1
|
Stanajic-Petrovic G, Keck M, Barbe P, Urman A, Correia E, Isnard P, Duong Van Huyen JP, Chmeis K, Diarra SS, Palea S, Theodoro F, Nguyen AL, Castelli F, Pruvost A, Zhao W, Mendre C, Mouillac B, Bienaimé F, Robin P, Kessler P, Llorens-Cortes C, Servent D, Nozach H, Maillère B, Guo D, Truillet C, Gilles N. A Snake Toxin Derivative for Treatment of Hyponatremia and Polycystic Kidney Diseases. J Am Soc Nephrol 2025; 36:181-192. [PMID: 39431458 PMCID: PMC11801765 DOI: 10.1681/asn.0000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Key Points MQ232, a disulfide-bond reticulated peptide derived from a natural snake toxin, was optimized as a new aquaretic drug candidate. MQ232 showed very low acute and chronic toxicity in rat and a biodistribution in mice strongly in favor of the kidney organs. MQ232 induced a sole aquaretic effect and demonstrated high in vivo activities on hyponatremia and polycystic kidney disease models. Background Vaptans were developed at the end of the previous century as vasopressin type 2 receptor antagonists. Tolvaptan is the most prescribed vaptan for hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). However, its use is not as widespread as it should be due to price issues, a narrow therapeutic window, and some side effects. With the aim of discovering new efficient and safer vasopressin type 2 receptor antagonists, we screened animal venoms and identified several peptide toxins. Among them, mambaquaretin 1 (MQ1) displayed unique biological properties in that regard that it was the starting point for the development of a potential drug candidate. Methods Human T-cell assays and bioinformatics were used to mitigate MQ1 immunogenicity risk. MQ232 biodistribution in mice was performed by positron emission tomography. Pharmacodynamics, pharmacokinetics, and acute and chronic toxicity tests were performed on control rats. A rat experimental model of desmopressin-induced hyponatremia, ex vivo mice model of kidney cysts, and mice orthologous model of ADPKD were used to validate MQ232 efficacy in these pathologies. Results Three mutations were introduced in MQ1 to mitigate its immunogenicity risk. A fourth gain-of-function mutation was added to generate MQ232. MQ232's safety was demonstrated by a first toxic dose as high as 3000 nmol/kg and a strong kidney organ selectivity by positron emission tomography imaging, while showing almost no interaction with the liver. MQ232's efficacy was first demonstrated with an effective dose of 3 nmol/kg in a hyponatremic model and then in polycystic kidney models, on which MQ232 significantly reduced cyst growth. Conclusions We demonstrated, using diverse translational techniques and minimizing animal use, MQ232's safety and efficacy in several rodent models of hyponatremia and ADPKD.
Collapse
Affiliation(s)
- Goran Stanajic-Petrovic
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INSERM, CNRS, BioMaps, Orsay, France
| | - Mathilde Keck
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Peggy Barbe
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Apolline Urman
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INSERM, CNRS, BioMaps, Orsay, France
| | - Evelyne Correia
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Pierre Isnard
- Anatomie et Cytologie Pathologiques, CHU Necker-Enfants Malades, Paris, France
| | | | - Khawla Chmeis
- Université Paris-Saclay, CEA, INSERM, CNRS, BioMaps, Orsay, France
| | | | - Stefano Palea
- Humana Biosciences, Prologue Biotech, Labège, France
| | - Frederic Theodoro
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Anvi-Laëtitia Nguyen
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Florence Castelli
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Alain Pruvost
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | | | - Bernard Mouillac
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Frank Bienaimé
- Service d'Explorations Fonctionnelles, Département Croissance et Signalisation, Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Catherine Llorens-Cortes
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Bernard Maillère
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Charles Truillet
- Université Paris-Saclay, CEA, INSERM, CNRS, BioMaps, Orsay, France
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Oh JW, Shin MK, Park HR, Kim S, Lee B, Yoo JS, Chi WJ, Sung JS. PA-Win2: In Silico-Based Discovery of a Novel Peptide with Dual Antibacterial and Anti-Biofilm Activity. Antibiotics (Basel) 2024; 13:1113. [PMID: 39766503 PMCID: PMC11672609 DOI: 10.3390/antibiotics13121113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence and prevalence of antibiotic-resistant bacteria (ARBs) have become a serious global threat, as the morbidity and mortality associated with ARB infections are continuously rising. The activation of quorum sensing (QS) genes can promote biofilm formation, which contributes to the acquisition of drug resistance and increases virulence. Therefore, there is an urgent need to develop new antimicrobial agents to control ARB and prevent further development. Antimicrobial peptides (AMPs) are naturally occurring defense molecules in organisms known to suppress pathogens through a broad range of antimicrobial mechanisms. Methods: In this study, we utilized a previously developed deep-learning model to identify AMP candidates from the venom gland transcriptome of the spider Pardosa astrigera, followed by experimental validation. Results: PA-Win2 was among the top-scoring predicted peptides and was selected based on physiochemical features. Subsequent experimental validation demonstrated that PA-Win2 inhibits the growth of Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and multidrug-resistant P. aeruginosa (MRPA) strain CCARM 2095. The peptide exhibited strong bactericidal activity against P. aeruginosa, and MRPA CCARM 2095 through the depolarization of bacterial cytoplasmic membranes and alteration of gene expression associated with bacterial survival. In addition, PA-Win2 effectively inhibited biofilm formation and degraded pre-formed biofilms of P. aeruginosa. The gene expression study showed that the peptide treatment led to the downregulation of QS genes in the Las, Pqs, and Rhl systems. Conclusions: These findings suggest PA-Win2 as a promising drug candidate against ARB and demonstrate the potential of in silico methods in discovering functional peptides from biological data.
Collapse
Affiliation(s)
- Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Hye-Ran Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Sejun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| | - Byungjo Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Jung Sun Yoo
- Wildlife Quarantine Center, National Institute of Wildlife Disease Control and Prevention, Incheon 22382, Republic of Korea;
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (J.W.O.); (M.K.S.); (H.-R.P.); (S.K.)
| |
Collapse
|
3
|
Samianifard M, Tahoori F, Emami T, Zare Mirakabadi A, Nazari A. Proteomic Analysis and Immunoprofiling of Persian Horned Viper Venom, Pseudocerastes Persicus, from Central Part of Iran. ARCHIVES OF RAZI INSTITUTE 2024; 79:154-167. [PMID: 39192954 PMCID: PMC11345479 DOI: 10.32592/ari.2024.79.1.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2024]
Abstract
Numerous species of venomous snakes of medical importance exist in Iran. Pseudocerastes persicus (P. persicus), one of the medically important snakes, also called the Persian horned viper, has a geographical spread that extends to the east, southwest, and central areas of Iran and is endemic across the wider region. As a result, this species is responsible for many snakebite occurrences. Venom from P. persicus found in the central province of Semnan contains phospholipase A2 and L-amino acid oxidase activities, and high toxic potency. The venom was fractionated by reverse-phase high-performance liquid chromatography (HPLC) and analyzed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and two-dimensional electrophoresis. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), a range of components were identified, consistent with the biochemical and toxicological properties of the venom. Proteins identified from 2D electrophoresis and shotgun methods included metallo- and serine proteases, phospholipases, oxidases, and Kunitz trypsin inhibitors, along with many other components at lower qualitative abundance. This study provides a more detailed understanding of the protein profile of Iranian P. persicus venom, which can be effective in the production of an effective antidote against it. The analysis of the resulting data shows that there is a wide range of proteins in the venom of the Persian horned viper. This information can provide a better understanding of how venom is neutralized by polyclonal antivenom. Considering the wide presence of this snake and its related species in Iran and surrounding countries, knowing the venom protein profile of this family can be of great support to antivenom producers such as Razi Vaccine & Serum Research Institute in the preparation of regional antivenoms.
