1
|
The effect of platelet G proteins on platelet extravasation and tumor growth in the murine model of ovarian cancer. Blood Adv 2021; 5:1947-1951. [PMID: 33821990 DOI: 10.1182/bloodadvances.2020003410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
We and other investigators have shown that platelets promote metastasis and the growth of tumors. Our rationale for conducting this study is that platelets' prometastatic and progrowth effects depend on a close encounter between platelets and cancer cells. This interaction occurs inside blood vessels with circulating tumor cells and outside blood vessels with cancer cells residing in the tumor parenchyma. Our hypothesis was that platelet extravasation is required for the effect of platelets on tumor growth. Platelets respond to environmental stimuli by activation of G protein-coupled receptors on their surface. We investigated the impact of various platelet G proteins on the growth of ovarian cancer tumors and platelet extravasation. We used mice with platelet-specific deficiency of Gαi2 (Gi), Gα13 (G13), or Gαq (Gq) in a syngeneic ovarian cancer model. We measured the total weight of tumor nodules resected from tumor-bearing mice. We developed methods for automated whole-slide image acquisition and unbiased computerized image analysis to quantify extravasated platelets. We compared the number of platelets inside tumor nodules of platelet G protein-deficient tumor-bearing mice. We found that deficiency of Gi and G13, but not Gq, in platelets resulted in smaller tumors compared with those in corresponding littermates. Deficiency of Gi and G13 in platelets reduced the number of extravasated platelets by >90%, but deficiency of Gq did not reduce the number of extravasated platelets significantly. The lack of Gi or G13 in platelets reduced platelet extravasation into the tumor and tumor growth.
Collapse
|
2
|
Kuschak M, Namasivayam V, Rafehi M, Voss JH, Garg J, Schlegel JG, Abdelrahman A, Kehraus S, Reher R, Küppers J, Sylvester K, Hinz S, Matthey M, Wenzel D, Fleischmann BK, Pfeifer A, Inoue A, Gütschow M, König GM, Müller CE. Cell-permeable high-affinity tracers for G q proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors. Br J Pharmacol 2020; 177:1898-1916. [PMID: 31881095 PMCID: PMC7070167 DOI: 10.1111/bph.14960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose G proteins are intracellular switches that transduce and amplify extracellular signals from GPCRs. The Gq protein subtypes, which are coupled to PLC activation, can act as oncogenes, and their expression was reported to be up‐regulated in cancer and inflammatory diseases. Gq inhibition may be an efficient therapeutic strategy constituting a new level of intervention. However, diagnostic tools and therapeutic drugs for Gq proteins are lacking. Experimental Approach We have now developed Gq‐specific, cell‐permeable 3H‐labelled high‐affinity probes based on the macrocyclic depsipeptides FR900359 (FR) and YM‐254890 (YM). The tracers served to specifically label and quantify Gq proteins in their native conformation in cells and tissues with high accuracy. Key Results FR and YM displayed low nanomolar affinity for Gαq, Gα11 and Gα14 expressed in CRISPR/Cas9 Gαq‐knockout cells, but not for Gα15. The two structurally very similar tracers showed strikingly different dissociation kinetics, which is predicted to result in divergent biological effects. Computational studies suggested a “dowel” effect of the pseudoirreversibly binding FR. A high‐throughput binding assay led to the discovery of novel Gq inhibitors, which inhibited Gq signalling in recombinant cells and primary murine brown adipocytes, resulting in enhanced differentiation. Conclusions and Implications The Gq protein inhibitors YM and FR are pharmacologically different despite similar structures. The new versatile tools and powerful assays will contribute to the advancement of the rising field of G protein research.
