1
|
Perez Umana ER, Mendes E, Casaro MC, Lazarini M, Oliveira FA, Sperling AI, Ferreira CM. Exogenous acetate mitigates later enhanced allergic airway inflammation in a menopausal mouse model. Front Cell Infect Microbiol 2025; 15:1543822. [PMID: 40292217 PMCID: PMC12023485 DOI: 10.3389/fcimb.2025.1543822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Asthma, an inflammatory lung disease, disproportionately affects women in adulthood and is associated with a decline in estrogen levels during the menstrual cycle and menopause. To study asthma symptoms during menopause, we used a mouse model of postmenopausal asthma via ovariectomy (OVx). Similar to human menopause, we previously discovered that re-exposure of allergic OVx mice to allergen exacerbates lung inflammation. Surprisingly, we found that probiotic treatment alleviates this inflammatory exacerbation and produces acetate as one of its metabolites. Here, we investigate whether exogenous acetate alone can inhibit the exacerbation of experimental asthma in menopause. Methods Mice received acetate administration before and during sensitization. After challenge and OVx the mice were subjected to a second challenge to test whether acetate protected against airway inflammation after menopause induction. Results Acetate administration reduced all lung T2 inflammatory responses, as well as the serum immunoglobulin (IgE) level. Early acetate treatment led to an increase in regulatory T cells, even 3 weeks after cessation of the treatment, suggesting that the increase in Treg percentage is associated with the reduction of type 2 inflammation in the airways after menopause induction, indicating its potential role in this process. Given the significant role of the lung-gut axis in asthma and the association of asthma and menopause with intestinal dysfunctions, this finding is particularly relevant; we also analyzed several markers of intestinal integrity. Compared with sham-operated mice, rechallenged allergic menopausal mice had a reduction in the intestinal epithelial genes, MUC2 and OCLN, and preventive supplementation with acetate returned their expression to normal. No change was found in menopausal mice without allergic inflammation. Conclusion In conclusion, treatment with acetate prior to estrogen level decline protects sensitized and challenged mice against later airway T2 inflammation and may restore gut homeostasis.
Collapse
Affiliation(s)
- Evelyn Roxana Perez Umana
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Eduardo Mendes
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Mateus Campos Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Mariana Lazarini
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Fernando A. Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC), Center of Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernando do Campo, Brazil
| | - Anne I. Sperling
- Pulmonary and Critical Care Laboratory, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
2
|
Hou Y, Gao X, Gong J, Dong X, Hao Y, Zhai Z, Zhang H, Zhang M, Liu R, Wang R, Zhao L. Targeted Sodium Acetate Liposomes for Hepatocytes and Kupffer Cells: An Oral Dual-Targeted Therapeutic Approach for Non-Alcoholic Fatty Liver Disease Alleviation. Nutrients 2025; 17:930. [PMID: 40077800 PMCID: PMC11901740 DOI: 10.3390/nu17050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Sodium acetate (NaA) has demonstrated potential in improving non-alcoholic fatty liver disease (NAFLD) by targeting hepatocytes and Kupffer cells. However, its clinical application is hindered by low oral bioavailability and insufficient liver concentrations. Liposomes, with their capacity to encapsulate water-soluble drugs and be surface-modified, offer a promising solution for targeted oral drug delivery. Methods: We designed NaA-loaded liposomes modified with sodium cholate (SC) and mannose (MAN) (NaA@SC/MAN-LPs) to target hepatocytes and Kupffer cells. Results: The NaA@SC/MAN-LPs had a mean diameter of approximately 100 nm with a positive surface charge. Compared to free NaA, NaA@SC/MAN-LPs significantly extended the serum half-life from 2.85 h to 15.58 h, substantially improving in vivo bioavailability. In vivo distribution studies revealed that NaA@SC/MAN-LPs extended the acetate peak time in the liver from 15 min to 60 min and increased hepatic acetate accumulation to 3.75 times that of free NaA. In in vitro cell experiments, NaA@SC/MAN-LPs significantly reduced the lipid droplet, triglycerides (TG), and total cholesterol (TC) in a fatty acid-induced hepatocyte steatosis model and suppressed proinflammation in a lipopolysaccharide (LPS)-activated Kupffer cell inflammation model. Free NaA effectively improved hepatic lipid deposition in NAFLD mice. Furthermore, NaA@SC/MAN-LPs decreased hepatic TG, TC, and the relative area of lipid droplets by 30.44%, 15.26%, and 55.83%, compared to free NaA. Furthermore, the liposomes reduced macrophage infiltration and pro-inflammatory response. Conclusions: The NaA@SC/MAN-LPs demonstrated effective dual targeting effects on hepatocytes and Kupffer cells, significantly improving the pathogenesis of NAFLD, compared to free NaA. This study provides a new strategy for developing effective and safe oral drugs for NAFLD.
Collapse
Affiliation(s)
- Yichao Hou
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Xilong Gao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Jiahui Gong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Xinrui Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Rong Liu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
- Research Center for Probiotics, China Agricultural University, Beijing 101299, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
- Research Center for Probiotics, China Agricultural University, Beijing 101299, China
| |
Collapse
|
3
|
Ameen AO, Nielsen SW, Kjær MW, Andersen JV, Westi EW, Freude KK, Aldana BI. Metabolic preferences of astrocytes: Functional metabolic mapping reveals butyrate outcompetes acetate. J Cereb Blood Flow Metab 2025; 45:528-541. [PMID: 39340267 PMCID: PMC11563520 DOI: 10.1177/0271678x241270457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 09/30/2024]
Abstract
Disruptions to the gut-brain-axis have been linked to neurodegenerative disorders. Of these disruptions, reductions in the levels of short-chain fatty acids (SCFAs), like butyrate, have been observed in mouse models of Alzheimer's disease (AD). Butyrate supplementation in mice has shown promise in reducing neuroinflammation, amyloid-β accumulation, and enhancing memory. However, the underlying mechanisms remain unclear. To address this, we investigated the impact of butyrate on energy metabolism in mouse brain slices, primary cultures of astrocytes and neurons and in-vivo by dynamic isotope labelling with [U-13C]butyrate and [1,2-13C]acetate to map metabolism via mass spectrometry. Metabolic competition assays in cerebral cortical slices revealed no competition between butyrate and the ketone body, β-hydroxybutyrate, but competition with acetate. Astrocytes favoured butyrate metabolism compared to neurons, suggesting that the astrocytic compartment is the primary site of butyrate metabolism. In-vivo metabolism investigated in the 5xFAD mouse, an AD pathology model, showed no difference in 13C-labelling of TCA cycle metabolites between wild-type and 5xFAD brains, but butyrate metabolism remained elevated compared to acetate in both groups, indicating sustained uptake and metabolism in 5xFAD mice. Overall, these findings highlight the role of astrocytes in butyrate metabolism and the potential use of butyrate as an alternative brain fuel source.
