1
|
Edens BM, Bronner ME. Making developmental sense of the senses, their origin and function. Curr Top Dev Biol 2024; 159:132-167. [PMID: 38729675 DOI: 10.1016/bs.ctdb.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
2
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
3
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
4
|
Sharma D, Ng KKW, Birznieks I, Vickery RM. Auditory clicks elicit equivalent temporal frequency perception to tactile pulses: A cross-modal psychophysical study. Front Neurosci 2022; 16:1006185. [PMID: 36161171 PMCID: PMC9500524 DOI: 10.3389/fnins.2022.1006185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Both hearing and touch are sensitive to the frequency of mechanical oscillations—sound waves and tactile vibrations, respectively. The mounting evidence of parallels in temporal frequency processing between the two sensory systems led us to directly address the question of perceptual frequency equivalence between touch and hearing using stimuli of simple and more complex temporal features. In a cross-modal psychophysical paradigm, subjects compared the perceived frequency of pulsatile mechanical vibrations to that elicited by pulsatile acoustic (click) trains, and vice versa. Non-invasive pulsatile stimulation designed to excite a fixed population of afferents was used to induce desired temporal spike trains at frequencies spanning flutter up to vibratory hum (>50 Hz). The cross-modal perceived frequency for regular test pulse trains of either modality was a close match to the presented stimulus physical frequency up to 100 Hz. We then tested whether the recently discovered “burst gap” temporal code for frequency, that is shared by the two senses, renders an equivalent cross-modal frequency perception. When subjects compared trains comprising pairs of pulses (bursts) in one modality against regular trains in the other, the cross-sensory equivalent perceptual frequency best corresponded to the silent interval between the successive bursts in both auditory and tactile test stimuli. These findings suggest that identical acoustic and vibrotactile pulse trains, regardless of pattern, elicit equivalent frequencies, and imply analogous temporal frequency computation strategies in both modalities. This perceptual correspondence raises the possibility of employing a cross-modal comparison as a robust standard to overcome the prevailing methodological limitations in psychophysical investigations and strongly encourages cross-modal approaches for transmitting sensory information such as translating pitch into a similar pattern of vibration on the skin.
Collapse
Affiliation(s)
- Deepak Sharma
- School of Biomedical Sciences, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- *Correspondence: Deepak Sharma,
| | - Kevin K. W. Ng
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ingvars Birznieks
- School of Biomedical Sciences, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Bionics and Bio-Robotics, Tyree Foundation Institute of Health Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Richard M. Vickery
- School of Biomedical Sciences, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Bionics and Bio-Robotics, Tyree Foundation Institute of Health Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| |
Collapse
|
5
|
Canales Coutiño B, Mayor R. Reprint of: Mechanosensitive ion channels in cell migration. Cells Dev 2021; 168:203730. [PMID: 34456177 DOI: 10.1016/j.cdev.2021.203730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Revilla-i-Domingo R, Rajan VBV, Waldherr M, Prohaczka G, Musset H, Orel L, Gerrard E, Smolka M, Stockinger A, Farlik M, Lucas RJ, Raible F, Tessmar-Raible K. Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution. eLife 2021; 10:e66144. [PMID: 34350831 PMCID: PMC8367381 DOI: 10.7554/elife.66144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.
Collapse
Affiliation(s)
- Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Vinoth Babu Veedin Rajan
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Monika Waldherr
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Günther Prohaczka
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Hugo Musset
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Lukas Orel
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Elliot Gerrard
- Division of Neuroscience & Experimental Psychology, University of ManchesterManchesterUnited Kingdom
| | - Moritz Smolka
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Robert J Lucas
- Division of Neuroscience & Experimental Psychology, University of ManchesterManchesterUnited Kingdom
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| |
Collapse
|
7
|
Canales Coutiño B, Mayor R. Mechanosensitive ion channels in cell migration. Cells Dev 2021; 166:203683. [PMID: 33994356 PMCID: PMC8240554 DOI: 10.1016/j.cdev.2021.203683] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Boyle R. Otolith adaptive responses to altered gravity. Neurosci Biobehav Rev 2020; 122:218-228. [PMID: 33152424 DOI: 10.1016/j.neubiorev.2020.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
The force of gravity has remained constantly present over the course of animal evolution and forms our frame of reference with the environment, including spatial orientation, navigation, gaze and postural stability. Inertial head accelerations occur within this gravity frame of reference naturally during voluntary movements and perturbations. Execution of movements of aquatic, terrestrial and flight species widely differ, but the sensory systems detecting acceleration forces, including gravity, have remained remarkably conserved among vertebrates. The utricular organ senses the sum of inertial force due to head translation and head tilt relative to gravitational vertical. A sudden or persistent change in gravitational force would be expected to have profound and global effects on an organism. Physiological data collected immediately after orbital missions, after short and extended increases in gravity load via centrifugation, and after readaptation to normal gravity exist in the toadfish model. This review focuses on the otolith adaptive responses to changes in gravity in a number of model organisms and their potential impact on human space travel.