Collapse
Affiliation(s)
- Markus Kuschak
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Jaspal Garg
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonathan G Schlegel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Raphael Reher
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jim Küppers
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Medical Faculty, Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany.,Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Daniela Wenzel
- Medical Faculty, Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany.,Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Bernd K Fleischmann
- Medical Faculty, Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Michael Gütschow
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Getz TM, Manne B, Buitrago L, Mao Y, Kunapuli SP. Dextran sulphate induces fibrinogen receptor activation through a novel Syk-independent PI-3 kinase-mediated tyrosine kinase pathway in platelets. Thromb Haemost 2017; 109:1131-40. [DOI: 10.1160/th12-09-0645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
SummaryIn our attempt to find a physiological agonist that activates PAR3 receptors, we screened several coagulation proteases using PAR4 null platelets. We observed that FXIIa and heat inactivated FXIIa, but not FXII, caused platelet aggregation. We have identified a contaminant activating factor in FXIIa preparation as dextran sulfate (DxS), which caused aggregation of both human and mouse platelets. DxS-induced platelet aggregation was unaffected by YM254890, a Gq inhibitor, but abolished by pan-Src family kinase (SFK) inhibitor PP2, suggesting a role for SFKs in this pathway. However, DxS-induced platelet aggregation was unaffected in FcRγ-chain null murine platelets, ruling out the possibility of glycoprotein VI-mediated events. More interesting, OXSI-2 and Go6976, two structurally unrelated inhibitors shown to affect Syk, had only a partial effect on DxS-induced PAC-1 binding. DxS-induced platelet aggregation and intracellular calcium increases were abolished by the pan PI-3 kinase inhibitor LY294002, or an isoform-specific PI-3 kinase β inhibitor TGX-221. Pretreatment of platelets with Syk inhibitors or ADP receptor antagonists had little effect on Akt phosphorylation following DxS stimulation. These results, for the first time, establish a novel tyrosine kinase pathway in platelets that causes fibrinogen receptor activation in a PI-3 kinase-dependent manner without a crucial role for Syk.
Collapse
|
4
|
Wu WT, Jamiolkowski MA, Wagner WR, Aubry N, Massoudi M, Antaki JF. Multi-Constituent Simulation of Thrombus Deposition. Sci Rep 2017; 7:42720. [PMID: 28218279 PMCID: PMC5316946 DOI: 10.1038/srep42720] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022] Open
Abstract
In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5 mm × 1.6 mm × 0.1 mm) with small crevices (125 μm × 75 μm and 125 μm × 137 μm). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices.
Collapse
Affiliation(s)
- Wei-Tao Wu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Megan A Jamiolkowski
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadine Aubry
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Mehrdad Massoudi
- U. S. Department of Energy, National Energy Technology Laboratory (NETL), PA, 15236, USA
| | - James F Antaki
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Genesio R, Fontana P, Mormile A, Casertano A, Falco M, Conti A, Franzese A, Mozzillo E, Nitsch L, Melis D. Constitutional chromothripsis involving the critical region of 9q21.13 microdeletion syndrome. Mol Cytogenet 2015; 8:96. [PMID: 26689541 PMCID: PMC4683855 DOI: 10.1186/s13039-015-0199-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/06/2015] [Indexed: 11/15/2022] Open
Abstract
Background The chromothripsis is a biological phenomenon, first observed in tumors and then rapidly described in congenital disorders. The principle of the chromothripsis process is the occurrence of a local shattering to pieces and rebuilding of chromosomes in a random order. Congenital chromothripsis rearrangements often involve reciprocal rearrangements on multiple chromosomes and have been described as cause of contiguous gene syndromes. We hypothesize that chromothripsis could be responsible for known 9q21.13 microdeletion syndrome, causing a composite phenotype with additional features. Case presentation The case reported is a 16- years-old female with a complex genomic rearrangement of chromosome 9 including the critical region of 9q21.13 microdeletion syndrome. The patient presents with platelet disorder and thyroid dysfunction in addition to the classical neurobehavioral phenotype of the syndrome. Conclusions The presence of multiple rearrangements on the same chromosome 9 and the rebuilding of chromosome in a random order suggested that the rearrangement could origin from an event of chromthripsis. To our knowledge this is the first report of congenital chromothripsis involving chromosome 9. Furthermore this is the only case of 9q21.13 microdeletion syndrome due to chromothripsis.