Collapse
Affiliation(s)
- Aishat O Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian W Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin W Kjær
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Özcan E, Yu KB, Dinh L, Lum GR, Lau K, Hsu J, Arino M, Paramo J, Lopez-Romero A, Hsiao EY. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. Nat Commun 2025; 16:987. [PMID: 39856104 PMCID: PMC11759687 DOI: 10.1038/s41467-025-56091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The gut microbiome modulates the anti-seizure effects of the ketogenic diet, but how specific dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that medical ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and differentially promote resistance to 6-Hz seizures in mice. Dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts in a model human infant microbial community. Addition of fiber to a fiber-deficient ketogenic formula restores seizure resistance, and supplementing protective formulas with excess fiber potentiates seizure resistance. By screening 13 fiber sources and types, we identify metagenomic responses in the model community that correspond with increased seizure resistance. Supplementing with seizure-protective fibers enriches microbial genes related to queuosine biosynthesis and preQ0 biosynthesis and decreases genes related to sucrose degradation and TCA cycle, which are also seen in seizure-protected mice that are fed fiber-containing ketogenic formulas. This study reveals that different formulations of ketogenic diets, and dietary fiber content in particular, differentially impact seizure outcome in mice, likely by modifying the gut microbiome. Understanding interactions between diet, microbiome, and host susceptibility to seizures could inform novel microbiome-guided approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Kristie B Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Lyna Dinh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Katie Lau
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jessie Hsu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Mariana Arino
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Pham QH, Bui TVA, Sim WS, Lim KH, Law COK, Tan W, Kim RY, Chow KT, Park HJ, Ban K, Lau TCK. Daily oral administration of probiotics engineered to constantly secrete short-chain fatty acids effectively prevents myocardial injury from subsequent ischaemic heart disease. Cardiovasc Res 2024; 120:1737-1751. [PMID: 38850165 PMCID: PMC11587561 DOI: 10.1093/cvr/cvae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
AIMS Given the extremely limited regeneration potential of the heart, one of the most effective strategies to reduce the prevalence and mortality of coronary artery disease is prevention. Short-chain fatty acids (SCFAs), which are by-products of beneficial probiotics, have been reported to possess cardioprotective effects. Despite their beneficial roles, delivering SCFAs and maintaining their effective concentration in plasma present major challenges. Therefore, in the present study, we aimed to devise a strategy to prevent coronary heart disease effectively by using engineered probiotics to continuously release SCFAs in vivo. METHODS AND RESULTS We engineered a novel probiotic cocktail, namely EcN_TL, from the commercially available Escherichia coli Nissle 1917 (EcN) strain to continuously secrete SCFAs by introducing the propionate and butyrate biosynthetic pathways. Oral administration of EcN_TL enhanced and maintained an effective concentration of SCFAs in the plasma. As a preventative strategy, we observed that daily intake of EcN_TL for 14 days prior to ischaemia-reperfusion injury significantly reduced myocardial injury and improved cardiac performance compared with EcN administration. We uncovered that EcN_TL's protective mechanisms included reducing neutrophil infiltration into the infarct site and promoting the polarization of wound healing macrophages. We further revealed that SCFAs at plasma concentration protected cardiomyocytes from inflammation by suppressing the NF-κB activation pathway. CONCLUSION These data provide strong evidence to support the use of SCFA-secreting probiotics to prevent coronary heart disease. Since SCFAs also play a key role in other metabolic diseases, EcN_TL can potentially be used to treat a variety of other diseases.
Collapse
Affiliation(s)
- Quynh Hoa Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Woo-Sup Sim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
| | - King Hoo Lim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Wanyu Tan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Ri Youn Kim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Kwan Ting Chow
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Hun-Jun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| |
Collapse
|
6
|
Wimmer MI, Bartolomaeus H, Anandakumar H, Chen CY, Vecera V, Kedziora S, Kamboj S, Schumacher F, Pals S, Rauch A, Meisel J, Potapenko O, Yarritu A, Bartolomaeus TUP, Samaan M, Thiele A, Stürzbecher L, Geisberger SY, Kleuser B, Oefner PJ, Haase N, Löber U, Gronwald W, Forslund-Startceva SK, Müller DN, Wilck N. Metformin modulates microbiota and improves blood pressure and cardiac remodeling in a rat model of hypertension. Acta Physiol (Oxf) 2024; 240:e14226. [PMID: 39253815 DOI: 10.1111/apha.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
AIMS Metformin has been attributed to cardiovascular protection even in the absence of diabetes. Recent observations suggest that metformin influences the gut microbiome. We aimed to investigate the influence of metformin on the gut microbiota and hypertensive target organ damage in hypertensive rats. METHODS Male double transgenic rats overexpressing the human renin and angiotensinogen genes (dTGR), a model of angiotensin II-dependent hypertension, were treated with metformin (300 mg/kg/day) or vehicle from 4 to 7 weeks of age. We assessed gut microbiome composition and function using shotgun metagenomic sequencing and measured blood pressure via radiotelemetry. Cardiac and renal organ damage and inflammation were evaluated by echocardiography, histology, and flow cytometry. RESULTS Metformin treatment increased the production of short-chain fatty acids (SCFA) acetate and propionate in feces without altering microbial composition and diversity. It significantly reduced systolic and diastolic blood pressure and improved cardiac function, as measured by end-diastolic volume, E/A, and stroke volume despite increased cardiac hypertrophy. Metformin reduced cardiac inflammation by lowering macrophage infiltration and shifting macrophage subpopulations towards a less inflammatory phenotype. The observed improvements in blood pressure, cardiac function, and inflammation correlated with fecal SCFA levels in dTGR. In vitro, acetate and propionate altered M1-like gene expression in macrophages, reinforcing anti-inflammatory effects. Metformin did not affect hypertensive renal damage or microvascular structure. CONCLUSION Metformin modulated the gut microbiome, increased SCFA production, and ameliorated blood pressure and cardiac remodeling in dTGR. Our findings confirm the protective effects of metformin in the absence of diabetes, highlighting SCFA as a potential mediators.