Collapse
Affiliation(s)
- M Samianifard
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - F Tahoori
- Department of Human Bacterial Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - T Emami
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - A Zare Mirakabadi
- Department of Venomous animal, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| | - A Nazari
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 31975/148, Iran
| |
Collapse
|
4
|
Dos Santos Arraes DR, Rodrigues ABL, Sanches PR, Costa Campos CE, Moreira da Silva de Almeida SS, Reis Ferreira Lima J, Dias Lima J, da Silva GA. Bioactive alkaloids from the venom of Dendrobatoidea Cope, 1865: a scoping review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:1-20. [PMID: 37889647 DOI: 10.1080/10937404.2023.2270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaina Reis Ferreira Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Jucivaldo Dias Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | | |
Collapse
|
5
|
Thumtecho S, Suteparuk S, Sitprija V. Pulmonary involvement from animal toxins: the cellular mechanisms. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230026. [PMID: 37727535 PMCID: PMC10506740 DOI: 10.1590/1678-9199-jvatitd-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Venomous animals and their venom have always been of human interest because, despite species differences, coevolution has made them capable of targeting key physiological components of our bodies. Respiratory failure from lung injury is one of the serious consequences of envenomation, and the underlying mechanisms are rarely discussed. This review aims to demonstrate how toxins affect the pulmonary system through various biological pathways. Herein, we propose the common underlying cellular mechanisms of toxin-induced lung injury: interference with normal cell function and integrity, disruption of normal vascular function, and provocation of excessive inflammation. Viperid snakebites are the leading cause of envenomation-induced lung injury, followed by other terrestrial venomous animals such as scorpions, spiders, and centipedes. Marine species, particularly jellyfish, can also inflict such injury. Common pulmonary manifestations include pulmonary edema, pulmonary hemorrhage, and exudative infiltration. Severe envenomation can result in acute respiratory distress syndrome. Pulmonary involvement suggests severe envenomation, thus recognizing these mechanisms and manifestations can aid physicians in providing appropriate treatment.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Suchai Suteparuk
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute and King Chulalongkorn Memorial
Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
Wang QQ, Lan XQ, Wei XS, Xu SM, Liu LZ, Bian XL, Zeng L, Guo XL, Guo YQ, Lee WH, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives metabolite release from small extracellular vesicles through channel formation. Zool Res 2023; 44:739-742. [PMID: 37443402 PMCID: PMC10415774 DOI: 10.24272/j.issn.2095-8137.2022.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Xin-Qiang Lan
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China
| | - Xue-Song Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Si-Man Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying-Qi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China. E-mail:
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
7
|
Liu LZ, Liu L, Shi ZH, Bian XL, Si ZR, Wang QQ, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives extracellular nutrient scavenging under cell nutrient deficiency. iScience 2023; 26:106598. [PMID: 37128610 PMCID: PMC10148134 DOI: 10.1016/j.isci.2023.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Nutrient acquisition is essential for animal cells. βγ-CAT is a pore-forming protein (PFP) and trefoil factor complex assembled under tight regulation identified in toad Bombina maxima. Here, we reported that B. maxima cells secreted βγ-CAT under glucose, glutamine, and pyruvate deficiency to scavenge extracellular proteins for their nutrient supply and survival. AMPK signaling positively regulated the expression and secretion of βγ-CAT. The PFP complex selectively bound extracellular proteins and promoted proteins uptake through endolysosomal pathways. Elevated intracellular amino acids, enhanced ATP production, and eventually prolonged cell survival were observed in the presence of βγ-CAT and extracellular proteins. Liposome assays indicated that high concentration of ATP negatively regulated the opening of βγ-CAT channels. Collectively, these results uncovered that βγ-CAT is an essential element in cell nutrient scavenging under cell nutrient deficiency by driving vesicular uptake of extracellular proteins, providing a new paradigm for PFPs in cell nutrient acquisition and metabolic flexibility.
Collapse
Affiliation(s)
- Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ru Si
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
- Corresponding author
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Corresponding author
| |
Collapse
|
8
|
Hu Y, Meng B, Yin S, Yang M, Li Y, Liu N, Li S, Liu Y, Sun D, Wang S, Wang Y, Fu Z, Wu Y, Pang A, Sun J, Wang Y, Yang X. Scorpion venom peptide HsTx2 suppressed PTZ-induced seizures in mice via the circ_0001293/miR-8114/TGF-β2 axis. J Neuroinflammation 2022; 19:284. [PMID: 36457055 PMCID: PMC9713996 DOI: 10.1186/s12974-022-02647-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Due to the complexity of the mechanisms involved in epileptogenesis, the available antiseizure drugs (ASDs) do not meet clinical needs; hence, both the discovery of new ASDs and the elucidation of novel molecular mechanisms are very important. METHODS BALB/c mice were utilized to establish an epilepsy model induced by pentylenetetrazol (PTZ) administration. The peptide HsTx2 was administered for treatment. Primary astrocyte culture, immunofluorescence staining, RNA sequencing, identification and quantification of mouse circRNAs, cell transfection, bioinformatics and luciferase reporter analyses, enzyme-linked immunosorbent assay, RNA extraction and reverse transcription-quantitative PCR, Western blot and cell viability assays were used to explore the potential mechanism of HsTx2 via the circ_0001293/miR-8114/TGF-β2 axis. RESULTS The scorpion venom peptide HsTx2 showed an anti-epilepsy effect, reduced the inflammatory response, and improved the circular RNA circ_0001293 expression decrease caused by PTZ in the mouse brain. Mechanistically, in astrocytes, circ_0001293 acted as a sponge of endogenous microRNA-8114 (miR-8114), which targets transforming growth factor-beta 2 (TGF-β2). The knockdown of circ_0001293, overexpression of miR-8114, and downregulation of TGF-β2 all reversed the anti-inflammatory effects and the influence of HsTx2 on the MAPK and NF-κB signaling pathways in astrocytes. Moreover, both circ_0001293 knockdown and miR-8114 overexpression reversed the beneficial effects of HsTx2 on inflammation, epilepsy progression, and the MAPK and NF-κB signaling pathways in vivo. CONCLUSIONS HsTx2 suppressed PTZ-induced epilepsy by ameliorating inflammation in astrocytes via the circ_0001293/miR-8114/TGF-β2 axis. Our results emphasized that the use of exogenous peptide molecular probes as a novel type of ASD, as well as to explore the novel endogenous noncoding RNA-mediated mechanisms of epilepsy, might be a promising research area.
Collapse
Affiliation(s)
- Yan Hu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.452826.fDepartment of Gynecology, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118 Yunnan China
| | - Buliang Meng
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Saige Yin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Meifeng Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yilin Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Naixin Liu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Shanshan Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yixiang Liu
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Dandan Sun
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Siyu Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yinglei Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zhe Fu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yutong Wu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ailan Pang
- grid.414902.a0000 0004 1771 3912Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650031 Yunnan China
| | - Jun Sun
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ying Wang
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Xinwang Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| |
Collapse
|
9
|
Eichberg J, Maiworm E, Oberpaul M, Czudai-Matwich V, Lüddecke T, Vilcinskas A, Hardes K. Antiviral Potential of Natural Resources against Influenza Virus Infections. Viruses 2022; 14:v14112452. [PMID: 36366550 PMCID: PMC9693975 DOI: 10.3390/v14112452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Influenza is a severe contagious disease caused by influenza A and B viruses. The WHO estimates that annual outbreaks lead to 3-5 million severe infections of which approximately 10% lead to the death of the patient. While vaccination is the cornerstone of prevention, antiviral drugs represent the most important treatment option of acute infections. Only two classes of drugs are currently approved for the treatment of influenza in numerous countries: M2 channel blockers and neuraminidase inhibitors. In some countries, additional compounds such as the recently developed cap-dependent endonuclease inhibitor baloxavir marboxil or the polymerase inhibitor favipiravir are available. However, many of these compounds suffer from poor efficacy, if not applied early after infection. Furthermore, many influenza strains have developed resistances and lost susceptibility to these compounds. As a result, there is an urgent need to develop new anti-influenza drugs against a broad spectrum of subtypes. Natural products have made an important contribution to the development of new lead structures, particularly in the field of infectious diseases. Therefore, this article aims to review the research on the identification of novel lead structures isolated from natural resources suitable to treat influenza infections.
