Rollins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aldo M. Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 2013; 62:641-51. [PMID: 23685857 DOI: 10.1007/s00011-013-0633-0] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/03/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Inflammation is a very important part of innate immunity and is regulated in many steps. One such regulating step is the cytokine network, where tumor necrosis factor α (TNF-α) plays one of the most important roles. METHODS A PubMed and Web of Science databases search was performed for studies providing evidences on the role of TNF-α in inflammation, apoptosis, and cancer. RESULTS AND CONCLUSION This review concisely summarizes the role of this pro-inflammatory cytokine during inflammation. It is focused mainly on TNF-α intracellular signaling and its influence on the typical inflammatory features in the organism. Being one of the most important pro-inflammatory cytokines, TNF-α participates in vasodilatation and edema formation, and leukocyte adhesion to epithelium through expression of adhesion molecules; it regulates blood coagulation, contributes to oxidative stress in sites of inflammation, and indirectly induces fever. The connection between TNF-α and cancer is mentioned as well.
Collapse
Affiliation(s)
- Hana Zelová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic
| | | |
Collapse
|
17
|
Zaidi A, Jelveh S, Mahmood J, Hill RP. Effects of lipopolysaccharide on the response of C57BL/6J mice to whole thorax irradiation. Radiother Oncol 2012; 105:341-9. [PMID: 22985778 DOI: 10.1016/j.radonc.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/28/2012] [Accepted: 08/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory and fibrogenic processes play a crucial role in the radiation-induced injury in the lung. The aim of the present study was to examine whether additive LPS exposure in the lung (to simulate respiratory infection) would affect pneumonitis or fibrosis associated with lung irradiation. MATERIAL AND METHODS Wildtype C57Bl/6J (WT-C57) and TNFα, TNFR1 and TNFR2 knockout ((-/-)) mice, in C57Bl/6J background, were given whole thorax irradiation (10 Gy) with or without post-irradiation intratracheal administration of LPS (50μg/mice). Functional deficit was examined by measuring breathing rate at various times after treatment. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunohistochemistry were used to analyze the protein expression and m-RNA of Interleukin-1 alpha (IL-1α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumour Necrosis Factor alpha (TNFα) and Transforming Growth Factor beta (TGFβ) in the lung at various times after treatment. Inflammatory cells were detected by Mac-3 (macrophages) and Toluidine Blue (mast cells) staining. Collagen content was estimated by hydroxyproline (total collagen) and Sircol assay (soluble collagen). Levels of oxidative damage were assessed by 8-hydroxy-2-deoxyguanosine (8-OHdG) staining. RESULTS LPS exposure significantly attenuated the breathing rate increases following irradiation of WT-C57, TNFR1(-/-) and TNFR2(-/-)mice and to a lesser extent in TNFα(-/-) mice. Collagen content was significantly reduced after LPS treatment in WT-C57, TNFR1(-/-) and TNFα(-/-) mice and there was a trend in TNFR2(-/-) mice. Similarly there were lower levels of inflammatory cells and cytokines in the LPS treated mice. CONCLUSIONS This study reveals a mitigating effect of early exposure to LPS on injury caused by irradiation on lungs of C57Bl mice. The results suggest that immediate infection post irradiation may not impact lung response negatively in radiation-accident victims, however, further studies are required in different animal models, and with specific infectious agents, to confirm and extend our findings.
Collapse
Affiliation(s)
- Asif Zaidi
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Abstract
Therapeutic agents capable of targeting tumor cells present as established tumors and micrometastases have already demonstrated their potential in clinical trials. Immunotoxins targeting hematological malignancies and solid tumors have additionally demonstrated excellent clinical activity. This review focuses on our design and characterization studies of constructs composed of recombinant gelonin toxin fused to either growth factors or single-chain antibodies targeting solid tumor cells, tumor vasculature or hematological malignancies. These agents demonstrate cytotoxicity at nanomolar or sub-nanomolar levels. All of these constructs display impressive selectivity and specificity for antigen-bearing target cells in vitro and in vivo and are excellent clinical trial candidates.