Collapse
Affiliation(s)
- Moritz I Wimmer
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Harithaa Anandakumar
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Valentin Vecera
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Sarah Kedziora
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sakshi Kamboj
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | | | - Sidney Pals
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Ariana Rauch
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jutta Meisel
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olena Potapenko
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alex Yarritu
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mariam Samaan
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Thiele
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Lucas Stürzbecher
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Y Geisberger
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Wilck
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
7
|
Peng F, Long F, Gao B, Liang Y. Acetate supplementation improves neurological outcomes by preventing hyperglycemia and suppressing Serpina3n expression in CA1 region after cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 2024; 180:117615. [PMID: 39490049 DOI: 10.1016/j.biopha.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Hyperglycemia is common after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). More importantly, it is associated with a worse neurological outcome after CA/CPR. Acetate has been proven to be of great value to reprogram glucose metabolism in the whole body. Nevertheless, the impact of acetate on hyperglycemia and neurological outcomes after CA/CPR remains largely unexplored. METHODS Glucose metabolism-related parameters were examined to assess the changes of glucose metabolism in our CA/CPR model. Survival and neurological function were measured after return of spontaneous circulation. Acetate supplementation was achieved by gavage to assess the impact of acetate on CA/CPR-induced hyperglycemia. Proteomics investigation of the changes in proteins of the CA1 region were performed to explore the differences of protein expression. The correlation between acetate supplementation and improvement of neurological outcomes after CA/CPR was elucidated by Serpina3n over-expression and knockdown in CA1 region. RESULTS CA/CPR induces hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance with upregulation of Serpina3n in CA1 region. Acetate supplementation could attenuate hyperglycemia, reduce protein levels of Serpina3n in CA1 region, and improves neurological outcomes after CA/CPR. Mechanistically, the acetate-dependent improvement of neurological outcomes after CA/CPR and attenuation of CA/CPR-induced hyperglycemia were correlated with the down-regulation of Serpina3n in CA1 region. CONCLUSIONS Our findings suggest that acetate supplementation improves neurological outcomes of CA/CPR mice by maintaining glucose homeostasis in the whole body and suppression of Serpina3n expression in CA1 region.
Collapse
Affiliation(s)
- Fei Peng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feiyu Long
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bowen Gao
- Teaching Center for General Courses, Chengdu Medical College, China
| | - Yu Liang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Gardner GL, Stuart JA. Tumor microenvironment-like conditions alter pancreatic cancer cell metabolism and behavior. Am J Physiol Cell Physiol 2024; 327:C959-C978. [PMID: 39183564 DOI: 10.1152/ajpcell.00452.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The tumor microenvironment is complex and dynamic, characterized by poor vascularization, limited nutrient availability, hypoxia, and an acidic pH. This environment plays a critical role in driving cancer progression. However, standard cell culture conditions used to study cancer cell biology in vitro fail to replicate the in vivo environment of tumors. Recently, "physiological" cell culture media that closely resemble human plasma have been developed (e.g., Plasmax, HPLM), along with more frequent adoption of physiological oxygen conditions (1%-8% O2). Nonetheless, further refinement of tumor-specific culture conditions may be needed. In this study, we describe the development of a tumor microenvironment medium (TMEM) based on murine pancreatic ductal adenocarcinoma (PDAC) tumor interstitial fluid. Using RNA-sequencing, we show that murine PDAC cells (KPCY) cultured in tumor-like conditions (TMEM, pH 7.0, 1.5% O2) exhibit profound differences in gene expression compared with plasma-like conditions (mouse plasma medium, pH 7.4, 5% O2). Specifically, the expression of genes and pathways associated with cell migration, biosynthesis, angiogenesis, and epithelial-to-mesenchymal transition were altered, suggesting tumor-like conditions promote metastatic phenotypes and metabolic remodeling. Using functional assays to validate RNA-seq data, we confirmed increased motility at 1.5% O2/TMEM, despite reduced cell proliferation. Moreover, a hallmark shift to glycolytic metabolism was identified via measurement of glucose uptake/lactate production and mitochondrial respiration. Taken together, these findings demonstrate that growth in 1.5% O2/TMEM alters several biological responses in ways relevant to cancer biology, and more closely models hallmark cancerous phenotypes in culture. This highlights the importance of establishing tumor microenvironment-like conditions in standard cancer research. NEW & NOTEWORTHY Standard cell culture conditions do not replicate the complex tumor microenvironment experienced by cells in vivo. Although currently available plasma-like media are superior to traditional supraphysiological media, they fail to model tumor-like conditions. Using RNA-seq analysis and functional metabolic and migratory assays, we show that tumor microenvironment medium (TMEM), used with representative tumor hypoxia, better models cancerous phenotypes in culture. This emphasizes the critical importance of accurately modeling the tumor microenvironment in cancer research.
Collapse
Affiliation(s)
| | - Jeffrey Alan Stuart
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
9
|
Longtine AG, Greenberg NT, Gonzalez A, Lindquist A, VanDongen NS, Mahoney SA, Rahman G, Clayton ZS, Ziemba BP, Ludwig KR, Widlansky ME, Knight R, Seals DR, Brunt VE. Oral Supplementation with the Short-Chain Fatty Acid Acetate Ameliorates Age-Related Arterial Dysfunction in Mice. AGING BIOLOGY 2024; 2:20240033. [PMID: 39897133 PMCID: PMC11785404 DOI: 10.59368/agingbio.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Adverse changes in the gut microbiome with aging are an emerging mediator of arterial dysfunction, which contributes to cardiovascular disease (CVD) development. We investigated the therapeutic potential of enhancing the bioavailability of gut-derived short-chain fatty acids (SCFAs; produced from dietary fiber) for improving age-related arterial dysfunction. We performed gut microbial whole-genome sequencing in young (3 months) versus old (24 months) male C57BL/6N mice to explore changes in bacterial taxonomic abundance and functional pathways with aging and relations to arterial function. We then supplemented young and old mice with the SCFA acetate in drinking water versus controls and versus a high-fiber diet for 8-10 weeks to test the effects of these interventions on vascular function and explore potential mechanisms. Of the various differences in the gut microbiomes of old mice, lower SCFA-producing capacity (taxonomic abundance and functional pathways) stood out as a key feature related to worse arterial function after adjusting for age. Acetate supplementation and a high-fiber diet reversed ~30% of the age-related increase in aortic pulse wave velocity (stiffness) and fully restored carotid artery endothelium-dependent dilation (endothelial function) to young levels. Acetate and a high-fiber diet reduced age-related increases in systemic inflammation. We also found that improvements in endothelial function were likely mediated by suppressed early growth response-1 signaling using innovative siRNA-based knockdown in isolated arteries. There were no effects of the interventions in young mice. Acetate supplementation was comparably effective for ameliorating arterial dysfunction with aging as a high-fiber diet and thus shows promise for reducing CVD risk in older adults.
