1
|
Alizadeh H, Akbarabadi P, Dadfar A, Tareh MR, Soltani B. A comprehensive overview of ovarian cancer stem cells: correlation with high recurrence rate, underlying mechanisms, and therapeutic opportunities. Mol Cancer 2025; 24:135. [PMID: 40329326 PMCID: PMC12057202 DOI: 10.1186/s12943-025-02345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies, with a recurrence rate of 70-80%, particularly in patients diagnosed at advanced stages (stage III or IV), where the five-year survival rate falls below 30%. A key driver of this recurrence is the presence of cancer stem cells (CSCs), which exhibit resistance to chemotherapy and possess the capacity for self-renewal, plasticity, and tumor regeneration. The tumor microenvironment (TME) plays a crucial role in maintaining ovarian cancer stem cells (OCSCs) by providing nutrient and oxygen gradients, extracellular matrix (ECM) interactions, immune cell modulation, and support from cancer-associated fibroblasts (CAFs). CAFs secrete growth factors, cytokines, and ECM components that create a pro-tumorigenic niche, promoting CSC maintenance, invasion, and chemoresistance. Additionally, dysregulation of critical signaling pathways, including WNT, NOTCH, PI3K/AKT/mTOR, TGF-β, JAK/STAT, Hedgehog, NF-κB, and Hippo, supports CSC stemness, plasticity, maintenance, and adaptability, thereby increasing their survival and progression. Numerous inhibitors targeting these pathways have shown promise in preclinical studies. This review discusses the molecular mechanisms underlying CSC-mediated recurrence in ovarian cancer and highlights emerging therapeutic strategies. Particular emphasis is placed on the potential of combination therapies involving routine platinum or taxane based regimens with OCSC inhibitors to overcome chemoresistance, reduce recurrence rates, and improve survival outcomes for patients with advanced-stage ovarian cancer.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Parastoo Akbarabadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Alireza Dadfar
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Mohammad Reza Tareh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Bahram Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
2
|
Palomino GJQ, Ygnacio RHC, de Lima LF, Ferreira AS, Neto JEDC, Tetaping GM, Gomes FDR, Pessoa ODL, da Silva Raposo R, Rocha DD, Pessoa CDÓ, Figueiredo JR, de Sá NAR, Rodrigues APR. Investigations on the effects of in vitro exposure of mouse ovaries to withaferin A, a new candidate for chemotherapy. Reprod Toxicol 2025; 132:108844. [PMID: 39875005 DOI: 10.1016/j.reprotox.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
This study aimed to investigate, in vitro, the toxicity of WTA on ovarian follicles. Initially, a cytotoxicity assay was conducted using tumor and non-tumor cell lines to determine the IC. Initially, a cytotoxicity assay was conducted using tumor and non-tumor cell lines to determine the IC50 of the WTA and validate its antitumor activity. Mouse ovaries were cultured in vitro (IVC) for 6 days in the presence of 1 % dimethyl sulfoxide (DMSO), doxorubicin at 0.3 µg/mL (DXR), or WTA at 0.6 µM or 6.0 µM. DXR or WTA were added to the IVC medium once (1DXR, 1WTA0.6, 1WTA6.0) or three times (3DXR, 3WTA0.6, 3WTA6.0). After the IVC, the ovarian stroma, follicular morphology and development, cell proliferation, senescence, DNA damage, and apoptosis were assessed. The degeneration rate in 3DXR and WTA6.0 (1x and 3x) was higher (p < 0.05) compared to the DMSO group. 1DXR and 3WTA0.6 reduced (p < 0.05) the percentage of primordial follicles and increased (p < 0.05) the number of developing follicles compared to the control (CTR) and DMSO groups. An increase (p < 0.05) in lipofuscin granules was observed with DXR and WTA at both concentrations and exposure frequencies compared to the CTR. In the presence of 3WTA0.6, staining for cleaved caspase-3 was more pronounced (p < 0.05). Additionally, 3WTA0.6, 1WTA6.0, and 3DXR increased (p < 0.05) DNA fragmentation in the stroma compared to the CTR and DMSO groups. We conclude that, like chemotherapy agents used for cancer treatment, WTA induces severe cytotoxic effects on ovarian follicles and stroma, especially at high concentrations and exposure frequencies.