Collapse
|
19
|
Sigalov AB. Interplay Between Protein Order, Disorder and Oligomericity in Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:50-73. [DOI: 10.1007/978-1-4614-0659-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Abstract
Effective treatment with etanercept results from a congregation of immunological signaling and modulating roles played by tumor necrosis factor-alpha (TNF-alpha), a pervasive member of the TNF super-family of cytokines participating in numerous immunologic and metabolic functions. Macrophages, lymphocytes and other cells produce TNF as part of the deregulated immune response resulting in psoriasis or other chronic inflammatory disorders. Tumor necrosis factor is also produced by macrophages and lymphocytes responding to foreign antigens as a primary response to potential infection. Interference with cytokine signaling by etanercept yields therapeutic response. At the same time, interference with cytokine signaling by etanercept exposes patients to potential adverse events. While the efficacy of etanercept for the treatment of psoriasis is evident, the risks of treatment continue to be defined. Of the potential serious adverse events, response to infection is the best characterized in terms of physiology, incidence, and management. Rare but serious events: activation of latent tuberculosis, multiple sclerosis, lymphoma, and others, have been observed but have questionable or yet to be defined association with therapeutic uses of etanercept. The safe use of etanercept for the treatment of psoriasis requires an appreciation of potential adverse events as well as screening and monitoring strategies designed to manage patient risk
Collapse
Affiliation(s)
- Kim A Papp
- University of Western Ontario, and K Papp Clinical Research Waterloo, ON, Canada
| |
Collapse
|
21
|
Increased expression of tumor necrosis factor receptors in cryptogenic organizing pneumonia. Respir Med 2010; 105:292-7. [PMID: 21144722 DOI: 10.1016/j.rmed.2010.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/23/2010] [Accepted: 10/31/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND TNF receptors (TNFR1 and TNFR2) and Fas belong to the system of apoptosis-signalling receptor molecules and may play a role in the pathogenesis of interstitial lung disease. Patients with cryptogenic organizing pneumonia (COP) usually respond well to corticosteroids, in contrast to those with idiopathic pulmonary fibrosis (IPF). This may be due to the different pathogenesis. METHODS The expression of TNFR1, TNFR2 and Fas on bronchoalveolar lavage (BAL) macrophages and lymphocytes was analysed in 9 patients with COP, 10 with IPF and 12 controls. The production of soluble TNFR1, 2 and TNF-α by alveolar macrophages was measured by ELISA. RESULTS TNFR1 and Fas expression on alveolar macrophages was significantly higher in COP than in controls and IPF. The expression of TNFR2 on alveolar macrophages was also increased in COP compared to controls. The expression of TNFR2 and Fas on lymphocytes was significantly higher in COP than in IPF and controls. In addition, the expression of TNFR1, TNFR2 and Fas on BAL cells correlated positively with BAL lymphocytes (p < 0.05 or p < 0.01). The production of sTNFR1 and 2 and TNF-α by macrophages in vitro was significantly increased in patients with COP compared to IPF and controls, spontaneously or with LPS stimulation (p < 0.05 or p < 0.01).There was a positive correlation between the spontaneous production of sTNFR2 and TNF-α (r = 0.494, p < 0.01). CONCLUSIONS This study showed an increased expression of TNF receptors and Fas on BAL cells in COP that may be indicative of the local inflammatory activity in the lung. The biologic effects of this expression needs further investigation.
Collapse
|
22
|
Sigalov AB. The SCHOOL of nature: II. Protein order, disorder and oligomericity in transmembrane signaling. SELF/NONSELF 2010; 1:89-102. [PMID: 21487511 PMCID: PMC3065667 DOI: 10.4161/self.1.2.11590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
Recent reports have revealed that many proteins that do not adopt globular structures under native conditions, thus termed intrinsically disordered proteins (IDPs), are involved in cell signaling. Intriguingly, physiologically relevant oligomerization of IDPs has been recently observed and shown to exhibit unique biophysical characteristics, including the lack of significant changes in chemical shift and peak intensity upon binding. In this work, I summarize several distinct features of protein disorder that are especially important as related to receptor-mediated transmembrane signal transduction. I also hypothesize that interactions of IDPs with their protein or lipid partners represent a general biphasic process with the "no disorder-to-order" fast interaction which, depending on the interacting partner, may or may not be accompanied by the slow formation of a secondary structure. Further, I suggest signaling-related functional connections between protein order, disorder, and oligomericity and hypothesize that receptor oligomerization induced or tuned upon ligand binding outside the cell is translated across the membrane into protein oligomerization inside the cell, thus providing a general platform, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, for receptor-mediated signaling. This structures our current multidisciplinary knowledge and views of the mechanisms governing the coupling of recognition to signal transduction and cell response. Importantly, this approach not only reveals previously unrecognized striking similarities in the basic mechanistic principles of function of numerous functionally diverse and unrelated surface membrane receptors, but also suggests the similarity between therapeutic targets, thus opening new horizons for both fundamental and clinically relevant studies.
Collapse
|
23
|
Borska L, Andrys C, Krejsek J, Hamakova K, Kremlacek J, Palicka V, Ranna D, Fiala Z. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis. Int J Dermatol 2010; 49:289-94. [DOI: 10.1111/j.1365-4632.2009.04258.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
25
|
Nguyen V, Cudrici C, Zernetkina V, Niculescu F, Rus H, Drachenberg C, Rus V. TRAIL, DR4 and DR5 are upregulated in kidneys from patients with lupus nephritis and exert proliferative and proinflammatory effects. Clin Immunol 2009; 132:32-42. [PMID: 19349211 DOI: 10.1016/j.clim.2009.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
We have previously reported that TRAIL is upregulated on T cells from patients with lupus and that T cell associated TRAIL enhances autoimmune parameters in a murine model of lupus. Whether TRAIL/TRAIL-R interaction plays a role in organ involvement such as lupus nephritis has not yet been assessed. We demonstrate here that TRAIL, DR4 and DR5 are upregulated in proximal and distal tubules of patients with proliferative lupus nephritis. In vitro, expression of TRAIL, DR4 and DR5 on primary proximal tubular epithelial cells (PTEC) was induced by TNFalpha and IFNgamma. Functionally, TRAIL did not induce apoptosis but rather enhanced the proliferation of PTEC through activation of PI3 kinase/AKT and ERK1/2, increased IL-8 production and upregulated ICAM-1 expression. These data demonstrate that cytokine induced upregulation of TRAIL, DR4 and DR5 in tubules from patients with proliferative lupus nephritis may play a protective role by enhancing PTEC survival while also exerting a proinflammatory effect that may contribute to local inflammation and injury.
