1
|
Du X, Liu R, Jiang Z, Zhang C, Yang Z, Hu S, Zhang Z. Chondrocyte lysates activate NLRP3 inflammasome-induced pyroptosis in synovial fibroblasts to exacerbate knee synovitis by downregulating caveolin-1. Arthritis Res Ther 2025; 27:104. [PMID: 40375346 PMCID: PMC12083164 DOI: 10.1186/s13075-025-03573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Synovitis, among the most common signs of early-stage osteoarthritis (OA), is mainly mediated by fibroblast-like synoviocytes (FLSs). Cartilage destruction creates chondrocyte lysates (CLs) that activate synovial inflammation. A comprehensive understanding of chondrocyte-FLS communication might offer novel, specific therapeutic targets for treating synovitis and OA. Hence, we sought to uncover the specific role of CLs in OA-FLSs and synovitis. METHODS Isolated CLs were cocultured with FLSs to test whether they could stimulate synovial inflammation. A model of medial meniscus destabilization was prepared in C57BL/6 mice and NLRP3 knockout mice, and adeno-associated virus overexpressing Caveolin-1 (CAV1) was intra-articularly injected for 8 weeks once a week after dissection of the medial meniscus (DMM). Proteins expressed in FLSs with and without CL coculture were screened using liquid chromatography-tandem mass spectrometry to identify CL-specific regulators of NLRP3 inflammasome-mediated pyroptosis. RESULTS CLs were engulfed by FLSs, which aggravated inflammatory cytokine release and NLRP3 inflammasome-mediated FLS pyroptosis. NLRP3 expression was significantly upregulated in human OA-FLSs and FLSs cocultured with CLs, while CAV1 was downregulated. CAV1 overexpression reversed the inflammatory phenotype in FLSs and simultaneously rescued pyroptosis in CL-pre-treated FLSs. Both synovial hyperplasia and inflammatory infiltration in C57BL/6 mice with DMM surgery were alleviated after intra-articular AAV-CAV1 injection. Moreover, the CL-specific protein LIM-containing lipoma preferred partner (LPP) markedly exacerbated FLS pyroptosis and inflammation. CONCLUSIONS CLs were endocytosed by FLSs through CAV1, and the CL-specific protein LPP stimulated NLRP3 inflammasome-mediated pyroptosis and synovitis by inhibiting CAV1 expression. Our findings offer a novel therapeutic target for treating synovitis.
Collapse
Affiliation(s)
- Xue Du
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ruonan Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zongrui Jiang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhijian Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shu Hu
- Department of Joint Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Joint Surgery and Sports Medicine, The Third Affiliated Hospital of Southern Medical University, Shandong, China.
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Xiong X, Huang H, Wang N, Zhou K, Song X. Sirt1 overexpression inhibits chondrocyte ferroptosis via Ftl deacetylation to suppress the development of osteoarthritis. J Bone Miner Metab 2025; 43:203-215. [PMID: 39786573 DOI: 10.1007/s00774-024-01574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by an imbalance in chondrocyte metabolism. Ferroptosis has been implicated in the pathogenesis of OA. The role of Sirt1, a deacetylase, in mediating deacetylation during ferroptosis in OA chondrocytes remains underexplored. This study aimed to elucidate the mechanisms by which Sirt1 influences chondrocyte ferroptosis in the development of OA. MATERIALS AND METHODS In vitro and in vivo models of OA were established using IL-1β-induced mouse chondrocytes and a destabilization of the medial meniscus (DMM) mouse model, respectively. Ferroptosis was evaluated through measurements of cell viability, lactate dehydrogenase (LDH) release, intracellular levels of Fe2+, glutathione (GSH), malondialdehyde (MDA), lipid reactive oxygen species (ROS), propidium iodide staining, and Western blot analysis. The underlying mechanisms were further investigated using quantitative real-time polymerase chain reaction, Western blotting, immunoprecipitation (IP), co-immunoprecipitation (Co-IP), and glutathione-S-transferase pulldown assays. In vivo validation was performed via Safranin O staining. RESULTS IL-1β induced ferroptosis and increased histone acetylation, effects that were partially reversed by Sirt1 overexpression. Mechanistically, Sirt1 overexpression upregulated ferritin light polypeptide (Ftl) expression by deacetylating Ftl at the K181 residue. Ftl knockdown inhibited the ferroptosis-enhancing effect of Sirt1 overexpression in chondrocytes. In vivo studies showed that Sirt1 overexpression mitigated the progression of OA and reduced ferroptosis in the DMM-induced OA mouse model. CONCLUSION Our findings confirm that Sirt1 overexpression promotes Ftl expression through deacetylation at the K181 site, thereby suppressing chondrocyte ferroptosis and attenuating the progression of OA. These results suggest a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Xiaolong Xiong
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ning Wang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kai Zhou
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinghui Song
- Universiti Kebangsaan Malaysia Health Science, UKM, 43600, Bandar Baru Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Ma J, Yang P, Zhou Z, Song T, Jia L, Ye X, Yan W, Sun J, Ye T, Zhu L. GYY4137-induced p65 sulfhydration protects synovial macrophages against pyroptosis by improving mitochondrial function in osteoarthritis development. J Adv Res 2025; 71:173-188. [PMID: 38844123 DOI: 10.1016/j.jare.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is the most common arthritis that is characterized by the progressive synovial inflammation and loss of articular cartilage. Although GYY4137 is a novel and slow-releasing hydrogen sulfide (H2S) donor with potent anti-inflammatory properties that may modulate the progression of OA, its underlying mechanism remains unclear. OBJECTIVES In this study, we validated the protective role of GYY4137 against OA pathological courses and elucidated its underlying regulatory mechanisms. METHODS Cell transfection, immunofluorescence staining, EdU assay, transmission electron microscopy, mitochondrial membrane potential measurement, electrophoretic mobility shift assay, sulfhydration assay, qPCR and western blot assays were performed in the primary mouse chondrocytes or the mouse macrophage cell line raw 264.7 for in vitro study. DMM-induced OA mice model and Macrophage-specific p65 knockout (p65f/f LysM-CreERT2) mice on the C57BL/6 background were used for in vivo study. RESULTS We found that GYY4137 can alleviate OA progress by suppressing synovium pyroptosis in vivo. Moreover, our in vitro data revealed that GYY4137 attenuates inflammation-induced NLRP3 and caspase-1 activation and results in a decrease of IL-1β production in macrophages. Mechanistically, GYY4137 increased persulfidation of NF-kB p65 in response to inflammatory stimuli that results in a decrease of cellular reactive oxygen species (ROS) accumulation and ameliorates mitochondrial dysfunctions. Using site-directed mutagenesis, we showed that H2S persulfidates cysteine38 in p65 protein and hampers p65 transcriptional activity, and p65 mutant impaired macrophage responses to GYY4137. CONCLUSION These findings suggest a mechanism by which GYY4137 through redox modification of p65 participates in inhibiting NLRP3 activation by OA to regulate inflammatory responses. Thus, we propose that GYY4137 represents a promising novel therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Health Statistics, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Yang
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Tengfei Song
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Jia
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Naval Medical University, Shanghai, China
| | - Wei Yan
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Jiuyi Sun
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China.
| | - Tianwen Ye
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Lei Zhu
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Ma S, Yu P, Ma J, Liu K, Wang M, Shi P, Duong NTD, Cheng S, Wang S. LncRNA EMBP1 sponges miR-454-3p to upregulate IRF1 and activate NLRP3-mediated chondrocyte pyroptosis to drive osteoarthritis progression. Int Immunopharmacol 2025; 153:114460. [PMID: 40112602 DOI: 10.1016/j.intimp.2025.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disease worldwide. Studies have confirmed that pyroptosis is closely associated with the OA onset and progression, particularly via the classical pathway mediated by the NLRP3 inflammasome. However, the intrinsic regulatory mechanisms underlying pyroptosis in OA remain unclear. METHODS We conducted RNA sequencing (RNA-seq) analysis on clinical cartilage samples and identified hub genes connecting OA and pyroptosis. We validated NLRP3-mediated pyroptosis activation, evaluated the diagnostic potential of the hub gene, and explored its regulatory role using a papain-induced rabbit OA model and IL-1β-induced chondrocytes. Subsequently, we constructed a competitive endogenous RNA (ceRNA) network based on the hub gene and validated its competitive binding interactions and regulatory function in NLRP3-mediated pyroptosis. Additionally, hub gene interferon regulatory factor 1 (IRF1) serves as a recognized upstream regulator of the novel cell death paradigm PANoptosis, which integrates apoptosis, necrosis, and pyroptosis. We preliminarily explored the potential molecular mechanisms of PANoptosis in OA through clinical sample analysis and in vitro experiments. RESULTS RNA-seq revealed that IRF1, a hub gene linking OA and pyroptosis, is upregulated in OA cartilage and is associated with NLRP3, consistent with the in vivo and in vitro results. Dual-luciferase assays, clinical sample analysis, and in vitro experiments confirmed the competitive binding of the embigin pseudogene 1 (EMBP1)/miR-454-3p/IRF1 ceRNA network. Silencing EMBP1 increased miR-454-3p, inhibiting IRF1 and NLRP3-mediated pyroptosis in vitro; however, miR-454-3p inhibitor rescue experiments abolished the beneficial effects of si-EMBP1. Furthermore, we preliminarily characterized the occurrence of PANoptosis in OA and provided initial evidence suggesting a potential regulatory role for the EMBP1/miR-454-3p/IRF1 axis in this process. CONCLUSIONS In OA, EMBP1 acts as a sponge for miR-454-3p, inhibiting its negative regulatory effect on IRF1 and exacerbating NLRP3-mediated chondrocyte pyroptosis. Furthermore, EMBP1/miR-454-3p/IRF1-mediated pyroptosis may be integrated into the broader PANoptosis process, interacting with apoptosis and necrosis to influence OA progression.