Collapse
Affiliation(s)
- Gaby Judith Quispe Palomino
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | - Rensson Homero Céliz Ygnacio
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | - Laritza Ferreira de Lima
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | | | - João Elmo da Cunha Neto
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | - Gildas Mbemya Tetaping
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | - Francisco Denilson Rodrigues Gomes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | | | - Ramon da Silva Raposo
- Nucleus of Experimental Biology (NUBEX), University of Fortaleza, and Faculty of Health Sciences of Sertão Central (FACISC), State University of Ceará, Brazil
| | - Danilo Damasceno Rocha
- Laboratory National Experimental Oncology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cláudia do Ó Pessoa
- Laboratory National Experimental Oncology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Ricardo Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | - Naiza Arcângela Ribeiro de Sá
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil
| | - Ana Paula Ribeiro Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, Fortaleza, CE CEP: 60714-903, Brazil.
| |
Collapse
|
3
|
Kakar SS, Vemuri V, Ratajczak MZ. Withaferin A Attenuates Muscle Cachexia Induced by Angiotensin II Through Regulating Pathways Activated by Angiotensin II. Cells 2025; 14:244. [PMID: 39996717 PMCID: PMC11853093 DOI: 10.3390/cells14040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Cachexia is a multifactorial syndrome characterized by severe muscle wasting and is a debilitating condition frequently associated with cancer. Previous studies from our group revealed that withaferin A (WFA), a steroidal lactone, mitigated muscle cachexia induced by ovarian tumors in NSG mice. However, it remains unclear whether WFA's protective effects are direct or secondary to its antitumor properties. We developed a cachectic model through continuous angiotensin II (Ang II) infusion in C57BL/6 mice to address this issue. Ang II infusion resulted in profound muscle atrophy, evidenced by significant reductions in grip strength and in the TA, GA, and GF muscle mass. Molecular analyses indicated elevated expression of inflammatory cytokines (TNFα, IL-6, MIP-2, IL-18, IL-1β), NLRP3 inflammasome, and genes associated with the UPS (MuRF1, MAFBx) and autophagy pathways (Bacl1, LC3B), along with suppression of anti-inflammatory heme oxygenase-1 (HO-1) and myogenic regulators (Pax7, Myod1). Strikingly, WFA treatment reversed these pathological changes, restoring muscle mass, strength, and molecular markers to near-normal levels. These findings demonstrate that WFA exerts direct anti-cachectic effects by targeting key inflammatory and atrophic pathways in skeletal muscle, highlighting its potential as a novel therapeutic agent for cachexia management.
Collapse
Affiliation(s)
- Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA;
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Vasa Vemuri
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA;
| | - Mariusz Z. Ratajczak
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Abeesh P, Guruvayoorappan C. The Therapeutic Effects of Withaferin A against Cancer: Overview and Updates. Curr Mol Med 2024; 24:404-418. [PMID: 37076466 DOI: 10.2174/1566524023666230418094708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Cancer is a rapidly rising health problem among the global population, and this burden causes a significant challenge for public health. Current chemotherapeutic agents have different limitations, including drug resistance and severe side effects, and it demands a robust approach to accessing promising anti-cancer therapeutics. The natural compounds have been extensively studied to identify improved therapeutic agents for cancer therapy. Withaferin A (WA) is a steroidal lactone found in Withania somnifera and possesses anti-inflammatory, antioxidant, anti-angiogenesis, and anticancer properties. Multiple studies have shown that WA treatment attenuated various cancer hallmarks by inducing apoptosis and reducing angiogenesis and metastasis with reduced side effects. WA is a promising agent for the treatment of various cancer, and it targets various signaling pathways. With recent updates, the current review highlights the therapeutic implications of WA and its molecular targets in different cancer.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
6
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
7
|
Modulation of Notch Signaling Pathway by Bioactive Dietary Agents. Int J Mol Sci 2022; 23:ijms23073532. [PMID: 35408894 PMCID: PMC8998406 DOI: 10.3390/ijms23073532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Notch signaling is often aberrantly activated in solid and hematological cancers and regulates cell fate decisions and the maintenance of cancer stem cells. In addition, increased expression of Notch pathway components is clinically associated with poorer prognosis in several types of cancer. Targeting Notch may have chemopreventive and anti-cancer effects, leading to reduced disease incidence and improved survival. While therapeutic agents are currently in development to achieve this goal, several researchers have turned their attention to dietary and natural agents for targeting Notch signaling. Given their natural abundance from food sources, the use of diet-derived agents to target Notch signaling offers the potential advantage of low toxicity to normal tissue. In this review, we discuss several dietary agents including curcumin, EGCG, resveratrol, and isothiocyanates, which modulate Notch pathway components in a context-dependent manner. Dietary agents modulate Notch signaling in several types of cancer and concurrently decrease in vitro cell viability and in vivo tumor growth, suggesting a potential role for their clinical use to target Notch pathway components, either alone or in combination with current therapeutic agents.