Collapse
Affiliation(s)
- Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Molinero LL, Wang Y, Zhou P, Yagita H, Alegre ML. Fas mediates cardiac allograft acceptance in mice with impaired T-cell-intrinsic NF-kappaB signaling. Transpl Int 2009; 22:845-52. [PMID: 19351347 DOI: 10.1111/j.1432-2277.2009.00875.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transcription factor NF-kappaB is critical for T-cell activation and survival. We have shown that mice expressing a T-cell-restricted NF-kappaB superrepressor (IkappaBalphaDeltaN-Tg) permanently accept heart but not skin allografts. Overexpression of the prosurvival factor Bcl-x(L) in T cells restored heart rejection, suggesting that graft acceptance in IkappaBalphaDeltaN-Tg mice was attributable to deletion of alloreactive T cells.In vitro, the increased death of IkappaBalphaDeltaN-Tg T cells upon TCR stimulation when compared with wildtype T cells was mostly because of Fas/FasL interaction. Similarly, Fas played a key role in cardiac allograft acceptance by IkappaBalphaDeltaN-Tg mice as both genetic and antibody-mediated inhibition of Fas-signaling restored cardiac allograft rejection. Rejection correlated with graft infiltration by T cells and splenic production of IFN-gamma upon allostimulation. These results indicate that T-cell inhibition of NF-kappaB results in cardiac allograft acceptance because of increased susceptibility to Fas-mediated cell death.
Collapse
Affiliation(s)
- Luciana Lorena Molinero
- Department of Medicine, Section of Rheumatology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
27
|
Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R. Mycobacterium tuberculosis 38-kDa lipoprotein is apoptogenic for human monocyte-derived macrophages. Scand J Immunol 2009; 69:20-8. [PMID: 19140873 DOI: 10.1111/j.1365-3083.2008.02193.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mycobacterium tuberculosis is the main aetiologic agent of tuberculosis, a disease of great concern in less-developed regions. Apoptosis is a conspicuous event in macrophages infected in vitro with mycobacteria, a phenomenon also observed in vivo in granulomas of patients with tuberculosis. To determine its significance, it is important to define the mycobacterial moieties involved and how they cause apoptosis. Here we show that the 38-kDa lipoprotein induces macrophage caspase-dependent apoptosis involving TNF-alpha and FasL and, interestingly, with the upregulation of cell-death receptors TNFR1, TNFR2 and Fas. A role for the Toll-like receptor 2 was also demonstrated. In conclusion, the ability to induce apoptosis of host cells is another property of the 38-kDa lipoprotein, a molecule that has focused attention for being an immunodominant antigen that participates in phosphate transport.
Collapse
Affiliation(s)
- A Sanchez
- Departamento de Inmunologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City
| | | | | | | | | | | |
Collapse
|
28
|
Papenfuss K, Cordier SM, Walczak H. Death receptors as targets for anti-cancer therapy. J Cell Mol Med 2008; 12:2566-85. [PMID: 19210756 PMCID: PMC3828874 DOI: 10.1111/j.1582-4934.2008.00514.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/25/2008] [Indexed: 01/06/2023] Open
Abstract
Human tumour cells are characterized by their ability to avoid the normal regulatory mechanisms of cell growth, division and death. The classical chemotherapy aims to kill tumour cells by causing DNA damage-induced apoptosis. However, as many tumour cells possess mutations in intracellular apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own and are therefore resistant to chemotherapy. With the discovery of the death receptors the opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis factor receptor superfamily, with tumour necrosis factor (TNF) receptor-1, CD95 and TNF-related apoptosis-inducing ligand-R1 and -R2 being the most prominent members. This review covers the current knowledge about these four death receptors, summarizes pre-clinical approaches engaging these death receptors in anti-cancer therapy and also gives an overview about their application in clinical trials conducted to date.