Collapse
Affiliation(s)
- Shang Ma
- School of Osteopathy, Henan University of Chinese Medicine, 156 Jinshui East Rd, Zhengzhou 450000, China
| | - Peng Yu
- Department of Orthopedics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Rd, Zhengzhou 450000, China
| | - Jinxin Ma
- School of Osteopathy, Henan University of Chinese Medicine, 156 Jinshui East Rd, Zhengzhou 450000, China
| | - Kangnan Liu
- School of Osteopathy, Henan University of Chinese Medicine, 156 Jinshui East Rd, Zhengzhou 450000, China
| | - Mi Wang
- Department of Rheumatology, The Third Affiliated Hospital of Henan University of Chinese Medicine, 63 Dongming Rd, Zhengzhou 450000, China
| | - Pengbo Shi
- Department of Orthopedics, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Rd, Zhengzhou 450000, China
| | - Nguyen Truong Duc Duong
- School of Osteopathy, Henan University of Chinese Medicine, 156 Jinshui East Rd, Zhengzhou 450000, China
| | - Shao Cheng
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), 6 Dongfeng Rd, Zhengzhou 450000, China; School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, 6 Dongfeng Rd, Zhengzhou 450000, China
| | - Shangzeng Wang
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), 6 Dongfeng Rd, Zhengzhou 450000, China; School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, 6 Dongfeng Rd, Zhengzhou 450000, China.
| |
Collapse
|
5
|
Wei Y, Xie C, Wei Y, Li Z, Li L, Chen Y, Jia C, Xie H, Liao J. SVF Cell Sheets as a New Multicellular Material-Based Strategy for Promoting Angiogenesis and Regeneration in Diced Cartilage Grafts. J Craniofac Surg 2025:00001665-990000000-02621. [PMID: 40209026 DOI: 10.1097/scs.0000000000011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Autologous diced cartilage, while biocompatible and easy to shape, is limited in clinical application due to its high adsorption rate and challenges in establishing timely and effective neovascularization postsurgery. In this study, the authors produced SVF cell sheets from adipose-derived stromal vascular fraction (SVF) through enzymatic digestion, employing a temperature-sensitive culture system. Our in vivo and in vitro experiments validated that SVF cell sheets, when wrapped around granular cartilage, exhibited a notable promotion of cartilage regeneration and mitigated granular cartilage adsorption in a rabbit diced cartilage graft model. Our findings demonstrate that SVF cell sheets facilitated effective neovascularization and timely cartilage block formation by secreting VEGF and Ang-1 while also suppressing the expression of pyroptotic proteins like NLRP3, Caspase1, and GSDMD. As a biofilm, derived from a multicellular source, SVF cell sheets can replace perichondrium and promote the expression of proangiogenic growth factors Ang-1 and VEGF, thereby promoting local microvascular regeneration, reducing chondrocyte pyroptosis, and promoting the formation of cartilage blocks. This strategy provides a potential new method for autologous cartilage grafting, which will help solve the dilemma of limited sources of cartilage tissue in clinical practice and provide natural autologous cartilage filling materials for the treatment of craniofacial defects.
Collapse
Affiliation(s)
- Yangchen Wei
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Cong Xie
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yi Wei
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital
| | - Zhengyang Li
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yan Chen
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Chiyu Jia
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Hongju Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Junlin Liao
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| |
Collapse
|
6
|
Safitri AH, Sayyida RA, Setyawan S, Tyagita N. Effects of porang glucomannan combined with a high-protein diet on oxidative stress, inflammation, and aging markers in D-galactose-induced rats. NARRA J 2025; 5:e1995. [PMID: 40352180 PMCID: PMC12059859 DOI: 10.52225/narra.v5i1.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 05/14/2025]
Abstract
Aging is a predominant risk factor for several diseases associated with reduced life expectancy. To address this risk factor, several studies have proposed the combined use of porang glucomannan and a high-protein diet to improve various aging markers. The aim of this study was to determine the effects of porang glucomannan and high-protein combination diet as an anti-aging agent. An experimental study using a post-test-only control group design was conducted using Sprague Dawley white rats. The animals were randomly divided into four groups with different treatments: normal control, D-galactose, high-protein diet, and a combination of porang glucomannan and high-protein combination diet. Blood samples were then collected from the ophthalmic vein on day 58 for biomarker measurement using the enzyme-linked immunosorbent assay (ELISA) method. The parameters measured were superoxide dismutase (SOD), malondialdehyde (MDA), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), insulin growth factor-1 (IGF-1), NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), growth differentiation factor-11 (GDF11), and α-Klotho levels. The results showed that the combination of porang glucomannan and high-protein diet could improve oxidative stress, inflammation, and aging markers. The analysis of variance (ANOVA) test followed by post-hoc showed significant differences between the combination diet and high protein group (p < 0.001). In addition, the average levels of oxidative stress markers (SOD and MDA) in porang glucomannan and high-protein combination group were improved significantly. Similar results were also obtained for inflammatory markers (IL-6 and TNF-α) and aging markers (NLRP3, IGF-1, GDF-11, and α-Klotho). The mean NRLP-3 levels in glucomannan and high-protein combination group were not significantly different compared to control. The study highlights that the combination of porang glucomannan and a high-protein diet effectively improved various aging markers.
Collapse
Affiliation(s)
- Azizah H. Safitri
- Department of Biochemistry, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | - Rahmata A. Sayyida
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | - Sigit Setyawan
- Department of Parasitology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Nurina Tyagita
- Department of Biochemistry, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| |
Collapse
|
7
|
Fang X, Zhang H, Zhou H, Shen S, Lao Z, Zhang Z, Bian Y, Zhou C, Jin H, Tong P, Huang Y, Zhou H, Zeng H, Fu F, Wu C, Zheng W, Ruan H. Systemic Lupus Erythematosus Exacerbates Hip Arthritis by Promoting Chondrocyte Pyroptosis in the Femoral Head via Activating the NF-κB Pathway. J Cell Mol Med 2025; 29:e70531. [PMID: 40179133 PMCID: PMC11967699 DOI: 10.1111/jcmm.70531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by chronic inflammation and immune dysregulation, significantly impacting multiple organ systems, including the joints. While SLE is known to contribute to musculoskeletal complications, its role in hip arthritis development and the underlying mechanisms remain poorly understood. This study aims to investigate the relationship between SLE and hip arthritis progression using MRL/lpr mice, which exhibit early-onset SLE, compared with MRL/MpJ control mice at 14 weeks of age. Through comprehensive histological, immunohistochemical and molecular analyses, we evaluated articular cartilage (AC) degeneration, extracellular matrix (ECM) metabolism, inflammatory responses, and chondrocyte pyroptosis. Our results demonstrated that MRL/lpr mice developed an accelerated hip arthritis-like phenotype, manifesting as enhanced AC degeneration, impaired chondrocyte proliferation, heightened apoptosis and promoted inflammatory cytokine production. Notably, SLE markedly stimulated chondrocyte pyroptosis by increasing pyroptosis-related proteins, including NLRP3, ASC, CASPASE-1 and GSDMD, via activating the NF-κB pathway. These findings establish a novel mechanistic link between SLE and hip arthritis progression, demonstrating that SLE promotes chondrocyte pyroptosis to exacerbate AC degeneration via NF-κB activation, highlighting chondrocyte pyroptosis as a key driver of SLE-associated hip arthritis and a potential therapeutic target for mitigating SLE-induced joint manifestations.
Collapse
Affiliation(s)
- Xuliang Fang
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Helou Zhang
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huiqing Zhou
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Shuchao Shen
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Zhaobai Lao
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Zhiguo Zhang
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Yishan Bian
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengcong Zhou
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Yanqun Huang
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hong Zhou
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hanbing Zeng
- The Second Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
8
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
9
|
Shen S, Fang X, Zhang H, Lang T, Fu F, Du Y, Xu T, Jin H, Tong P, Wu C, Hu C, Ruan H. Systemic Lupus Erythematosus Stimulates Chondrocyte Pyroptosis to Aggravate Arthritis via Suppression of NRF-2/KEAP-1 and NF-κB Pathway. J Inflamm Res 2025; 18:4233-4250. [PMID: 40129871 PMCID: PMC11932136 DOI: 10.2147/jir.s502800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by diverse clinical manifestations, including joint symptoms. Arthritis represents one of the earliest manifestations of SLE, profoundly affecting the quality of life for affected individuals, yet the underlying mechanisms of SLE-associated arthritis remain insufficiently investigated. The study aimed to investigate the impact of SLE exacerbation on arthritis using the MRL/lpr mouse model, which closely mimics human SLE manifestations. Methods In the present study, we evaluated the impact of SLE onset on knee joint degeneration by comparing arthritic phenotype and complex molecular alterations between 6 female 14-week-old MRL/lpr mice, which manifest SLE, and MRL/MpJ mice, which remain unaffected. Results Our results demonstrated that MRL/lpr mice exhibited a more severe arthritic phenotype compared to MRL/MpJ mice, characterized by elevated Osteoarthritis Research Society International (OARSI) scores (P < 0.01), disrupted extracellular matrix metabolism, impaired chondrocyte proliferation and increased apoptosis. Notably, inflammatory cytokines proteins such as IL-1β and TNF-α (both P < 0.01), IL-18 and IL-6 (both P < 0.05), were significantly increased in articular cartilage of MRL/lpr mice, accompanied by increased expression of calcitonin gene-related peptide (CGRP) (P < 0.05), NETRIN-1, and NESTIN (both P < 0.01), indicating that SLE promotes inflammation response and sensory nerve ingrowth in the knee joint, contributing to the progression of arthritis. Mechanistic analysis revealed that SLE exacerbation intensified chondrocyte pyroptosis by upregulating pyroptotic-related proteins, including NLRP3, CASPASE-1, and gasdermin D (all P < 0.01), through the regulation of the nuclear factor erythroid 2-related factor (NRF-2)/KEAP-1 and nuclear factor kappa-B (NF-κB) pathway. Conclusion Collectively, our findings underscore the mechanistic connection between chondrocyte pyroptosis and arthritis exacerbation in SLE, suggesting potential therapeutic targets for mitigating arthritis progression in the context of SLE.