Collapse
|
8
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
9
|
A Perspective on Withania somnifera Modulating Antitumor Immunity in Targeting Prostate Cancer. J Immunol Res 2021; 2021:9483433. [PMID: 34485538 PMCID: PMC8413038 DOI: 10.1155/2021/9483433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/07/2021] [Indexed: 01/07/2023] Open
Abstract
Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.
Collapse
|
10
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
11
|
Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle Mass. Front Cell Dev Biol 2021; 9:636498. [PMID: 33718372 PMCID: PMC7947350 DOI: 10.3389/fcell.2021.636498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a complex wasting syndrome that overwhelmingly affects the majority of late-stage cancer patients. Additionally, there are currently no efficacious therapeutic agents to treat the muscle atrophy induced by the cancer. While several preclinical studies have investigated the molecular signals orchestrating cachexia, very little information exists pertaining to ovarian cancer and the associated cachexia. Work from our lab has recently demonstrated that the steroidal lactone Withaferin A (WFA) is capable of attenuating the atrophying effects of ovarian cancer in a preclinical mouse model. However, it remained to be determined whether WFA's effect was in response to its anti-tumorigenic properties, or if it was capable of targeting skeletal muscle directly. The purpose of this study was to uncover whether WFA was capable of regulating muscle mass under tumor-free and tumor-bearing conditions. Treatment with WFA led to an improvement in functional muscle strength and mass under tumor-bearing and naïve conditions. WFA and ovarian cancer were observed to act antagonistically upon critical skeletal muscle regulatory systems, notably myogenic progenitors and proteolytic degradation pathways. Our results demonstrated for the first time that, while WFA has anti-tumorigenic properties, it also exerts hypertrophying effects on skeletal muscle mass, suggesting that it could be an anti-cachectic agent in the settings of ovarian cancer.
Collapse
Affiliation(s)
- Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
12
|
Ovarian Cancer Stem Cells: Characterization and Role in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:151-169. [PMID: 34339036 DOI: 10.1007/978-3-030-73359-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is a heterogenous disease with variable clinicopathological and molecular mechanisms being responsible for tumorigenesis. Despite substantial technological improvement, lack of early diagnosis contributes to its highest mortality. Ovarian cancer is considered to be the most lethal female gynaecological cancer across the world. Conventional treatment modules with platinum- and Taxane-based chemotherapy can cause an initial satisfactory improvement in ovarian cancer patients. However, approximately 75-80% patients of advanced stage ovarian cancer, experience relapse and nearly 40% have overall poor survival rate. It has been observed that a subpopulation of cells referred as cancer stem cells (CSCs), having self renewal property, escape the conventional chemotherapy because of their quiescent nature. Later, these CSCs following its interaction with microenvironment and release of various inflammatory cytokines, chemokines and matrix metalloproteinases, induce invasion and propagation to distant organs of the body mainly peritoneal cavity. These CSCs can be enriched by their specific surface markers such as CD44, CD117, CD133 and intracellular enzyme such as aldehyde dehydrogenase. This tumorigenicity is further aggravated by the epithelial to mesenchymal transition of CSCs and neovascularisation via epigenetic reprogramming and over-expression of various signalling cascades such as Wnt/β-catenin, NOTCH, Hedgehog, etc. to name a few. Hence, a comprehensive understanding of various cellular events involving interaction between cancer cells and cancer stem cells as well as its surrounding micro environmental components would be of unmet need to achieve the ultimate goal of better management of ovarian cancer patients. This chapter deals with the impact of ovarian cancer stem cells in tumorigenesis which would help in the implementation of basic research into the clinical field in the form of translational research in order to reduce the morbidity and mortality in ovarian cancer patients through amelioration of diagnosis and impoverishment of therapeutic resistance.
