1
|
Špaková I, Smolko L, Sabolová G, Badovská Z, Kalinová K, Madreiter-Sokolowski C, Graier WF, Mareková M, Vašková J, Rabajdová M. Selective targeting of genes regulated by zinc finger proteins in endometriosis and endometrioid adenocarcinoma by zinc niflumato complex with neocuproine. Sci Rep 2025; 15:10126. [PMID: 40128272 PMCID: PMC11933352 DOI: 10.1038/s41598-025-94249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Inadequate angiogenesis of endometriotic implants stimulated by the inflammatory microenvironment in the uterine region leads to the development of gynecological diseases, which significantly reduce the fertility and vitality of young women. Angiogenic processes are controlled by factors whose activities are regulated at the gene level by reactive oxygen species (ROS), hypoxia-induced factors (HIFs), and zinc-finger proteins (ZnFs) or posttranscriptionally via non-coding RNAs. The cooperation of these factors is responsible for the manifestation of pathological stimuli in the form of endometriosis of the body of the uterus, ovaries, or peritoneum, from which endometrioid carcinoma can develop. Molecules that can control gene expression by their intercalation to target DNA sequence, such as [Zn(neo)(nif)2], could prevent the hyperactivation of pro-angiogenic pathways (decrease HIF-1α, VEGF-A, TGF-β1, COX2, and ANG2/ANG1), reduce the formation of ROS, and reduce the risk of uterine neoplasticity. The NSAID-metal complex [Zn(neo)(nif)2] shows an ability to intercalate into ZNF3-7 target DNA sequence at a higher rate, which could explain its effect on genes regulated by this transcription factor. In addition, [Zn(neo)(nif)2] affects ROS production and Ca2+ level, possibly pointing to mitochondrial dysfunction as a potential cause for the described apoptosis.
Collapse
Affiliation(s)
- Ivana Špaková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Katarína Kalinová
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Corina Madreiter-Sokolowski
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Janka Vašková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia.
| |
Collapse
|
2
|
Khan MZ, Li L, Zhan Y, Binjiang H, Liu X, Kou X, Khan A, Qadeer A, Ullah Q, Alzahrani KJ, Wang T, Wang C, Zahoor M. Targeting Nrf2/KEAP1 signaling pathway using bioactive compounds to combat mastitis. Front Immunol 2025; 16:1425901. [PMID: 39991157 PMCID: PMC11842335 DOI: 10.3389/fimmu.2025.1425901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Mastitis is a common inflammation of mammary glands that has a significantly impact on dairy production and animal health, causing considerable economic burdens worldwide. Elevated reactive oxygen species (ROS) followed by oxidative stress, apoptosis, inflammatory changes and suppressed immunity are considered the key biomarkers observed during mastitis. The Nrf2/KEAP1 signaling pathway plays a critical role in regulating antioxidant responses and cellular defense mechanisms. When activated by bioactive compound treatment, Nrf2 translocates to the nucleus and induces the expression of its target genes to exert antioxidant responses. This reduces pathogen-induced oxidative stress and inflammation by inhibiting NF-kB signaling in the mammary glands, one of the prominent pro-inflammatory signaling pathway. Here, we summarize recent studies to highlight the therapeutic potential of Nrf2/KEAP1 pathway in the prevention and treatment of mastitis. Collectively this review article aims to explore the potential of bioactive compounds in mitigating mastitis by targeting the Nrf2/KEAP1 signaling pathway.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huang Binjiang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Dastghaib S, Shafiee SM, Ramezani F, Ashtari N, Tabasi F, Saffari-Chaleshtori J, Siri M, Vakili O, Igder S, Zamani M, Niknam M, Nasery MM, Kokabi F, Wiechec E, Mostafavi-Pour Z, Mokarram P, Ghavami S. NRF-mediated autophagy and UPR: Exploring new avenues to overcome cancer chemo-resistance. Eur J Pharmacol 2025; 988:177210. [PMID: 39706466 DOI: 10.1016/j.ejphar.2024.177210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The development of chemo-resistance remains a significant hurdle in effective cancer therapy. NRF1 and NRF2, key regulators of redox homeostasis, play crucial roles in the cellular response to oxidative stress, with implications for both tumor growth and resistance to chemotherapy. This study delves into the dualistic role of NRF2, exploring its protective functions in normal cells and its paradoxical support of tumor survival and drug resistance in cancerous cells. We investigate the interplay between the PERK/NRF signaling pathway, ER stress, autophagy, and the unfolded protein response, offering a mechanistic perspective on how these processes contribute to chemoresistance. Our findings suggest that targeting NRF signaling pathways may offer new avenues for overcoming resistance to chemotherapeutic agents, highlighting the importance of a nuanced approach to redox regulation in cancer treatment. This research provides a molecular basis for the development of NRF-targeted therapies, potentially enhancing the efficacy of existing cancer treatments and offering hope for more effective management of resistant tumors.