Collapse
Affiliation(s)
- Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Elena Maiworm
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Markus Oberpaul
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Volker Czudai-Matwich
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute of Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
10
|
Liu B, Huang L, Xu R, Fan H, Wang Y. An Improved Isotope Labelling Method for Quantifying Deamidated Cobratide Using High-Resolution Quadrupole-Orbitrap Mass Spectrometry. Molecules 2022; 27:molecules27196154. [PMID: 36234709 PMCID: PMC9572859 DOI: 10.3390/molecules27196154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Protein deamidation can severely alter the physicochemical characteristics and biological functions of protein therapeutics. Cobratide is a non-addictive analgesic with wide clinical acceptance. However, the Asn residue at position 48 from the N-terminus of the cobratide amino acid sequence (N48) tends to degrade during purification, storage, and transport. This characteristic could severely affect the drug safety and clinical efficacy of cobratide. Traditional methods for quantitating deamidation reported in previous research are characterised by low efficiency and accuracy; the quality control of cobratide via this method is limited. Herein, we developed an improved 18O-labelling method based on the detection of a unique peptide (i.e., the protein fragment of cobratide containing the N48 deamidation hotspot after enzymolysis) using an Orbitrap high-resolution mass spectrometer to quantify deamidated cobratide. The limits of detection and quantification of this method reached 0.02 and 0.025 μM, respectively, and inter- and intra-day precision values of the method were <3%. The accuracy of the 18O-labelling strategy was validated by using samples containing synthesised peptides with a known ratio of deamidation impurities and also by comparing the final total deamidation results with our previously developed capillary electrophoresis method. The recoveries for deamidation (Asp), deamidation isomerisation (iso-Asp), and total deamidation were 101.52 ± 1.17, 102.42 ± 1.82, and 103.55 ± 1.07, respectively. The robustness of the method was confirmed by verifying the chromatographic parameters. Our results demonstrate the applicability of the 18O-labelling strategy for detecting protein deamidation and lay a robust foundation for protein therapeutics studies and drug quality consistency evaluations.
Collapse
Affiliation(s)
- Bo Liu
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| | - Lu Huang
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| | - Rongrong Xu
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| | - Huihong Fan
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
- Correspondence:
| | - Yue Wang
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, China
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Beijing 102629, China
| |
Collapse
|
11
|
Analysis of Structural Determinants of Peptide MS 9a-1 Essential for Potentiating of TRPA1 Channel. Mar Drugs 2022; 20:md20070465. [PMID: 35877758 PMCID: PMC9320628 DOI: 10.3390/md20070465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The TRPA1 channel is involved in a variety of physiological processes and its activation leads to pain perception and the development of inflammation. Peptide Ms 9a-1 from sea anemone Metridium senile is a positive modulator of TRPA1 and causes significant analgesic and anti-inflammatory effects by desensitization of TRPA1-expressing sensory neurons. For structural and functional analysis of Ms 9a-1, we produced four peptides—Ms 9a-1 without C-terminal domain (abbreviated as N-Ms), short C-terminal domain Ms 9a-1 alone (C-Ms), and two homologous peptides (Ms 9a-2 and Ms 9a-3). All tested peptides possessed a reduced potentiating effect on TRPA1 compared to Ms 9a-1 in vitro. None of the peptides reproduced analgesic and anti-inflammatory properties of Ms 9a-1 in vivo. Peptides N-Ms and C-Ms were able to reduce pain induced by AITC (selective TRPA1 agonist) but did not decrease AITC-induced paw edema development. Fragments of Ms 9a-1 did not effectively reverse CFA-induced thermal hyperalgesia and paw edema. Ms 9a-2 and Ms 9a-3 possessed significant effects and anti-inflammatory properties in some doses, but their unexpected efficacy and bell-shape dose–responses support the hypothesis of other targets involved in their effects in vivo. Therefore, activity comparison of Ms 9a-1 fragments and homologues peptides revealed structural determinants important for TRPA1 modulation, as well as analgesic and anti-inflammatory properties of Ms9a-1.
Collapse
|
12
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
13
|
Kowalski K, Marciniak P, Rychlik L. A new, widespread venomous mammal species: hemolytic activity of Sorex araneus venom is similar to that of Neomys fodiens venom. ZOOLOGICAL LETTERS 2022; 8:7. [PMID: 35672837 PMCID: PMC9172195 DOI: 10.1186/s40851-022-00191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce toxins in their salivary glands and use their venoms to hunt and store prey. Thus far, the toxicity and composition of shrew venoms have been studied only in two shrew species: the northern short-tailed shrew, Blarina brevicauda, and the Eurasian water shrew, Neomys fodiens. Venom of N. fodiens has potent paralytic activity which enables hunting and storing prey in a comatose state. Here, we assayed the hemolytic effects of extracts from salivary glands of N. fodiens and the common shrew, Sorex araneus, in erythrocytes of Pelophylax sp. frogs. We identified toxins in shrew venom by high-performance liquid chromatography coupled to tandem mass spectrometry. RESULTS Our results prove, confirming a suggestion made four centuries ago, that S. araneus is venomous. We also provide the first experimental evidence that shrew venoms produce potent hemolysis in frog erythrocytes. We found significant concentration-dependent effects of venoms of N. fodiens and S. araneus on hemolysis of red blood cells evaluated as hemoglobin release. Treatment of erythrocytes with N. fodiens venom at concentrations of 1.0 and 0.5 mg/ml and with S. araneus venom at concentration of 1.0 mg/ml caused an increased release of hemoglobin. Our findings confirm that hemolytic effects of N. fodiens venom are stronger than those produced by S. araneus venom. We identified four toxins in the venom of N. fodiens: proenkephalin, phospholipase A2 (PLA2), a disintegrin and metalloproteinase domain-containing protein (ADAM) and lysozyme C, as well as a non-toxic hyaluronidase. In the venom of S. araneus we found five toxins: proenkephalin, kallikrein 1-related peptidase, beta-defensin, ADAM and lysozyme C. PLA2 and ADAMs are likely to produce hemolysis in frog erythrocytes. CONCLUSIONS Our results clearly show that shrew venoms possess hemolytic action that may allow them to hunt larger prey. Since a member of the numerous genus Sorex is venomous, it is likely that venom production among shrews and other eulipotyphlans may be more widespread than it has previously been assumed.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
15
|
Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens 2021; 10:pathogens10121632. [PMID: 34959587 PMCID: PMC8707848 DOI: 10.3390/pathogens10121632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Protozoal infection is a lingering public health issue of great concern, despite efforts to produce drugs and vaccines against it. Recent breakthrough research has discovered alternative antiprotozoal agents encompassing the use of snake venoms and their components to cure these infections. This study collated the existing literature to examine the antiprotozoal effect of snake venoms and their fractions. Methods: We conducted a systematic review following the PRISMA guidelines. The PubMed and Embase databases were searched from their inception until 13 October 2021. Articles were screened at the title, abstract and full-text phases. Some additional studies were obtained through the manual search process. Results: We identified 331 studies via the electronic database and manual searches, of which 55 reporting the antiprotozoal effect of snake venoms and their components were included in the review. Around 38% of studies examined the effect of whole crude venoms, and a similar percentage evaluated the effect of a proportion of enzymatic phospholipase A2 (PLA2). In particular, this review reports around 36 PLA2 activities and 29 snake crude venom activities. We also report the notable phenomenon of synergism with PLA2 isoforms of Bothrops asper. Importantly, limited attention has been given so far to the antiprotozoal efficacies of metalloproteinase, serine protease and three-finger toxins, although these venom components have been identified as significant components of the dominant venom families. Conclusion: This study highlights the impact of snake venoms and their fractions on controlling protozoal infections and suggests the need to examine further the effectiveness of other venom components, such as metalloproteinase, serine protease and three-finger toxins. Future research questions in this field must be redirected toward synergism in snake venom components, based on pharmacological usage and in the context of toxicology. Ascertaining the effects of snake venoms and their components on other protozoal species that have not yet been studied is imperative.