Collapse
|
13
|
Behl T, Sharma A, Sharma L, Sehgal A, Zengin G, Brata R, Fratila O, Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020; 8:571. [PMID: 33291236 PMCID: PMC7762146 DOI: 10.3390/biomedicines8120571] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WA), a manifold studied, C28-steroidal lactone withanolide found in Withania somnifera. Given its unique beneficial effects, it has gathered attention in the era of modern science. Cancer, being considered a "hopeless case and the leading cause of death worldwide, and the available conventional therapies have many lacunae in the form of side effects. The poly pharmaceutical natural compound, WA treatment, displayed attenuation of various cancer hallmarks by altering oxidative stress, promoting apoptosis, and autophagy, inhibiting cell proliferation, reducing angiogenesis, and metastasis progression. The cellular proteins associated with antitumor pathways were also discussed. WA structural modifications attack multiple signal transduction pathways and enhance the therapeutic outcomes in various diseases. Moreover, it has shown validated pharmacological effects against multiple neurodegenerative diseases by inhibiting acetylcholesterinases and butyrylcholinesterases enzyme activity, antidiabetic activity by upregulating adiponectin and preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ), cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis. The current review is an extensive survey of various WA associated disease targets, its pharmacokinetics, synergistic combination, modifications, and biological activities.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42250, Turkey;
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
14
|
Kelm NQ, Straughn AR, Kakar SS. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS One 2020; 15:e0236680. [PMID: 32722688 PMCID: PMC7386592 DOI: 10.1371/journal.pone.0236680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cachexia is a common multifactorial syndrome in the advanced stages of cancer and accounts for approximately 20–30% of all cancer-related fatalities. In addition to the progressive loss of skeletal muscle mass, cancer results in impairments in cardiac function. We recently demonstrated that WFA attenuates the cachectic skeletal muscle phenotype induced by ovarian cancer. The purpose of this study was to investigate whether ovarian cancer induces cardiac cachexia, the possible pathway involved, and whether WFA attenuates cardiac cachexia. Xenografting of ovarian cancer induced cardiac cachexia, leading to the loss of normal heart functions. Treatment with WFA rescued the heart weight. Further, ovarian cancer induced systolic dysfunction and diastolic dysfunction Treatment with WFA preserved systolic function in tumor-bearing mice, but diastolic dysfunction was partially improved. In addition, WFA abrogated the ovarian cancer-induced reduction in cardiomyocyte cross-sectional area. Finally, treatment with WFA ameliorated fibrotic deposition in the hearts of tumor-bearing animals. We observed a tumor-induced MHC isoform switching from the adult MHCα to the embryonic MHCβ isoform, which was prevented by WFA treatment. Circulating Ang II level was increased significantly in the tumor-bearing, which was lowered by WFA treatment. Our results clearly demonstrated the induction of cardiac cachexia in response to ovarian tumors in female NSG mice. Further, we observed induction of proinflammatory markers through the AT1R pathway, which was ameliorated by WFA, in addition to amelioration of the cachectic phenotype, suggesting WFA as a potential therapeutic agent for cardiac cachexia in oncological paradigms.
Collapse
Affiliation(s)
- Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
15
|
Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed Pharmacother 2020; 129:110383. [PMID: 32563149 DOI: 10.1016/j.biopha.2020.110383] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022] Open
Abstract
Withaferin A (WFA), a C5,C6-epoxy steroidal lactone isolated from the medicinal plant Withania somnifera (L.) Dunal, inhibits growth of tumor cells in different cancer types. However, the mechanisms underlying the effect of WFA on tumor cells are not fully understood. In the present study, we evaluated the blockade of TASK-3 channels by WFA in TASK-3-expressing HEK-293 cells. Explore if the WFA-mediated TASK-3 blockade can be used as a pharmacological tool to decrease the cell viability in cancer cells. A combination of functional experiments (patch-clamp, gene downregulation, overexpression and pharmacological inhibition) and molecular docking analysis were used to get insights into the mechanism by which the inhibition of TASK-3 by WFA affects the growth and viability of cancer cells. Withaferin A was found to inhibit the activity of TASK-3 channels. The inhibitory effect of Withaferin A on TASK-3 potassium currents was dose-dependent and independent of voltage. Molecular modeling studies identified putative WFA-binding sites in TASK-3 channel involved the channel blockade. In agreements with the molecular modeling predictions, mutation of residues F125 to A (F125A), L197 to V (L197 V) and the double mutant F125A-L197 V markedly decreased the WFA-induced inhibition of TASK-3. Finally, the cytotoxic effect of WFA was tested in MDA-MB-231 human breast cancer cells transfected with TASK-3 or shRNA that decreases TASK-3 expression. Together, our results show that the cytotoxic effect of WFA on fully transformed MDA-MB-231 cells depends on the expression of TASK-3. Herein, we also provide insights into the mechanism of TASK-3 inhibition by WFA.