Collapse
Affiliation(s)
- Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, 7193635899, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 51664, Tabriz, Iran
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Farhad Tabasi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Javad Saffari-Chaleshtori
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, 8813833435, Shahrekord, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 73461-81746, Isfahan, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 6135715794, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Maryam Niknam
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran
| | - Mahshid Moballegh Nasery
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), 7616911319, Tehran, Iran
| | - Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564, Mashhad, Iran
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland; Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergotland, 58185, Linköping, Sweden
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran.
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, 7134845794, Shiraz, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada; Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555, Katowice, Poland; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| |
Collapse
|
4
|
Maleka MN, Mbita Z, Morafo V. Regulation of Granzymes A and B by High-Risk HPV: Impact on Immune Evasion and Carcinogenesis. Viruses 2025; 17:221. [PMID: 40006976 PMCID: PMC11861749 DOI: 10.3390/v17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The number of new cancer cases is soaring, and currently, there are 440.5 per 100,000 new cases reported every year. A quarter of these are related to human papillomavirus (HPV) infections, particularly types 16 and 18. These include oropharyngeal, anal, vaginal, and penile cancers. A critical aspect of their oncogenic potential lies in their ability to manipulate host immune responses, facilitating immune evasion and carcinogenesis. High-risk HPVs target key immune components like granzymes A and B and MHC-I, which are crucial for the elimination of virus-infected and transformed cells, thereby weakening immune surveillance. Evidence suggests that high-risk HPVs downregulate the expression of tumor suppressors, such as p53 and pRB, and the activity of these immune components, weakening CTL and NK cell responses, thus enabling persistent infection and carcinogenesis. We discuss the implications of granzyme and MHC-I dysregulation for immune evasion, tumor progression, and potential therapeutic strategies. This review further explores the regulation of granzyme A, B, and MHC-I by high-risk HPVs, focusing on how viral oncoproteins, E6 and E7, interfere with granzyme-mediated cytotoxicity and antigen presentation. The complex interplay between high-risk HPVs, granzyme A, granzyme B, and MHC-I may provide insights into novel approaches for targeting HPV-associated cancers.
Collapse
Affiliation(s)
| | | | - Vivian Morafo
- Department of Biochemistry, Microbiology and Biotechnology, School of Molecular and Life Sciences, Private Bag X 1106, Sovenga, Polokwane 0727, South Africa; (M.N.M.); (Z.M.)
| |
Collapse
|
5
|
Bae T, Kwak MK. Kelch-like ECH-associated Protein 1/Nuclear Factor Erythroid 2-related Factor 2 Pathway and Its Interplay with Oncogenes in Lung Tumorigenesis. J Cancer Prev 2024; 29:89-98. [PMID: 39790220 PMCID: PMC11706728 DOI: 10.15430/jcp.24.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, exhibits a complex role in cancer biology. Genetic mutations in the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 system, which lead to NRF2 hyperactivation, are found in 20% to 30% of lung cancer cases. This review explores the intricate interplay between NRF2 and key oncogenic pathways in lung cancer, focusing on the interaction of KEAP1/NRF2 system with Kirsten rat sarcoma virus (KRAS), tumor protein P53 (TP53), epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinases (PI3K)/AKT signaling. While NRF2 activation alone is insufficient to initiate tumorigenesis, it can significantly impact tumor initiation and progression when combined with oncogenic drivers such as KRAS. The review highlights the context-dependent effects of NRF2, from its protective role against chemical carcinogen-induced tumor initiation to its potential promotion of tumor growth in established cancers. These findings suggest the need for nuanced, stage-specific approaches to targeting the NRF2 pathway in cancer therapy.