Collapse
Affiliation(s)
- Richard Boyle
- National Aeronautics and Space Administration, Ames Research Center, Mountain View, CA USA.
| |
Collapse
|
9
|
Zhao D, Chen S, Horie T, Gao Y, Bao H, Liu X. Comparison of differentiation gene batteries for migratory mechanosensory neurons across bilaterians. Evol Dev 2020; 22:438-450. [PMID: 32078235 DOI: 10.1111/ede.12331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In embryos of distantly related bilaterian phyla, their lateral neural borders give rise to the peripheral nervous system elements, including various mechanosensory cells derived from migratory precursors, such as hair cells and dorsal root ganglion (DRG) neurons in vertebrates, bipolar tail neuron (BTN) in Ciona, chordotonal organ in Drosophila, and AVM/PVM in Caenorhabditis elegans. Developmental genetics studies had revealed a couple of transcription factors (TFs) regulating differentiation of mechanosensory cells shared by vertebrates and arthropods. However, unbiased systematic profiling of regulators is needed to demonstrate conservation of differentiation gene batteries for mechanosensory cells across bilaterians. At first, we observed that in both C. elegans Q neuroblasts and Drosophila lateral neuroectoderm, conserved NPB specifier Msx/vab-15 regulates Atoh1/lin-32, supporting the homology of mechanosensory neuron development in lateral neural border lineage of Ecdysozia. So we used C. elegans as a protostomia model. Single-cell resolution expression profiling of TFs and genetic analysis revealed a differentiation gene battery (Atonh1/lin-32, Drg11/alr-1, Gfi1/pag-3, Lhx5/mec-3, and Pou4/unc-86) for AVM/PVM mechanosensory neurons. The worm-gene battery significantly overlaps with both that of placode-derived Atonh1/lin-32-dependent hair cells and that of NPB-derived Neurogenin-dependent DRG neurons in vertebrates, supporting the homology of molecular mechanisms underlying the differentiation of neural border-derived mechanosensory cells between protostome and deuterostome. At last, Ciona BTN, the homolog of vertebrate DRG, also expresses Atonh1/lin-32, further supporting the homology notion and indicating a common origin of hair cells and DRG in vertebrate lineage.
Collapse
Affiliation(s)
- Di Zhao
- School of Life Sciences, Capital Normal University, Beijing, China.,Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siyu Chen
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Yimeng Gao
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Hongcun Bao
- Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Liu
- School of Life Sciences, Capital Normal University, Beijing, China.,Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Schlosser G. A Short History of Nearly Every Sense-The Evolutionary History of Vertebrate Sensory Cell Types. Integr Comp Biol 2019; 58:301-316. [PMID: 29741623 DOI: 10.1093/icb/icy024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears, and olfactory epithelia. However, the photoreceptors, mechanoreceptors, and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Biomedical Sciences Building, Newcastle Road, Galway H91 TK33, Ireland
| |
Collapse
|
11
|
Zhao D, Chen S, Liu X. Lateral neural borders as precursors of peripheral nervous systems: A comparative view across bilaterians. Dev Growth Differ 2018; 61:58-72. [DOI: 10.1111/dgd.12585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Di Zhao
- School of Life Sciences; Capital Normal University; Beijing China
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| | - Siyu Chen
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| | - Xiao Liu
- School of Life Sciences; Capital Normal University; Beijing China
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; School of Life Sciences; Tsinghua University; Beijing China
| |
Collapse
|
12
|
Bezares-Calderón LA, Berger J, Jasek S, Verasztó C, Mendes S, Gühmann M, Almeda R, Shahidi R, Jékely G. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. eLife 2018; 7:36262. [PMID: 30547885 PMCID: PMC6294549 DOI: 10.7554/elife.36262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Startle responses triggered by aversive stimuli including predators are widespread across animals. These coordinated whole-body actions require the rapid and simultaneous activation of a large number of muscles. Here we study a startle response in a planktonic larva to understand the whole-body circuit implementation of the behaviour. Upon encountering water vibrations, larvae of the annelid Platynereis close their locomotor cilia and simultaneously raise the parapodia. The response is mediated by collar receptor neurons expressing the polycystins PKD1-1 and PKD2-1. CRISPR-generated PKD1-1 and PKD2-1 mutant larvae do not startle and fall prey to a copepod predator at a higher rate. Reconstruction of the whole-body connectome of the collar-receptor-cell circuitry revealed converging feedforward circuits to the ciliary bands and muscles. The wiring diagram suggests circuit mechanisms for the intersegmental and left-right coordination of the response. Our results reveal how polycystin-mediated mechanosensation can trigger a coordinated whole-body effector response involved in predator avoidance.
Collapse
Affiliation(s)
- Luis A Bezares-Calderón
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sanja Jasek
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Csaba Verasztó
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sara Mendes
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rodrigo Almeda
- Centre for Ocean Life, Technical University of Denmark, Denmark, Kingdom of Denmark
| | - Réza Shahidi
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
13
|
Elliott KL, Fritzsch B. Ear transplantations reveal conservation of inner ear afferent pathfinding cues. Sci Rep 2018; 8:13819. [PMID: 30218045 PMCID: PMC6138675 DOI: 10.1038/s41598-018-31952-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Vertebrate inner ear neurons project into the correct brainstem nuclei region before target neurons become postmitotic, or even in their absence. Moreover, afferents from transplanted ears in frogs have been shown to navigate to vestibular nuclei, suggesting that ear afferents use molecular cues to find their target. We performed heterochronic, xenoplastic, and heterotopic transplantations in chickens to investigate whether inner ear afferents are guided by conserved guidance molecules. We show that inner ear afferents can navigate to the vestibular nuclei following a delay in afferent entry and when the ear was from a different species, the mouse. These data suggest that guidance molecules are expressed for some time and are conserved across amniotes. In addition, we show that chicken ears transplanted adjacent to the spinal cord project dorsally like in the hindbrain. These results suggest that inner ear afferents navigate to the correct dorsoventral brainstem column using conserved cues.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
14
|
Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii. Proc Natl Acad Sci U S A 2018; 114:5878-5885. [PMID: 28584082 DOI: 10.1073/pnas.1610602114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.
Collapse
|
15
|
Boyle R, Ehsanian R, Mofrad A, Popova Y, Varelas J. Morphology of the utricular otolith organ in the toadfish, Opsanus tau. J Comp Neurol 2018. [PMID: 29524209 DOI: 10.1002/cne.24429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents.