Collapse
Affiliation(s)
- Abigail G. Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nathan T. Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Alexandra Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia A. Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gibraan Rahman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Katelyn R. Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael E. Widlansky
- Departments of Medicine and Pharmacology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, Department of Computer Science and Engineering, and Halıcıoğlu Data Science Institute, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Kobayashi S, Morino K, Okamoto T, Tanaka M, Ida S, Ohashi N, Murata K, Yanagimachi T, Sakai J, Maegawa H, Fujita Y, Kume S. Acetate derived from the intestinal tract has a critical role in maintaining skeletal muscle mass and strength in mice. Physiol Rep 2024; 12:e16047. [PMID: 38837588 PMCID: PMC11150057 DOI: 10.14814/phy2.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Acetate is a short-chain fatty acid (SCFA) that is produced by microbiota in the intestinal tract. It is an important nutrient for the intestinal epithelium, but also has a high plasma concentration and is used in the various tissues. Acetate is involved in endurance exercise, but its role in resistance exercise remains unclear. To investigate this, mice were administered either multiple antibiotics with and without oral acetate supplementation or fed a low-fiber diet. Antibiotic treatment for 2 weeks significantly reduced grip strength and the cross-sectional area (CSA) of muscle fiber compared with the control group. Intestinal concentrations of SCFAs were reduced in the antibiotic-treated group. Oral administration of acetate with antibiotics prevented antibiotic-induced weakness of skeletal muscle and reduced CSA of muscle fiber. Similarly, a low-fiber diet for 1 year significantly reduced the CSA of muscle fiber and fecal and plasma acetate concentrations. To investigate the role of acetate as an energy source, acetyl-CoA synthase 2 knockout mice were used. These mice had a shorter lifespan, reduced skeletal muscle mass and smaller CSA of muscle fiber than their wild type littermates. In conclusion, acetate derived from the intestinal microbiome can contribute to maintaining skeletal muscle performance.
Collapse
Affiliation(s)
- Saki Kobayashi
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Katsutaro Morino
- Institutional Research Office, Shiga University of Medical ScienceOtsuJapan
- Present address:
Department of Diabetes and Endocrine MedicineKagoshima University Graduate School of Medical and Dental SciencesKagoshima‐cityJapan
| | - Takuya Okamoto
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Mitsumi Tanaka
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
- CMIC Pharma ScienceNishiwakiJapan
| | - Shogo Ida
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Natsuko Ohashi
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Koichiro Murata
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Tsuyoshi Yanagimachi
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
- Present address:
Department of Endocrinology and Metabolism, Graduate School of MedicineHirosaki UniversityHirosaki‐sityJapan
| | - Juro Sakai
- Division of Molecular Physiology and MetabolismTohoku University Graduate School of MedicineSendaiJapan
- Division of Metabolic Medicine, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
- Present address:
Yasu City HospitalYasu‐cityJapan
| | - Yukihiro Fujita
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
- Present address:
Department of Endocrinology and Metabolism, Graduate School of MedicineHirosaki UniversityHirosaki‐sityJapan
| | - Shinji Kume
- Division of Endocrinology and Metabolism, Department of MedicineShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
11
|
Mena Canata DA, Benfato MS, Pereira FD, Ramos Pereira MJ, Hackenhaar FS, Mann MB, Frazzon APG, Rampelotto PH. Comparative Analysis of the Gut Microbiota of Bat Species with Different Feeding Habits. BIOLOGY 2024; 13:363. [PMID: 38927243 PMCID: PMC11200740 DOI: 10.3390/biology13060363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Bats are a diverse and ecologically important group of mammals that exhibit remarkable diversity in their feeding habits. These diverse feeding habits are thought to be reflected in the composition and function of their gut microbiota, which plays important roles in nutrient acquisition, immune function, and overall health. Despite the rich biodiversity of bat species in South America, there is a lack of microbiome studies focusing on bats from this region. Such studies could offer major insights into conservation efforts and the preservation of biodiversity in South America. In this work, we aimed to compare the gut microbiota of four bat species with different feeding habits from Southern Brazil, including nectarivorous, frugivorous, insectivorous, and hematophagous bats. Our findings demonstrate that feeding habits can have a significant impact on the diversity and composition of bat gut microbiotas, with each species exhibiting unique metabolic potentials related to their dietary niches. In addition, the identification of potentially pathogenic bacteria suggests that the carriage of microbial pathogens by bats may vary, depending on feeding habits and host-specific factors. These findings provide novel insights into the relationship between bat feeding habits and gut microbiota composition, highlighting the need to promote diverse habitats and food sources to support these ecologically important species.
Collapse
Affiliation(s)
- Diego Antonio Mena Canata
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Mara Silveira Benfato
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Francielly Dias Pereira
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - María João Ramos Pereira
- Graduate Program in Animal Biology, Laboratory of Evolution, Systematics and Ecology of Birds and Mammals, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Michele Bertoni Mann
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Ana Paula Guedes Frazzon
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
12
|
Han K, Xu J, Xie F, Crowther J, Moon JJ. Engineering Strategies to Modulate the Gut Microbiome and Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:208-215. [PMID: 38166246 PMCID: PMC10766079 DOI: 10.4049/jimmunol.2300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiota, predominantly residing in the colon, is a complex ecosystem with a pivotal role in the host immune system. Dysbiosis of the gut microbiota has been associated with various diseases, and there is an urgent need to develop new therapeutics that target the microbiome and restore immune functions. This Brief Review discusses emerging therapeutic strategies that focus on oral delivery systems for modulating the gut microbiome. These strategies include genetic engineering of probiotics, probiotic-biomaterial hybrids, dietary fibers, and oral delivery systems for microbial metabolites, antimicrobial peptides, RNA, and antibiotics. Engineered oral formulations have demonstrated promising outcomes in reshaping the gut microbiome and influencing immune responses in preclinical studies. By leveraging these approaches, the interplay between the gut microbiota and the immune system can be harnessed for the development of novel therapeutics against cancer, autoimmune disorders, and allergies.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julia Crowther
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Lee SH, Kim J, Kim NH, Kim OH, Shon CH, Kim SJ, Jang Y, Yun S, Lim SE, Jung SY, Yoo HJ, Heo SH, Lee SW. Gut microbiota composition and metabolite profiling in smokers: a comparative study between emphysema and asymptomatic individuals with therapeutic implications. Thorax 2023; 78:1080-1089. [PMID: 37495367 DOI: 10.1136/thorax-2021-217923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diet has a crucial role in the gut microbiota, and dysbiosis in the gut and lungs has been suggested to be associated with chronic obstructive pulmonary disease. We compared the diet, microbiome and metabolome between asymptomatic smokers and those with emphysema. METHODS We enrolled 10 asymptomatic smokers with preserved lung function and 16 smokers with emphysema with severe airflow limitation. Dietary intake information was gathered by a self-reported questionnaire. Sputum and faecal samples were collected for microbial and metabolomics analysis. A murine model of emphysema was used to determine the effect of metabolite supplementation. RESULTS Despite having a similar smoking history with emphysema patients, asymptomatic smokers had higher values of body mass index, fibre intake and faecal acetate level. Linear discriminant analysis identified 17 microbial taxonomic members that were relatively enriched in the faeces of asymptomatic smokers. Analysis of similarity results showed dissimilarity between the two groups (r=0.287, p=0.003). Higher acetate level was positively associated with forced expiratory volume in one second in the emphysema group (r=0.628, p=0.012). Asymptomatic smokers had a greater number of species associated with acetate and propionate (r>0.6) than did those with emphysema (30 vs 19). In an emphysema mouse model, supplementation of acetate and propionate reduced alveolar destruction and the production of proinflammatory cytokines, and propionate decreased the CD3+CD4+IL-17+ T-cell population in the lung and spleen. CONCLUSION Smokers with emphysema showed differences in diet, microbiome and short-chain fatty acids compared with asymptomatic smokers. Acetate and propionate showed therapeutic effects in a smoking-induced murine model of emphysema.