Collapse
|
16
|
dos Santos AT, Cruz GS, Baptista GR. Anti-inflammatory activities of arthropod peptides: a systematic review. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200152. [PMID: 34795699 PMCID: PMC8564866 DOI: 10.1590/1678-9199-jvatitd-2020-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.
Collapse
Affiliation(s)
- Ariane Teixeira dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gandhi Rádis Baptista
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| |
Collapse
|
17
|
Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, Hu Y, Sun H, Fu Z, Wang Y, Li X, Tang J, Wang Y, Deng Z, Yang X. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. J Nanobiotechnology 2021; 19:309. [PMID: 34627291 PMCID: PMC8501717 DOI: 10.1186/s12951-021-01051-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. METHODS In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. RESULTS Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. CONCLUSIONS Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy.
Collapse
Affiliation(s)
- Pan Qin
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yi Meng
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Second People's Hospital of Yunnan Province and Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650021, China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Hu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huiling Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
18
|
Bhat SK, Joshi MB, Vasishta S, Jagadale RN, Biligiri SG, Coronado MA, Arni RK, Satyamoorthy K. P-I metalloproteinases and L-amino acid oxidases from Bothrops species inhibit angiogenesis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200180. [PMID: 34471403 PMCID: PMC8381740 DOI: 10.1590/1678-9199-jvatitd-2020-0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Snake venoms are composed of pharmacologically active proteins that are evolutionarily diverse, stable and specific to targets. Hence, venoms have been explored as a source of bioactive molecules in treating numerous diseases. Recent evidences suggest that snake venom proteins may affect the formation of new blood vessels. Excessive angiogenesis has been implicated in several pathologies including tumours, diabetic retinopathy, arthritis, inter alia. In the present study, we have examined the effects of P-I metalloproteinases isolated from Bothrops moojeni (BmMP-1) and Bothrops atrox (BaMP-1) and L-amino acid oxidases (LAAO) isolated from B. moojeni (BmLAAO) and B. atrox (BaLAAO) on biochemical and functional aspects of angiogenesis. METHODS P-I metalloproteinases and LAAO were purified from venom by molecular size exclusion and ion-exchange chromatography and subsequently confirmed using mass spectrometry. The P-I metalloproteinases were characterized by azocaseinolytic, fibrinogenolytic and gelatinase activity and LAAO activity was assessed by enzyme activity on L-amino acids. Influence of these proteins on apoptosis and cell cycle in endothelial cells was analysed by flow cytometry. The angiogenic activity was determined by in vitro 3D spheroid assay, Matrigel tube forming assay, and in vivo agarose plug transformation in mice. RESULTS P-I metalloproteinases exhibited azocaseinolytic activity, cleaved α and partially β chain of fibrinogen, and displayed catalytic activity on gelatin. LAAO showed differential activity on L-amino acids. Flow cytometry analysis indicated that both P-I metalloproteinases and LAAO arrested the cells in G0/G1 phase and further induced both necrosis and apoptosis in endothelial cells. In vitro, P-I metalloproteinases and LAAO exhibited significant anti-angiogenic properties in 3D spheroid and Matrigel models by reducing sprout outgrowth and tube formation. Using agarose plug transplants in mice harbouring P-I metalloproteinases and LAAO we demonstrated a marked disruption of vasculature at the periphery. CONCLUSION Our research suggests that P-I metalloproteinases and LAAO exhibit anti-angiogenic properties in vitro and in vivo.
Collapse
Affiliation(s)
- Shreesha K. Bhat
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B. Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sampara Vasishta
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Monika A. Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
El Bakary NM, Alsharkawy AZ, Shouaib ZA, Barakat EMS. Role of Bee Venom and Melittin on Restraining Angiogenesis and Metastasis in γ-Irradiated Solid Ehrlich Carcinoma-Bearing Mice. Integr Cancer Ther 2021; 19:1534735420944476. [PMID: 32735464 PMCID: PMC7401046 DOI: 10.1177/1534735420944476] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis and apoptosis evasion are common hallmarks of cancer. The present work was an endeavor to evaluate the influence of bee venom (BV) or its major constituent melittin (MEL) as antiapoptotic and angiogenic regulator modifier on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. BV (0.56 mg/kg/day) and MEL (500 µg/kg body weight/day) were injected intraperitoneally to mice bearing 1 cm3 solid tumor of Ehrlich ascites carcinoma (EAC) for 21 consecutive days. Mice were whole-body exposed to 1 Gray (Gy) of γ-radiation (2 fractionated doses). Treatment with BV or MEL markedly suppresses the proliferation of tumor in EAC mice. The concentrations of m-RNA for angiogenic factors (TNF-α, VEGF) as well as MMPs 2 and 9 activities and NO concentration were significantly decreased, combined with improvements in apoptotic regulators (caspase-3 activity) and normal cells redox tone (catalase and free radicals content) compared with EAC mice. Moreover, the histopathological investigation confirms the improvement exerted by BV or MEL in the EAC mice group or EAC + R group. Exposure to γ-radiation sustained the modulatory effect of BV on tumor when compared with EAC + BV mice. Convincingly, the role of BV or MEL as a natural antiangiogenic in the biological sequelae after radiation exposure is verified. Hence, BV and its major constituent MEL might represent a potential therapeutic strategy for increasing the radiation response of solid tumors.
Collapse
Affiliation(s)
- Nermeen M El Bakary
- National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | | | | |
Collapse
|
20
|
Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines 2021; 9:biomedicines9070819. [PMID: 34356883 PMCID: PMC8301361 DOI: 10.3390/biomedicines9070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.
Collapse
Affiliation(s)
- Nicolai Rügen
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
- BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
21
|
Internalization and membrane activity of the antimicrobial peptide CGA-N12. Biochem J 2021; 478:1907-1919. [PMID: 33955460 DOI: 10.1042/bcj20201006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) are conventional antibiotic alternatives due to their broad-spectrum antimicrobial activities and special mechanisms of action against pathogens. The antifungal peptide CGA-N12 was originally derived from human chromogranin A (CGA) and consists of the 65th to 76th amino acids of the CGA N-terminal region. In the present study, we found that CGA-N12 had fungicidal activity and exhibited time-dependent inhibition activity against Candida tropicalis. CGA-N12 entered the cells to exert its antagonist activity. The internalization of CGA-N12 was energy-dependent and accompanied by actin cytoskeleton-, clathrin-, sulfate proteoglycan-, endosome-, and lipid-depleting agent-mediated endocytosis. Moreover, the CGA-N12 internalization pathway was related to the peptide concentration. The effects of CGA-N12 on the cell membrane were investigated. CGA-N12 at a low concentration less than 4 × MIC100 did not destroy the cell membrane. While with increasing concentration, the damage to the cell membrane caused by CGA-N12 became more serious. At concentrations greater than 4 × MIC100, CGA-N12 destroyed the cell membrane integrity. Therefore, the membrane activity of CGA-N12 is concentration dependant.