Collapse
Affiliation(s)
- Richard Boyle
- Vestibular Biophysics Laboratory, Ames Research Center, NASA, Moffett Field, California, 94035-1000
| | - Reza Ehsanian
- Vestibular Biophysics Laboratory, Ames Research Center, NASA, Moffett Field, California, 94035-1000
| | - Alireza Mofrad
- Vestibular Biophysics Laboratory, Ames Research Center, NASA, Moffett Field, California, 94035-1000
| | - Yekaterina Popova
- Vestibular Biophysics Laboratory, Ames Research Center, NASA, Moffett Field, California, 94035-1000
| | - Joseph Varelas
- Vestibular Biophysics Laboratory, Ames Research Center, NASA, Moffett Field, California, 94035-1000.,University of California, Santa Cruz, California, 95064
| |
Collapse
|
16
|
Stengel D, Wahby S, Braunbeck T. In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4066-4084. [PMID: 29022183 DOI: 10.1007/s11356-017-0399-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/02/2017] [Indexed: 05/20/2023]
Abstract
In order to develop a test battery based on a variety of neurological systems in fish, three sensory systems (vision, olfaction, and lateral line) as well as nerve transmission (acetylcholine esterase) were analyzed in zebrafish (Danio rerio) embryos with respect to their suitability as a model for the screening of neurotoxic trace substances in aquatic ecosystems. As a selection of known or putative neurotoxic compounds, amidotrizoic acid, caffeine, cypermethrin, dichlorvos, 2,4-dinitrotoluene, 2,4-dichlorophenol, 4-nonylphenol, perfluorooctanoic acid, and perfluorooctane sulfonic acid were tested in the fish embryo test (OECD test guideline 236) to determine EC10 values, which were then used as maximum test concentration in subsequent neurotoxicity tests. Whereas inhibition of acetylcholinesterase was investigated biochemically both in vivo and in vitro (ex vivo), the sensory organs were studied in vivo by means of fluorescence microscopy and histopathology in 72- or 96-h-old zebrafish embryos, which are not regarded as protected developmental stages in Europe and thus - at least de jure - represent alternative test methods. Various steps of optimization allowed this neurotoxicity battery to identify neurotoxic potentials for five out of the nine compounds: Cypermethrin and dichlorvos could be shown to specifically modulate acetylcholinesterase activity; dichlorvos, 2,4-dichlorophenol, 4-nonylphenol, and perfluorooctane sulfonic acid led to a degeneration of neuromasts, whereas both vision and olfaction proved quite resistant to concentrations ≤ EC10 of all of the model neurotoxicants tested. Comparison of neurotoxic effects on acetylcholinesterase activity following in vivo and in vitro (ex vivo) exposure to cypermethrin provided hints to a specific enzyme-modulating activity of pyrethroid compounds. Enhancement of the neuromast assay by applying a simultaneous double-staining procedure and implementing a 4-scale scoring system (Stengel et al. 2017) led to reduced variability of results and better statistical resolution and allowed to differentiate location-dependent effects in single neuromasts. Since acetylcholinesterase inhibition and neuromast degeneration can be analyzed in 72- and 96-h-old zebrafish embryos exposed to neurotoxicants according to the standard protocol of the fish embryo toxicity test (OECD TG 236), the fish embryo toxicity test can be enhanced to serve as a sensitive neurotoxicity screening test in non-protected stages of vertebrates.
Collapse
Affiliation(s)
- Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany
| | - Sarah Wahby
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Rigon F, Gasparini F, Shimeld SM, Candiani S, Manni L. Developmental signature, synaptic connectivity and neurotransmission are conserved between vertebrate hair cells and tunicate coronal cells. J Comp Neurol 2018; 526:957-971. [PMID: 29277977 DOI: 10.1002/cne.24382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
In tunicates, the coronal organ represents a sentinel checking particle entrance into the pharynx. The organ differentiates from an anterior embryonic area considered a proto-placode. For their embryonic origin, morphological features and function, coronal sensory cells have been hypothesized to be homologues to vertebrate hair cells. However, vertebrate hair cells derive from a posterior placode. This contradicts one of the principle historical criteria for homology, similarity of position, which could be taken as evidence against coronal cells/hair cells homology. In the tunicates Ciona intestinalis and C. robusta, we found that the coronal organ expresses genes (Atoh, Notch, Delta-like, Hairy-b, and Musashi) characterizing vertebrate neural and hair cell development. Moreover, coronal cells exhibit a complex synaptic connectivity pattern, and express neurotransmitters (Glu, ACh, GABA, 5-HT, and catecholamines), or enzymes for their synthetic machinery, involved in hair cell activity. Lastly, coronal cells express the Trpa gene, which encodes an ion channel expressed in hair cells. These data lead us to hypothesize a model in which competence to make secondary mechanoreceptors was initially broadly distributed through placode territories, but has become confined to different placodes during the evolution of the vertebrate and tunicate lineages.
Collapse
Affiliation(s)
- Francesca Rigon
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| |
Collapse
|
18
|
Schlosser G, Musser J, Arendt D. Editorial - Development and evolution of sensory cells and organs. Dev Biol 2017; 431:1-2. [PMID: 28889956 DOI: 10.1016/j.ydbio.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Biosciences Research Building, Newcastle Road, Galway, Ireland.
| | - Jacob Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
19
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
20
|
Conserved gene regulatory module specifies lateral neural borders across bilaterians. Proc Natl Acad Sci U S A 2017; 114:E6352-E6360. [PMID: 28716930 DOI: 10.1073/pnas.1704194114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.