Collapse
Affiliation(s)
- Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Helou Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Tingting Lang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yu Du
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Taotao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Peijian Tong
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
10
|
Wang X, Xu L, Wu Z, Lou L, Xia C, Miao H, Dai J, Fei W, Wang J. Exosomes of stem cells: a potential frontier in the treatment of osteoarthritis. PRECISION CLINICAL MEDICINE 2025; 8:pbae032. [PMID: 39781279 PMCID: PMC11705996 DOI: 10.1093/pcmedi/pbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
The aging population has led to a global issue of osteoarthritis (OA), which not only impacts the quality of life for patients but also poses a significant economic burden on society. While biotherapy offers hope for OA treatment, currently available treatments are unable to delay or prevent the onset or progression of OA. Recent studies have shown that as nanoscale bioactive substances that mediate cell communication, exosomes from stem cell sources have led to some breakthroughs in the treatment of OA and have important clinical significance. This paper summarizes the mechanism and function of stem cell exosomes in delaying OA and looks forward to the development prospects and challenges of exosomes.
Collapse
Affiliation(s)
- Xiaofei Wang
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Lei Xu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Zhimin Wu
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Linbing Lou
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Cunyi Xia
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Wenyong Fei
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
11
|
Meng J, Lu J, Jiang C, Deng L, Xiao M, Feng J, Ren T, Qin Q, Guo S, Wang H, Yao J, Li J. Collagen hydrogel-driven pyroptosis suppression and combined microfracture technique delay osteoarthritis progression. Biomaterials 2025; 314:122817. [PMID: 39255529 DOI: 10.1016/j.biomaterials.2024.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
The pathogenesis of osteoarthritis (OA), a disease causing severe medical burden and joint deformities, remains unclear. Chondrocyte death and osteochondral injury caused are the main pathological changes in OA. Thus, inhibiting chondrocyte death and repairing defective osteochondral are two important challenges in the treatment of OA. In this study, we found morphological changes consistent with cell pyroptosis in OA cartilage tissues. To inhibit chondrocyte pyroptosis and delay the progression of OA, we proposed to use decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) to form a composite hydrogel GelMA/dECM. Regarding osteochondral defect repair, our proposed treatment strategy was hydrogel combined with microfracture (MF) surgery. MF established a biological link between the osteochondral defect and the bone-marrow cavity, prompting the recruitment of bone-marrow mesenchymal stem cells (BMSCs) to the osteochondral defect site, and the retained biopeptides in the hydrogel regulate the polarization of the BMSCs into hyaline cartilage, accelerating the repair of the defect. In vitro/vivo experiments and RNA sequencing analyses demonstrated that GelMA/dECM inhibited the occurrence of chondrocyte pyroptosis and delayed OA disease progression. Hydrogel also recruited numerous of BMSCs and contributed to chondrogenic differentiation, accelerating the in situ repair of defective osteochondral combined with MF. Collectively, GelMA/dECM composite hydrogel inhibited cartilage pyroptosis and reduced the pathway of chondrocyte death. Moreover, the hydrogel combined with microfracture technique could accelerate the repair of osteochondral defects. This is a groundbreaking attempt by tissue engineering, cell biology, and clinical medicine.
Collapse
Affiliation(s)
- Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jinfeng Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Cancai Jiang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lingchuan Deng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Meimei Xiao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Junfei Feng
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Tianyu Ren
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qingfa Qin
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shengcong Guo
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, People's Republic of China.
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, People's Republic of China.
| |
Collapse
|
12
|
Wang H, Ma L, Su W, Liu Y, Xie N, Liu J. NLRP3 inflammasome in health and disease (Review). Int J Mol Med 2025; 55:48. [PMID: 39930811 PMCID: PMC11781521 DOI: 10.3892/ijmm.2025.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Activation of inflammasomes is the activation of inflammation‑related caspase mediated by the assembly signal of multi‑protein complex and the maturity of inflammatory factors, such as IL‑1β and IL‑18. Among them, the Nod‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most thoroughly studied type of inflammatory corpuscle at present, which is involved in the occurrence and development of numerous human diseases. Therefore, targeting the NLRP3 inflammasome has become the focus of drug development for related diseases. In this paper, the research progress of the NLRP3 inflammasome in recent years is summarized, including the activation and regulation of NLRP3 and its association with diseases. A deep understanding of the regulatory mechanism of NLRP3 will be helpful to the discovery of new drug targets and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Weiran Su
- Department of Internal Medicine, Jiading District Central Hospital, Shanghai 201800, P.R. China
| | - Yangruoyu Liu
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ning Xie
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
13
|
Xie Y, Lv Z, Li W, Lin J, Sun W, Guo H, Jin X, Liu Y, Jiang R, Fei Y, Wu R, Shi D. JP4-039 protects chondrocytes from ferroptosis to attenuate osteoarthritis progression by promoting Pink1/Parkin-dependent mitophagy. J Orthop Translat 2025; 51:132-144. [PMID: 40129610 PMCID: PMC11930657 DOI: 10.1016/j.jot.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 03/26/2025] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease, and its main pathological mechanism is articular cartilage degeneration. The purpose of this study was to investigate the role of mitophagy in the pathogenesis of chondrocyte ferroptosis in OA. Methods The expressions of ferroptosis related proteins (GPX4, FTH1, COX2) and ubiquitin-dependent mitophagy related proteins (PARKIN, PINK1) in the intact and injured areas of OA cartilage were analyzed. Nitro oxide JP4-039, a mitochondrial targeting antioxidant, has bifunctional role of targeting mitochondria. Then we evaluated the potential protective effect of JP4-039 in OA using the destabilization of medial meniscus (DMM)-induced OA model, as well as tert-butyl hydrogen peroxide (TBHP)-treated primary mouse chondrocytes and human cartilage explants. Results The concentrations of iron and lipid peroxidation and the expression of ferroptosis drivers in the damaged areas of human OA cartilages were significantly higher than those in the intact cartilage. Pink1/Parkin-dependent mitophagy decreased in the injured area of human OA cartilage and was negatively correlated with ferroptosis. Then, the toxicity and effectiveness of JP4-039 are tested to determine its working concentration. Next, at the molecular biological level, we found that JP4-039 showed the effect of anti-chondrocyte ferroptosis. Moreover, it was verified on DMM-induced OA model mice, that JP4-039 could delay the progression of OA. Finally, JP4-039 was re-verified in vivo and in vitro to inhibit chondrocyte ferroptosis and delay the progression of OA by promoting Pink1/Parkin-dependent mitophagy. Conclusion JP4-039 inhibits ferroptosis of chondrocytes by promoting Pink1/Parkin-dependent mitophagy and delays OA progression.
Collapse
Affiliation(s)
- Ya Xie
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Weitong Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - JinTao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Sun
- Department of Orthopedic, The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, 214400, China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, Nanjing, 210008, Jiangsu, China
| | - Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Rui Wu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, Nanjing, 210008, Jiangsu, China
- State key laboratory of pharmaceutical biotechnology, Nanjing University, Nanjing, 210002, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210002, China
| |
Collapse
|
14
|
Xiong X, Xiong H, Peng J, Liu Y, Zong Y. METTL3 Regulates the m 6A Modification of NEK7 to Inhibit the Formation of Osteoarthritis. Cartilage 2025; 16:89-99. [PMID: 37724835 PMCID: PMC11744591 DOI: 10.1177/19476035231200336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a common degenerative joint disease. The occurrence of OA slowly destroys the soft tissue structure of the patient's joint. Severe cases could lead to disability. Current studies had shown that inhibition of chondrocytes pyroptosis could slow down the progression of OA. Our work aimed to explore the specific mechanisms and ways of regulating this process. DESIGN In this work, the level of N6-methyladenosine (m6A) in clinical tissues was detected by ribonucleic acid (RNA) m6A dot blot. qRT-PCR (quantitative real-time polymerase chain reaction) was used to detect the messenger RNA (mRNA) expression level of m6A modified enzyme in clinical tissues. MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromid) and flow cytometry were used to detect the effect of sh-METTL3 (methyltransferase like 3) and NIMA-related kinase 7 (NEK7) transfection on chondrocytes pyroptosis in OA. Western blot was used to detect the protein expression levels of pyroptosis-related proteins. ELISA (enzyme-linked immunosorbent assay) was used to measure the protein concentration of inflammatory cytokines. The SRAMP online database was used to predict the m6A site of NEK7. HE staining was used to assess the progression of OA in mice. RESULTS The level of m6A in clinical samples of OA patients was higher, and METTL3 was significantly higher expressed in clinical samples of OA patients. We provided evidence that low expression of METTL3 inhibited chondrocytes pyroptosis. In addition, Rescue experiments and in vivo experiments had shown that METTL3 in combination with NEK7 inhibited the progression of OA by promoting chondrocytes pyroptosis. CONCLUSIONS METTL3 regulates m6A modification of NEK7 and inhibits OA progression.
Collapse
Affiliation(s)
- Xiaochuan Xiong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Peng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Liu S, Zhang G, Li N, Wang Z, Lu L. The Interplay of Aging and PANoptosis in Osteoarthritis Pathogenesis: Implications for Novel Therapeutic Strategies. J Inflamm Res 2025; 18:1951-1967. [PMID: 39959642 PMCID: PMC11829118 DOI: 10.2147/jir.s489613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by the progressive degradation of articular cartilage, synovial inflammation, and subchondral bone remodeling. This review explores the interplay between aging, PANoptosis, and inflammation in OA progression. Age-related cellular and immune dysfunctions, including cellular senescence, senescence-associated secretory phenotypes (SASPs), and immunosenescence, significantly contribute to joint degeneration. In OA, dysregulated apoptosis, necroptosis, and pyroptosis, particularly in chondrocytes, exacerbate cartilage damage. Apoptosis, mediated by the JNK pathway, reduces chondrocyte density, while necroptosis and pyroptosis, involving RIPK-1/RIPK-3 and the NLRP3 inflammasome, respectively, amplify inflammation and cartilage destruction. Inflammatory cytokines and damage-associated molecular patterns (DAMPs) further enhance these PANoptotic pathways. Current therapeutic strategies primarily focus on anti-inflammatory agents such as non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, with growing interest in anti-senescence drugs targeting cellular senescence and SASP. Additionally, exploring PANoptosis mechanisms offers potential for innovative OA treatments.