Collapse
|
22
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
23
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
24
|
Abd El-Aziz TM, Soares AG, Stockand JD. Advances in venomics: Modern separation techniques and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122352. [PMID: 32971366 PMCID: PMC8174749 DOI: 10.1016/j.jchromb.2020.122352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Snake venoms are complex chemical mixtures of biologically active proteins and non-protein components. Toxins have a wide range of targets and effects to include ion channels and membrane receptors, and platelet aggregation and platelet plug formation. Toxins target these effectors and effects at high affinity and selectivity. From a pharmacological perspective, snake venom compounds are a valuable resource for drug discovery and development. However, a major challenge to drug discovery using snake venoms is isolating and analyzing the bioactive proteins and peptides in these complex mixtures. Getting molecular information from complex mixtures such as snake venoms requires proteomic analyses, generally combined with transcriptomic analyses of venom glands. The present review summarizes current knowledge and highlights important recent advances in venomics with special emphasis on contemporary separation techniques and bioinformatics that have begun to elaborate the complexity of snake venoms. Several analytical techniques such as two-dimensional gel electrophoresis, RP-HPLC, size exclusion chromatography, ion exchange chromatography, MALDI-TOF-MS, and LC-ESI-QTOF-MS have been employed in this regard. The improvement of separation approaches such as multidimensional-HPLC, 2D-electrophoresis coupled to soft-ionization (MALDI and ESI) mass spectrometry has been critical to obtain an accurate picture of the startling complexity of venoms. In the case of bioinformatics, a variety of software tools such as PEAKS also has been used successfully. Such information gleaned from venomics is important to both predicting and resolving the biological activity of the active components of venoms, which in turn is key for the development of new drugs based on these venom components.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| |
Collapse
|
25
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
26
|
Lin B, Zhang JR, Lu HJ, Zhao L, Chen J, Zhang HF, Wei XS, Zhang LY, Wu XB, Lee WH. Immunoreactivity and neutralization study of Chinese Bungarus multicinctus antivenin and lab-prepared anti-bungarotoxin antisera towards purified bungarotoxins and snake venoms. PLoS Negl Trop Dis 2020; 14:e0008873. [PMID: 33253321 PMCID: PMC7728252 DOI: 10.1371/journal.pntd.0008873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/10/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
Bungarus multicinctus is the most venomous snake distributed in China and neighboring countries of Myanmar, Laos, north Vietnam and Thailand. The high mortality rate of B. multicinctus envenomation is attributed to the lethal components of α-, β-, γ- and κ- bungarotoxins contained in the venom. Although anti-B. multicinctus sera were produced in Shanghai, Taiwan and Vietnam, the most widely clinic used product was term as B. multicinctus antivenin and manufactured by Shanghai Serum Bio-technology Co. Ltd. In the present investigation, high purity α-, β- and γ-bungarotoxins were separately isolated from B. multicinctus crude venom. Rabbit anti- α-, β- and γ-bungarotoxin antisera were prepared by common methods, respectively. LD50 values of α-, β- and γ-bungarotoxins were systematically determined via three administration pathways (intraperitoneal, intramuscular and intravenous injections) in Kunming mice. LD50 values of β-bungarotoxin were closely related with injection routines but those of both α- and γ-bungarotoxins were not dependent on the injection routines. Commercial B. multicinctus antivenin showed strong immunoreaction with high molecular weight fractions of the B. multicinctus but weakly recognized low molecular weight fractions like α- and γ-bungarotoxins. Although B. multicinctus antivenin showed immunoreaction with high molecular weight fractions of Bungarus fasciatus, Naja atra, Ophiophagus hannah venoms but the antivenin only demonstrated animal protection efficacy against O. hannah venom. These results indicated that the high molecular weight fractions of the O. hannah played an important role in venom lethality but those of B. fasciatus and N. atra did not have such a role.
Collapse
Affiliation(s)
- Bo Lin
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Rui Zhang
- Nanshan School, Guangzhou Medical University, Guangzhou, Guandong, China
| | - Hui-Juan Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Hong-Fei Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Song Wei
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liang-Yu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Bing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
27
|
Liu ZC, Liang JY, Lan XQ, Li T, Zhang JR, Zhao F, Li G, Chen PY, Zhang Y, Lee WH, Zhao F. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zool Res 2020; 41:138-147. [PMID: 31945809 PMCID: PMC7109010 DOI: 10.24272/j.issn.2095-8137.2020.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.
Collapse
Affiliation(s)
- Zi-Chao Liu
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Engineering Research Center for Exploitation and Utilization of Leech Resources in Universities of Yunnan Province, School of Agronomy and Life Sciences, Kunming University, Kunming, Yunnan 650214, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xin-Qiang Lan
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Tao Li
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Jia-Rui Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Nanshan College, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Fang Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China.,Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Geng Li
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Pei-Yi Chen
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail: leewh@mail. kiz.ac.cn
| | - Feng Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China.,Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai 200032, China. E-mail:
| |
Collapse
|
28
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Jia Y, Lopez I, Kowalski P. Toxin transcripts in Crotalus atrox venom and in silico structures of toxins. JOURNAL OF VENOM RESEARCH 2020; 10:18-22. [PMID: 32774833 PMCID: PMC7314381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022]
Abstract
The western diamondback rattlesnake (Crotalus atrox) is a common and widespread North American pit viper species, and its venom possesses medical applications. In this research, we identified 14 of the most common transcripts encoding 11 major venom toxins including transcripts for a three-finger toxin (3FTx) from the crude venom of C. atrox. In silico three-dimensional (3D) structures of 9 venom toxins were predicted by using deduced toxin amino acid sequences and a computer programme-MODELLER. The accuracy of all predicted toxin structures was evaluated by five stereochemical structure parameters including discrete optimised protein energy (DOPE) score, root mean square deviation (RMSD), Z-score, overall quality factor (ERRAT), and φ/ψ dihedral angle distribution of toxin backbone Cα residues, resulting that the overall predicted models are satisfied quality evaluation checks. Our present toxin transcripts and simulated individual toxin structures are important not only for revealing species-specific venom gene expression profiles, but also for predicting the toxin-toxin interactions and designing the structure-based toxin inhibitors for the treatment of snakebites.
Collapse
Affiliation(s)
- Ying Jia
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Ivan Lopez
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| | - Paulina Kowalski
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
| |
Collapse
|
30
|
Wang Q, Bian X, Zeng L, Pan F, Liu L, Liang J, Wang L, Zhou K, Lee W, Xiang Y, Li S, Teng M, Li X, Guo X, Zhang Y. A cellular endolysosome-modulating pore-forming protein from a toad is negatively regulated by its paralog under oxidizing conditions. J Biol Chem 2020; 295:10293-10306. [PMID: 32499370 DOI: 10.1074/jbc.ra120.013556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. βγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of βγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of βγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.