Collapse
Affiliation(s)
- Taegeun Bae
- Integrated Research Institute for Pharmaceutical Sciences, Bucheon, Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, Bucheon, Korea
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
6
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Löser A, Schwarz M, Kipp AP. NRF2 and Thioredoxin Reductase 1 as Modulators of Interactions between Zinc and Selenium. Antioxidants (Basel) 2024; 13:1211. [PMID: 39456464 PMCID: PMC11505002 DOI: 10.3390/antiox13101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Selenium and zinc are essential trace elements known to regulate cellular processes including redox homeostasis. During inflammation, circulating selenium and zinc concentrations are reduced in parallel, but underlying mechanisms are unknown. Accordingly, we modulated the zinc and selenium supply of HepG2 cells to study their relationship. METHODS HepG2 cells were supplied with selenite in combination with a short- or long-term zinc treatment to investigate intracellular concentrations of selenium and zinc together with biomarkers describing their status. In addition, the activation of the redox-sensitive transcription factor NRF2 was analyzed. RESULTS Zinc not only increased the nuclear translocation of NRF2 after 2 to 6 h but also enhanced the intracellular selenium content after 72 h, when the cells were exposed to both trace elements. In parallel, the activity and expression of the selenoprotein thioredoxin reductase 1 (TXNRD1) increased, while the gene expression of other selenoproteins remained unaffected or was even downregulated. The zinc effects on the selenium concentration and TXNRD activity were reduced in cells with stable NRF2 knockdown in comparison to control cells. CONCLUSIONS This indicates a functional role of NRF2 in mediating the zinc/selenium crosstalk and provides an explanation for the observed unidirectional behavior of selenium and zinc.
Collapse
Affiliation(s)
- Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Anna Patricia Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| |
Collapse
|
8
|
Leal AS, Liby KT. The BRD4 Inhibitor I-BET-762 Reduces HO-1 Expression in Macrophages and the Pancreas of Mice. Int J Mol Sci 2024; 25:9985. [PMID: 39337472 PMCID: PMC11432103 DOI: 10.3390/ijms25189985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In pancreatic cancer, the tumor microenvironment (TME) accounts for up to 90% of the tumor mass. Pancreatitis, characterized by the increased infiltration of macrophages into the pancreas, is a known risk factor for pancreatic cancer. The NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor regulates responses to oxidative stress and can promote cancer and chemoresistance. NRF2 also attenuates inflammation through the regulation of macrophage-specific genes. Heme oxygenase 1 (HO-1) is expressed by anti-inflammatory macrophages to degrade heme, and its expression is dependent on NRF2 translocation to the nucleus. In macrophages stimulated with conditioned media from pancreatic cancer cells, HO-1 protein levels increased, which correlated with higher NRF2 expression in the nuclear fraction. Significant differences in macrophage infiltration and HO-1 expression were detected in LSL-KrasG12D/+; Pdx-1-Cre (KC) mice, Nrf2 whole-body knockout (KO) mice and wildtype mice with pancreatitis. Since epigenetic modulation is a mechanism used by tumors to regulate the TME, using small molecules as epigenetic modulators to activate immune recognition is therapeutically desirable. When the bromodomain inhibitor I-BET-762 was used to treat macrophages or mice with pancreatitis, high levels of HO-1 were reduced. This study shows that bromodomain inhibitors can be used to prevent physiological responses to inflammation that promote tumorigenesis.