Collapse
|
16
|
Zuber E, Schweitzer D, Allen D, Parte S, Kakar SS. Stem Cells in Ovarian Cancer and Potential Therapies. PROCEEDINGS OF STEM CELL RESEARCH AND ONCOGENESIS 2020; 8:e1001. [PMID: 32776013 PMCID: PMC7413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Elena Zuber
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Diana Schweitzer
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Dominick Allen
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska, Omaha, NE-68198-5870
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY40202
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
17
|
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173:113602. [DOI: 10.1016/j.bcp.2019.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
|
18
|
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance. Curr Med Chem 2019; 26:6282-6303. [DOI: 10.2174/0929867325666180403141554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the
most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this
discovery in the treatment of various diseases and cancer is one of them although there are multiple
treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable
problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing
mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation,
drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as
well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these
processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases
and progressions that have been achieved in this field.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Straughn AR, Kakar SS. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res 2019; 12:115. [PMID: 31767036 PMCID: PMC6878639 DOI: 10.1186/s13048-019-0586-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer is the fifth leading cause of cancer-related deaths amongst women in the United States. Cachexia is the primary cause of death in approximately 30% of cancer patients, and is often evidenced in ovarian cancer patients. We tested the steroidal lactone Withaferin A to examine if it could ameliorate ovarian cancer-induced cachexia. METHODS Six-week-old severely immunodeficient female mice were xenografted with the ovarian cancer cell line A2780 followed by treatment with Withaferin A or vehicle. Changes in functional grip strength were assessed on a weekly basis. Postmortem, H&E staining was performed on skeletal muscle sections and immunofluorescent immunohistochemistry was performed on skeletal muscle and tumor sections. The levels of NF-κB-related proinflammatory cytokines were assessed in the xenografted tumors and in resident host skeletal muscle. RESULTS Xenografting of the A2780 cell line resulted in a significant rate of mortality, which was attenuated by a therapeutic dosage of Withaferin A. Mice that received vehicle treatment following xenografting exhibited functional muscle decline over the course of the study. The therapeutic dosage Withaferin A treatment attenuated this reduction in grip strength, whereas the supratherapeutic dosage of Withaferin A was found to be toxic/lethal and demonstrated a further decline in functional muscle strength and an increased rate of mortality on par with vehicle treatment. At a histological level, the vehicle treated tumor-bearing mice exhibited a profound reduction in myofibrillar cross-sectional area compared to the vehicle treated tumor-free control group. The atrophic changes induced by the xenografted tumor were significantly ameliorated by treatment with Withaferin A. The combination of functional muscle weakening and induction of myofibrillar atrophy corroborate a cachectic phenotype, which was functionally rescued by Withaferin A. Further, treatment completely abolished the slow-to-fast myofiber type conversion observed in the settings of cancer-induced cachexia. In both host resident skeletal muscle and the xenografted tumors, we report an increase in NF-κB-related proinflammatory cytokines that was reversed by Withaferin A treatment. Finally, we demonstrated that Withaferin A significantly downregulates cytosolic and nuclear levels of phospho-p65, the active canonical NF-κB transcription factor, in xenografted tumors. CONCLUSIONS Cumulatively, our results demonstrate a previously overlooked role of Withaferin A in a xenograft model of ovarian cancer. We propose mechanisms by which Withaferin A reduces NF-κB-dependent pro-inflammatory cytokine production leading to an attenuation of the cachectic phenotype in an i.p. xenograft model of ovarian cancer.
Collapse
Affiliation(s)
- Alex R Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Sham S Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Physiology, University of Louisville, School of Medicine, 500 South Floyd Street, Louisville, KY, 40202, USA.
| |
Collapse
|
20
|
Dutta R, Khalil R, Green R, Mohapatra SS, Mohapatra S. Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. Int J Mol Sci 2019; 20:ijms20215310. [PMID: 31731424 PMCID: PMC6862083 DOI: 10.3390/ijms20215310] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Ashwagandha (Withania Somnifera, WS), belonging to the family Solanaceae, is an Ayurvedic herb known worldwide for its numerous beneficial health activities since ancient times. This medicinal plant provides benefits against many human illnesses such as epilepsy, depression, arthritis, diabetes, and palliative effects such as analgesic, rejuvenating, regenerating, and growth-promoting effects. Several clinical trials of the different parts of the herb have demonstrated safety in patients suffering from these diseases. In the last two decades, an active component of Withaferin A (WFA) has shown tremendous cytotoxic activity suggesting its potential as an anti-carcinogenic agent in treatment of several cancers. In spite of enormous progress, a thorough elaboration of the proposed mechanism and mode of action is absent. Herein, we provide a comprehensive review of the properties of WS extracts (WSE) containing complex mixtures of diverse components including WFA, which have shown inhibitory properties against many cancers, (breast, colon, prostate, colon, ovarian, lung, brain), along with their mechanism of actions and pathways involved.
Collapse
Affiliation(s)
- Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Roukiah Khalil
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S Mohapatra
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (R.D.); (R.K.); (R.G.)