Collapse
Affiliation(s)
- Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xianling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei Pan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jinyang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lingyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Kaifeng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sheng'an Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
31
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
32
|
Yang J, Zhang H, Sun S, Wang X, Guan Y, Mi Q, Zeng W, Xiang H, Zhu H, Zou X, You Y, Xiang Y, Gao Q. Autophagy and Hsp70 activation alleviate oral epithelial cell death induced by food-derived hypertonicity. Cell Stress Chaperones 2020; 25:253-264. [PMID: 31975220 PMCID: PMC7058754 DOI: 10.1007/s12192-020-01068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
Abstract
Stable intracellular and intercellular osmolarity is vital for all physiological processes. Although it is the first organ that receives food, the osmolarity around the mouth epithelium has never been systematically investigated. We found that oral epithelial cells are a population of ignored cells routinely exposed to hypertonic environments mainly composed of saline, glucose, etc. in vivo after chewing food. By using cultured oral epithelial cells as an in vitro model, we found that the hypotonic environments caused by both high NaCl and high glucose induced cell death in a dose- and time-dependent manner. Transcriptomics revealed similar expression profiles after high NaCl and high glucose stimulation. Most of the common differentially expressed genes were enriched in "mitophagy" and "autophagy" according to KEGG pathway enrichment analysis. Hypertonic stimulation for 1 to 6 h resulted in autophagosome formation. The activation of autophagy protected cells from high osmolarity-induced cell death. The activation of Hsp70 by the pharmacological activator handelin significantly improved the cell survival rate after hypertonic stimulation. The protective role of Hsp70 activation was partially dependent on autophagy activation, indicating a crosstalk between Hsp70 and autophagy in hypertonic stress response. The extract of the handelin-containing herb Chrysanthemum indicum significantly protected oral epithelial cells from hypertonic-induced death, providing an inexpensive way to protect against hypertonic-induced oral epithelial damage. In conclusion, the present study emphasized the importance of changes in osmolarity in oral health for the first time. The identification of novel compounds or herbal plant extracts that can activate autophagy or HSPs may contribute to oral health and the food industry.
Collapse
Affiliation(s)
- Ji Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Huijie Zhang
- Key Laboratory of Human Aging in Jiangxi Province, Human Aging Research Institute, Nanchang University, No. 999 Xuefu Road, Nanchang, 330031, China
| | - Sujiao Sun
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, No.32 Jiashibo Road, Dali, 532901, China
| | - Xue Wang
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 West Chunrong Road, Kunming, 650504, China
| | - Ying Guan
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Wanli Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Haiying Xiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Huadong Zhu
- Key Laboratory of Human Aging in Jiangxi Province, Human Aging Research Institute, Nanchang University, No. 999 Xuefu Road, Nanchang, 330031, China
| | - Xin Zou
- Key Laboratory of Human Aging in Jiangxi Province, Human Aging Research Institute, Nanchang University, No. 999 Xuefu Road, Nanchang, 330031, China
| | - Yunfei You
- Key Laboratory of Human Aging in Jiangxi Province, Human Aging Research Institute, Nanchang University, No. 999 Xuefu Road, Nanchang, 330031, China
| | - Yang Xiang
- Key Laboratory of Human Aging in Jiangxi Province, Human Aging Research Institute, Nanchang University, No. 999 Xuefu Road, Nanchang, 330031, China.
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China.
| |
Collapse
|
33
|
Patel D, Kuyucak S, Doupnik CA. Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels. Biochemistry 2020; 59:836-850. [PMID: 31990535 DOI: 10.1021/acs.biochem.9b01098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tertiapin (TPN) is a 21 amino acid venom peptide from Apis mellifera that inhibits certain members of the inward rectifier potassium (Kir) channel family at a nanomolar affinity with limited specificity. Structure-based computational simulations predict that TPN behaves as a pore blocker; however, the molecular determinants mediating block of neuronal Kir3 channels have been inconclusive and unvalidated. Here, using molecular docking and molecular dynamics (MD) simulations with 'potential of mean force' (PMF) calculations, we investigated the energetically most favored interaction of TPN with several Kir3.x channel structures. The resulting binding model for Kir3.2-TPN complexes was then tested by targeted mutagenesis of the predicted contact sites, and their impact on the functional channel block was measured electrophysiologically. Together, our findings indicate that a high-affinity TPN block of Kir3.2 channels involves a pore-inserting lysine side chain requiring (1) hydrophobic interactions at a phenylalanine ring surrounding the channel pore and (2) electrostatic interactions with two adjacent Kir3.2 turret regions. Together, these interactions collectively stabilize high-affinity toxin binding to the Kir3.2 outer vestibule, which orients the ε-amino group of TPN-K21 to occupy the outermost K+ binding site of the selectivity filter. The structural determinants for the TPN block described here also revealed a favored subunit arrangement for assembled Kir3.x heteromeric channels, in addition to a multimodal binding capacity of TPN variants consistent with the functional dyad model for polybasic peptide pore blockers. These novel findings will aid efforts in re-engineering the TPN pharmacophore to develop peptide variants having unique and distinct Kir channel blocking properties.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- School of Physics , University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Serdar Kuyucak
- School of Physics , University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Craig A Doupnik
- Department of Molecular Pharmacology & Physiology , University of South Florida College of Medicine , 12901 Bruce B. Downs Boulevard , Tampa , Florida 33612 , United States
| |
Collapse
|
34
|
Lassalle D, Tetreau G, Pinaud S, Galinier R, Crickmore N, Gourbal B, Duval D. Glabralysins, Potential New β-Pore-Forming Toxin Family Members from the Schistosomiasis Vector Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010065. [PMID: 31936048 PMCID: PMC7016736 DOI: 10.3390/genes11010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, we analyzed a new family of potential immune effectors and characterized five new genes that were named Glabralysins. The five Glabralysin genes showed different genomic structures and the high degree of amino acid identity between the Glabralysins, and the presence of the conserved ETX/MTX2 domain, support the hypothesis that they are pore-forming toxins. In addition, tertiary structure prediction confirms that they are structurally related to a subset of Cry toxins from Bacillus thuringiensis, including Cry23, Cry45, and Cry51. Finally, we investigated their gene expression profiles in snail tissues and demonstrated a mosaic transcription. We highlight the specificity in Glabralysin expression following immune stimulation with bacteria, yeast or trematode parasites. Interestingly, one Glabralysin was found to be expressed in immune-specialized hemocytes, and two others were induced following parasite exposure.
Collapse
Affiliation(s)
- Damien Lassalle
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Guillaume Tetreau
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Silvain Pinaud
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Richard Galinier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Benjamin Gourbal
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - David Duval
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
- Correspondence:
| |
Collapse
|
35
|
Bv8-Like Toxin from the Frog Venom of Amolops jingdongensis Promotes Wound Healing via the Interleukin-1 Signaling Pathway. Toxins (Basel) 2019; 12:toxins12010015. [PMID: 31905801 PMCID: PMC7020442 DOI: 10.3390/toxins12010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 11/28/2022] Open
Abstract
Prokineticins are highly conserved small peptides family expressed in all vertebrates, which contain a wide spectrum of functions. In this study, a prokineticin homolog (Bv8-AJ) isolated from the venom of frog Amolops jingdongensis was fully characterized. Bv8-AJ accelerated full-thickness wounds healing of mice model by promoting the initiation and the termination of inflammatory phase. Moreover, Bv8-AJ exerted strong proliferative effect on fibroblasts and keratinocytes isolated from newborn mice by activating interleukin (IL)-1 production. Our findings indicate that Bv8 is a potent wound healing regulator and may reveal the mechanism of rapid wound-healing in amphibian skins.