Collapse
Affiliation(s)
| | | | - Henning Walczak
- Tumour Immunology Unit, Division of Medicine, Imperial College LondonUnited Kingdom
| |
Collapse
|
29
|
Matsumoto K, Maeda A, Bochner BS, Wakiguchi H, Saito H. Induction of apoptosis in human basophils by anti-Fas antibody treatment in vitro. Int Arch Allergy Immunol 2008; 146 Suppl 1:40-6. [PMID: 18504406 DOI: 10.1159/000126060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Basophils are thought to play an important role in the pathogenesis of allergic inflammation; however, the factors associated with basophil death are not fully understood. Fas (CD95) is a member of the TNF receptor superfamily and is known to induce apoptosis in activated T cells, neutrophils and eosinophils. In the present study, the expression and function of Fas in human basophils were investigated in vitro. METHODS Human cultured basophils were obtained by culturing cord blood-derived CD34+ cells in the presence of 2.5 ng/ml of IL-3 for 5-6 weeks. The expression of Fas was measured using flow cytometry. Cell viability and morphological changes after the incubation of basophils with anti-Fas mAb (clone CH11, IgM) in the presence of 1 ng/ml of IL-3 were measured using the trypan blue dye exclusion test and light microscopy, respectively. RESULTS Human cultured basophils constitutively and significantly expressed Fas on their cell surfaces. Treatment with anti-Fas monoclonal antibody (mAb) significantly reduced basophil viability in a time- and dose-dependent manner. When basophils were incubated with 10 ng/ml of anti-Fas mAb or control for 72 h, the basophil viability was 27.3 +/- 8.8% and 89.3 +/- 5.2%, respectively (p < 0.01). Anti-Fas mAb-treated basophils were shrunken and exhibited condensed nuclei, consistent with apoptosis. CONCLUSIONS Our findings indicate that human basophils express functional Fas on their cell surfaces, and signaling via Fas may regulate basophil survival in vivo.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
30
|
Rus V, Zernetkina V, Puliaev R, Cudrici C, Mathai S, Via CS. Increased expression and release of functional tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by T cells from lupus patients with active disease. Clin Immunol 2005; 117:48-56. [PMID: 15961346 DOI: 10.1016/j.clim.2005.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/15/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Increased expression of TRAIL in membrane-bound and soluble form in patients with systemic lupus erythematosus (SLE) has been previously reported. In this study, we characterized the upregulation of T-cell-associated and soluble TRAIL (sTRAIL) in vivo and the modulation of TRAIL expression and soluble protein release in vitro following T cell activation and IFNalpha exposure. The expression of membrane-bound TRAIL as determined by flow cytometry was higher on CD4(+) and CD8(+) T cells from lupus patients compared to controls, particularly on activated CD69(+)CD8(+) T cells. Similarly, sTRAIL levels determined by ELISA were significantly elevated in serum from patients with active SLE and correlated with levels of IFNalpha. In vitro, both T-cell-associated and sTRAIL were maximally induced by T cell activation plus IFNalpha in patients and controls. By Western blot analysis, sTRAIL was detected in sera in both the monomeric and multimeric, functional form. Both forms of TRAIL were functional in vitro as determined by Annexin V staining and (51)Cr release assay but the apoptotic activity of membrane TRAIL was 2.5-fold higher compared to that of sTRAIL. These results indicate that IFNalpha-induced enhancement of TRAIL expression and of TRAIL-mediated apoptosis may amplify the abnormal apoptotic process in SLE.
Collapse
Affiliation(s)
- Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland at Baltimore, 21201, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Aged animals and humans exhibit a decreased T-cell activation response although they also exhibit increased susceptibility to responses to self-antigens and a loss of self-tolerance. The age-related alteration in T-cell reactivity, polyclonal expansion of T cells, and enhanced production of autoantibodies may reflect the numerous age-associated alterations in the T-cell arm of the immune system that have been revealed in numerous studies. These studies suggest that subpopulations of T cells are not deleted appropriately in older animals. They further suggest that an age-related impairment of Fas/Fas ligand (FasL)-mediated apoptosis - which plays a major role in activation-induced cell death (AICD) of T cells - may contribute to compromised regulation of the immune system. The likely mechanisms that may lead to impaired induction of FasL in AICD senescent T cells include an age-related shift from the apoptosis-sensitive T-helper 1 cell (Th1) response to the AICD-resistant Th2 response, aberrant T-cell receptor/CD3 downstream-signaling pathways, and altered CD28/B7-mediated T-cell costimulatory signals. Pathologically, accumulation of AICD-senescent T cells is associated with a defective cytotoxic T lymphocyte response and generation of autoreactive T cells. Based on the accumulating evidence, we propose that the emergence of the FasL(lo) AICD-senescent T cells is not only an effect of immune aging but also an important cause of T-cell proliferative senescence in both humans and mice.