- Center for Research and Education in Nanobioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A Haley VA Hospital, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4127
| |
Collapse
|
21
|
Perestelo NR, Llanos GG, Reyes CP, Amesty A, Sooda K, Afshinjavid S, Jiménez IA, Javid F, Bazzocchi IL. Expanding the Chemical Space of Withaferin A by Incorporating Silicon To Improve Its Clinical Potential on Human Ovarian Carcinoma Cells. J Med Chem 2019; 62:4571-4585. [PMID: 31008605 DOI: 10.1021/acs.jmedchem.9b00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ovarian cancer represents the seventh most commonly diagnosed cancer worldwide. Herein, we report on the development of a withaferin A (WA)-silyl ether library with 30 analogues reported for the first time. Cytotoxicity assays on human epithelial ovarian carcinoma cisplatin-sensitive and -resistant cell lines identified eight analogues displaying nanomolar potency (IC50 ranging from 1 to 32 nM), higher than that of the lead compound and reference drug. This cytotoxic potency is also coupled with a good selectivity index on a nontumoral cell line. Cell cycle analysis of two potent analogues revealed cell death by apoptosis without indication of cell cycle arrest in G0/G1 phase. The structure-activity relationship and in silico absorption, distribution, metabolism, and excretion studies demonstrated that the incorporation of silicon and a carbonyl group at C-4 in the WA framework enhances potency, selectivity, and drug likeness. These findings reveal analogues 22, 23, and 25 as potential candidates for clinical translation in patients with relapsed ovarian cancer.
Collapse
Affiliation(s)
- Nayra R Perestelo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Gabriel G Llanos
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Carolina P Reyes
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Angel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Kartheek Sooda
- Department of Pharmacy, School of Applied Science , University of Huddersfield , Queensgate, Huddersfield HD1 3DH , United Kingdom
| | - Saeed Afshinjavid
- College of Arts, Technology and Innovation (ATI) , University of East London , London E16 2RD , United Kingdom
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Farideh Javid
- Department of Pharmacy, School of Applied Science , University of Huddersfield , Queensgate, Huddersfield HD1 3DH , United Kingdom
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| |
Collapse
|
22
|
Kyakulaga AH, Aqil F, Munagala R, Gupta RC. Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells. Sci Rep 2018; 8:15737. [PMID: 30356176 PMCID: PMC6200817 DOI: 10.1038/s41598-018-34018-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide and in the United States. Despite recent advancements in treatment approaches, metastasis remains a major therapeutic challenge in lung cancer and explains the extremely poor prognosis. Epithelial to mesenchymal transition (EMT), a complex process of cellular reprogramming has become an attractive drug target because it plays a crucial role in the metastasis of non-small cell lung cancer (NSCLC). In the present study, we examined the effects of withaferin A (WFA), a plant-derived steroidal lactone on EMT in human NSCLC cell lines. First, we demonstrated that WFA displayed time- and concentration-dependent cytotoxicity on A549 and H1299 NSCLC cells. Then, cells were exposed to ≤ 0.5 µM WFA for ≤ 4 h to minimize cytotoxicity and determined its effects on EMT, cell adhesion, motility, migration, and invasion. EMT induction was performed by culturing cells in serum-free media containing TGFβ1 (5 ng/mL) and TNFα (25 ng/mL) for 48 h. We observed that pretreatment of cells with WFA inhibited cell adhesion, migration, and invasion of A549 and H1299 cells. Using western blot, immunofluorescence, and qRT-PCR analysis, we demonstrated that WFA suppressed TGFβ1 and TNFα-induced EMT in both cell lines. Mechanistically, WFA suppressed the phosphorylation and nuclear translocation of Smad2/3 and NF-κB in A549 and H1299 cells. Together, our study provides additional evidence demonstrating the inhibitory effects of WFA on EMT induction in NSCLC cells and further demonstrates the therapeutic potential of WFA against the metastasis in NSCLC.
Collapse
Affiliation(s)
- Al Hassan Kyakulaga
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Zhao W, Zang C, Zhang T, Li J, Liu R, Feng F, Lv Q, Zheng L, Tian J, Sun C. Clinicopathological characteristics and prognostic value of the cancer stem cell marker ALDH1 in ovarian cancer: a meta-analysis. Onco Targets Ther 2018; 11:1821-1831. [PMID: 29662319 PMCID: PMC5892614 DOI: 10.2147/ott.s160207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The clinicopathological and prognostic values of the cancer stem cell marker aldehyde dehydrogenase 1 (ALDH1) in ovarian cancer (OC) remain unknown. The aim of our meta-analysis was to evaluate ALDH1’s association with clinicopathological characteristics and its prognostic significance in patients with OC. Materials and methods PubMed, Embase, and China Biology Medicine were systematically searched for eligible studies (up to October 2017). Pooled odds ratios (ORs) or hazard ratios (HRs) with 95% CIs were used to evaluate the association of ALDH1 expression with clinicopathological features and survival outcomes. Results A total of 17 papers (18 studies) that included 2,531 patients with OC were analyzed. The results showed a significant association between increasing ALDH1 expression and International Federation of Gynecology and Obstetrics stage (OR 2.02, 95% CI 1.16–3.52), lymph node metastasis (OR 1.91, 95% CI 1.01–3.61), and distant metastasis (OR 5.43, 95% CI 1.44–20.42) in OC. However, no significant correlation was found between increasing ALDH1 expression and age (OR 0.90, 95% CI 0.25–3.28), tumor size (OR 1.13, 95% CI 0.75–1.71), tumor location (OR 0.69, 95% CI 0.22–2.13), ascite status (OR 0.74, 95% CI 0.49–1.11), resistance status (OR 0.70, 95% CI 0.14–3.51), or clinicopathological type (OR 1.14, 95% CI 0.69–1.86). Moreover, a high ALDH1 expression was significantly associated with overall survival (HR 1.56, 95% CI 1.21–2.02) but not with disease-free survival (HR 1.38, 95% CI 0.99–1.93). Conclusion The meta-analysis indicates that increasing ALDH1 predicts poor prognosis and clinicopathological characteristics in OC. Future studies are needed to explore tailored treatments that directly target ALDH1 for the improvement of survival in OC.