Collapse
Affiliation(s)
- Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Paolo Fontana
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Angela Mormile
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Alberto Casertano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Mariateresa Falco
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Adriana Franzese
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Enza Mozzillo
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Daniela Melis
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
6
|
Manne BK, Badolia R, Dangelmaier CA, Kunapuli SP. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochem Pharmacol 2014; 93:163-70. [PMID: 25462818 DOI: 10.1016/j.bcp.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
C-type lectin like receptor 2 (CLEC-2) has been reported to activate platelets through a lipid raft-dependent manner. Secreted ADP potentiates CLEC-2-mediated platelet aggregation. We have investigated whether the decrease in CLEC-2-mediated platelet aggregation, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. We disrupted platelet lipid rafts with methyl-β-cyclodextrin (MβCD) and measured signaling events downstream of CLEC-2 activation. Lipid raft disruption decreases platelet aggregation induced by CLEC-2 agonists. The inhibition of platelet aggregation by the disruption of lipid rafts was rescued by the exogenous addition of epinephrine but not 2-methylthioadenosine diphosphate (2MeSADP), which suggests that lipid raft disruption effects P2Y12-mediated Gi activation but not Gz. Phosphorylation of Syk (Y525/526) and PLCγ2 (Y759), were not affected by raft disruption in CLEC-2 agonist-stimulated platelets. Furthermore, tyrosine phosphorylation of the CLEC-2 hemi-ITAM was not effected when MβCD disrupts lipid rafts. Lipid rafts do not directly contribute to CLEC-2 receptor activation in platelets. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates CLEC-2 signaling.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Rachit Badolia
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Carol A Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
|
8
|
McNicol A, Agpalza A, Jackson ECG, Hamzeh-Cognasse H, Garraud O, Cognasse F. Streptococcus sanguinis-induced cytokine release from platelets. J Thromb Haemost 2011; 9:2038-49. [PMID: 21824285 DOI: 10.1111/j.1538-7836.2011.04462.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND There is increasing evidence that both chronic and acute infections play a role in the development and progression of atherothrombotic disorders. One potential mechanism is the direct activation of platelets by bacteria. A wide range of bacterial species activate platelets through heterogeneous mechanisms. The oral micro-organism S. sanguinis stimulates platelet aggregation in vitro in a strain-dependent manner, although there are no reports of associated cytokine production. OBJECTIVE The aim of the present study was to determine whether platelet activation by S. sanguinis involved the release of pro-inflammatory and immune modulating factors, and whether activation was enhanced by epinephrine. METHODS AND RESULTS Four strains of S. sanguinis and one of S. gordonii stimulated the release of RANTES, PF4, sCD40L and PDGF-AB, whereas only one S. sanguinis strain caused the release of sCD62p. Epinephrine enhanced S. sanguinis-induced platelet aggregation and phosphorylation of phospholipase Cγ2 and Erk, but inhibited RANTES, PF4, sCD40L and PDGF-AB release. Wortmannin inhibited S. sanguinis-induced aggregation and release; however, only aggregation was partially reversed by epinephrine. CONCLUSIONS The present study demonstrates that platelets respond to S. sanguinis with both prothrombotic and pro-inflammatory/immune-modulating responses. Epinephrine, potentially released in response to infection and/or stress, can significantly enhance the prothrombotic response, thereby providing a putative link between bacteraemia and acute coronary events during stress. In contrast, epinephrine inhibited the pro-inflammatory/immune-modulating response by an undetermined mechanism.