Collapse
Affiliation(s)
- Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
32
|
Saunders BM, Tran S, Ruuls S, Sedgwick JD, Briscoe H, Britton WJ. Transmembrane TNF is sufficient to initiate cell migration and granuloma formation and provide acute, but not long-term, control of Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2005; 174:4852-9. [PMID: 15814712 DOI: 10.4049/jimmunol.174.8.4852] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF is critical for immunity against Mycobacterium tuberculosis infection; however, the relative contributions of the soluble and transmembrane forms of TNF in this immunity are unknown. Using memTNF mice, which express only the transmembrane form of TNF, we have addressed this question. Wild-type (WT), TNF-/-, and transmembrane TNF (memTNF) mice were infected with M. tuberculosis by aerosol. TNF-/- mice developed overwhelming infection with extensive pulmonary necrosis and died after only 33 days. memTNF mice, like WT mice, contained bacterial growth for over 16 wk, developed an Ag-specific T cell response, and initially displayed compact granulomas, comprised of both lymphocytes and macrophages. Expression of mRNA for the chemokines CXCL10, CCL3, CCL5, and CCL7 was comparable in both WT and memTNF mice. As the infection progressed, however, the pulmonary lesions in memTNF mice became larger and more diffuse, with increased neutrophil accumulation and necrosis. This was accompanied by increased influx of activated memory T cells into the lungs of memTNF mice. Eventually, these mice succumbed to infection with a mean time to death of 170 days. The expression of memTNF on T cells is functionally important because the transfer of T cells from memTNF, but not TNF-/- mice, into either RAG-/- or TNF-/- mice conferred the same survival advantage on the M. tuberculosis-infected recipient mice, as the transfer of WT T cells. Therefore, memTNF, in the absence of soluble TNF, is sufficient to control acute, but not chronic, M. tuberculosis infection, in part through its expression on T cells.
Collapse
Affiliation(s)
- Bernadette M Saunders
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Cancro MP. The BLyS family of ligands and receptors: an archetype for niche-specific homeostatic regulation. Immunol Rev 2005; 202:237-49. [PMID: 15546397 DOI: 10.1111/j.0105-2896.2004.00212.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Discovery and characterization of the tumor necrosis factor (TNF) family member B-lymphocyte stimulator (BLyS) has opened a novel chapter in the role of TNF family members in the homeostatic control of lymphocyte populations. BLyS and its sister cytokine APRIL (a proliferation-inducing ligand) act primarily as soluble trimers and serve to regulate the steady-state numbers of nearly all B-cell compartments. This homeostatic regulation is accomplished through the regulation of B-cell production rates, selection thresholds, and lifespan. Differential expression of the three BLyS receptors during differentiation and activation provides related yet distinct homeostatic niches for follicular, marginal zone, and memory B-cell subsets.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
34
|
Crist SA, Elzey BD, Ludwig AT, Griffith TS, Staack JB, Lentz SR, Ratliff TL. Expression of TNF-related apoptosis-inducing ligand (TRAIL) in megakaryocytes and platelets. Exp Hematol 2005; 32:1073-81. [PMID: 15539085 DOI: 10.1016/j.exphem.2004.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 07/16/2004] [Accepted: 07/21/2004] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Platelets are known to play an important role in hemostasis, thrombosis, wound healing, and inflammation. Platelet-induced modulation of inflammation and adaptive immune responses are mediated in part through tumor necrosis factor (TNF) family member ligands, including CD154, Fas ligand, and TNFalpha, that are expressed upon platelet activation. The present study investigated whether platelets and megakaryocytes also express TNF-related apoptosis-inducing ligand (TRAIL), another pro-apoptotic member of the TNF superfamily. MATERIALS AND METHODS Immunoprecipitation, enzyme-linked immunosorbent assay, and flow cytometry were used to assess TRAIL protein expression on isolated platelets, in vitro-derived megakaryocytes and premegakaryocyte cell lines. Reverse-transcription polymerase chain reaction and transient transfection of TRAIL promoter/reporter constructs were used to elucidate mechanisms of TRAIL regulation during megakaryocyte differentiation. TRAIL-dependent cytotoxicity assays were performed to determine if platelet-derived TRAIL induces apoptosis of TRAIL sensitive target cells. RESULTS Activated platelets expressed both membrane-bound and soluble TRAIL. TRAIL was also expressed by megakaryocytes, and in vitro studies showed that TRAIL expression was induced upon megakaryocyte differentiation. TRAIL expression was mediated by increased transcriptional activity of the TRAIL promoter, suggesting lineage-specific regulation of TRAIL during megakaryocyte differentiation. Abundant detergent-extractable, full-length TRAIL protein was observed in the lysates of platelets and megakaryocytes, but only low concentrations of TRAIL were released by nondetergent extraction methods. CONCLUSION The data reported herein show that platelets express TRAIL that is synthesized by megakaryocytes and was expressed by activated platelets. While these data expand the spectrum of TNF family proteins expressed in platelets, the function of platelet-derived TRAIL is not known.