Collapse
|
21
|
Abstract
Regardless of how a nervous system is genetically built, natural selection is acting on the functional outcome of its activity. To understand how nervous systems evolve, it is essential to analyze how their functional units - the neural circuits - change and adapt over time. A neural circuit can evolve in many different ways, and the underlying developmental and genetic mechanisms involve different sets of genes. Therefore, the comparison of gene expression can help reconstructing circuit evolution, as demonstrated by several examples in sensory systems. Functional constraints on neural circuit evolution suggest that in nervous systems developmental and genetic variants do not appear randomly, and that the evolution of neuroanatomy might be biased. Sensory systems, in particular, seem to evolve along trajectories that enhance their evolvability, ensuring adaptation to different environments.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Fritzsch B, Elliott KL. Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors. Front Cell Neurosci 2017; 11:114. [PMID: 28484373 PMCID: PMC5401870 DOI: 10.3389/fncel.2017.00114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
All craniate chordates have inner ears with hair cells that receive input from the brain by cholinergic centrifugal fibers, the so-called inner ear efferents (IEEs). Comparative data suggest that IEEs derive from facial branchial motor (FBM) neurons that project to the inner ear instead of facial muscles. Developmental data showed that IEEs develop adjacent to FBMs and segregation from IEEs might depend on few transcription factors uniquely associated with IEEs. Like other cholinergic terminals in the peripheral nervous system (PNS), efferent terminals signal on hair cells through nicotinic acetylcholine channels, likely composed out of alpha 9 and alpha 10 units (Chrna9, Chrna10). Consistent with the evolutionary ancestry of IEEs is the even more conserved ancestry of Chrna9 and 10. The evolutionary appearance of IEEs may reflect access of FBMs to a novel target, possibly related to displacement or loss of mesoderm-derived muscle fibers by the ectoderm-derived ear vesicle. Experimental transplantations mimicking this possible aspect of ear evolution showed that different motor neurons of the spinal cord or brainstem form cholinergic synapses on hair cells when ears replace somites or eyes. Transplantation provides experimental evidence in support of the evolutionary switch of FBM neurons to become IEEs. Mammals uniquely evolved a prestin related motor system to cause shape changes in outer hair cells regulated by the IEEs. In summary, an ancient motor neuron population drives in craniates via signaling through highly conserved Chrna receptors a uniquely derived cellular contractility system that is essential for hearing in mammals.
Collapse
|
23
|
Stengel D, Zindler F, Braunbeck T. An optimized method to assess ototoxic effects in the lateral line of zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:18-29. [PMID: 27847309 DOI: 10.1016/j.cbpc.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 12/27/2022]
Abstract
In order to clarify the suitability of the lateral line of zebrafish (Danio rerio) embryos as a model for the screening of ototoxic (neurotoxic) effects, existing neuromast assays were adapted, improved and validated with a series of chemicals known or unknown for their ototoxic potential (caffeine copper sulfate, dichlorvos, 2.4-dinitrotoluene, neomycin, 4-nonylphenol, perfluorooctanesulfonic acid). Present methods were improved by (1) the introduction of a 4-step scoring system, (2) the selection of neuromasts from both the anterior and posterior lateral line systems, (3) a combined DASPEI/DAPI staining applied after both a continuous and pulse exposure scenario, and (4) an additional screening for nuclear fragmentation. Acute toxicities of the model substances were determined by means of the fish embryo test as specified in OECD TG 236, and EC10 concentrations were used as the highest test concentration in the neuromast assay. The enhanced neuromast assay identified known ototoxic substances such as neomycin and copper sulfate as ototoxic at sensitivities similar to those of established methods, with pulse exposure leading to stronger effects than continuous exposure. Except for caffeine, all substances tested (dichlorvos, 2.4-dinitrotoluene, 4-nonylphenol, perfluorooctanesulfonic acid) produced significant toxic effects in neuromasts at EC10 concentrations. Depending on the test substances and their location along the lateral line, specific neuromasts differed in sensitivity. Generally, neuromasts proved more sensitive in the pulse exposure scenario. Whereas for neomycin and copper sulfate neuromasts located along the anterior lateral line were more sensitive, posterior lateral line neuromasts proved more sensitive for the other test substances. Nuclear fragmentation could not only be associated with all test substances, but, albeit at lower frequencies, also with negative controls, and could, therefore, not be assigned specifically to chemical damage. The study thus documented that for a comprehensive evaluation of lateral line damage both neuromasts from the anterior and the posterior lateral line have to be considered. Given the apparently rapid regeneration of hair cells, pulse exposure seems more appropriate for the identification of lateral line neurotoxicity than continuous exposure.
Collapse
Affiliation(s)
- Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| | - Florian Zindler
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 120, D-69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians. Proc Natl Acad Sci U S A 2017; 114:2054-2059. [PMID: 28179572 DOI: 10.1073/pnas.1618778114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the βV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-βV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin βV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.
Collapse
|
25
|
Omata Y, Tharasegaran S, Lim YM, Yamasaki Y, Ishigaki Y, Tatsuno T, Maruyama M, Tsuda L. Expression of amyloid-β in mouse cochlear hair cells causes an early-onset auditory defect in high-frequency sound perception. Aging (Albany NY) 2017; 8:427-39. [PMID: 26959388 PMCID: PMC4833138 DOI: 10.18632/aging.100899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing evidence indicates that defects in the sensory system are highly correlated with age-related neurodegenerative diseases, including Alzheimer's disease (AD). This raises the possibility that sensory cells possess some commonalities with neurons and may provide a tool for studying AD. The sensory system, especially the auditory system, has the advantage that depression in function over time can easily be measured with electrophysiological methods. To establish a new mouse AD model that takes advantage of this benefit, we produced transgenic mice expressing amyloid-β (Aβ), a causative element for AD, in their auditory hair cells. Electrophysiological assessment indicated that these mice had hearing impairment, specifically in high-frequency sound perception (>32 kHz), at 4 months after birth. Furthermore, loss of hair cells in the basal region of the cochlea, which is known to be associated with age-related hearing loss, appeared to be involved in this hearing defect. Interestingly, overexpression of human microtubule-associated protein tau, another factor in AD development, synergistically enhanced the Aβ-induced hearing defects. These results suggest that our new system reflects some, if not all, aspects of AD progression and, therefore, could complement the traditional AD mouse model to monitor Aβ-induced neuronal dysfunction quantitatively over time.