Collapse
Affiliation(s)
- A McNicol
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Gupta V, Roy A, Tripathy BC. Signaling events leading to red-light-induced suppression of photomorphogenesis in wheat (Triticum aestivum). PLANT & CELL PHYSIOLOGY 2010; 51:1788-1799. [PMID: 20823341 DOI: 10.1093/pcp/pcq139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Perception of red light (400 μmol photon m²/s) by the shoot bottom turned off the greening process in wheat. To understand the signaling cascade leading to this photomorphogenic response, certain signaling components were probed in seedlings grown in different light regimes. Upon analysis the gene expression of heterotrimeric Gα and Gβ were severely down-regulated in seedlings grown without vermiculite and having their shoot bottom exposed to red light (R/V-) and was similar to that of dark-grown seedlings. Supplementing the red-light-grown V- seedlings with blue light resulted in up-regulation of both Gα and Gβ expression, suggesting that blue light is able to modulate G protein expression. Treatment of cytokinin analog benzyladenine to cytokinin-deficient red-light-grown R/V- seedlings resulted in up-regulation of gene expression of both Gα and Gβ. To probe further, modulators of signal transduction pathway--AlF₃ (G protein activator), LaCl₃ (Ca(2+) channel blocker), NaF (nonspecific phosphatase inhibitor), or calmodulin (CaM) antagonists trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W-7)--were added along with Hoagland solution to the roots of 4-day-old etiolated seedlings, grown on germination paper and transferred to red light. AlF₃, LaCl₃, NaF failed to elicit any photomorphogenic response. However, CaM antagonists TFP and W-7 significantly reversed the red-light-induced suppression of photomorphogenesis. Phosphorylation of proteins assayed in the absence or presence of CaM antagonist TFP revealed respective up-regulation or down-regulation of phosphorylation of several plastidic proteins in R/V- seedlings. These suggest that signal transduction of red light perceived by the shoot bottom to suppress photomorphogenesis is mediated by CaM-dependent protein kinases.
Collapse
Affiliation(s)
- Varsha Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
10
|
Bynagari YS, Nagy B, Tuluc F, Bhavaraju K, Kim S, Vijayan KV, Kunapuli SP. Mechanism of activation and functional role of protein kinase Ceta in human platelets. J Biol Chem 2009; 284:13413-13421. [PMID: 19286657 PMCID: PMC2679441 DOI: 10.1074/jbc.m808970200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/06/2009] [Indexed: 11/06/2022] Open
Abstract
The novel class of protein kinase C (nPKC) isoform eta is expressed in platelets, but not much is known about its activation and function. In this study, we investigated the mechanism of activation and functional implications of nPKCeta using pharmacological and gene knock-out approaches. nPKCeta was phosphorylated (at Thr-512) in a time- and concentration-dependent manner by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1 receptor antagonist, or YM-254890, a G(q) blocker, abolished 2MeSADP-induced phosphorylation of nPKCeta. Similarly, ADP failed to activate nPKCeta in platelets isolated from P2Y1 and G(q) knock-out mice. However, pretreatment of platelets with P2Y12 receptor antagonist, AR-C69331MX did not interfere with ADP-induced nPKCeta phosphorylation. In addition, when platelets were activated with 2MeSADP under stirring conditions, although nPKCeta was phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by activated integrin alpha(IIb)beta3 mediated outside-in signaling. Moreover, in the presence of SC-57101, a alpha(IIb)beta3 receptor antagonist, nPKCeta dephosphorylation was inhibited. Furthermore, in murine platelets lacking PP1cgamma, a catalytic subunit of serine/threonine phosphatase, alpha(IIb)beta3 failed to dephosphorylate nPKCeta. Thus, we conclude that ADP activates nPKCeta via P2Y1 receptor and is subsequently dephosphorylated by PP1gamma phosphatase activated by alpha(IIb)beta3 integrin. In addition, pretreatment of platelets with eta-RACK antagonistic peptides, a specific inhibitor of nPKCeta, inhibited ADP-induced thromboxane generation. However, these peptides had no affect on ADP-induced aggregation when thromboxane generation was blocked. In summary, nPKCeta positively regulates agonist-induced thromboxane generation with no effects on platelet aggregation.