Collapse
Affiliation(s)
- Scott A Crist
- Department of Urology, The University of Iowa, Iowa City, Iowa 52242-1089, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kamiya A, Gonzalez FJ. TNF-alpha regulates mouse fetal hepatic maturation induced by oncostatin M and extracellular matrices. Hepatology 2004; 40:527-36. [PMID: 15349890 DOI: 10.1002/hep.20362] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fetal hepatic maturation consists of multisteps and is regulated by several cytokines and cell-cell or cell-matrices interactions. In the mid-to-late fetal stage, hepatocytes have few metabolic functions associated with adult liver homeostasis. Cultured fetal hepatocytes acquire the expression of several mature liver-specific genes through stimulation with hepatic maturation factor oncostatin M (OSM) and matrigel. Tumor necrosis factor-alpha (TNFalpha) regulates fetal hepatic maturation stimulated by OSM and matrigel. TNFalpha suppressed expression of mature liver-specific genes such as tyrosine aminotransferase and apolipoproteins. In addition, the expression of hematopoietic cytokines and cyclin A2, repressed by OSM and matrigel, is induced by TNFalpha in the fetal hepatic cultures coincident with cell division. TNFalpha inhibited the induction of hepatocyte nuclear factor 4alpha induced by OSM and matrigel, suggesting that down-regulation of hepatocyte nuclear factor 4alpha expression is involved in the mechanism of suppression of hepatic maturation by TNFalpha. Interestingly, TNFalpha is expressed in the prenatal and postnatal liver but not in adult liver, whereas TNFR1, a TNFalpha receptor, is expressed in both fetal and adult livers. In conclusion, TNFalpha is a suppressive factor of hepatic maturation. The balance between hepatic maturation factor (OSM and extracellular matrices) and TNFalpha is important for liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 2004; 23:2009-15. [PMID: 15021888 DOI: 10.1038/sj.onc.1207373] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ubiquitin inhibitors act at many levels to enhance apoptosis signaling. For TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis signaling, there are at least five mechanisms by which apoptosis are regulated by the ubiquitin-proteasome pathway. First, proteasome inhibitors can decrease Fas-like inhibitor protein (FLIP) protein levels in tumors, resulting in increased apoptosis signaling due to increased caspase-8 activation. This appears to involve the ubiquitin ligase TNF receptor activation factor-2 (TRAF2) and acts indirectly by causing cell-cycle arrest at a stage where there is high degradation of the FLIP-TRAF2 complex. Second, the regulation of the proapoptotic Bcl-2 family member BAX occurs indirectly. Apoptosis signaling and caspase activation results in a confirmation change in the normally monomeric BAX, which exposes the BH3 domain of BAX, leading to dimerization and resistance to ubiquitin degradation. BAX then translocates into the mitochondria, resulting in the release of proapoptotic mitochondrial factors such as cytochrome c and second mitochondria-derived activator of caspase (SMAC). This results in the activation of caspase-9 and formation of the apoptosome and efficient apoptosis signaling. A third mechanism of the regulation of TRAIL signaling in the ubiquitin-proteasome pathway is mediated by the inhibitor of apoptosis proteins (IAP) E3 ligases. These IAPs can directly bind to caspases but also can act as ubiquitin ligases for caspases, resulting in the degradation of these caspases. IAP binding to caspases can be inhibited by SMAC, which exhibits a caspase-9 homology domain. The fourth mechanism for apoptosis activation by proteasome inhibitors is through the stabilization of the inhibitor of the kappaB (IkappaB)/NF-kappaB complex and prevention of nuclear translocation of the antiapoptosis transcription factor NF-kappaB. During TRAIL-DR4, DR5 signaling, this pathway is activated by interactions of activated Fas-associated death domain with activated receptor-interacting protein (RIP), which in turn activates NF-kappaB-inducing kinase and phosphorylates IkappaB. Therefore, the inhibition of IkappaB degradation blocks this RIP-mediated antiapoptosis signaling event. Last, p53 protein levels, and susceptibility to apoptosis, can be deregulated by the human homolog Hdm2 (Mdm2) E3 ligase. This process is inhibited by p53 phosphorylation and by sequestration of Mdm2 by ARF. Better mechanisms to inhibit the ubiquitin-proteasome pathway targeted at the ubiquitin-proteasome degradation process itself, or more specifically at the E3 ligases known to modulate and downregulate proapoptosis pathways will lead to the enhancement of TRAIL apoptosis signaling and better cancer therapeutic outcomes act through this pathway.
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
37
|
Anisman H, Turrin NP, Merali Z, Hayley S. Neurochemical sensitization associated with systemic administration of tumor necrosis factor-alpha: adjuvant action in combination with bovine serum albumin. J Neuroimmunol 2004; 145:91-102. [PMID: 14644035 DOI: 10.1016/j.jneuroim.2003.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) provokes a time-dependent sensitization of brain monoamine activity, plasma corticosterone activity and sickness behavior, the latter being reminiscent of septic or anaphylactic shock. In this investigation, bovine serum albumin (BSA) elicited similar corticosterone and sickness profiles, whereas the monoamine changes were not observed. The sensitization elicited by mTNF-alpha plus BSA was markedly greater than that elicited by BSA alone. Carrier-free TNF-alpha promoted the sensitization of brain monoamine activity, but not sickness or corticosterone. It is suggested that mTNF-alpha acts as an adjuvant to the anaphylactic actions elicited by BSA, but may provoke a sensitization of monoamine activity which is time-dependent and varies across brain regions.