Collapse
Affiliation(s)
- Se Hee Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jiseon Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Na Hyun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ock-Hwa Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Division of Pulmonology, Allergy, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Sejong Hospital, Chungnam National University, Sejong, Republic of Korea
| | - Chang-Ho Shon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngwon Jang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sunmi Yun
- Metagenome Service Department, Macrogen Inc, Seoul, Republic of Korea
| | - Se Eun Lim
- Metagenome Service Department, Macrogen Inc, Seoul, Republic of Korea
| | - So Yi Jung
- Metagenome Service Department, Macrogen Inc, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Hee Heo
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Bui TVA, Hwangbo H, Lai Y, Hong SB, Choi YJ, Park HJ, Ban K. The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circ J 2023; 53:499-518. [PMID: 37525495 PMCID: PMC10435824 DOI: 10.4070/kcj.2023.0048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Hyesoo Hwangbo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Yimin Lai
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
15
|
Kawabata C, Hirakawa Y, Inagi R, Nangaku M. Acetate attenuates kidney fibrosis in an oxidative stress-dependent manner. Physiol Rep 2023; 11:e15774. [PMID: 37463875 PMCID: PMC10354006 DOI: 10.14814/phy2.15774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the end products of the fermentation of dietary fibers by the intestinal microbiota and reported to exert positive effects on host physiology. Acetate is the most abundant SCFA in humans and is shown to improve acute kidney injury in a mouse model of ischemia-reperfusion injury. However, how SCFAs protect the kidney and whether SCFAs have a renoprotective effect in chronic kidney disease (CKD) models remain to be elucidated. We investigated whether acetate and other SCFAs could attenuate the kidney damage. In in vitro experiments, cell viability of acetate-treated human kidney 2 (HK-2) cells was significantly higher than that of vehicle-treated in an oxidative stress model, and acetate reduced cellular reactive oxygen species (ROS) production. In mitochondrial analysis, the MitoSOX-positive cell proportion decreased, and transcription of dynamin-1-like protein gene, a fission gene, was decreased by acetate treatment. In in vivo experiments in mice, acetate treatment significantly ameliorated fibrosis induced by unilateral ureteral obstruction, and the oxidative stress marker phosphorylated histone H2AX (γH2AX) was also reduced. Further, acetate treatment ameliorated dysmorphic mitochondria in the proximal tubules, and ROS and mitochondrial analyses suggested that acetate improved mitochondrial damage. Our findings indicate a renoprotective effect of acetate in CKD.
Collapse
Affiliation(s)
- Chiaki Kawabata
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
May KS, den Hartigh LJ. Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients 2023; 15:272. [PMID: 36678142 PMCID: PMC9865590 DOI: 10.3390/nu15020272] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is a global public health issue and major risk factor for pathological conditions, including type 2 diabetes, dyslipidemia, coronary artery disease, hepatic steatosis, and certain types of cancer. These metabolic complications result from a combination of genetics and environmental influences, thus contributing to impact whole-body homeostasis. Mechanistic animal and human studies have indicated that an altered gut microbiota can mediate the development of obesity, leading to inflammation beyond the intestine. Moreover, prior research suggests an interaction between gut microbiota and peripheral organs such as adipose tissue via different signaling pathways; yet, to what degree and in exactly what ways this inter-organ crosstalk modulates obesity remains elusive. This review emphasizes the influence of circulating gut-derived short chain fatty acids (SCFAs) i.e., acetate, propionate, and butyrate, on adipose tissue metabolism in the scope of obesity, with an emphasis on adipocyte physiology in vitro and in vivo. Furthermore, we discuss some of the well-established mechanisms via which microbial SCFAs exert a role as a prominent host energy source, hence regulating overall energy balance and health. Collectively, exploring the mechanisms via which SCFAs impact adipose tissue metabolism appears to be a promising avenue to improve metabolic conditions related to obesity.