Collapse
Affiliation(s)
- Yamini S Bynagari
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Bela Nagy
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Florin Tuluc
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Kamala Bhavaraju
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Soochong Kim
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - K Vinod Vijayan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Satya P Kunapuli
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Pharmacology and the Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
11
|
Jones S, Tucker KL, Sage T, Kaiser WJ, Barrett NE, Lowry PJ, Zimmer A, Hunt SP, Emerson M, Gibbins JM. Peripheral tachykinins and the neurokinin receptor NK1 are required for platelet thrombus formation. Blood 2008; 111:605-12. [PMID: 17895403 PMCID: PMC2575837 DOI: 10.1182/blood-2007-07-103424] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/31/2007] [Indexed: 11/20/2022] Open
Abstract
Platelets play an important role in hemostasis, with inappropriate platelet activation being a major contributor to debilitating and often fatal thrombosis by causing myocardial infarction and stroke. Although current antithrombotic treatment is generally well tolerated and effective, many patients still experience cardiovascular problems, which may reflect the existence of alternative underlying regulatory mechanisms in platelets to those targeted by existing drugs. In this study, we define a role for peripherally distributed members of the tachykinin family of peptides, namely substance P and the newly discovered endokinins A and B that are present in platelets, in the activation of platelet function and thrombus formation. We have reported previously that the preferred pharmacologically characterized receptor for these peptides, the NK1 receptor, is present on platelets. Inhibition or deficiency of the NK1 receptor, or SP agonist activity, resulted in substantially reduced thrombus formation in vitro under arterial flow conditions, increased bleeding time in mice, and a decrease in experimentally induced thromboembolism. Inhibition of the NK1 receptor may therefore provide benefit in patients vulnerable to thrombosis and may offer an alternative therapeutic target.
Collapse
Affiliation(s)
- Sarah Jones
- School of Biological Sciences, University of Reading, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, Fässler R. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. ACTA ACUST UNITED AC 2007; 204:3113-8. [PMID: 18086864 PMCID: PMC2150972 DOI: 10.1084/jem.20071827] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Platelet adhesion and aggregation at sites of vascular injury are essential for normal hemostasis but may also lead to pathological thrombus formation, causing diseases such as myocardial infarction or stroke. Heterodimeric receptors of the integrin family play a central role in the adhesion and aggregation of platelets. In resting platelets, integrins exhibit a low affinity state for their ligands, and they shift to a high affinity state at sites of vascular injury. It has been proposed that direct binding of the cytoskeletal protein talin1 to the cytoplasmic domain of the integrin β subunits is necessary and sufficient to trigger the activation of integrins to this high affinity state, but direct in vivo evidence in support of this hypothesis is still lacking. Here, we show that platelets from mice lacking talin1 are unable to activate integrins in response to all known major platelet agonists while other cellular functions are still preserved. As a consequence, mice with talin-deficient platelets display a severe hemostatic defect and are completely resistant to arterial thrombosis. Collectively, these experiments demonstrate that talin is required for inside-out activation of platelet integrins in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Bailey L, Kuroyanagi Y, Franco-Penteado CF, Conran N, Costa FF, Ausenda S, Cappellini MD, Ikuta T. Expression of the gamma-globin gene is sustained by the cAMP-dependent pathway in beta-thalassaemia. Br J Haematol 2007; 138:382-95. [PMID: 17614826 DOI: 10.1111/j.1365-2141.2007.06673.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study found that the cyclic adenosine monophosphate (cAMP)-dependent pathway efficiently induced gamma-globin expression in adult erythroblasts, and this pathway plays a role in gamma-globin gene (HBG) expression in beta-thalassaemia. Expression of HBG mRNA increased to about 46% of non-HBA mRNA in adult erythroblasts treated with forskolin, while a cyclic guanosine monophosphate (cGMP) analogue induced HBG mRNA to levels <20% of non-HBA mRNA. In patients with beta-thalassaemia intermedia, cAMP levels were elevated in both red blood cells and nucleated erythroblasts but no consistent elevation was found with cGMP levels. The transcription factor cAMP response element binding protein (CREB) was phosphorylated in nucleated erythroblasts and its phosphorylation levels correlated with HBG mRNA levels of the patients. Other signalling molecules, such as mitogen-activated protein kinases and signal transducers and activators of transcription proteins, were phosphorylated at variable levels and showed no correlations with the HBG mRNA levels. Plasma levels of cytokines, such as erythropoietin, stem cell factor and transforming growth factor-beta were increased in patients, and these cytokines induced both HBG mRNA expression and CREB phosphorylation. These results demonstrate that the cAMP-dependent pathway, the activity of which is augmented by multiple cytokines, plays a role in regulating HBG expression in beta-thalassaemia.