Collapse
Affiliation(s)
- Yasuhiro Omata
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan.,Presend address: Department of Occupational and Environmental Health, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Suganya Tharasegaran
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan
| | - Young-Mi Lim
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan
| | - Yasutoyo Yamasaki
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan
| | - Yasuhito Ishigaki
- Division of Molecular and Cellular Biology, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Takanori Tatsuno
- Division of Molecular and Cellular Biology, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Mitsuo Maruyama
- Department of Molecular Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Leo Tsuda
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan
| |
Collapse
|
26
|
Branoner F, Chagnaud BP, Straka H. Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians. Front Neural Circuits 2016; 10:91. [PMID: 27877114 PMCID: PMC5099239 DOI: 10.3389/fncir.2016.00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Vestibulo-ocular reflexes (VOR) ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1–8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets.
Collapse
Affiliation(s)
- Francisco Branoner
- Department Biology II, Ludwig-Maximilians-University Munich Munich, Germany
| | - Boris P Chagnaud
- Department Biology II, Ludwig-Maximilians-University Munich Munich, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich Munich, Germany
| |
Collapse
|
27
|
Abstract
Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.
Collapse
|
28
|
Arendt D, Benito-Gutierrez E, Brunet T, Marlow H. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0286. [PMID: 26554050 PMCID: PMC4650134 DOI: 10.1098/rstb.2015.0286] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prerequisite for tracing nervous system evolution is understanding of the body plan, feeding behaviour and locomotion of the first animals in which neurons evolved. Here, a comprehensive scenario is presented for the diversification of cell types in early metazoans, which enhanced feeding efficiency and led to the emergence of larger animals that were able to move. Starting from cup-shaped, gastraea-like animals with outer and inner choanoflagellate-like cells, two major innovations are discussed that set the stage for nervous system evolution. First, the invention of a mucociliary sole entailed a switch from intra- to extracellular digestion and increased the concentration of nutrients flowing into the gastric cavity. In these animals, an initial nerve net may have evolved via division of labour from mechanosensory-contractile cells in the lateral body wall, enabling coordinated movement of the growing body that involved both mucociliary creeping and changes of body shape. Second, the inner surface of the animals folded into metameric series of gastric pouches, which optimized nutrient resorption and allowed larger body sizes. The concomitant acquisition of bilateral symmetry may have allowed more directed locomotion and, with more demanding coordinative tasks, triggered the evolution of specialized nervous subsystems. Animals of this organizational state would have resembled Ediacarian fossils such as Dickinsonia and may have been close to the cnidarian–bilaterian ancestor. In the bilaterian lineage, the mucociliary sole was used mostly for creeping, or frequently lost. One possible remnant is the enigmatic Reissner's fibre in the ventral neural tube of cephalochordates and vertebrates.
Collapse
Affiliation(s)
- Detlev Arendt
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Thibaut Brunet
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Heather Marlow
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| |
Collapse
|
29
|
Chartrand T, McCollum G, Hanes DA, Boyle RD. Symmetries of a generic utricular projection: neural connectivity and the distribution of utricular information. J Math Biol 2015; 72:727-53. [PMID: 26059813 DOI: 10.1007/s00285-015-0900-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/28/2015] [Indexed: 11/25/2022]
Abstract
Sensory contribution to perception and action depends on both sensory receptors and the organization of pathways (or projections) reaching the central nervous system. Unlike the semicircular canals that are divided into three discrete sensitivity directions, the utricle has a relatively complicated anatomical structure, including sensitivity directions over essentially 360° of a curved, two-dimensional disk. The utricle is not flat, and we do not assume it to be. Directional sensitivity of individual utricular afferents decreases in a cosine-like fashion from peak excitation for movement in one direction to a null or near null response for a movement in an orthogonal direction. Directional sensitivity varies slowly between neighboring cells except within the striolar region that separates the medial from the lateral zone, where the directional selectivity abruptly reverses along the reversal line. Utricular primary afferent pathways reach the vestibular nuclei and cerebellum and, in many cases, converge on target cells with semicircular canal primary afferents and afference from other sources. Mathematically, some canal pathways are known to be characterized by symmetry groups related to physical space. These groups structure rotational information and movement. They divide the target neural center into distinct populations according to the innervation patterns they receive. Like canal pathways, utricular pathways combine symmetries from the utricle with those from target neural centers. This study presents a generic set of transformations drawn from the known structure of the utricle and therefore likely to be found in utricular pathways, but not exhaustive of utricular pathway symmetries. This generic set of transformations forms a 32-element group that is a semi-direct product of two simple abelian groups. Subgroups of the group include order-four elements corresponding to discrete rotations. Evaluation of subgroups allows us to functionally identify the spatial implications of otolith and canal symmetries regarding action and perception. Our results are discussed in relation to observed utricular pathways, including those convergent with canal pathways. Oculomotor and other sensorimotor systems are organized according to canal planes. However, the utricle is evolutionarily prior to the canals and may provide a more fundamental spatial framework for canal pathways as well as for movement. The fullest purely otolithic pathway is likely that which reaches the lumbar spine via Deiters' cells in the lateral vestibular nucleus. It will be of great interest to see whether symmetries predicted from the utricle are identified within this pathway.