Collapse
Affiliation(s)
- Shaoshan Liu
- Department of Joint Surgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, People's Republic of China
| | - Nan Li
- Department of Trauma Orthopedics, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| | - Liaodong Lu
- Department of Joint Surgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| |
Collapse
|
16
|
Zhou X, Cao H, Liao T, Hua W, Zhao R, Wang D, Deng H, Yang Y, Liu S, Ni G. Mechanosensitive lncRNA H19 promotes chondrocyte autophagy, but not pyroptosis, by targeting miR-148a in post-traumatic osteoarthritis. Noncoding RNA Res 2025; 10:163-176. [PMID: 39399379 PMCID: PMC11470567 DOI: 10.1016/j.ncrna.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE Investigating whether mechanosensitive lncRNA H19 can directly target miR-148a to alleviate cartilage damage in post-traumatic osteoarthritis (PTOA). METHODS Thirty-two female rats were randomly divided into four groups: Sham-operated group (Sham group, n = 8), treadmill running group (R group, n = 8), anterior cruciate ligament transection (ACLT) group (ACLT group, n = 8), and ACLT + treadmill running group (ACLT + R group, n = 8). Histological evaluation was performed to observe the pathological changes in the cartilage of the rat knee. Micro-CT was performed to detect the bone morphological changes in the subchondral bone. RT-qPCR and Western-Blot were performed to detect changes in mRNA and protein levels of metabolic and inflammatory factors as well as changes in the expression of lncRNA H19 and miR-148a in cartilage. The Flexcell 5000™ Tension System was used to further validate that lncRNA H19 has mechanosensitivity in vitro. Finally, cell transfection techniques were used to knock down the expression of lncRNA H19 in chondrocytes to validate the regulatory role of lncRNA H19/miR-148a in cartilage metabolism. RESULTS ACLT combined with treadmill running aggravated the abnormal hyperplasia of subchondral bone in the lateral tibial plateau of the rat knee joint, disturbed the balance of cartilage metabolism, induced cartilage inflammatory response and chondrocyte pyroptosis, which eventually led to cartilage damage and PTOA. Importantly, we found that the expression of lncRNA H19 was significantly downregulated in the cartilage of the ACLT + R group. Bioinformatics analysis revealed that miR-148a may be a direct target of lncRNA H19. Subsequently, we focused on the mechanosensitive of lncRNA H19. Subsequently, moderate-intensity mechanical tension stress reversed the expression of lncRNA H19 and autophagy-related factors in inflammatory chondrocytes, while miR-148a showed an opposite expression trend, demonstrating that mechanosensitive lncRNA H19 may be involved in regulating the chondrocyte inflammatory response by targeting miR-148a and activating autophagy. Cell transfection experiments revealed that lncRNA H19 knockdown upregulated miR-148a expression and significantly inhibited the autophagy level of chondrocytes without significant alteration of chondrocyte pyroptosis, which in turn exacerbated the inflammatory response of chondrocytes. CONCLUSIONS Mechanosensitive lncRNA H19 can promote chondrocyte autophagy rather than pyroptosis by targeting miR-148a, thus alleviating cartilage damage in PTOA. LncRNA H19 may be a potential therapeutic target for PTOA.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Tao Liao
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Huili Deng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yajing Yang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430070, China
| | - ShengYao Liu
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
17
|
Zhou J, Jiao S, Huang J, Dai T, Xu Y, Xia D, Feng Z, Chen J, Li Z, Hu L, Meng Q. Comprehensive Analysis of Programmed Cell Death-Related Genes in Diagnosis and Synovitis During Osteoarthritis Development: Based on Bulk and Single-Cell RNA Sequencing Data. J Inflamm Res 2025; 18:751-778. [PMID: 39839184 PMCID: PMC11748759 DOI: 10.2147/jir.s491203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025] Open
Abstract
Background Synovitis is one of the key pathological feature driving osteoarthritis (OA) development. Diverse programmed cell death (PCD) pathways are closely linked to the pathogenesis of OA, but few studies have explored the relationship between PCD-related genes and synovitis. Methods The transcriptome expression profiles of OA synovial samples were obtained from the Gene Expression Omnibus (GEO) database. Using machine learning algorithms, Hub PCD-related differentially expressed genes (Hub PCD-DEGs) were identified. The expression of Hub PCD-DEGs was validated in human OA samples by qRT-PCR. A diagnostic model for OA was constructed based on the expression levels of Hub PCD-DEGs. Unsupervised consensus clustering analysis and weighted correlation network analysis (WGCNA) were employed to identify differential clustering patterns of PCD-related genes in OA patients. The molecular characteristics of Hub PCD-DEGs, their role in synovial immune inflammation, and their association with the immune microenvironment were investigated through functional enrichment analysis and ssGSEA immune infiltration analysis. Single-cell RNA sequencing analysis provided insights into the characteristics of distinct cell clusters in OA synovial tissues and their interactions with Hub PCD-DEGs. Results We identified five Hub PCD-DEGs: TNFAIP3, JUN, PPP1R15A, INHBB, and DDIT4. qRT-PCR analysis confirmed that all five genes were significantly downregulated in OA synovial tissue. The diagnostic model constructed based on these Hub PCD-DEGs demonstrated diagnostic efficiency in distinguishing OA tissues as well as progression of OA. Additionally, a correlation was observed between the expression levels of Hub PCD-DEGs, immune cell infiltration, and inflammatory cytokine levels. We identified two distinct PCD clusters, each exhibiting unique molecular and immunological characteristics. Single-cell RNA sequencing further revealed dynamic and complex cellular changes in OA synovial tissue, with differential expression of Hub PCD-DEGs across various immune cell types. Conclusion Our study suggests that PCD-related genes may be involved in development of OA synovitis. The five screened Hub PCD-DEGs (TNFAIP3, JUN, PPP1R15A, INHBB and DDIT4) could be explored as candidate biomarkers or therapeutic targets for OA.
Collapse
Affiliation(s)
- JiangFei Zhou
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - SongSong Jiao
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Jian Huang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - TianMing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - YangYang Xu
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Dong Xia
- Critical Care Medicine Department, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - ZhenCheng Feng
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - JunJie Chen
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - ZhiWu Li
- Department of Orthopedics, the 2nd People’s Hospital of Bijie, Guizhou, 551700, People’s Republic of China
| | - LiQiong Hu
- Critical Care Medicine Department, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - QingQi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| |
Collapse
|
18
|
Liu Y, Wang Y, Yan P, Cui N, Xu K, Liu D, Tian Y, Cao L. NLRP3 Inflammasome-Mediated Osteoarthritis: The Role of Epigenetics. BIOLOGY 2025; 14:71. [PMID: 39857301 PMCID: PMC11761621 DOI: 10.3390/biology14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of osteoarthritis (OA) notably surges with age and weight gain. The most common clinical therapeutic drugs are painkillers, yet they cannot impede the deteriorating course of OA. Thus, understanding OA's pathogenesis and devising effective therapies is crucial. It is generally recognized that inflammation, pyroptosis, and OA progression are tightly linked. The activation of NLRP3 inflammasome can lead to the discharge of the pro-inflammatory cytokines Interleukin-1β and IL-18, intensifying subsequent inflammatory reactions and promoting OA development. Conversely, the imbalance caused by deacetylase-regulated NLRP3 inflammasome underlies the chronic mild inflammation related to degenerative diseases. Therefore, this article expounds on the mechanism of OA pathogenesis and the role of histone deacetylases (HDACs) in NLRP3 inflammasome-triggered OA, and illustrates the application of HDAC inhibitors in OA, striving to provide more insights into novel OA treatment approaches.
Collapse
Affiliation(s)
- Yuzhou Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ying Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ping Yan
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Ning Cui
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Kejin Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Da Liu
- Public Laboratory Centre, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yuan Tian
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Lingling Cao
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| |
Collapse
|
19
|
Chen Y, Dong S, Zeng X, Xu Q, Liang M, Liao G, Li L, Shen B, Lu Y, Si H. EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis. Chin Med J (Engl) 2025; 138:79-92. [PMID: 39704001 PMCID: PMC11717515 DOI: 10.1097/cm9.0000000000003186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported. METHODS The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats. RESULTS Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis. CONCLUSIONS A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Dong
- Department of Discipline Construction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing Xu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingwei Liang
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lan Li
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanrong Lu
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haibo Si
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
20
|
Qin X, Wu J, Qin F, Zheng Y, Chen J, Liu Z, Tan J, Cai W, He S, Jian B, Zheng H, Liao H. Identification and validation of pyroptosis patterns with a novel quantification system for the prediction of prognosis in lung squamous cell carcinoma. Transl Lung Cancer Res 2024; 13:3657-3674. [PMID: 39830751 PMCID: PMC11736615 DOI: 10.21037/tlcr-24-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Background The role of pyroptosis in lung squamous cell carcinoma (LUSC) remains unclear. This study aimed to screen pyroptosis-related genes (PRGs) and construct a model to investigate the immune infiltration, gene mutations, and immune response of patients of LUSC. Methods We conducted a comprehensive evaluation of pyroptosis patterns in patients with LUSC with 51 PRGs. Pyroptosis-related clusters were identified using consistency clustering algorithm. Differences in the biologic and clinical characteristics between the clusters were analyzed. Cox regression analysis was performed to screen for differentially expressed genes (DEGs) related to prognosis, and a principal component analysis (PCA) algorithm was used to construct a model based on these genes. The pyroptosis score was calculated for each tumor sample, and the samples were classified into high- and low-score groups based on the score. The disparities in survival, single-nucleotide variation (SNV), copy number variation (CNV), and immunotherapy response between high-score and low-score groups were analyzed. Results A total of 51 PRGs were used to classify LUSC samples into three pyroptosis clusters with significant differences in survival (P=0.005). Based on the 390 DEGs between the three clusters, two distinct pyroptosis gene clusters were identified by secondary clustering, with significant differences in prognosis (P=0.005). A pyroptosis scoring model was established to evaluate the regulatory patterns of PRGs, and patients were stratified into two groups with high and low scores, using the median pyroptosis score as the cutoff. The survival analyses indicated that patients with high scores had worse prognoses in The Cancer Genome Atlas (TCGA)-LUSC cohort (P=0.002), which was further supported by the analysis of the GSE37745 (P=0.006) and GSE135222 datasets (P=0.02). Conclusions The quantification of pyroptosis patterns was found to be important in predicting prognosis and devising personalized treatment strategies in patients with LUSC.