Collapse
Affiliation(s)
- Ana S. Leal
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Karen T. Liby
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
10
|
Yang Y, Hao L, Guiyang L, Haozhe P. Multifaceted bioinformatic analysis of m6A-related ferroptosis and its link with gene signatures and tumour-infiltrating immune cells in gliomas. J Cell Mol Med 2024; 28:e70060. [PMID: 39248438 PMCID: PMC11382363 DOI: 10.1111/jcmm.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Whether N6-Methyladenosine (m6A)- and ferroptosis-related genes act on immune responses to regulate glioma progression remains unanswered. Data of glioma and corresponding normal brain tissues were fetched from the TCGA database and GTEx. Differentially expressed genes (DEGs) were identified for GO and KEGG enrichment analyses. The FerrDb database was based to yield ferroptosis-related DEGs. Hub genes were then screened out using the cytoHubba database and validated in clinical samples. Immune cells infiltrating into the glioma tissues were analysed using the CIBERSORT R script. The association of gene signature underlying the m6A-related ferroptosis with tumour-infiltrating immune cells and immune checkpoints in low-grade gliomas was analysed. Of 6298 DEGs enriched in mRNA modifications, 144 were ferroptosis-related; NFE2L2 and METTL16 showed the strongest positive correlation. METTL16 knockdown inhibited the migrative and invasive abilities of glioma cells and induced ferroptosis in vitro. NFE2L2 was enriched in the anti-m6A antibody. Moreover, METTL16 knockdown reduced the mRNA stability and level of NFE2L2 (both p < 0.05). Proportions of CD8+ T lymphocytes, activated mast cells and M2 macrophages differed between low-grade gliomas and normal tissues. METTL16 expression was negatively correlated with CD8+ T lymphocytes, while that of NFE2L2 was positively correlated with M2 macrophages and immune checkpoints in low-grade gliomas. Gene signatures involved in the m6A-related ferroptosis in gliomas were identified via bioinformatic analyses. NFE2L2 interacted with METTL16 to regulate the immune response in low-grade gliomas, and both molecules may be novel therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
- TCM Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liu Hao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Liu Guiyang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Piao Haozhe
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
11
|
Witherspoon JG, Hall JR, Jima D, Atkins HM, Wamsley NT, Major MB, Weissman BE, Smart RC. Mutant Nrf2 E79Q enhances the promotion and progression of a subset of oncogenic Ras keratinocytes and skin tumors. Redox Biol 2024; 75:103261. [PMID: 38963974 PMCID: PMC11269801 DOI: 10.1016/j.redox.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2E79Q expression, one of the most common activating mutations in human SCCs, on tumor promotion and progression in the mouse skin multistage carcinogenesis model using a DMBA-initiation/TPA-promotion protocol where the Hras A->T mutation (Q61L) is the canonical driver mutation. Nrf2E79Q expression was temporally and conditionally activated in the epidermis at two stages of tumor development: 1) after DMBA initiation in the epidermis but before cutaneous tumor development and 2) in pre-existing DMBA-initiated/TPA-promoted squamous papillomas. Expression of Nrf2E79Q in the epidermis after DMBA initiation but before tumor occurrence inhibited the development/promotion of 70% of squamous papillomas. However, the remaining papillomas often displayed non-canonical Hras and Kras mutations and enhanced progression to SCCs compared to control mice expressing wildtype Nrf2. Nrf2E79Q expression in pre-existing tumors caused rapid regression of 60% of papillomas. The remaining papillomas displayed the expected canonical Hras A->T mutation (Q61L) and enhanced progression to SCCs. These results demonstrate that mutant Nrf2E79Q enhances the promotion and progression of a subset of skin tumors and alters the frequency and diversity of oncogenic Ras mutations when expressed early after initiation.
Collapse
Affiliation(s)
| | - Jonathan R Hall
- Department of Biological Sciences, North Carolina State University, USA; Toxicology Graduate Program, North Carolina State University, USA; Center for Human Health and the Environment, North Carolina State University, USA
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, USA
| | - Hannah M Atkins
- Center for Human Health and the Environment, North Carolina State University, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, USA
| | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University at St Louis, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University at St Louis, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, USA.
| | - Robert C Smart
- Department of Biological Sciences, North Carolina State University, USA; Toxicology Graduate Program, North Carolina State University, USA; Center for Human Health and the Environment, North Carolina State University, USA.