Collapse
Affiliation(s)
- Thomas Chartrand
- Graduate Group in Applied Mathematics, University of California, Davis, CA, 95618, USA
| | - Gin McCollum
- Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, PO Box 751, Portland, OR, 97207-751, USA.
| | - Douglas A Hanes
- School of Research and Graduate Studies, National College of Natural Medicine, Portland, OR, 97201, USA.
| | - Richard D Boyle
- Vestibular Biophysics Laboratory, Ames Research Center, NASA, Moffett Field, CA, 94035-1000, USA
| |
Collapse
|
30
|
Popova Y, Boyle R. Neural response in vestibular organ of Helix aspersa to centrifugation and re-adaptation to normal gravity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:717-29. [PMID: 25801308 DOI: 10.1007/s00359-015-1003-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
Abstract
Gravity plays a key role in shaping the vestibular sensitivity (VS) of terrestrial organisms. We studied VS changes in the statocyst of the gastropod Helix aspersa immediately after 4-, 16-, and 32-day exposures to a 1.4G hypergravic field or following a 7-day recovery period. In the same animals we measured latencies of behavioral "negative gravitaxis" responses to a head-down pitch before and after centrifugation and found significant delays after 16- and 32-day runs. In an isolated neural preparation we recorded the electrophysiological responses of the statocyst nerve to static tilt (±19°) and sinusoids (±12°; 0.1 Hz). Spike sorting software was used to separate individual sensory cells' patterns out of a common trace. In correspondence with behavior we observed a VS decrease in animals after 16- (p < 0.05) and 32-day (p < 0.01) centrifugations. These findings reveal the capability of statoreceptors to adjust their sensitivity in response to a prolonged change in the force of gravity. Interestingly, background discharge rate increased after 16 and 32 days in hypergravity and continued to rise through the recovery period. This result indicates that adaptive mechanisms to novel gravity levels were long lasting, and re-adaptation from hypergravity is a more complex process than just "return to normal".
Collapse
Affiliation(s)
- Yekaterina Popova
- Space Biosciences Research Branch, NASA Ames Research Center, Mail stop 239-11, Moffett Field, Mountain View, CA, 94035, USA
| | | |
Collapse
|
31
|
Willaredt MA, Schlüter T, Nothwang HG. The gene regulatory networks underlying formation of the auditory hindbrain. Cell Mol Life Sci 2015; 72:519-535. [PMID: 25332098 PMCID: PMC11113740 DOI: 10.1007/s00018-014-1759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 01/28/2023]
Abstract
Development and evolution of auditory hindbrain nuclei are two major unsolved issues in hearing research. Recent characterization of transgenic mice identified the rhombomeric origins of mammalian auditory nuclei and unraveled genes involved in their formation. Here, we provide an overview on these data by assembling them into rhombomere-specific gene regulatory networks (GRNs), as they underlie developmental and evolutionary processes. To explore evolutionary mechanisms, we compare the GRNs operating in the mammalian auditory hindbrain with data available from the inner ear and other vertebrate groups. Finally, we propose that the availability of genomic sequences from all major vertebrate taxa and novel genetic techniques for non-model organisms provide an unprecedented opportunity to investigate development and evolution of the auditory hindbrain by comparative molecular approaches. The dissection of the molecular mechanisms leading to auditory structures will also provide an important framework for auditory processing disorders, a clinical problem difficult to tackle so far. These data will, therefore, foster basic and clinical hearing research alike.
Collapse
Affiliation(s)
- Marc A Willaredt
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| | - Tina Schlüter
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
32
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
33
|
Brown AS, Rakowiecki SM, Li JYH, Epstein DJ. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev Biol 2015; 399:177-187. [PMID: 25592224 DOI: 10.1016/j.ydbio.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Wnt1 and Wnt3a secreted from the dorsal neural tube were previously shown to regulate a gene expression program in the dorsal otic vesicle that is necessary for vestibular morphogenesis (Riccomagno et al., 2005. Genes Dev. 19, 1612-1623). Unexpectedly, Wnt1(-/-); Wnt3a(-/-) embryos also displayed a pronounced defect in the outgrowth of the ventrally derived cochlear duct. To determine how Wnt signaling in the dorsal otocyst contributes to cochlear development we performed a series of genetic fate mapping experiments using two independent Wnt responsive driver strains (TopCreER and Gbx2(CreER)) that when crossed to inducible responder lines (Rosa(lacZ) or Rosa(zsGreen)) permanently labeled dorsomedial otic progenitors and their derivatives. Tamoxifen time course experiments revealed that most vestibular structures showed some degree of labeling when recombination was induced between E7.75 and E12.5, consistent with continuous Wnt signaling activity in this tissue. Remarkably, a population of Wnt responsive cells in the dorsal otocyst was also found to contribute to the sensory epithelium of the cochlear duct, including auditory hair and support cells. Similar results were observed with both TopCreER and Gbx2(CreER) strains. The ventral displacement of Wnt responsive cells followed a spatiotemporal sequence that initiated in the anterior otic cup at, or immediately prior to, the 17-somite stage (E9) and then spread progressively to the posterior pole of the otic vesicle by the 25-somite stage (E9.5). These lineage-tracing experiments identify the earliest known origin of auditory sensory progenitors within a population of Wnt responsive cells in the dorsomedial otic cup.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - James Y H Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Ma WR, Zhang J. Jag1b is essential for patterning inner ear sensory cristae by regulating anterior morphogenetic tissue separation and preventing posterior cell death. Development 2015; 142:763-73. [DOI: 10.1242/dev.113662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory patches of the vertebrate inner ear, which contain hair cells and supporting cells, are essential for hearing and balance functions. How the stereotypically organized sensory patches are formed remains to be determined. In this study, we isolated a zebrafish mutant in which the jag1b gene is disrupted by an EGFP insertion. Loss of Jag1b causes cell death in the developing posterior crista and results in downregulation of fgf10a in the posterior prosensory cells. Inhibition of FGFR activity in wild-type embryos also causes loss of the posterior crista, suggesting that Fgf10a mediates Jag1b activity. By contrast, in the anterior prosensory domain, Jag1b regulates separation of a single morphogenetic field into anterior and lateral cristae by flattening cells destined to form a nonsensory epithelium between the two cristae. MAPK activation in the nonsensory epithelium precursors is required for the separation. In the jag1b mutant, MAPK activation and cell flattening are extended to anterior crista primordia, causing loss of anterior crista. More importantly, inhibition of MAPK activity, which blocks the differentiation of nonsensory epithelial cells, generated a fused large crista and extra hair cells. Thus, Jag1b uses two distinct mechanisms to form three sensory cristae in zebrafish.