Collapse
Affiliation(s)
- Xianyu Qin
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiayan Wu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Qin
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junguo Chen
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zui Liu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Tan
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Cai
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyun He
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bozhu Jian
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haosheng Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Zhang Z, Ma J, Yi Y, Wang S, He Y, Liu Y, Meng K, Wang Y, Ma W. Isoliensinine suppresses chondrocytes pyroptosis against osteoarthritis via the MAPK/NF-κB signaling pathway. Int Immunopharmacol 2024; 143:113589. [PMID: 39547017 DOI: 10.1016/j.intimp.2024.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Isoliensinine is an active compound derived from Nelumbo nucifera which has long been used for its anti-inflammatory properties. However, the mechanism of Isoliensinine in the treatment of osteoarthritis is poorly known. PURPOSE The present study aims to investigate whether Isoliensinine could alleviate osteoarthritis by regulating MAPK/NF-κB signaling pathway-mediated pyroptosis. METHODS Network pharmacology and KEGG enrichment analysis were used to identify the therapeutic targets of Isoliensinine for OA. Molecular docking was used to confirm the binding ability of Isoliensinine and related proteins. In vitro, chondrocytes were stimulated with IL-1β to construct an inflammatory model and treated with Isoliensinine. The viability of the cells was assessed using the CCK-8 kit. The apoptosis rate of cells was measured using Annexin V-FITC/PI assay. And assessed the levels of ROS, lipid-ROS, and mitochondrial membrane potential. Corresponding assay kits were utilized to measure the levels of MDA and SOD. Subsequently, the anabolic and catabolic markers in chondrocytes, alongside inflammatory targets were measured by RT-PCR and Western blot. The expression level of pyroptosis and MAPK/NF-κB signaling pathway-related targets was examined. Furthermore, we constructed a rat osteoarthritis model using ACLT surgery. We then assessed the progression of osteoarthritis by Micro-CT, H&E staining, S&F staining and immunohistochemistry. RESULTS Enrichment analysis showed that Isoliensinine treatment of osteoarthritis may be through the MAPK/NF-κB pathway, and molecular docking showed that Isoliensinine and MAPK/NF-κB pathway proteins had a good binding ability. Data showed that Isoliensinine could reduce ECM degradation and inflammation, and inhibit IL-1β-induced apoptosis. It also mitigated ROS and LPO activation, regulated mitochondrial dysfunction, and reduced intracellular oxidative stress levels. Furthermore, Western blot showed that Isoliensinine also inhibited the activation of the MAPK/NF-κB pathway, thereby inhibiting the pyroptosis of chondrocytes. In vivo, Micro-CT, H&E staining and S&F staining results showed that Isoliensinine could effectively improve joint damage caused by osteoarthritis. And IHC analyses indicated NLRP3, MMP3 protein expression were significantly diminished and Collagen II expression was increased in the Isoliensinine treatment groups. CONCLUSION In conclusion, our study suggested that Isoliensinine mitigates ECM degradation, oxidative stress, chondrocytes apoptosis, and pyroptosis through the inhibition of the MAPK and NF-κB pathways, thereby delaying the progression of osteoarthritis.
Collapse
Affiliation(s)
- Zhengze Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jizhi Ma
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanzi Yi
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Shuai Wang
- The Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yuewen He
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yurui Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Kai Meng
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
22
|
Yu Y, Dong G, Niu Y. Construction of ferroptosis-related gene signatures for identifying potential biomarkers and immune cell infiltration in osteoarthritis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:449-461. [PMID: 39258983 DOI: 10.1080/21691401.2024.2402298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Osteoarthritis (OA) is a comprehensive joint disorder. The specific genes that trigger OA and the strategies for its effective management are not fully understood. This study focuses on identifying key genes linked to iron metabolism that could influence both the diagnosis and therapeutic approaches for OA. Analysis of GEO microarray data and iron metabolism genes identified 15 ferroptosis-related DEGs, enriched in hypoxia and HIF-1 pathways. Ten key hub genes (ATM, GCLC, PSEN1, CYBB, ATG7, MAP1LC3B, PLIN2, GRN, APOC1, SIAH2) were identified. Through stepwise regression, we screened 4 out of the above 10 genes, namely, GCLC, GRN, APOC1, and SIAH2, to obtain the optimal model. AUROCs for diagnosis of OA for the four hub genes were 0.81 and 0.80 of training and validation sets, separately. According to immune infiltration results, OA was related to significantly increased memory B cells, M0 macrophages, regulatory T cells, and resting mast cells but decreased activated dendritic cells. The four hub genes showed a close relation to them. It is anticipated that this model will aid in diagnosing osteoarthritis by assessing the expression of specific genes in blood samples. Moreover, studying these hub genes may further elucidate the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Yali Yu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Guixiang Dong
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Yanli Niu
- School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
23
|
Mo H, Sun K, Hou Y, Ruan Z, He Z, Liu H, Li L, Wang Z, Guo F. Inhibition of PA28γ expression can alleviate osteoarthritis by inhibiting endoplasmic reticulum stress and promoting STAT3 phosphorylation. Bone Joint Res 2024; 13:659-672. [PMID: 39564812 PMCID: PMC11577458 DOI: 10.1302/2046-3758.1311.bjr-2023-0361.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Haokun Mo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
25
|
Li M, Xiao J, Chen B, Pan Z, Wang F, Chen W, He Q, Li J, Li S, Wang T, Zhang G, Wang H, Chen J. Loganin inhibits the ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against osteoarthritis. Chin J Nat Med 2024; 22:977-990. [PMID: 39510640 DOI: 10.1016/s1875-5364(24)60555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 11/15/2024]
Abstract
Loganin (LOG), a bioactive compound derived from Cornus officinalis Siebold & Zucc, has been understudied in the context of osteoarthritis (OA) treatment. In this study, we induced an inflammatory response in chondrocytes using lipopolysaccharide (LPS) and subsequently treated these cells with LOG. We employed fluorescence analysis to quantify reactive oxygen species (ROS) levels and measured the expression of NLRP3 and nuclear factor erythropoietin-2-related factor 2 (NRF2) using real-time quantitative polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence (IF) techniques. Additionally, we developed an OA mouse model by performing medial meniscus destabilization (DMM) surgery and monitored disease progression through micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, safranin O and fast green (S&F) staining, and immunohistochemical (IHC) analysis. Our results indicate that LOG significantly reduced LPS-induced ROS levels in chondrocytes, inhibited the activation of the NLRP3 inflammasome, and enhanced NRF2/heme oxygenase 1 (HO-1) signaling. In vivo, LOG treatment mitigated cartilage degradation and osteophyte formation triggered by DMM surgery, decreased NLRP3 expression, and increased NRF2 expression. These findings suggest that LOG has a protective effect against OA, potentially delaying disease progression by inhibiting the ROS-NLRP3-IL-1β axis and activating the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Miao Li
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiacong Xiao
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Baihao Chen
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhaofeng Pan
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fanchen Wang
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Weijian Chen
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi He
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianliang Li
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shaocong Li
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Wang
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gangyu Zhang
- 1(st) School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianfa Chen
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
26
|
Tang Z, Shu L, Cao Z, Xu Y, Li C. Osteoarthritis rat serum-derived extracellular vesicles aggravate osteoarthritis development by inducing NLRP3-mediated pyroptotic cell death and cellular inflammation. Hum Cell 2024; 37:1624-1637. [PMID: 39141224 DOI: 10.1007/s13577-024-01119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.