Collapse
|
36
|
Barkan NP, Chevalier M, Pradervand JN, Guisan A. Alteration of Bumblebee Venom Composition toward Higher Elevation. Toxins (Basel) 2019; 12:toxins12010004. [PMID: 31861682 PMCID: PMC7020474 DOI: 10.3390/toxins12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, for either predation or defense. Bumblebees, which occur in various habitats due to their unique thermoregulatory properties, mainly use venom for defense. Herein, we conducted an exploratory analysis of the venom composition of a bumblebee species (Bombus pascuorum) along an elevation gradient in the western Swiss Alps using shot-gun proteomic approaches to assess whether their defense mechanism varies along the gradient. The gradient was characterized by high temperatures and low humidity at low elevations and low temperatures and high humidity at high elevations. Venom composition is changing along the elevation gradient, with proteomic variation in the abundances of pain-inducing and allergenic proteins. In particular, the abundance of phospholipase A2-like, the main component of bumblebee venom, gradually decreases toward higher elevation (lower temperature), suggesting venom alteration and thus a decrease in bumblebee defense towards harsher environments. Larger datasets may complement this study to validate the observed novel trends.
Collapse
Affiliation(s)
- Nezahat Pınar Barkan
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
| | - Mathieu Chevalier
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
| | - Jean-Nicolas Pradervand
- Swiss Ornithological Institute, Valais Field Station, Rue du Rhône 11, CH-1950 Sion, Switzerland;
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Géopolis, Lausanne, Switzerland
- Correspondence: ; Tel.: +41-(0)21-692-42-54
| |
Collapse
|
37
|
Yao Z, Kamau PM, Han Y, Hu J, Luo A, Luo L, Zheng J, Tian Y, Lai R. The Latoia consocia Caterpillar Induces Pain by Targeting Nociceptive Ion Channel TRPV1. Toxins (Basel) 2019; 11:toxins11120695. [PMID: 31783580 PMCID: PMC6950366 DOI: 10.3390/toxins11120695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Accidental contact with caterpillar bristles causes local symptoms such as severe pain, intense heat, edema, erythema, and pruritus. However, there is little functional evidence to indicate a potential mechanism. In this study, we analyzed the biological characteristics of the crude venom from the larval stage of Latoia consocia living in South-West China. Intraplantar injection of the venom into the hind paws of mice induced severe acute pain behaviors in wild type (WT) mice; the responses were much reduced in TRPV1-deficit (TRPV1 KO) mice. The TRPV1-specific inhibitor, capsazepine, significantly attenuated the pain behaviors. Furthermore, the crude venom evoked strong calcium signals in the dorsal root ganglion (DRG) neurons of WT mice but not those of TRPV1 KO mice. Among the pain-related ion channels we tested, the crude venom only activated the TRPV1 channel. To better understand the venom components, we analyzed the transcriptome of the L. consocia sebaceous gland region. Our study suggests that TRPV1 serves as a primary nociceptor in caterpillar-induced pain and forms the foundation for elucidating the pain-producing mechanism.
Collapse
Affiliation(s)
- Zhihao Yao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmei Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, No.44, Xiaohongshan, Wuchang District/Huangjin Industrial Park, Zhengdian Street, Jiangxia District, Wuhan 430207, China
- Correspondence: (L.L.); (J.Z.); (Y.T.); (R.L.)
| |
Collapse
|
38
|
Yao YG, Shen H. From our roots, we grow. Zool Res 2019; 40:471-475. [PMID: 31631589 PMCID: PMC6822935 DOI: 10.24272/j.issn.2095-8137.2019.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 11/07/2022] Open
Abstract
Located at the head of the Indo-Burma biodiversity hotspot, the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences (CAS), serves as China's main center for research into the diverse animal and ecological resources of southwestern China, Eastern Himalayas, and Southeast Asia. As of October 2019, it has been 60 years since the inception of KIZ. Since 1959, strong roots have been laid down by generations of researchers, allowing KIZ to grow and evolve into a comprehensive research institution renowned for its remarkable achievements in evolutionary mechanisms of animal biodiversity, animal resources protection, and sustainable utilization. It is now recognized as "a major powerhouse in evolutionary biology research in China" and is"establishing itself in the world stage" (Overseas Experts Review Committee, organized by the Bureau of Development Planning, CAS, during international evaluation in 2014).To celebrate the 60th anniversary of KIZ and the 70th anniversary of CAS, Zoological Research presents this commemorative issue, composed primarily of contributions from KIZ researchers. In addition, it is our great honor to provide here a brief retrospective of the pioneering work undertaken by the earlier scientists at KIZ and recent achievements, which will hopefully serve to motivate and inspire present and future successors.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Hua Shen
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
39
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
40
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|
41
|
Aguiar WDS, Galizio NDC, Serino-Silva C, Sant’Anna SS, Grego KF, Tashima AK, Nishiduka ES, de Morais-Zani K, Tanaka-Azevedo AM. Comparative compositional and functional analyses of Bothrops moojeni specimens reveal several individual variations. PLoS One 2019; 14:e0222206. [PMID: 31513632 PMCID: PMC6742229 DOI: 10.1371/journal.pone.0222206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022] Open
Abstract
Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.
Collapse
Affiliation(s)
- Weslei da Silva Aguiar
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | | | | | | | | | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| |
Collapse
|
42
|
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00218] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Guo XL, Liu LZ, Wang QQ, Liang JY, Lee WH, Xiang Y, Li SA, Zhang Y. Endogenous pore-forming protein complex targets acidic glycosphingolipids in lipid rafts to initiate endolysosome regulation. Commun Biol 2019; 2:59. [PMID: 30775460 PMCID: PMC6370762 DOI: 10.1038/s42003-019-0304-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. βγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of βγ-CAT remain elusive. Here, the actions of βγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of βγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of βγ-CAT. Finally, the ability of βγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.
Collapse
Affiliation(s)
- Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
44
|
Alajmi R, Al-ghamdi S, Barakat I, Mahmoud A, Abdon N, Al-Ahidib M, Abdel-Gaber R. Antimicrobial Activity of Two Novel Venoms from Saudi Arabian Scorpions (Leiurus quinquestriatus and Androctonus crassicauda). Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09816-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Tamadon H, Ghasemi Z, Ghasemi F, Hosseinmardi N, Vatanpour H, Janahmadi M. Characterization of Functional Effects of Two New Active Fractions Isolated From Scorpion Venom on Neuronal Ca 2+ Spikes: A Possible Action on Ca 2+-Dependent Dependent K + Channels. Basic Clin Neurosci 2019. [PMID: 31031893 PMCID: PMC6484188 DOI: 10.32598/bcn.9.10.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION It is a long time that natural toxin research is conducted to unlock the medical potential of toxins. Although venoms-toxins cause pathophysiological conditions, they may be effective to treat several diseases. Since toxins including scorpion toxins target voltage-gated ion channels, they may have profound effects on excitable cells. Therefore, elucidating the cellular and electrophysiological impacts of toxins, particularly scorpion toxins would be helpful in future drug development opportunities. METHODS Intracellular recording was made from F1 cells of Helix aspersa in the presence of calcium Ringer solution in which Na+ and K+ channels were blocked. Then, the modulation of channel function in the presence of extracellular application of F4 and F6 toxins and kaliotoxin (KTX; 50 nM and 1 μM) was examined by assessing the electrophysiological characteristics of calcium spikes. RESULTS The two active toxin fractions, similar to KTX, a known Ca2+-activated K+ channel blocker, reduced the amplitude of AHP, enhanced the firing frequency of calcium spikes and broadened the duration of Ca2+ spikes. Therefore, it might be inferred that these two new fractions induce neuronal hyperexcitability possibly, in part, by blocking calcium-activated potassium channel current. However, this supposition requires further investigation using voltage clamping technique. CONCLUSION These toxin fractions may act as blocker of calcium-activated potassium channels.