Collapse
Affiliation(s)
- Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA 98109, USA
- UW Medicine Diabetes Institute, 750 Republican Street, Box 358062, Seattle, WA 98109, USA
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA 98109, USA
- UW Medicine Diabetes Institute, 750 Republican Street, Box 358062, Seattle, WA 98109, USA
| |
Collapse
|
17
|
Xu J, Moore BN, Pluznick JL. Short-Chain Fatty Acid Receptors and Blood Pressure Regulation: Council on Hypertension Mid-Career Award for Research Excellence 2021. Hypertension 2022; 79:2127-2137. [PMID: 35912645 PMCID: PMC9458621 DOI: 10.1161/hypertensionaha.122.18558] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gut microbiome influences host physiology and pathophysiology through several pathways, one of which is microbial production of chemical metabolites which interact with host signaling pathways. Short-chain fatty acids (SCFAs) are a class of gut microbial metabolites known to activate multiple signaling pathways in the host. Growing evidence indicates that the gut microbiome is linked to blood pressure, that SCFAs modulate blood pressure regulation, and that delivery of exogenous SCFAs lowers blood pressure. Given that hypertension is a key risk factor for cardiovascular disease, the examination of novel contributors to blood pressure regulation has the potential to lead to novel approaches or treatments. Thus, this review will discuss SCFAs with a focus on their host G protein-coupled receptors including GPR41 (G protein-coupled receptor 41), GPR43, and GPR109A, as well as OLFR78 (olfactory receptor 78) and OLFR558. This includes a discussion of the ligand profiles, G protein coupling, and tissue distribution of each receptor. We will also review phenotypes relevant to blood pressure regulation which have been reported to date for Gpr41, Gpr43, Gpr109a, and Olfr78 knockout mice. In addition, we will consider how SCFA signaling influences physiology at baseline, and, how SCFA signaling may contribute to blood pressure regulation in settings of hypertension. In sum, this review will integrate current knowledge regarding how SCFAs and their receptors regulate blood pressure.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Brittni N. Moore
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
18
|
Włodarczyk J, Czerwiński B, Fichna J. Short-chain fatty acids-microbiota crosstalk in the coronavirus disease (COVID-19). Pharmacol Rep 2022; 74:1198-1207. [PMID: 36166147 PMCID: PMC9513287 DOI: 10.1007/s43440-022-00415-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease (COVID-19) still remains a major challenge to the health-care systems worldwide, inciting ongoing search for pharmaceutical and non-pharmaceutical interventions which could benefit patients already infected with SARS-CoV-2 or at increased risk thereof. Although SARS-CoV-2 primarily affects the respiratory system, it may also infect other organs and systems, including gastrointestinal tract, where it results in microbial dysbiosis. There is an emerging understanding of the role the gut microbiota plays in maintaining immune homeostasis, both inside the gastrointestinal tract and beyond (i.e. through gut-lung and gut-brain axes). One family of compounds with recognized immunomodulatory and anti-inflammatory properties are short chain fatty acids (SCFAs). SCFAs are believed that they have a protective effect in case of gastrointestinal diseases. Moreover, they are responsible for maintaining proper intestinal barrier and they take part in relevant immune functions. This review presents mechanisms of action and potential benefits of SCFA-based probiotics and direct SCFA supplementation as a strategy to support immune function amid the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jakub Włodarczyk
- grid.8267.b0000 0001 2165 3025Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland ,grid.8267.b0000 0001 2165 3025Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-215 Lodz, Poland
| | - Bartłomiej Czerwiński
- grid.8267.b0000 0001 2165 3025Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Fichna
- grid.8267.b0000 0001 2165 3025Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
19
|
Haghikia A, Zimmermann F, Schumann P, Jasina A, Roessler J, Schmidt D, Heinze P, Kaisler J, Nageswaran V, Aigner A, Ceglarek U, Cineus R, Hegazy AN, van der Vorst EPC, Döring Y, Strauch CM, Nemet I, Tremaroli V, Dwibedi C, Kränkel N, Leistner DM, Heimesaat MM, Bereswill S, Rauch G, Seeland U, Soehnlein O, Müller DN, Gold R, Bäckhed F, Hazen SL, Haghikia A, Landmesser U. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur Heart J 2021; 43:518-533. [PMID: 34597388 DOI: 10.1093/eurheartj/ehab644] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Paul Schumann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Andrzej Jasina
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johann Roessler
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Philipp Heinze
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes Kaisler
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Vanasa Nageswaran
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Annette Aigner
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany.,Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13-15, Leipzig 04103, Germany.,LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Roodline Cineus
- Department of Gastroenterology, Infectiology, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Ahmed N Hegazy
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany.,Department of Gastroenterology, Infectiology, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Heart Alliance Munich, Munich, Germany.,Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstraße 30, Aachen 52074, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht 6200 MD, the Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Heart Alliance Munich, Munich, Germany.,Departement of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 35, Bern CH-3008, Switzerland
| | - Christopher M Strauch
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, Gothenburg SE-413 45, Sweden
| | - Chinmay Dwibedi
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, Gothenburg SE-413 45, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Box 430, Gothenburg 405 30, Sweden
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - David M Leistner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany
| | - Markus M Heimesaat
- Insitute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Stefan Bereswill
- Insitute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Geraldine Rauch
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany.,Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Seeland
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Social Medicine, Epidemiology and Health Economics, Campus Charité Mitte Luisenstraße 57, Berlin 10117, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Heart Alliance Munich, Munich, Germany.,Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Von-Esmarch-Straße 56, WWU Münster 48149, Germany
| | - Dominik N Müller
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany.,Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin 13092, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, Gothenburg SE-413 45, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark.,Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Box 430, Gothenburg 405 30, Sweden
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave., NC-10 Cleveland 44195, OH, USA
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, Berlin 10178, Germany
| |
Collapse
|
20
|
Poll BG, Xu J, Gupta K, Shubitowski TB, Pluznick JL. Olfactory receptor 78 modulates renin but not baseline blood pressure. Physiol Rep 2021; 9:e15017. [PMID: 34549531 PMCID: PMC8455973 DOI: 10.14814/phy2.15017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023] Open
Abstract
Olfactory receptor 78 (Olfr78) is a G protein-coupled receptor (GPCR) that is expressed in the juxtaglomerular apparatus (JGA) of the kidney as well as the peripheral vasculature, and is activated by gut microbial metabolites. We previously reported that Olfr78 plays a role in renin secretion in isolated glomeruli, and that Olfr78 knockout (KO) mice have lower plasma renin activity. We also noted that in anesthetized mice, Olfr78KO appeared to be hypotensive. In this study, we used radiotelemetry to determine the role of Olfr78 in chronic blood pressure regulation. We found that the blood pressure of Olfr78KO mice is not significantly different than that of their WT counterparts at baseline, or on high- or low-salt diets. However, Olfr78KO mice have depressed heart rates on high-salt diets. We also report that Olfr78KO mice have lower renin protein levels associated with glomeruli. Finally, we developed a mouse where Olfr78 was selectively knocked out in the JGA, which phenocopied the lower renin association findings. In sum, these experiments suggest that Olfr78 modulates renin, but does not play an active role in blood pressure regulation at baseline, and is more likely activated by high levels of short chain fatty acids or hypotensive events. This study provides important context to our knowledge of Olfr78 in BP regulation.