Collapse
Affiliation(s)
- Zhifang Tang
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Longjun Shu
- The First People's Hospital of Dali City, Dali, 671000, China
| | - Zijian Cao
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Yongqing Xu
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| | - Chuan Li
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
27
|
Jiang P, Zhou X, Yang Y, Bai L. Pectolinarigenin targeting FGFR3 alleviates osteoarthritis progression by regulating the NF-κB/NLRP3 inflammasome pyroptotic pathway. Int Immunopharmacol 2024; 140:112741. [PMID: 39094365 DOI: 10.1016/j.intimp.2024.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a chronic degenerative disease characterized by cartilage degeneration, involving inflammation, pyroptosis, and degeneration of the extracellular matrix (ECM). Pectolinarigenin (PEC) is a natural flavonoid with antioxidant, anti-inflammatory and anti-tumor properties. This study aims to explore the potential of PEC in ameliorating OA progression and its underlying mechanisms. METHODS Chondrocytes were exposed to 10 ng/mL IL-1β to simulate OA-like changes. The effect of PEC on IL-1β-treated chondrocytes was assessed using ELISA, western blot, and immunofluorescence. The mRNA sequencing (mRNA-seq) was employed to explore the possible targets of PEC in delaying OA progression. The OA mouse model was induced through anterior cruciate ligament transection (ACLT) and divided into sham, ACLT, ACLT+5 mg/kg PEC, and ACLT+10 mg/kg PEC groups. Micro-computed tomography and histological analysis were conducted to confirm the beneficial effects of PEC on OA in vivo. RESULTS PEC mitigated chondrocyte pyroptosis, as evidenced by reduced levels of pyroptosis-related proteins. Additionally, PEC attenuated IL-1β-mediated chondrocyte ECM degradation and inflammation. Mechanistically, mRNA-seq showed that FGFR3 was a downstream target of PEC. FGFR3 silencing reversed the beneficial effects of PEC on IL-1β-exposed chondrocytes. PEC exerted anti-pyroptotic, anti-ECM degradative, and anti-inflammatory effects through upregulating FGFR3 to inhibit the NF-κB/NLRP3 pyroptosis-related pathway. Consistently, in vivo experiments demonstrated the chondroprotective effects of PEC in OA mice. CONCLUSION PEC alleviate OA progression by FGFR3/NF-κB/NLRP3 pathway mediated chondrocyte pyroptosis, ECM degradation and inflammation, suggesting the potential of PEC as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Lan Z, Yang Y, Sun R, Lin X, Yan J, Chen X, Tian K, Wu G, Saad M, Wu Z, Xue D, Jin Q. Characterization of PANoptosis-related genes with immunoregulatory features in osteoarthritis. Int Immunopharmacol 2024; 140:112889. [PMID: 39128418 DOI: 10.1016/j.intimp.2024.112889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to characterize PANoptosis-related genes with immunoregulatory features in osteoarthritis (OA) and investigate their potential diagnostic and therapeutic implications. Gene expression data from OA patients and healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Differential expression analysis and functional enrichment analysis were conducted to identify PANoptosis-related genes (PRGs) associated with OA pathogenesis. A diagnostic model was developed using LASSO regression, and the diagnostic value of key PRGs was evaluated using Receiver Operating Characteristic Curve (ROC) analysis. The infiltration of immune cells and potential small molecule agents were also examined. A total of 39 differentially expressed PANoptosis-related genes (DE-PRGs) were identified, with functional enrichment analysis revealing their involvement in inflammatory response regulation and immune modulation pathways. Seven key PRGs, including CDKN1A, EZH2, MEG3, NR4A1, PIK3R2, S100A8, and SYVN1, were selected for diagnostic model construction, demonstrating high predictive performance in both training and validation datasets. The correlation between key PRGs and immune cell infiltration was explored. Additionally, molecular docking analysis identified APHA-compound-8 as a potential therapeutic agent targeting key PRGs. This study identified and analyzed PRGs in OA, uncovering their roles in immune regulation. Seven key PRGs were used to construct a diagnostic model with high predictive performance. The identified PRGs' correlation with immune cell infiltration was elucidated, and APHA-compound-8 was highlighted as a potential therapeutic agent. These findings offer novel diagnostic markers and therapeutic targets for OA, warranting further in vivo validation and exploration of clinical applications.
Collapse
Affiliation(s)
- Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yang Yang
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Rui Sun
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jiangbo Yan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Gang Wu
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Muhammad Saad
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wu
- Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Qunhua Jin
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
29
|
Guo X, Feng X, Yang Y, Zhang H, Bai L. Spermidine attenuates chondrocyte inflammation and cellular pyroptosis through the AhR/NF-κB axis and the NLRP3/caspase-1/GSDMD pathway. Front Immunol 2024; 15:1462777. [PMID: 39416781 PMCID: PMC11479918 DOI: 10.3389/fimmu.2024.1462777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Osteoarthritis (OA) is a prevalent chronic degenerative disease, marked by a complex interplay of mechanical stress, inflammation, and metabolic imbalances. Recent studies have highlighted the potential of spermidine (SPD), a naturally occurring polyamine known for its anti-inflammatory and antioxidant properties, as a promising therapeutic agent for OA. This study delves into the therapeutic efficacy and mechanistic pathways of SPD in mitigating OA symptoms. Methods Forty Sprague-Dawley rats were randomly assigned to four groups, including the CG (sham operation), model (anterior cruciate ligament transection [ACLT], and treatment (ACLT + two different doses of SPD) groups. In vivo, correlations between OA severity and different interventions were assessed by ELISA, X-rays, CT imaging, histological staining, and immunohistochemistry. In vitro, IL-1β was used to trigger chondrocyte inflammation, and SPD's cytotoxicity was assessed in primary rat chondrocytes. Next, inflammatory markers, extracellular matrix (ECM) proteins, and pathway marker proteins were detected in chondrocytes administered IL-1β alone, SPD, or aryl hydrocarbon receptor (AhR) silencing, by qRT-PCR, Griess reaction, ELISA, Western blot, and immunofluorescence. Morphological alterations and pyroptosis in chondrocytes were examined by transmission electron microscopy (TEM) and flow cytometry. Results Our research reveals that SPD exerts significant anti-inflammatory and antipyroptotic effects on IL-1β-treated chondrocytes and in anterior cruciate ligament transection (ACLT) rat models of OA, primarily through interaction with the Aryl hydrocarbon receptor (AhR). Specifically, SPD's binding to AhR plays a crucial role in modulating the inflammatory response and cellular pyroptosis by inhibiting both the AhR/NF-κB and NLRP3/caspase-1/GSDMD signaling pathways. Furthermore, the knockdown of AhR was found to negate the beneficial effects of SPD, underscoring the centrality of the AhR pathway in SPD's action mechanism. Additionally, SPD was observed to promote the preservation of cartilage integrity and suppress ECM degradation, further supporting its potential as an effective intervention for OA. Discussion Collectively, our findings propose SPD as a novel therapeutic approach for OA treatment, targeting the AhR pathway to counteract the disease's progression and highlighting the need for further clinical evaluation to fully establish its therapeutic utility.
Collapse
Affiliation(s)
| | | | | | | | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Ji P, Zhou Z, Zhang J, Bai T, Li C, Zhou B, Wang M, Tan Y, Wang S. Non-apoptotic cell death in osteoarthritis: Recent advances and future. Biomed Pharmacother 2024; 179:117344. [PMID: 39191021 DOI: 10.1016/j.biopha.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/23/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. Multiple tissues are altered during the development of OA, resulting in joint pain and permanent damage to the osteoarticular joints. Current research has demonstrated that non-apoptotic cell death plays a crucial role in OA. With the continuous development of targeted therapies, non-apoptotic cell death has shown great potential in the prevention and treatment of OA. We systematically reviewed research progress on the role of non-apoptotic cell death in the pathogenesis, development, and outcome of OA, including autophagy, pyroptosis, ferroptosis, necroptosis, immunogenic cell death, and parthanatos. This article reviews the mechanism of non-apoptotic cell death in OA and provides a theoretical basis for the identification of new targets for OA treatment.
Collapse
Affiliation(s)
- Pengfei Ji
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Ziyu Zhou
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Tianding Bai
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Binghao Zhou
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Mengjie Wang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Yingdong Tan
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China.
| | - Shengwang Wang
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China.
| |
Collapse
|
31
|
Lee SH, Shin MK, Sung JS. Tamarixetin Protects Chondrocytes against IL-1β-Induced Osteoarthritis Phenotype by Inhibiting NF-κB and Activating Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1166. [PMID: 39456419 PMCID: PMC11505541 DOI: 10.3390/antiox13101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown and chronic inflammation in joints. As the most prevalent form of arthritis, OA affects around 600 million people globally. Despite the increasing number of individuals with OA risk factors, such as aging and obesity, there is currently no effective cure for the disease. In this context, this study investigated the therapeutic effects of tamarixetin, a flavonoid with antioxidative and anti-inflammatory properties, against OA pathology and elucidated the underlying molecular mechanism. In interleukin-1β (IL-1β)-treated chondrocytes, tamarixetin inhibited the OA phenotypes, restoring cell viability and chondrogenic properties while reducing hypertrophic differentiation and dedifferentiation. Tamarixetin alleviated oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation and inhibited mitogen-activated protein kinase and nuclear factor-κB (NF-κB). Furthermore, tamarixetin attenuated pyroptosis, a programmed cell death caused by excessive inflammation, by suppressing inflammasome activation. We confirmed that the chondroprotective effects of tamarixetin are mediated by the concurrent upregulation of Nrf2 signaling and downregulation of NF-κB signaling, which are key players in balancing antioxidative and inflammatory responses. Overall, our study demonstrated that tamarixetin possesses chondroprotective properties by alleviating IL-1β-induced cellular stress in chondrocytes, suggesting its therapeutic potential to relieve OA phenotype.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.-H.L.); (M.K.S.)
| |
Collapse
|
32
|
Sheng W, Yue Y, Qi T, Qin H, Liu P, Wang D, Zeng H, Yu F. The Multifaceted Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 in Osteoarthritis: Regulation of Oxidative Stress and Inflammation. J Inflamm Res 2024; 17:6619-6633. [PMID: 39329083 PMCID: PMC11424688 DOI: 10.2147/jir.s479186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease's progression. It modulates the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. This review discusses NRF2's impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also discussed. It also covers NRF2's role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this review is to provide a comprehensive understanding of NRF2's protective mechanisms in OA, highlighting its potential as a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Hui Zeng
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| |
Collapse
|
33
|
Guan M, Yu Q, Zhou G, Wang Y, Yu J, Yang W, Li Z. Mechanisms of chondrocyte cell death in osteoarthritis: implications for disease progression and treatment. J Orthop Surg Res 2024; 19:550. [PMID: 39252111 PMCID: PMC11382417 DOI: 10.1186/s13018-024-05055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration, destruction, and excessive ossification of articular cartilage. The prevalence of OA is rising annually, concomitant with the aging global population and increasing rates of obesity. This condition imposes a substantial and escalating burden on individual health, healthcare systems, and broader social and economic frameworks. The etiology of OA is multifaceted and not fully understood. Current research suggests that the death of chondrocytes, encompassing mechanisms such as cellular apoptosis, pyroptosis, autophagy, ferroptosis and cuproptosis, contributes to both the initiation and progression of the disease. These cell death pathways not only diminish the population of chondrocytes but also exacerbate joint damage through the induction of inflammation and other deleterious processes. This paper delineates the morphological characteristics associated with various modes of cell death and summarizes current research results on the molecular mechanisms of different cell death patterns in OA. The objective is to review the advancements in understanding chondrocyte cell death in OA, thereby offering novel insights for potential clinical interventions.