Collapse
Affiliation(s)
- Lakiea Bailey
- Department of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Uemura T, Kawasaki T, Taniguchi M, Moritani Y, Hayashi K, Saito T, Takasaki J, Uchida W, Miyata K. Biological properties of a specific Galpha q/11 inhibitor, YM-254890, on platelet functions and thrombus formation under high-shear stress. Br J Pharmacol 2007; 148:61-9. [PMID: 16520742 PMCID: PMC1617042 DOI: 10.1038/sj.bjp.0706711] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 The effects of YM-254890, a specific Galpha(q/11) inhibitor, on platelet functions, thrombus formation under high-shear rate condition and femoral artery thrombosis in cynomolgus monkeys were investigated. 2 YM-254890 concentration dependently inhibited ADP-induced intracellular Ca(2+) elevation, with an IC(50) value of 0.92+/-0.28 microM. 3 P-selectin expression induced by ADP or thrombin receptor agonist peptide (TRAP) was strongly inhibited by YM-254890, with IC(50) values of 0.51+/-0.02 and 0.16+/-0.08 microM, respectively. 4 YM-254890 had no effect on the binding of fibrinogen to purified GPIIb/IIIa, but strongly inhibited binding to TRAP-stimulated washed platelets. 5 YM-254890 completely inhibited platelet shape change induced by ADP, but not that induced by collagen, TRAP, arachidonic acid, U46619 or A23187. 6 YM-254890 attenuated ADP-, collagen-, TRAP-, arachidonic acid- and U46619-induced platelet aggregation with IC(50) values of <1 microM, whereas it had no effect on phorbol 12-myristate 13-acetate-, ristocetin-, thapsigargin- or A23187-induced platelet aggregation. 7 High-shear stress-induced platelet aggregation and platelet-rich thrombus formation on a collagen surface under high-shear flow conditions were concentration dependently inhibited by YM-254890. 8 The antithrombotic effect of YM-254890 was evaluated in a model of cyclic flow reductions in the femoral artery of cynomolgus monkeys. The intravenous bolus injection of YM-254890 dose dependently inhibited recurrent thrombosis without affecting systemic blood pressure or prolonging template bleeding time. 9 YM-254890 is a useful tool for investigating Galpha(q/11)-coupled receptor signaling and the physiological roles of Galpha(q/11).
Collapse
Affiliation(s)
- Toshio Uemura
- Institute for Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim MS, Lee SM, Kim WD, Ki SH, Moon A, Lee CH, Kim SG. G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol Cancer Res 2007; 5:473-84. [PMID: 17510313 DOI: 10.1158/1541-7786.mcr-06-0395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
G alpha(12/13), which belongs to the G alpha(12) family, participates in the regulation of diverse physiologic processes. In view of the control of G alpha(12/13) in cell proliferation, this study investigated the role of G alpha(12/13) in the regulation of p53 and mdm4. Immunoblotting and immunocytochemistry revealed that p53 was expressed in control embryonic fibroblasts and was largely localized in the nuclei. G alpha(12) deficiency decreased p53 levels and its DNA binding activity, accompanying p21 repression with Bcl(2) induction, whereas G alpha(13) deficiency exerted weak effects. G alpha(12) or G alpha(13) deficiency did not change p53 mRNA expression. ERK1/2 or Akt was not responsible for p53 repression due to G alpha(12) deficiency. Mdm4, a p53-stabilizing protein, was repressed by G alpha(12) deficiency and to a lesser extent by G alpha(13) deficiency, whereas mdm2, PTEN, beta-catenin, ATM, and Chk2 were unaffected. p53 accumulation by proteasomal inhibition during G alpha(12) deficiency suggested the role of G alpha(12) in p53 stabilization. Constitutively active G alpha(12) (G alpha(12)QL) or G alpha(13) (G alpha(13)QL) promoted p53 accumulation with mdm4 induction in MCF10A cells. p53 accumulation by mdm4 overexpression, but no mdm4 induction by p53 overexpression, and small interfering RNA knockdown verified the regulatory role of mdm4 for p53 downstream of G alpha(12/13). In control or G alpha(12)/G alpha(13)-deficient cells, genotoxic stress led to p53 accumulation. At concentrations increasing the flow cytometric pre-G(1) phase, doxorubicin or etoposide treatment caused serine phosphorylations in G alpha(12)-/- or G alpha(12/13)-/- cells, but did not induce mdm4. G alpha(12/13)QL transfection failed to phosphorylate p53 at serines. Our results indicate that G alpha(12/13) regulate basal p53 levels via mdm4, which constitutes a cell signaling pathway distinct from p53 phosphorylations elicited by genotoxic stress.