Collapse
Affiliation(s)
- Brian G. Poll
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jiaojiao Xu
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kunal Gupta
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tyler B. Shubitowski
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Oakland University William Beaumont School of MedicineRochesterMichiganUSA
| | - Jennifer L. Pluznick
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
21
|
Merenstein D, Fraser CM, Roberts RF, Liu T, Grant-Beurmann S, Tan TP, Smith KH, Cronin T, Martin OA, Sanders ME, Lucan SC, Kane MA. Bifidobacterium animalis subsp. lactis BB-12 Protects against Antibiotic-Induced Functional and Compositional Changes in Human Fecal Microbiome. Nutrients 2021; 13:nu13082814. [PMID: 34444974 PMCID: PMC8398419 DOI: 10.3390/nu13082814] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
The administration of broad-spectrum antibiotics is often associated with antibiotic-associated diarrhea (AAD), and impacts gastrointestinal tract homeostasis, as evidenced by the following: (a) an overall reduction in both the numbers and diversity of the gut microbiota, and (b) decreased short-chain fatty acid (SCFA) production. Evidence in humans that probiotics may enhance the recovery of microbiota populations after antibiotic treatment is equivocal, and few studies have addressed if probiotics improve the recovery of microbial metabolic function. Our aim was to determine if Bifidobacterium animalis subsp. lactis BB-12 (BB-12)-containing yogurt could protect against antibiotic-induced fecal SCFA and microbiota composition disruptions. We conducted a randomized, allocation-concealed, controlled trial of amoxicillin/clavulanate administration (days 1-7), in conjunction with either BB-12-containing or control yogurt (days 1-14). We measured the fecal levels of SCFAs and bacterial composition at baseline and days 7, 14, 21, and 30. Forty-two participants were randomly assigned to the BB-12 group, and 20 participants to the control group. Antibiotic treatment suppressed the fecal acetate levels in both the control and probiotic groups. Following the cessation of antibiotics, the fecal acetate levels in the probiotic group increased over the remainder of the study and returned to the baseline levels on day 30 (-1.6% baseline), whereas, in the control group, the acetate levels remained suppressed. Further, antibiotic treatment reduced the Shannon diversity of the gut microbiota, for all the study participants at day 7. The magnitude of this change was larger and more sustained in the control group compared to the probiotic group, which is consistent with the hypothesis that BB-12 enhanced microbiota recovery. There were no significant baseline clinical differences between the two groups. Concurrent administration of amoxicillin/clavulanate and BB-12 yogurt, to healthy subjects, was associated with a significantly smaller decrease in the fecal SCFA levels and a more stable taxonomic profile of the microbiota over time than the control group.
Collapse
Affiliation(s)
- Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
- Department of Human Science, School of Nursing and Health Studies, Georgetown University Medical Center, Washington, DC 20057, USA
- Correspondence: (D.M.); (C.M.F.); (M.A.K.); Tel.: +1-202-687-2745 (D.M.); +1-410-706-3879 (C.M.F.); +1-410-706-5097 (M.A.K.)
| | - Claire M. Fraser
- Institute for Genomic Sciences, Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.G.-B.); (O.A.M.)
- Correspondence: (D.M.); (C.M.F.); (M.A.K.); Tel.: +1-202-687-2745 (D.M.); +1-410-706-3879 (C.M.F.); +1-410-706-5097 (M.A.K.)
| | - Robert F. Roberts
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Silvia Grant-Beurmann
- Institute for Genomic Sciences, Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.G.-B.); (O.A.M.)
| | - Tina P. Tan
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
| | - Keisha Herbin Smith
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
| | - Tom Cronin
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
| | - Olivia A. Martin
- Institute for Genomic Sciences, Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.G.-B.); (O.A.M.)
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Sean C. Lucan
- Department of Family and Social Medicine, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY 10461, USA;
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
- Correspondence: (D.M.); (C.M.F.); (M.A.K.); Tel.: +1-202-687-2745 (D.M.); +1-410-706-3879 (C.M.F.); +1-410-706-5097 (M.A.K.)
| |
Collapse
|
22
|
Yin K, Lee J, Liu Z, Kim H, Martin DR, Wu D, Liu M, Xue X. Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. Cell Death Differ 2021; 28:2421-2435. [PMID: 33723373 PMCID: PMC8329176 DOI: 10.1038/s41418-021-00760-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the US. Understanding the mechanisms of CRC progression is essential to improve treatment. Mitochondria is the powerhouse for healthy cells. However, in tumor cells, less energy is produced by the mitochondria and metabolic reprogramming is an early hallmark of cancer. The metabolic differences between normal and cancer cells are being interrogated to uncover new therapeutic approaches. Mitochondria targeting PTEN-induced kinase 1 (PINK1) is a key regulator of mitophagy, the selective elimination of damaged mitochondria by autophagy. Defective mitophagy is increasingly associated with various diseases including CRC. However, a significant gap exists in our understanding of how PINK1-dependent mitophagy participates in the metabolic regulation of CRC. By mining Oncomine, we found that PINK1 expression was downregulated in human CRC tissues compared to normal colons. Moreover, disruption of PINK1 increased colon tumorigenesis in two colitis-associated CRC mouse models, suggesting that PINK1 functions as a tumor suppressor in CRC. PINK1 overexpression in murine colon tumor cells promoted mitophagy, decreased glycolysis and increased mitochondrial respiration potentially via activation of p53 signaling pathways. In contrast, PINK1 deletion decreased apoptosis, increased glycolysis, and reduced mitochondrial respiration and p53 signaling. Interestingly, PINK1 overexpression in vivo increased apoptotic cell death and suppressed colon tumor xenograft growth. Metabolomic analysis revealed that acetyl-CoA was significantly reduced in tumors with PINK1 overexpression, which was partly due to activation of the HIF-1α-pyruvate dehydrogenase (PDH) kinase 1 (PDHK1)-PDHE1α axis. Strikingly, treating mice with acetate increased acetyl-CoA levels and rescued PINK1-suppressed tumor growth. Importantly, PINK1 disruption simultaneously increased xenografted tumor growth and acetyl-CoA production. In conclusion, mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming and reducing acetyl-CoA production.
Collapse
Affiliation(s)
- Kunlun Yin
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Jordan Lee
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Zhaoli Liu
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Hyeoncheol Kim
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - David R. Martin
- grid.266832.b0000 0001 2188 8502Department of Pathology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Dandan Wu
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Meilian Liu
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Xiang Xue
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
23
|
Poll BG, Cheema MU, Pluznick JL. Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO. Physiology (Bethesda) 2021; 35:275-284. [PMID: 32490748 DOI: 10.1152/physiol.00004.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shifts in the gut microbiome play a key role in blood pressure regulation, and changes in the production of gut microbial metabolites are likely to be a key mechanism. Known gut microbial metabolites include short-chain fatty acids, which can signal via G-protein-coupled receptors, and trimethylamine-N oxide. In this review, we provide an overview of gut microbial metabolites documented thus far to play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Brian G Poll
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Umar Cheema
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Poll BG, Xu J, Jun S, Sanchez J, Zaidman NA, He X, Lester L, Berkowitz DE, Paolocci N, Gao WD, Pluznick JL. Acetate, a Short-Chain Fatty Acid, Acutely Lowers Heart Rate and Cardiac Contractility Along with Blood Pressure. J Pharmacol Exp Ther 2021; 377:39-50. [PMID: 33414131 PMCID: PMC7985618 DOI: 10.1124/jpet.120.000187] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced almost exclusively by the gut microbiota and are an essential mechanism by which gut microbes influence host physiology. Given that SCFAs induce vasodilation, we hypothesized that they might have additional cardiovascular effects. In this study, novel mechanisms of SCFA action were uncovered by examining the acute effects of SCFAs on cardiovascular physiology in vivo and ex vivo. Acute delivery of SCFAs in conscious radiotelemetry-implanted mice results in a simultaneous decrease in both mean arterial pressure and heart rate (HR). Inhibition of sympathetic tone by the selective β-1 adrenergic receptor antagonist atenolol blocks the acute drop in HR seen with acetate administration, yet the decrease in mean arterial pressure persists. Treatment with tyramine, an indirect sympathomimetic, also blocks the acetate-induced acute drop in HR. Langendorff preparations show that acetate lowers HR only after long-term exposure and at a smaller magnitude than seen in vivo. Pressure-volume loops after acetate injection show a decrease in load-independent measures of cardiac contractility. Isolated trabecular muscle preparations also show a reduction in force generation upon SCFA treatment, though only at supraphysiological concentrations. These experiments demonstrate a direct cardiac component of the SCFA cardiovascular response. These data show that acetate affects blood pressure and cardiac function through parallel mechanisms and establish a role for SCFAs in modulating sympathetic tone and cardiac contractility, further advancing our understanding of the role of SCFAs in blood pressure regulation. SIGNIFICANCE STATEMENT: Acetate, a short-chain fatty acid, acutely lowers heart rate (HR) as well as mean arterial pressure in vivo in radiotelemetry-implanted mice. Acetate is acting in a sympatholytic manner on HR and exerts negative inotropic effects in vivo. This work has implications for potential short-chain fatty acid therapeutics as well as gut dysbiosis-related disease states.