Collapse
Affiliation(s)
- Wei-Rui Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Fritzsch B, Jahan I, Pan N, Elliott KL. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell Tissue Res 2014; 359:295-313. [PMID: 25416504 DOI: 10.1007/s00441-014-2043-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
36
|
Pechriggl EJ, Bitsche M, Glueckert R, Rask‐Andersen H, Blumer MJF, Schrott‐Fischer A, Fritsch H. Development of the innervation of the human inner ear. Dev Neurobiol 2014; 75:683-702. [DOI: 10.1002/dneu.22242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Elisabeth J. Pechriggl
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| | - Mario Bitsche
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| | - Rudolf Glueckert
- Department of OtolaryngologyMedical University of InnsbruckAnichstrasse 356020Innsbruck Austria
- University Clinics InnsbruckTiroler LandeskrankenanstaltenInnsbruck Austria
| | - Helge Rask‐Andersen
- Departments of OtolaryngologyUppsala University Hospital751 85Uppsala Sweden
| | - Michael J. F. Blumer
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| | | | - Helga Fritsch
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional AnatomyMedical University of InnsbruckMüllerstrasse 596020Innsbruck Austria
| |
Collapse
|
37
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
38
|
Sienknecht UJ, Köppl C, Fritzsch B. Evolution and Development of Hair Cell Polarity and Efferent Function in the Inner Ear. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:150-61. [DOI: 10.1159/000357752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
|
39
|
Straka H, Fritzsch B, Glover JC. Connecting ears to eye muscles: evolution of a 'simple' reflex arc. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:162-75. [PMID: 24776996 DOI: 10.1159/000357833] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022]
Abstract
Developmental and evolutionary data from vertebrates are beginning to elucidate the origin of the sensorimotor pathway that links gravity and motion detection to image-stabilizing eye movements--the vestibulo-ocular reflex (VOR). Conserved transcription factors coordinate the development of the vertebrate ear into three functional sensory compartments (graviception/translational linear acceleration, angular acceleration and sound perception). These sensory components connect to specific populations of vestibular and auditory projection neurons in the dorsal hindbrain through undetermined molecular mechanisms. In contrast, a molecular basis for the patterning of the vestibular projection neurons is beginning to emerge. These are organized through the actions of rostrocaudally and dorsoventrally restricted transcription factors into a 'hodological mosaic' within which coherent and largely segregated subgroups are specified to project to different targets in the spinal cord and brain stem. A specific set of these regionally diverse vestibular projection neurons functions as the central element that transforms vestibular sensory signals generated by active and passive head and body movements into motor output through the extraocular muscles. The large dynamic range of motion-related sensory signals requires an organization of VOR pathways as parallel, frequency-tuned, hierarchical connections from the sensory periphery to the motor output. We suggest that eyes, ears and functional connections subserving the VOR are vertebrate novelties that evolved into a functionally coherent motor control system in an almost stereotypic organization across vertebrate taxa.
Collapse
Affiliation(s)
- Hans Straka
- Department of Biology II, Ludwig Maximilians University Munich, Planegg, Germany
| | | | | |
Collapse
|
40
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
41
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
42
|
Maklad A, Reed C, Johnson NS, Fritzsch B. Anatomy of the lamprey ear: morphological evidence for occurrence of horizontal semicircular ducts in the labyrinth of Petromyzon marinus. J Anat 2014; 224:432-46. [PMID: 24438368 DOI: 10.1111/joa.12159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 02/03/2023] Open
Abstract
In jawed (gnathostome) vertebrates, the inner ears have three semicircular canals arranged orthogonally in the three Cartesian planes: one horizontal (lateral) and two vertical canals. They function as detectors for angular acceleration in their respective planes. Living jawless craniates, cyclostomes (hagfish and lamprey) and their fossil records seemingly lack a lateral horizontal canal. The jawless vertebrate hagfish inner ear is described as a torus or doughnut, having one vertical canal, and the jawless vertebrate lamprey having two. These observations on the anatomy of the cyclostome (jawless vertebrate) inner ear have been unchallenged for over a century, and the question of how these jawless vertebrates perceive angular acceleration in the yaw (horizontal) planes has remained open. To provide an answer to this open question we reevaluated the anatomy of the inner ear in the lamprey, using stereoscopic dissection and scanning electron microscopy. The present study reveals a novel observation: the lamprey has two horizontal semicircular ducts in each labyrinth. Furthermore, the horizontal ducts in the lamprey, in contrast to those of jawed vertebrates, are located on the medial surface in the labyrinth rather than on the lateral surface. Our data on the lamprey horizontal duct suggest that the appearance of the horizontal canal characteristic of gnathostomes (lateral) and lampreys (medial) are mutually exclusive and indicate a parallel evolution of both systems, one in cyclostomes and one in gnathostome ancestors.
Collapse
Affiliation(s)
- Adel Maklad
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Hearing is a particularly sensitive form of mechanosensation that relies on dedicated ion channels transducing sound-induced vibrations that hardly exceed Brownian motion. Attempts to molecularly identify these auditory transduction channels have put the focus on TRPs in ears. In Drosophila, hearing has been shown to involve TRPA, TRPC, TRPN, and TRPV subfamily members, with candidate auditory transduction channels including NOMPC (=TRPN1) and the TRPVs Nan and Iav. In vertebrates, TRPs are unlikely to form auditory transduction channels, yet most TRPs are expressed in inner ear tissues, and mutations in TRPN1, TRPVA1, TRPML3, TRPV4, and TRPC3/TRPC6 have been implicated in inner ear function. Starting with a brief introduction of fly and vertebrate auditory anatomies and transduction mechanisms, this review summarizes our current understanding of the auditory roles of TRPs.