Collapse
Affiliation(s)
- Hanieh Tamadon
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, School of Medicine, Tarbiat
Modares University, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vatanpour
- Department of Toxicology and Pharmacology, School of
Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Author: Mahyar
Janahmadi, PhD.Address: Department of Physiology, Neuroscience Research
Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Tel: +98 (21) 22439971
E-mail:;
| |
Collapse
|
46
|
Anti-Breast Cancer Activity of Latroeggtoxin-V Mined from the Transcriptome of Spider Latrodectus tredecimguttatus Eggs. Toxins (Basel) 2018; 10:toxins10110451. [PMID: 30400202 PMCID: PMC6266733 DOI: 10.3390/toxins10110451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
As a black widow spider, Latrodectus tredecimguttatus has poisonous components not only in venomous glands but also in eggs. Our previous work had carried out a transcriptome analysis of the spider eggs in an attempt to probe into the molecular basis of the egg toxicity. A proteinaceous toxin, named Latroeggtoxin-V, was mined from the identified transcriptome. In this study, the gene of Latroeggtoxin-V was cloned and heterologously expressed, and the anticancer activity of the recombinant Latroeggtoxin-V (rLatroeggtoxin-V) was characterized. Activity assay found that rLatroeggtoxin-V could selectively act on breast cancer line MDA-MB-231 cells, not only arresting their cell cycle, inhibiting their proliferation and migration, but also inducing their apoptosis. Bioinformatics analysis suggested that Latroeggtoxin-V belongs to the ATPase inhibitor protein family and the further activity assay showed that the rLatroeggtoxin-V inhibited the activity of the Na+/K+-ATPase in MDA-MB-231 cells in a concentration-dependent manner, suggesting that the anticancer activity of Latroeggtoxin-V is based on its affecting the ion transport and receptor functions of Na+/K+-ATPase. The present work not only laid the foundation for the utilization of Latroeggtoxin-V in the anticancer drug development and the related fields, but also provided a new paradigm for exploration of the proteinaceous toxins under the direction of transcriptomics and bioinformatics.
Collapse
|
47
|
Yap WY, Hwang JS. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules 2018; 23:E2537. [PMID: 30287801 PMCID: PMC6222686 DOI: 10.3390/molecules23102537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
48
|
Sun T, Zhan B, Zhang W, Qin D, Xia G, Zhang H, Peng M, Li SA, Zhang Y, Gao Y, Lee WH. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine 2018; 13:5771-5786. [PMID: 30310280 PMCID: PMC6165789 DOI: 10.2147/ijn.s156206] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Nonscar wound healing is a desirable treatment for cutaneous wounds worldwide. Peptide OH-CATH30 (OH30) from king cobra can selectively regulate the innate immunity and create an anti-inflammatory micro-environment which might benefit nonscar wound healing. Purpose To overcome the enzymatic digestion and control release of OH30, OH30 encapsulated in carboxymethyl chitosan nanoparticles (CMCS-OH30 NP) were prepared and their effects on wound healing were evaluated. Methods CMCS-OH30 NP were prepared by mild ionic gelation method and properties of the prepared CMCS-OH30 NP were determined by dynamic light scattering. Encapsulation efficiency, stability and release profile of OH30 from prepared CMCS-OH30 NP were determined by HPLC. Cytotoxicity, cell migration and cellular uptake of CMCS-OH30 NP were determined by conventional methods. The effects of prepared CMCS-OH30 NP on the wound healing was investigated by full-thickness excision animal models. Results The release of encapsulated OH30 from prepared CMCS-OH30 NP was maintained for at least 24 h in a controlled manner. CMCSOH30 NP enhanced the cell migration but had no effects on the metabolism and proliferation of keratinocytes. In the full-thickness excision animal models, the CMCS-OH30 NP treatment significantly accelerated the wound healing compared with CMCS or OH30 administration alone. Histopathological examination suggested that CMCS-OH30 NP promoted wound healing by enhancing the granulation tissue formation through the re-epithelialized and neovascularized composition. CMCS-OH30 NP induced a steady anti-inflammatory cytokine IL10 expression but downregulated the expressions of several pro-inflammatory cytokines. Conclusion The prepared biodegradable drug delivery system accelerates the healing and shows better prognosis because of the combined effects of OH30 released from the nanoparticles.
Collapse
Affiliation(s)
- Tongyi Sun
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Bo Zhan
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China, .,Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Weifen Zhang
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Di Qin
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Guixue Xia
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Huijie Zhang
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China, .,Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Meiyu Peng
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Sheng-An Li
- Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Yun Zhang
- Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Wen-Hui Lee
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China, .,Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| |
Collapse
|
49
|
Diniz MRV, Paiva ALB, Guerra-Duarte C, Nishiyama MY, Mudadu MA, de Oliveira U, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13:e0200628. [PMID: 30067761 PMCID: PMC6070231 DOI: 10.1371/journal.pone.0200628] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- High-Throughput Nucleotide Sequencing
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Peptides/metabolism
- Proteomics
- Sequence Alignment
- Sequence Analysis, DNA
- Spider Venoms/metabolism
- Spiders/genetics
- Spiders/metabolism
- Toxins, Biological/genetics
- Toxins, Biological/metabolism
- Transcriptome
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Marcelo R. V. Diniz
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L. B. Paiva
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Y. Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Ursula de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Márcia H. Borges
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - John R. Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | |
Collapse
|
50
|
Qi RH, Chen Y, Guo ZL, Zhang F, Fang Z, Huang K, Yu HN, Wang YP. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zool Res 2018; 40:94-101. [PMID: 30127328 PMCID: PMC6378563 DOI: 10.24272/j.issn.2095-8137.2018.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a group of gene-encoded small peptides that play pivotal roles in the host immune system of multicellular organisms. Cathelicidins are an important family of AMPs that exclusively exist in vertebrates. Many cathelicidins have been identified from mammals, birds, reptiles and fish. To date, however, cathelicidins from amphibians are poorly understood. In the present study, two novel cathelicidins (OL-CATH1 and 2) were identified and studied from the odorous frog Odorrana livida. Firstly, the cDNAs encoding the OL-CATHs (780 and 735 bp in length, respectively) were successfully cloned from a lung cDNA library constructed for the frog. Multi-sequence alignment was carried out to analyze differences between the precursors of the OL-CATHs and other representative cathelicidins. Mature peptide sequences of OL-CATH1 and 2 were predicted (33 amino acid residues) and their secondary structures were determined (OL-CATH1 showed a random-coil conformation and OL-CATH2 demonstrated a-helical conformation). Furthermore, OL-CATH1 and 2 were chemically synthesized and their in vitro functions were determined. Antimicrobial and bacterial killing kinetic analyses indicated that OL-CATH2 demonstrated relatively moderate and rapid antimicrobial potency and exhibited strong anti-inflammatory activity. At very low concentrations (10 μg/mL), OL-CATH2 significantly inhibited the lipopolysaccharide (LPS)-induced transcription and production of pro-inflammatory cytokines TNF-a, IL-1b and IL-6 in mouse peritoneal macrophages. In contrast, OL-CATH1 did not exhibit any detectable antimicrobial or anti-inflammatory activities. Overall, identification of these OL-CATHs from O. livida enriches our understanding of the functions of cathelicidins in the amphibian immune system. The potent antimicrobial and anti-inflammatory activities of OL-CATH2 highlight its potential as a novel candidate in anti-infective drug development.
Collapse
Affiliation(s)
- Ruo-Han Qi
- College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Yan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Zhi-Lai Guo
- College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Fen Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Zheng Fang
- College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Kai Huang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou Jiangsu 215123, China
| | - Hai-Ning Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian Liaoning 116023, China; E-mail:
| | - Yi-Peng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China; E-mail:
| |
Collapse
|