Collapse
Affiliation(s)
- Brian G Poll
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jiaojiao Xu
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Seungho Jun
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jason Sanchez
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Nathan A Zaidman
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Xiaojun He
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Laeben Lester
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Dan E Berkowitz
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Nazareno Paolocci
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Wei Dong Gao
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jennifer L Pluznick
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| |
Collapse
|
25
|
Milligan G, Barki N, Tobin AB. Chemogenetic Approaches to Explore the Functions of Free Fatty Acid Receptor 2. Trends Pharmacol Sci 2021; 42:191-202. [PMID: 33495026 DOI: 10.1016/j.tips.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids are generated in large amounts by the intestinal microbiota. They activate both the closely related G protein-coupled receptors free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3) that are considered therapeutic targets in diseases of immuno-metabolism. Limited and species-selective small-molecule pharmacology has restricted our understanding of the distinct roles of these receptors. Replacement of mouse FFA2 with a designer receptor exclusively activated by designer drug form of human FFA2 (hFFA2-DREADD) has allowed definition of specific roles of FFA2 in pharmacological and physiological studies conducted both ex vivo and in vivo, whilst overlay of murine disease models offers opportunities for therapeutic validation prior to human studies. Similar approaches can potentially be used to define roles of other poorly characterised receptors.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Natasja Barki
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
26
|
Marques FZ, Jama HA, Tsyganov K, Gill PA, Rhys-Jones D, Muralitharan RR, Muir J, Holmes A, Mackay CR. Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension 2019; 74:1279-1293. [DOI: 10.1161/hypertensionaha.119.13079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypertension is a complex and modifiable condition in which environmental factors contribute to both onset and progression. Recent evidence has accumulated for roles of diet and the gut microbiome as environmental factors in blood pressure regulation. However, this is complex because gut microbiomes are a unique feature of each individual reflecting that individual’s developmental and environmental history creating caveats for both experimental models and human studies. Here, we describe guidelines for conducting gut microbiome studies in experimental and clinical hypertension. We provide a complete guide for authors on proper design, analyses, and reporting of gut microbiota/microbiome and metabolite studies and checklists that can be used by reviewers and editors to support robust reporting and interpretation. We discuss factors that modulate the gut microbiota in animal (eg, cohort, controls, diet, developmental age, housing, sex, and models used) and human studies (eg, blood pressure measurement and medication, body mass index, demographic characteristics including age, cultural identification, living structure, sex and socioeconomic environment, and exclusion criteria). We also provide best practice advice on sampling, storage of fecal/cecal samples, DNA extraction, sequencing methods (including metagenomics and 16S rRNA), and computational analyses. Finally, we discuss the measurement of short-chain fatty acids, metabolites produced by the gut microbiota, and interpretation of data. These guidelines should support better transparency, reproducibility, and translation of findings in the field of gut microbiota/microbiome in hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Francine Z. Marques
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M., H.A.J.)
| | - Hamdi A. Jama
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M., H.A.J.)
| | - Kirill Tsyganov
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
| | - Paul A. Gill
- Translational Nutrition Science in the Department of Gastroenterology, Central Clinical School (P.A.G., J.M., D.R-J.), Monash University, Melbourne, Australia
| | - Dakota Rhys-Jones
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (F.Z.M., H.A.J., K.T., D.R.-J., R.R.M.), Monash University, Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia (R.R.M.)
| | - Jane Muir
- Translational Nutrition Science in the Department of Gastroenterology, Central Clinical School (P.A.G., J.M., D.R-J.), Monash University, Melbourne, Australia
| | - Andrew Holmes
- Charles Perkin Centre and School of Life and Environmental Sciences, University of Sydney, Australia (A.H.)
| | - Charles R. Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute (C.R.M.), Monash University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology (C.R.M.), Monash University, Melbourne, Australia
| |
Collapse
|
27
|
The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019; 11:nu11081943. [PMID: 31426593 PMCID: PMC6723943 DOI: 10.3390/nu11081943] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
The interplay of gut microbiota, host metabolism, and metabolic health has gained increased attention. Gut microbiota may play a regulatory role in gastrointestinal health, substrate metabolism, and peripheral tissues including adipose tissue, skeletal muscle, liver, and pancreas via its metabolites short-chain fatty acids (SCFA). Animal and human data demonstrated that, in particular, acetate beneficially affects host energy and substrate metabolism via secretion of the gut hormones like glucagon-like peptide-1 and peptide YY, which, thereby, affects appetite, via a reduction in whole-body lipolysis, systemic pro-inflammatory cytokine levels, and via an increase in energy expenditure and fat oxidation. Thus, potential therapies to increase gut microbial fermentation and acetate production have been under vigorous scientific scrutiny. In this review, the relevance of the colonically and systemically most abundant SCFA acetate and its effects on the previously mentioned tissues will be discussed in relation to body weight control and glucose homeostasis. We discuss in detail the differential effects of oral acetate administration (vinegar intake), colonic acetate infusions, acetogenic fiber, and acetogenic probiotic administrations as approaches to combat obesity and comorbidities. Notably, human data are scarce, which highlights the necessity for further human research to investigate acetate’s role in host physiology, metabolic, and cardiovascular health.
Collapse
|