Collapse
Affiliation(s)
- Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | |
Collapse
|
38
|
Abstract
Extensive data has accumulated over the last 10 to 15 years to implicate various cytokines in pathways of pathophysiology in rheumatic diseases. Abnormalities in cytokine production are not the cause of these diseases, but reflect continual production by immune and inflammatory cells. Cytokines are heterogeneous and function in an overlapping and redundant network. An important principle to emerge is that the net biologic response in a diseased organ or tissue reflects a balance between the local levels of proinflammatory and anti-inflammatory cytokines and factors. Thus, a chronic disease may result from the excess production of proinflammatory cytokines or the inadequate production of anti-inflammatory cytokines. This article summarizes the role of cytokines in rheumatic diseases by focusing on each disease and the involved pathways of pathophysiology.
Collapse
Affiliation(s)
- William P Arend
- Division of Rheumatology, University of Colorado Health Sciences Center B1115, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
39
|
|
40
|
|
41
|
Phillips A, Bullock T, Plant N. Sodium valproate induces apoptosis in the rat hepatoma cell line, FaO. Toxicology 2003; 192:219-27. [PMID: 14580788 DOI: 10.1016/s0300-483x(03)00331-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sodium valproate (VPA) is clinically employed as an anti-convulsant and, to a lesser extent, mood stabilizer. While the incidence of toxicity associated with the clinical use of valproate is low, serious hepatotoxicity makes up a significant percentage. Rats treated with high doses of sodium valproate are subject to hepatotoxicity, and the study of the molecular mechanisms underlying this phenomenon may shed further light on the human situation. Exposure to sodium valproate results in the down regulation in rat liver of several transcripts whose products are involved in cellular energy homeostasis, resulting in time-dependent fluctuations in cellular ATP, possibly resulting in cell death. To further examine this, classical markers of apoptosis were examined in the rat hepatoma cell line FaO following sodium valproate exposure. Concentrations greater than 300 microM sodium valproate resulted in a transient wave of apoptosis, as assessed by chromatin condensation and DNA fragmentation assay. Analysis indicated that Fas-ligand and caspase-11 expression were increased at the transcriptome level, while caspase-3 was activated at the proteome level during the exposure period. These data demonstrates that sodium valproate causes cell death through apoptosis in a rat liver cell line, and provides information on the possible molecular mechanisms underlying this phenomenon in vivo.
Collapse
Affiliation(s)
- Anna Phillips
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | |
Collapse
|
42
|
Liu Z, Xu X, Hsu HC, Tousson A, Yang PA, Wu Q, Liu C, Yu S, Zhang HG, Mountz JD. CII-DC-AdTRAIL cell gene therapy inhibits infiltration of CII-reactive T cells and CII-induced arthritis. J Clin Invest 2003; 112:1332-41. [PMID: 14597760 PMCID: PMC228459 DOI: 10.1172/jci19209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Previously, we described an APC-adenovirus (APC-Ad) FasL cell gene therapy method which could be used to deplete autoreactive T cells in vivo. FasL was toxic, however, and controlled regulation of FasL was not achieved. Here we describe an improved approach to delivering TNF-related apoptosis-inducing ligand (TRAIL) in vivo in which collagen II-induced (CII-induced) arthritis-susceptible (CIA-susceptible) DBA/1j mice were treated with CII-pulsed DCs that had been transfected with a novel Ad system. The Ad was engineered to exhibit inducible TRAIL under the control of the doxycycline-inducible (DOX-inducible) tetracycline response element (TRE). Four groups of mice were treated with CII-DC-AdTRAIL+DOX, CII-DC-AdTRAIL (no DOX), CII-DC-AdGFP+DOX, or DC-AdTRAIL+DOX (no CII), beginning 2 weeks after priming with CII in CFA. The incidence of arthritis and infiltration of T cells in the joint was significantly decreased in CII-DC-AdTRAIL+DOX-treated mice. The in vitro splenic T cell proliferative response and induction of IFN-gamma to bovine CII stimulation were also significantly reduced in mice treated with CII-DC-AdTRAIL+DOX. AdTRAIL+DOX was not toxic to DCs or mice but could induce activated T cells to undergo apoptosis in the spleen. Our results suggest that CII-DC-AdTRAIL+DOX cell gene therapy is a safe and effective method for inhibiting the development of CIA.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu Z, Xu X, Hsu HC, Tousson A, Yang PA, Wu Q, Liu C, Yu S, Zhang HG, Mountz JD. CII-DC-AdTRAIL cell gene therapy inhibits infiltration of CII-reactive T cells and CII-induced arthritis. J Clin Invest 2003. [DOI: 10.1172/jci200319209] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Mountz JD, Hsu HC, Wu Q, Liu HG, Zhang HG, Mountz JM. Molecular imaging: new applications for biochemistry. J Cell Biochem 2003; 39:162-71. [PMID: 12552616 DOI: 10.1002/jcb.10434] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular imaging can reveal in vivo analysis and quantification of biochemical reactions. To enable cell-surface imaging of receptors, novel ligands have been developed which can be radiolabeled or imaged by bioluminescence. Specific examples include somatostatin receptors, estrogen and progesterone receptors, receptors involved in adhesion and externalization of phosphatidyl serine as an indicator of apoptosis. Central nervous system imaging can be carried out using ligands for receptors including dopamine, serotonin and Gamma amino butyric acid (GABA). In addition, tumor and metabolic imaging can be carried out with the Na-K ATPase pump using the tracer thallium-201 for SPECT or F-18 FDG for PET imaging. Finally, novel receptors or endogenous metabolic pathways can be analyzed combining cell-gene therapy to create specific tracer targets in cells that can be studied by molecular imaging. The challenge of molecular imaging is to first identify key pathways that are unique for a specific disease processes, such as atherosclerosis, cancer, CNS disorders, immunologic and arthritis disorders and next to devise a high-affinity specific small molecular ligand that can be adapted to be a radiolabeled tracer to study this pathway. Advances in genomics and proteomics combine with new peptide-chemistry approaches should provide a large number of targets and tracers in the near future to achieve these imaging objectives.