Collapse
Affiliation(s)
- Mengqi Guan
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Qingyuan Yu
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Guohui Zhou
- Orthopedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Yan Wang
- Sino-Japanese Friendship Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jianan Yu
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Wei Yang
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
34
|
Altahla R, Tao X. Thioredoxin-Interacting Protein's Role in NLRP3 Activation and Osteoarthritis Pathogenesis by Pyroptosis Pathway: In Vivo Study. Metabolites 2024; 14:488. [PMID: 39330495 PMCID: PMC11433649 DOI: 10.3390/metabo14090488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) has been involved in oxidative stress and activation of the NOD-like receptor protein-3 (NLRP3) inflammasome, directly linking it to the pyroptosis pathway. Furthermore, pyroptosis may contribute to the inflammatory process in osteoarthritis (OA). The purpose of this study was to investigate the role of TXNIP in activating the NLRP3 inflammasome through the pyroptosis pathway in an OA rat model. Destabilization of the medial meniscus (DMM) was induced in the OA model with intra-articular injections of adeno-associated virus (AAV) overexpressing (OE) or knocking down (KD) TXNIP. A total of 48 healthy rats were randomly divided into six groups (N = 8 each). During the experiment, the rats' weights, mechanical pain thresholds, and thermal pain thresholds were measured weekly. Morphology staining, micro-CT, 3D imaging, and immunofluorescence (IF) staining were used to measure the expression level of TXNIP, and ELISA techniques were employed. OE-TXNIP-AAV in DMM rats aggravated cartilage destruction and subchondral bone loss, whereas KD-TXNIP slowed the progression of OA. The histological results showed that DMM modeling and OE-TXNIP-AAV intra-articular injection caused joint structure destruction, decreased anabolic protein expression, and increased catabolic protein expression and pyroptosis markers. Conversely, KD-TXNIP-AAV slowed joint degeneration. OE-TXNIP-AVV worsened OA by accelerating joint degeneration and damage, while KD-TXNIP-AAV treatment had a protective effect.
Collapse
Affiliation(s)
- Ruba Altahla
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Tao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
35
|
He H, Chen J, Hua Y, Xie Z, Tu M, Liu L, Wang H, Yang X, Chen L. α7-nAChR/P300/NLRP3-regulated pyroptosis mediated poor articular cartilage quality induced by prenatal nicotine exposure in female offspring rats. Chem Biol Interact 2024; 400:111183. [PMID: 39098741 DOI: 10.1016/j.cbi.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Nicotine is developmentally toxic. Prenatal nicotine exposure (PNE) affects the development of multiple fetal organs and causes susceptibility to a variety of diseases in offspring. In this study, we aimed to investigate the effect of PNE on cartilage development and osteoarthritis susceptibility in female offspring rats. Wistar rats were orally gavaged with nicotine on days 9-20 of pregnancy. The articular cartilage was obtained at gestational day (GD) 20 and postnatal week (PW) 24, respectively. Further, the effect of nicotine on chondrogenic differentiation was explored by the chondrogenic differentiation model in human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). The PNE group showed significantly shallower Safranin O staining and lower Collagen 2a1 content of articular cartilage in female offspring rats. Further, we found that PNE activated pyroptosis in the articular cartilage at GD20 and PW24. In vitro experiments revealed that nicotine inhibited chondrogenic differentiation and activated pyroptosis. After interfering with nod-like receptors3 (NLRP3) expression by SiRNA, it was found that pyroptosis mediated the chondrogenic differentiation inhibition of WJ-MSCs induced by nicotine. In addition, we found that α7-nAChR antagonist α-BTX reversed nicotine-induced NLRP3 and P300 high expression. And, P300 SiRNA reversed the increase of NLRP3 mRNA expression and histone acetylation level in its promoter region induced by nicotine. In conclusion, PNE caused chondrodysplasia and poor articular cartilage quality in female offspring rats. PNE increased the histone acetylation level of NLRP3 promoter region by α7-nAChR/P300, which resulting in the high expression of NLRP3. Further, NLRP3 mediated the inhibition of chondrogenic differentiation by activating pyroptosis.
Collapse
Affiliation(s)
- Hangyuan He
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Hua
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Xie
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Tu
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xu Yang
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
36
|
Zhou D, Mei Y, Song C, Cheng K, Cai W, Guo D, Gao S, Lv J, Liu T, Zhou Y, Wang L, Liu B, Liu Z. Exploration of the mode of death and potential death mechanisms of nucleus pulposus cells. Eur J Clin Invest 2024; 54:e14226. [PMID: 38632688 DOI: 10.1111/eci.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic orthopaedic disease in orthopaedics that imposes a heavy economic burden on people and society. Although it is well established that IVDD is associated with genetic susceptibility, ageing and obesity, its pathogenesis remains incompletely understood. Previously, IVDD was thought to occur because of excessive mechanical loading leading to destruction of nucleus pulposus cells (NPCs), but studies have shown that IVDD is a much more complex process associated with inflammation, metabolic factors and NPCs death and can involve all parts of the disc, characterized by causing NPCs death and extracellular matrix (ECM) degradation. The damage pattern of NPCs in IVDD is like that of some programmed cell death, suggesting that IVDD is associated with programmed cell death. Although apoptosis and pyroptosis of NPCs have been studied in IVDD, the pathogenesis of intervertebral disc degeneration can still not be fully elucidated by using only traditional cell death modalities. With increasing research, some new modes of cell death, PANoptosis, ferroptosis and senescence have been found to be closely related to intervertebral disc degeneration. Among these, PANoptosis combines essential elements of pyroptosis, apoptosis and necroptosis to form a highly coordinated and dynamically balanced programmed inflammatory cell death process. Furthermore, we believe that PANoptosis may also crosstalk with pyroptosis and senescence. Therefore, we review the progress of research on multiple deaths of NPCs in IVDD to provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yang Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bing Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
37
|
Wang F, Xiao J, Li M, He Q, Wang X, Pan Z, Li S, Wang H, Zhou C. Picroside II suppresses chondrocyte pyroptosis through MAPK/NF-κB/NLRP3 signaling pathway alleviates osteoarthritis. PLoS One 2024; 19:e0308731. [PMID: 39208260 PMCID: PMC11361613 DOI: 10.1371/journal.pone.0308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Picroside II (P-II) is the main bioactive constituent of Picrorhiza Kurroa, a traditional Chinese herb of interest for its proven anti-inflammatory properties. Its beneficial effects have been noted across several physiological systems, including the nervous, circulatory, and digestive, capable of treating a wide range of diseases. Nevertheless, the potential of Picroside II to treat osteoarthritis (OA) and the mechanisms behind its efficacy remain largely unexplored. AIM This study aims to evaluate the efficacy of Picroside II in the treatment of osteoarthritis and its potential molecular mechanisms. METHODS In vitro, we induced cellular inflammation in chondrocytes with lipopolysaccharide (LPS) and subsequently treated with Picroside II to assess protective effect on chondrocyte. We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of Picroside II on cell viability and select the optimal Picroside II concentration for subsequent experiments. We explored the effect of Picroside II on chondrocyte pyroptosis and its underlying molecular mechanisms by qRT-PCR, Western blot (WB) and immunofluorescence. In vivo, we established the destabilization of the medial meniscus surgery to create an OA mouse model. The therapeutic effects of Picroside II were then assessed through Micro-CT scanning, Hematoxylin-eosin (H&E) staining, Safranin O-Fast Green (S&F) staining, immunohistochemistry and immunofluorescence. RESULTS In in vitro studies, toluidine blue and CCK-8 results showed that a certain concentration of Picroside II had a restorative effect on the viability of chondrocytes inhibited by LPS. Picroside II notably suppressed the expression levels of caspase-1, IL-18, and IL-1β, which consequently led to the reduction of pyroptosis. Moreover, Picroside II was shown to decrease NLRP3 inflammasome activation, via the MAPK/NF-κB signaling pathway. In vivo studies have shown that Picroside II can effectively reduce subchondral bone destruction and osteophyte formation in the knee joint of mice after DMM surgery. CONCLUSIONS Our research suggests that Picroside II can inhibit chondrocyte pyroptosis and ameliorate osteoarthritis progression by modulating the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanchen Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xintian Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaofeng Pan
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
38
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
39
|
Zhang P, Zhai H, Zhang S, Ma X, Gong A, Xu Z, Zhao W, Song H, Li S, Zheng T, Ying Z, Cheng L, Zhao Y, Zhang L. GDF11 protects against mitochondrial-dysfunction-dependent NLRP3 inflammasome activation to attenuate osteoarthritis. J Adv Res 2024:S2090-1232(24)00323-0. [PMID: 39103049 DOI: 10.1016/j.jare.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Haoxin Zhai
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojie Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Department of Rheumatology and Immunology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Ao Gong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Zhaoning Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China
| | - Tengfei Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China
| | - Zhendong Ying
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China; Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, PR China.
| |
Collapse
|
40
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
41
|
Veselá B, Bzdúšková J, Ramešová A, Švandová E, Grässel S, Matalová E. Inhibition of caspase-11 under inflammatory conditions suppresses chondrogenic differentiation. Tissue Cell 2024; 89:102425. [PMID: 38875922 DOI: 10.1016/j.tice.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Caspase-11 is the murine homologue of human caspases-4 and -5 and is involved in mediating the inflammatory response. However, its functions are often confused and misinterpreted with the more important and better described caspase-1. Therefore, this study focused exclusively on the specific roles of caspase-11, both in cartilage formation and in the inflammatory environment. The presence of caspase-11 during mouse limb development and in chondrogenic cell cultures was investigated by immunofluorescence detection. Subsequently, the function of caspase-11 was downregulated and the affected molecules investigated. The expression analysis applied for osteo/chondrogenesis associated factors and inflammatory cytokines. Simultaneously, morphological appearance of the micromass cultures was evaluated. The results revealed that caspase-11 is physiologically present during cartilage development, but its inhibition under physiological conditions has no significant effect on chondrogenic differentiation. However, in an inflammatory environment, inhibition and downregulation of caspase-11 leads to reduced differentiation of cartilage nodules. Additionally, reduced expression of several genes including Col2a1 and Sp7 and conversely increased expression of Mmp9 were observed. In the cytokine expression panel, a significant decrease was found in molecules that, along with the inflammatory function, may also be involved in cartilage differentiation. The findings bring new information about caspase-11 in chondrogenesis and show that its downregulation under inflammatory conditions reduces cartilage formation.