| |
Collapse
|
12
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
13
|
Moerland JA, Liby KT. The Triterpenoid CDDO-Methyl Ester Reduces Tumor Burden, Reprograms the Immune Microenvironment, and Protects from Chemotherapy-Induced Toxicity in a Preclinical Mouse Model of Established Lung Cancer. Antioxidants (Basel) 2024; 13:621. [PMID: 38929060 PMCID: PMC11201246 DOI: 10.3390/antiox13060621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
NRF2 activation protects epithelial cells from malignancy, but cancer cells can upregulate the pathway to promote survival. NRF2 activators including CDDO-Methyl ester (CDDO-Me) inhibit cancer in preclinical models, suggesting NRF2 activation in other cell types may promote anti-tumor activity. However, the immunomodulatory effects of NRF2 activation remain poorly understood in the context of cancer. To test CDDO-Me in a murine model of established lung cancer, tumor-bearing wildtype (WT) and Nrf2 knockout (KO) mice were treated with 50-100 mg CDDO-Me/kg diet, alone or combined with carboplatin/paclitaxel (C/P) for 8-12 weeks. CDDO-Me decreased tumor burden in an Nrf2-dependent manner. The combination of CDDO-Me plus C/P was significantly (p < 0.05) more effective than either drug alone, reducing tumor burden by 84% in WT mice. CDDO-Me reduced the histopathological grade of WT tumors, with a significantly (p < 0.05) higher proportion of low-grade tumors and a lower proportion of high-grade tumors. These changes were augmented by combination with C/P. CDDO-Me also protected WT mice from C/P-induced toxicity and improved macrophage and T cell phenotypes in WT mice, reducing the expression of CD206 and PD-L1 on macrophages, decreasing immunosuppressive FoxP3+ CD4+ T cells, and increasing activation of CD8+ T cells in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen T. Liby
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Mustafa YF. Harmful Free Radicals in Aging: A Narrative Review of Their Detrimental Effects on Health. Indian J Clin Biochem 2024; 39:154-167. [PMID: 38577147 PMCID: PMC10987461 DOI: 10.1007/s12291-023-01147-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 04/06/2024]
Abstract
The production of harmful free radicals (H-FRs), especially those with oxygen or nitrogen atoms, depends on both internal and environmental causes. The negative effects of H-FRs are greatly alleviated by antioxidant protection. The harmful impact of oxidative stress, or OS, is brought on by a disparity between the defense mechanisms of the body and the creation of H-FRs. Aging is characterized by a slow decline in tissue and organ competence. Age-mediated pathologies start as an aberrant accumulation of H-FRs, which inhibit cells' capacity to divide, repair, and operate, based on the OS theorem of aging. The natural outcome of this situation is apoptosis. These conditions may include skeletal muscle dysfunction, cancer, cardiovascular, chronic hepatitis, chronic renal, and chronic pulmonary disorders. Given the substantial role that OS plays in the progression of many of these illnesses, antioxidant-based therapy may have a favorable impact on how these diseases progress. To ascertain the true efficacy of this therapy strategy, more research is necessary. The aim of this study is to provide an overview of the literature on this challenging issue that is attracting interest.
Collapse
Affiliation(s)
- Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
15
|
Baird L, Yamamoto M. Immunoediting of KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated immune surveillance. Redox Biol 2023; 67:102904. [PMID: 37839356 PMCID: PMC10590843 DOI: 10.1016/j.redox.2023.102904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
In human cancer, activating mutations in the KEAP1-NRF2 pathway are frequently observed, and positively selected for, as they confer the cytoprotective functions of the transcription factor NRF2 on the cancer cells. This results in the development of aggressive tumours which are resistant to treatment with chemotherapeutic compounds. Recent clinical developments have also revealed that NRF2-activated cancers are similarly resistant to immune checkpoint inhibitor drugs. As the mechanism of action of these immune modulating therapies is tangential to the classical cytoprotective function of NRF2, it is unclear how aberrant NRF2 activity could impact the anti-cancer functionality of the immune system. In this context, we found that in human cancer, NRF2-activated cells are highly immunoedited, which allows the cancer cells to escape immune surveillance and develop into malignant tumours. This immunoediting takes the form of reduced antigen presentation by the MHC-I complex, coupled with reduced expression of activating ligands for NK cells. Together, these modifications to the immunogenicity of NRF2-activated cancers inhibit immune effector cell infiltration and engagement, and contribute to the formation of the immunologically cold tumour microenvironment which is a characteristic feature of NRF2-activated cancers.