Collapse
Affiliation(s)
- Damiano Zanini
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | | |
Collapse
|
44
|
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:5-18. [PMID: 24281353 DOI: 10.1007/s00359-013-0865-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.
Collapse
|
45
|
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T. Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 2013; 15:63-79. [PMID: 23331918 DOI: 10.1111/ede.12015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tetrapod auditory system transmits sound through the outer and middle ear to the organ of Corti or other sound pressure receivers of the inner ear where specialized hair cells translate vibrations of the basilar membrane into electrical potential changes that are conducted by the spiral ganglion neurons to the auditory nuclei. In other systems, notably the vertebrate limb, a detailed connection between the evolutionary variations in adaptive morphology and the underlying alterations in the genetic basis of development has been partially elucidated. In this review, we attempt to correlate evolutionary and partially characterized molecular data into a cohesive perspective of the evolution of the mammalian organ of Corti out of the tetrapod basilar papilla. We propose a stepwise, molecularly partially characterized transformation of the ancestral, vestibular developmental program of the vertebrate ear. This review provides a framework to decipher both discrete steps in development and the evolution of unique functional adaptations of the auditory system. The combined analysis of evolution and development establishes a powerful cross-correlation where conclusions derived from either approach become more meaningful in a larger context which is not possible through exclusively evolution or development centered perspectives. Selection may explain the survival of the fittest auditory system, but only developmental genetics can explain the arrival of the fittest auditory system. [Modified after (Wagner 2011)].
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA. bernd‐
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jarman AP, Groves AK. The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 2013; 24:438-47. [PMID: 23548731 DOI: 10.1016/j.semcdb.2013.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 03/21/2013] [Indexed: 11/29/2022]
Abstract
Mechanosensation is an evolutionarily ancient sensory modality seen in all main animal groups. Mechanosensation can be mediated by sensory neurons or by dedicated receptor cells that form synapses with sensory neurons. Evidence over the last 15-20 years suggests that both classes of mechanosensory cells can be specified by the atonal class of basic helix-loop-helix transcription factors. In this review we discuss recent work addressing how atonal factors specify mechanosensitive cells in vertebrates and invertebrates, and how the redeployment of these factors underlies the regeneration of mechanosensitive cells in some vertebrate groups.
Collapse
Affiliation(s)
- Andrew P Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
47
|
Joyce Tang W, Chen JS, Zeller RW. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 2013; 378:183-93. [PMID: 23545329 DOI: 10.1016/j.ydbio.2013.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
Collapse
Affiliation(s)
- W Joyce Tang
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
48
|
Elliott KL, Houston DW, Fritzsch B. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target. PLoS One 2013; 8:e55541. [PMID: 23383335 PMCID: PMC3562177 DOI: 10.1371/journal.pone.0055541] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/28/2012] [Indexed: 11/18/2022] Open
Abstract
The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons) to neural crest-derived ganglia (visceral motor neurons) or ear-derived hair cells (inner ear and lateral line efferent neurons). Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle) was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Douglas W. Houston
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
49
|
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC. Drosophila auditory organ genes and genetic hearing defects. Cell 2012; 150:1042-54. [PMID: 22939627 DOI: 10.1016/j.cell.2012.06.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/02/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The Drosophila auditory organ shares equivalent transduction mechanisms with vertebrate hair cells, and both are specified by atonal family genes. Using a whole-organ knockout strategy based on atonal, we have identified 274 Drosophila auditory organ genes. Only four of these genes had previously been associated with fly hearing, yet one in five of the genes that we identified has a human cognate that is implicated in hearing disorders. Mutant analysis of 42 genes shows that more than half of them contribute to auditory organ function, with phenotypes including hearing loss, auditory hypersusceptibility, and ringing ears. We not only discover ion channels and motors important for hearing, but also show that auditory stimulus processing involves chemoreceptor proteins as well as phototransducer components. Our findings demonstrate mechanosensory roles for ionotropic receptors and visual rhodopsins and indicate that different sensory modalities utilize common signaling cascades.
Collapse
Affiliation(s)
- Pingkalai R Senthilan
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kindt KS, Finch G, Nicolson T. Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell 2012; 23:329-41. [PMID: 22898777 DOI: 10.1016/j.devcel.2012.05.022] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/15/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Mechanosensitive cilia are vital to signaling and development across many species. In sensory hair cells, sound and movement are transduced by apical hair bundles. Each bundle is comprised of a single primary cilium (kinocilium) flanked by multiple rows of actin-filled projections (stereocilia). Extracellular tip links that interconnect stereocilia are thought to gate mechanosensitive channels. In contrast to stereocilia, kinocilia are not critical for hair-cell mechanotransduction. However, by sequentially imaging the structure of hair bundles and mechanosensitivity of individual lateral-line hair cells in vivo, we uncovered a central role for kinocilia in mechanosensation during development. Our data demonstrate that nascent hair cells require kinocilia and kinocilial links for mechanosensitivity. Although nascent hair bundles have correct planar polarity, the polarity of their responses to mechanical stimuli is initially reversed. Later in development, a switch to correctly polarized mechanosensitivity coincides with the formation of tip links and the onset of tip-link-dependent mechanotransduction.
Collapse
Affiliation(s)
- Katie S Kindt
- Howard Hughes Medical Institute, Oregon Hearing Research Center, 3181 SW Sam Jackson Park Road, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|