Collapse
Affiliation(s)
- Barbora Veselá
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jana Bzdúšková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramešová
- University of Veterinary Medicine, Vienna Department of Biological Sciences and Pathobiology Centre of Biological Sciences
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Biopark 1, Germany
| | - Eva Matalová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
42
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
43
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
44
|
Xia S, Ma R. Tributyltin chloride induces chondrocyte damage through the activation of NLRP3‑mediated inflammation and pyroptosis. Mol Med Rep 2024; 30:122. [PMID: 38785157 PMCID: PMC11130746 DOI: 10.3892/mmr.2024.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Tributyltin chloride (TBTC) is known to have effects and mechanisms in various diseases; however, whether TBTC is detrimental to joints and causes osteoarthritis (OA), as well as its underlying mechanism, has not yet been fully elucidated. The present study explored the effects of TBTC on rat chondrocytes, as well as on mouse OA. The toxicity of TBTC toward rat chondrocytes was detected using a lactate dehydrogenase (LDH) leakage assay and cell viability was evaluated using the Cell Counting Kit‑8 assay. The results showed that TBTC decreased the viability of rat chondrocytes and increased the LDH leakage rate in a concentration‑dependent manner. Moreover, compared with in the control group, TBTC increased the expression levels of interleukin (IL)‑1β, IL‑18, matrix metalloproteinase (MMP)‑1, MMP‑13, NLR family pyrin domain containing 3 (NLRP3), caspase‑1, PYD and CARD domain containing, and gasdermin D in chondrocytes. Furthermore, knockdown of NLRP3 reversed the TBTC‑induced increases in LDH leakage and NLRP3 inflammasome‑associated protein levels. In vivo, TBTC exacerbated cartilage tissue damage in mice from the OA group, as evidenced by the attenuation of safranin O staining. In conclusion, TBTC may aggravate OA in mice by promoting chondrocyte damage and inducing pyroptosis through the activation of NLRP3 and caspase‑1 signaling. The present study demonstrated that TBTC can cause significant damage to the articular cartilage; therefore, TBTC contamination should be strictly monitored.
Collapse
Affiliation(s)
- Silong Xia
- Department of Orthopedics, The Affiliated Jianhu Hospital of Yangzhou University, Yancheng, Jiangsu 224700, P.R. China
| | - Rong Ma
- Department of Orthopedics, The Affiliated Jianhu Hospital of Yangzhou University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
45
|
Kuang S, Sheng W, Meng J, Liu W, Xiao Y, Tang H, Fu X, Kuang M, He Q, Gao S. Pyroptosis-related crosstalk in osteoarthritis: Macrophages, fibroblast-like synoviocytes and chondrocytes. J Orthop Translat 2024; 47:223-234. [PMID: 39040491 PMCID: PMC11262125 DOI: 10.1016/j.jot.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The pathogenesis of osteoarthritis (OA) involves a multifaceted interplay of inflammatory processes. The initiation of pyroptosis involves the secretion of pro-inflammatory cytokines and has been identified as a critical factor in regulating the development of OA. Upon initiation of pyroptosis, a multitude of inflammatory mediators are released and can be disseminated throughout the synovial fluid within the joint cavity, thereby facilitating intercellular communication across the entire joint. The main cellular components of joints include chondrocytes (CC), fibroblast-like synoviocytes (FLS) and macrophages (MC). Investigating their interplay can enhance our understanding of OA pathogenesis. Therefore, we comprehensively examine the mechanisms underlying pyroptosis and specifically investigate the intercellular interactions associated with pyroptosis among these three cell types, thereby elucidating their collective contribution to the progression of OA. We propose the concept of ' CC-FLS-MC pyroptosis-related crosstalk', describe the various pathways of pyroptotic interactions among these three cell types, and focus on recent advances in intervening pyroptosis in these three cell types for treating OA. We hope this will provide a possible direction for diversification of treatment for OA. The Translational potential of this article. The present study introduces the concept of 'MC-FLS-CC pyroptosis-related crosstalk' and provides an overview of the mechanisms underlying pyroptosis, as well as the pathways through which it affects MC, FLS, and CC. In addition, the role of regulation of these three types of cellular pyroptosis in OA has also been concerned. This review offers novel insights into the interplay between these cell types, with the aim of providing a promising avenue for diversified management of OA.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Wen Sheng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Jiahao Meng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijie Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifan Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinying Fu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Min Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Qinghu He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, Hunan, China
| | - Shuguang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, China
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Cao S, Wei Y, Yue Y, Xiong A, Zeng H. Zooming in and Out of Programmed Cell Death in Osteoarthritis: A Scientometric and Visualized Analysis. J Inflamm Res 2024; 17:2479-2498. [PMID: 38681072 PMCID: PMC11055561 DOI: 10.2147/jir.s462722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
During the past decade, mounting evidence has increasingly linked programmed cell death (PCD) to the progression and development of osteoarthritis (OA). There is a significant need for a thorough scientometric analysis that recapitulates the relationship between PCD and OA. This study aimed to collect articles and reviews focusing on PCD in OA, extracting data from January 1st, 2013, to October 31st, 2023, using the Web of Science. Various tools, including VOSviewer, CiteSpace, Pajek, Scimago Graphica, and the R package, were employed for scientometric and visualization analyses. Notably, China, the USA, and South Korea emerged as major contributors, collectively responsible for more than 85% of published papers and significantly influencing research in this field. Among different institutions, Shanghai Jiao Tong University, Xi'an Jiao Tong University, and Zhejiang University exhibited the highest productivity. Prolific authors included Wang Wei, Wang Jing, and Zhang Li. Osteoarthritis and Cartilage had the most publications in this area. Keywords related to PCD in OA prominently highlighted 'chondrocytes', 'inflammation', and 'oxidative stress', recognized as pivotal mechanisms contributing to PCD within OA. This study presents the first comprehensive scientometric analysis, offering a broad perspective on the knowledge framework and evolving patterns concerning PCD in relation to OA over the last decade. Such insights can aid researchers in comprehensively understanding this field and provide valuable directions for future explorations.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
47
|
Lee YC, Chang YT, Cheng YH, Pranata R, Hsu HH, Chen YL, Chen RJ. Pterostilbene Protects against Osteoarthritis through NLRP3 Inflammasome Inactivation and Improves Gut Microbiota as Evidenced by In Vivo and In Vitro Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38624135 PMCID: PMC11046483 DOI: 10.1021/acs.jafc.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is a persistent inflammatory disease, and long-term clinical treatment often leads to side effects. In this study, we evaluated pterostilbene (PT), a natural anti-inflammatory substance, for its protective effects and safety during prolonged use on OA. Results showed that PT alleviated the loss of chondrocytes and widened the narrow joint space in an octacalcium phosphate (OCP)-induced OA mouse model (n = 3). In vitro experiments demonstrate that PT reduced NLRP3 inflammation activation (relative protein expression: C: 1 ± 0.09, lipopolysaccharide (LPS): 1.14 ± 0.07, PT: 0.91 ± 0.07, LPS + PT: 0.68 ± 0.04) and the release of inflammatory cytokines through NF-κB signaling inactivation (relative protein expression: C: 1 ± 0.03, LPS: 3.49 ± 0.02, PT: 0.66 ± 0.08, LPS + PT: 2.78 ± 0.05), ultimately preventing cartilage catabolism. Interestingly, PT also altered gut microbiota by reducing inflammation-associated flora and increasing the abundance of healthy bacteria in OA groups. Collectively, these results suggest that the PT can be considered as a protective strategy for OA.
Collapse
Affiliation(s)
- Yen-Chien Lee
- Department
of Oncology, Tainan Hospital, Tainan 70043, Taiwan
- Department
of Internal Medicine, National Cheng Kung
University Hospital, College of Medicine, Tainan 70043, Taiwan
- Department
of Nursing, National Tainan Junior College
of Nursing, Tainan 70043, Taiwan
| | - Yu-Ting Chang
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsuan Cheng
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rosita Pranata
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Hsuan Hsu
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yen-Lin Chen
- Bioresource
Collection and Research Center (BCRC), Food
Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Rong-Jane Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
48
|
Ye T, Wang C, Yan J, Qin Z, Qin W, Ma Y, Wan Q, Lu W, Zhang M, Tay FR, Jiao K, Niu L. Lysosomal destabilization: A missing link between pathological calcification and osteoarthritis. Bioact Mater 2024; 34:37-50. [PMID: 38173842 PMCID: PMC10761323 DOI: 10.1016/j.bioactmat.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis. However, no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial. Therefore, the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects. With the use of in vitro and in vivo models of osteoarthritis, hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells. This results in lysosomal membrane permeabilization (LMP) and release of cathepsin B (CTSB) into the cytosol. The cytosolic CTSB, in turn, activates NOD-like receptor protein-3 (NLRP3) inflammasomes and subsequently instigates chondrocyte pyroptosis. Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis. The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.
Collapse
Affiliation(s)
- Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chenyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zixuan Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qianqian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Weicheng Lu
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Mian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin R. Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| |
Collapse
|
49
|
Chen KT, Yeh CT, Yadav VK, Pikatan NW, Fong IH, Lee WH, Chiu YS. Notopterol mitigates IL-1β-triggered pyroptosis by blocking NLRP3 inflammasome via the JAK2/NF-kB/hsa-miR-4282 route in osteoarthritis. Heliyon 2024; 10:e28094. [PMID: 38532994 PMCID: PMC10963379 DOI: 10.1016/j.heliyon.2024.e28094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.
Collapse
Affiliation(s)
- Ko-Ta Chen
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yen-Shuo Chiu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
50
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| |
Collapse
|