Collapse
Affiliation(s)
- Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
16
|
Ammar N, Hildebrandt M, Geismann C, Röder C, Gemoll T, Sebens S, Trauzold A, Schäfer H. Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism. Antioxidants (Basel) 2023; 12:1818. [PMID: 37891897 PMCID: PMC10604597 DOI: 10.3390/antiox12101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic compartmentalization of stroma-rich tumors, like pancreatic ductal adenocarcinoma (PDAC), greatly contributes to malignancy. This involves cancer cells importing lactate from the microenvironment (reverse Warburg cells) through monocarboxylate transporter-1 (MCT1) along with substantial phenotype alterations. Here, we report that the reverse Warburg phenotype of PDAC cells compensated for the shortage of glutamine as an essential metabolite for redox homeostasis. Thus, oxidative stress caused by glutamine depletion led to an Nrf2-dependent induction of MCT1 expression in pancreatic T3M4 and A818-6 cells. Moreover, greater MCT1 expression was detected in glutamine-scarce regions within tumor tissues from PDAC patients. MCT1-driven lactate uptake supported the neutralization of reactive oxygen species excessively produced under glutamine shortage and the resulting drop in glutathione levels that were restored by the imported lactate. Consequently, PDAC cells showed greater survival and growth under glutamine depletion when utilizing lactate through MCT1. Likewise, the glutamine uptake inhibitor V9302 and glutaminase-1 inhibitor CB839 induced oxidative stress in PDAC cells, along with cell death and cell cycle arrest that were again compensated by MCT1 upregulation and forced lactate uptake. Our findings show a novel mechanism by which PDAC cells adapt their metabolism to glutamine scarcity and by which they develop resistance against anticancer treatments based on glutamine uptake/metabolism inhibition.
Collapse
Affiliation(s)
- Nourhane Ammar
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Maya Hildebrandt
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Claudia Geismann
- Department of Internal Medicine and Gastroenterology, Carl-von-Ossietzky University Oldenburg, Philosophenweg 36, 26121 Oldenburg, Germany;
| | - Christian Röder
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
| | - Susanne Sebens
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Ania Trauzold
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Heiner Schäfer
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| |
Collapse
|
17
|
Leonte D, Ungureanu D, Zaharia V. Flavones and Related Compounds: Synthesis and Biological Activity. Molecules 2023; 28:6528. [PMID: 37764304 PMCID: PMC10535985 DOI: 10.3390/molecules28186528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the synthesis and biological activity of flavones and their related flavonoidic compounds, namely flavonols and aurones. Among the biological activities of natural and synthetic flavones and aurones, their anticancer, antioxidant, and antimicrobial properties are highlighted and detailed in this review. Starting from the structures of natural flavones acting on multiple anticancer targets (myricetin, genkwanin, and other structurally related compounds), new flavone analogs were recently designed and evaluated for their anticancer activity. The most representative compounds and their anticancer activity are summarized in this review. Natural flavones recognized for their antimicrobial properties (baicalein, luteolin, quercetol, apigenin, kaempferol, tricin) have been recently derivatized or structurally modulated by chemical synthetic methods in order to obtain new effective antimicrobial flavonoidic derivatives with improved biological properties. The most promising antimicrobial agents are systematically highlighted in this review. The most applied method for the synthesis of flavones and aurones is based on the oxidative cyclization of o-hydroxychalcones. Depending on the reaction conditions and the structure of the precursor, in some cases, several cyclization products result simultaneously: flavones, flavanones, flavonols, and aurones. Based on the literature data and the results obtained by our research group, our aim is to highlight the most promising methods for the synthesis of flavones, as well as the synthetic routes for the other structurally related cyclization products, such as hydroxyflavones and aurones, while considering that, in practice, it is difficult to predict which is the main or exclusive cyclization product of o-hydroxychalcones under certain reaction conditions.
Collapse
Affiliation(s)
| | | | - Valentin Zaharia
- Department of Organic Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babeş 41, RO-400012 Cluj-Napoca, Romania; (D.L.); (D.U.)
| |
Collapse
|
18
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
19
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|