Collapse
Affiliation(s)
- Wenge Zhao
- Department of Oncology, College of Clinical Medicine, Weifang Medical University, Weifang, People's Republic of China
| | - Chuanxin Zang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jia Li
- Department of Oncology, College of Clinical Medicine, Weifang Medical University, Weifang, People's Republic of China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, People's Republic of China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, People's Republic of China
| | - Qingliang Lv
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, People's Republic of China
| | - Liang Zheng
- Department of Cardiovascular Medicine, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, People's Republic of China
| |
Collapse
|
24
|
Prognostic roles of Notch receptor mRNA expression in human ovarian cancer. Oncotarget 2018; 8:32731-32740. [PMID: 28415574 PMCID: PMC5464823 DOI: 10.18632/oncotarget.16387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Aberrant activation of Notch signaling pathway has been correlated with high grade ovarian carcinoma and carcinogenesis. However, the predictive and prognostic values of Notch signaling pathway in ovarian cancer patients remains unclear. We utilize “The Kaplan-Meier plotter” (KM plotter) background database to access the prognostic values including overall survival (OS), progression-free survival (PFS), as well as post-progression survival (PPS) of four Notch receptor mRNA expression in ovarian cancer patients. Notch1 mRNA high expression was not correlated with OS, PFS and PPS for all ovarian cancer patients, but significantly correlated with poor PFS in TP53 wild type and favorite PFS in TP53 mutation type ovarian cancer patients. Notch2 mRNA high expression was significantly correlated with poor PFS for all ovarian cancer patients, especially in grade II patients. Notch3 mRNA high expression was significantly correlated with favorite PFS for all ovarian cancer patients. Notch4 mRNA high expression was significantly correlated with favorite OS, but not PFS and PPS for all ovarian cancer patients. The results strongly support that there are distinct prognostic values of four Notch receptor mRNA expression in ovarian cancer patients.
Collapse
|
25
|
Parte SC, Smolenkov A, Batra SK, Ratajczak MZ, Kakar SS. Ovarian Cancer Stem Cells: Unraveling a Germline Connection. Stem Cells Dev 2017; 26:1781-1803. [PMID: 29078734 PMCID: PMC5725638 DOI: 10.1089/scd.2017.0153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is most lethal among gynecological cancers with often fatal consequences due to lack of effective biomarkers and relapse, which propels ovarian cancer research into unique directions to establish solid targeted therapeutics. "Ovarian stem cells" expressing germline pluripotent markers serve as novel paradigm with potential to address infertility, menopause, and probably influence tumor initiation. Cancer stem cells (CSCs) pose vital role in tumor recurrence and hence it is extremely important to study them with respect to ovarian stem cells across various cancer stages and normal ovaries. Pluripotent (OCT4, NANOG, SOX2, SSEA1, and SSEA4), germline (IFITM3, VASA/DDX4), and cancer stem (CD44, LGR5) cell specific markers were characterized for protein and mRNA expression in tumor tissues to understand their distribution in the surface epithelium and ovarian cortex in benign, borderline, and high-grade malignant stages. To elucidate whether pluripotent ovarian germline stem cells and CSCs are common subset of stem cells in tumor tissues, VASA was colocalized with known pluripotent stem (OCT4, SSEA1, SSEA4) and CSC (CD44, LGR5) specific markers by confocal microscopy. Single, smaller spherical (≤5 μm), and larger elliptical fibroblast like (≥10 μm) cells (also in clusters or multiples) were detected implying probable functional behavioral significance of cells in tumor initiation and metastasis across various cancer stages. Cells revealed characteristic staining pattern in ovarian surface epithelium (OSE) and cortex regions exclusive for each marker. Co-expression studies revealed specific subpopulations existing simultaneously in OSE and cortex and that a dynamic hierarchy of (cancer) stem cells with germline properties prevails in normal ovaries and cancer stages. Novel insights into CSC biology with respect to ovarian and germline stem cell perspective were obtained. Understanding molecular signatures and distribution within ovarian tissue may enable identification of precise tumor-initiating CSC populations and signaling pathways thus improving their efficient targeting and strategies to prevent their dissemination causing fatal relapse.