Collapse
Affiliation(s)
- John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Center for Nuclear Imaging Research, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Ghorpade A, Holter S, Borgmann K, Persidsky R, Wu L. HIV-1 and IL-1 beta regulate Fas ligand expression in human astrocytes through the NF-kappa B pathway. J Neuroimmunol 2003; 141:141-9. [PMID: 12965265 DOI: 10.1016/s0165-5728(03)00222-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactive astrogliosis is a prominent pathological feature of HIV-1-associated dementia (HAD). We hypothesized that in HAD, astrocytes activated with proinflammatory stimuli such as IL-1beta express Fas ligand (FasL), a death protein. IL-1beta and HIV-1-activated astrocytes expressed FasL mRNA and protein. Luciferase reporter constructs showed that IL-1beta and HIV-1 upregulated FasL promoter activity (p<0.001). The NF-kappaB pathway was involved as shown by inhibition with SN50 and dominant negative IkappaBalpha mutants. Brain extracts from HAD patients had significantly elevated FasL levels compared to HIV-seropositive (p<0.001) and seronegative individuals (p<0.01). We propose that astrocyte expression of FasL may participate in neuronal injury in HAD.
Collapse
Affiliation(s)
- A Ghorpade
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
TNF-receptor-associated factors (TRAFs) are the bottleneck of the TNF-receptor (TNF-R) family signal transduction. They integrate the signalling from many members of the TNF-R family and initiate intracellular signalling cascades aimed at the activation of NF-kappaB and c-jun, the reprogramming of gene expression and the control of cell death. Deregulation of these pathways is the cause of several autoimmune and inflammatory diseases. The specificity and interaction of the members of the TRAF family with the TNF-R entails the recognition of just a 4 - 6 amino acid motif in the cytosolic region of the receptor, suitable as an attractive target for drug discovery. This review summarises the current knowledge on TRAFs and discusses the pros and cons of their application as targets for drug discovery.
Collapse
Affiliation(s)
- Juan M Zapata
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Roberts AI, Devadas S, Zhang X, Zhang L, Keegan A, Greeneltch K, Solomon J, Wei L, Das J, Sun E, Liu C, Yuan Z, Zhou JN, Shi Y. The Role of Activation-Induced Cell Death in the Differentiation of T-Helper-Cell Subsets. Immunol Res 2003; 28:285-93. [PMID: 14713720 DOI: 10.1385/ir:28:3:285] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activation-induced cell death (AICD) has been demonstrated in T-cell hybridomas, immature thymocytes, and activated mature T cells. However, the molecular mechanisms of AICD and its physiological role in T-helper-cell differentiation remain uncertain. Recently, we have shown that Th1 and Th2 cells have distinct mechanisms of AICD. Our findings suggest that signaling from cytokines initiates the differentiation program, but that the selective action of death effectors determines the fate of differentiating T-helper cells, and thus, the ultimate balance between T-helper subpopulations. Among T cells, activation- induced expression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is observed exclusively in Th2 clones and primary T-helper cells differentiated under Th2 conditions, while the expression of CD95L (Fas ligand) occurs mainly in Th1 cells. Furthermore, Th1 cells are more susceptible than Th2 cells to apoptosis induced through either TRAIL or CD95L, and radiolabeled Th1 cells can be induced into apoptosis via fratricide by both Th1 and Th2 cells, while Th2 cells are spared. The pan-caspase inhibitor, z-VAD, prevents AICD in Th1 cells, but not Th2 cells, indicating different mechanisms of AICD in each T-helper subtype. Antibody blockade of TRAIL and CD95L significantly boosts interferon-gamma (IFN-gamma) production in vitro. Also, young mice with mutant CD95 (MRL/MpJ-lpr/lpr) have a stronger Th1 response to ovalbumin immunization than do controls. We conclude that apoptosis mediated by CD95L and TRAIL is critical in the selective removal of differentiating T helper cells.
Collapse
Affiliation(s)
- Arthur I Roberts
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 661 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|