Collapse
Affiliation(s)
- Seema C. Parte
- Department of Physiology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Andrei Smolenkov
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mariusz Z. Ratajczak
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
26
|
Carter K, Rameshwar P, Ratajczak MZ, Kakar SS. Verrucarin J inhibits ovarian cancer and targets cancer stem cells. Oncotarget 2017; 8:92743-92756. [PMID: 29190952 PMCID: PMC5696218 DOI: 10.18632/oncotarget.21574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian Cancer is the fifth leading cause of death among women from cancer. Cancer stem cells are a small population of cells present in cancer and the cause of chemoresistance and recurrence of cancer. We tested a new compound "Verrucarin J (VJ)", a metabolite of the Myrothecium fungus family, and showed that VJ significantly inhibits cell proliferation of both cisplatin-sensitive (A2780 and OVCAR5) and cisplatin-resistant (A2780/CP70) cell lines in a dose- and time-dependent manner with IC50 value of approximately 10 nM after 48 h of treatment. VJ was found to induce apoptosis, DNA damage, and generation of reactive oxygen species (ROS). Treatment of A2780 cells with VJ resulted in a significant suppression of expression of CSCs markers including ALDH1, LGR5, NANOG and OCT4 in a dose-dependent manner, elimination of ALDH1+ CSC population and inhibition of expression of Notch1 and Wnt1 signaling pathways. Our study also showed that VJ inhibited the tumorigenic potential (spheroid formation on ultralow attachment plates) of isolated ALDH1+ CSCs in vitro and tumor growth and metastasis in vivo. VJ resulted downregulation of expression of securin an "oncogene" involved in tumor growth and progression, indicating that securin may serve as a downstream signaling gene to mediate antitumor effects of VJ.
Collapse
Affiliation(s)
- Kelsey Carter
- Department of Physiology, University of Louisville, Louisville, KY, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Mariusz Z Ratajczak
- Department of Medicine, Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Sham S Kakar
- Department of Physiology, University of Louisville, Louisville, KY, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
27
|
Kakar SS, Parte S, Carter K, Joshua IG, Worth C, Rameshwar P, Ratajczak MZ. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget 2017; 8:74494-74505. [PMID: 29088802 PMCID: PMC5650357 DOI: 10.18632/oncotarget.20170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of deaths due to cancer among women in the United States. In 2017, 22,440 women are expected to be diagnosed with ovarian cancer and 14,080 women will die with it. Currently used chemotherapies (Cisplatin or platinum/taxane combination) targets cancer cells, but spares cancer stem cells (CSCs), which are responsible for tumor relapse leading to recurrence of cancer. Aldehyde dehydrogenase I (ALDH1) positive cancer stem cells are one of the major populations in ovarian tumor and have been related to tumor progression and metastasis. In our studies, we observed expression of ALDH1 in both ovarian surface epithelium (OSE) and cortex with high levels of expression in OSE in normal ovary and benign (BN) tumor, compared to borderline (BL) and high grade (HG) ovarian tumors. In contrast, high levels of expression of ALDH1 were observed in cortex in BL and HG tumors compared to normal ovary and BN tumor. Withaferin A (WFA) alone or in combination with cisplatin (CIS) significantly inhibited the spheroid formation (tumorigenic potential) of isolated ALDH1 CSCs in vitro and significantly reduced its expression in tumors collected from mice bearing orthotopic ovarian tumor compared to control. Treatment of animals with CIS alone significantly increased the ALDH1 CSC population in tumors, suggesting that CIS targets cancer cells but spares cancer stem cells, which undergo amplification. WFA and CIS combination suppresses the expression of securin an “oncogene”, suggesting that securin may serve as a downstream signaling gene to mediate the antitumor effects of WFA.
Collapse
Affiliation(s)
- Sham S Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Seema Parte
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kelsey Carter
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Irving G Joshua
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Christopher Worth
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
28
|
Santhekadur PK. Is Withaferin A, a magic bullet for metabolic syndrome? Biomed Pharmacother 2017; 92:1135-1137. [DOI: 10.1016/j.biopha.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/21/2023] Open
|