Collapse
Affiliation(s)
- Mi-Sung Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Garcia A, Shankar H, Murugappan S, Kim S, Kunapuli S. Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets. Biochem J 2007; 404:299-308. [PMID: 17298299 PMCID: PMC1868805 DOI: 10.1042/bj20061584] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously shown that ADP-induced thromboxane generation in platelets requires signalling events from the G(q)-coupled P2Y1 receptor (platelet ADP receptor coupled to stimulation of phospholipase C) and the G(i)-coupled P2Y12 receptor (platelet ADP receptor coupled to inhibition of adenylate cyclase) in addition to outside-in signalling. While it is also known that extracellular calcium negatively regulates ADP-induced thromboxane A2 generation, the underlying mechanism remains unclear. In the present study we sought to elucidate the signalling mechanisms and regulation by extracellular calcium of ADP-induced thromboxane A2 generation in platelets. ERK (extracllular-signal-regulated kinase) 2 activation occurred when outside-in signalling was blocked, indicating that it is a downstream event from the P2Y receptors. However, blockade of either P2Y1 or the P2Y12 receptors with corresponding antagonists completely abolished ERK phosphorylation, indicating that both P2Y receptors are required for ADP-induced ERK activation. Inhibitors of Src family kinases or the ERK upstream kinase MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] abrogated ADP-induced ERK phosphorylation and thromboxane A2 generation. Finally ADP- or G(i)+G(z)-induced ERK phosphorylation was blocked in the presence of extracellular calcium. The present studies show that ERK2 is activated downstream of P2Y receptors through a complex mechanism involving Src kinases and this plays an important role in ADP-induced thromboxane A2 generation. We also conclude that extracellular calcium blocks ADP-induced thromboxane A2 generation through the inhibition of ERK activation.
Collapse
Affiliation(s)
- Analia Garcia
- *Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
- †Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Haripriya Shankar
- *Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Swaminathan Murugappan
- *Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
- †Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Soochong Kim
- *Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
- †Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Satya P. Kunapuli
- *Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
- †Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
- ‡Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Voss B, McLaughlin JN, Holinstat M, Zent R, Hamm HE. PAR1, but not PAR4, activates human platelets through a Gi/o/phosphoinositide-3 kinase signaling axis. Mol Pharmacol 2007; 71:1399-406. [PMID: 17303701 DOI: 10.1124/mol.106.033365] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Thrombin-mediated activation of platelets is critical for hemostasis, but the signaling pathways responsible for this process are not completely understood. In addition, signaling within this cascade can also lead to thrombosis. In this study, we have defined a new signaling pathway for the thrombin receptor protease activated receptor-1 (PAR1) in human platelets. We show that PAR1 couples to G(i/o) in human platelets and activates phosphoinositide-3 kinase (PI3K). PI3K activation regulates platelet integrin alphaIIbbeta3 activation and platelet aggregation and potentiates the PAR1-mediated increase in intraplatelet calcium concentration. PI3K inhibitors eliminated these effects downstream of PAR1, but they had no effect on PAR4 signaling. This study has identified an important role for the direct activation of G(i/o) by PAR1 in human platelets. Given the efficacy of clopidogrel, which blocks the G(i/o)-coupled P2Y purinoceptor 12, as an antiplatelet/antithrombotic drug, our data suggest that specifically blocking only PAR1-mediated G(i/o) signaling could also be an effective therapeutic approach with the possibility of less unwanted bleeding.
Collapse
Affiliation(s)
- Bryan Voss
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|
18
|
Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: Linking hemostasis and inflammation. Blood Rev 2007; 21:99-111. [PMID: 16987572 DOI: 10.1016/j.blre.2006.06.001] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Platelets are essential for primary hemostasis, but they also play an important pro-inflammatory role. Platelets normally circulate in a quiescent state. Upon activation, platelets can secrete and present various molecules, change their shape as well as the expression pattern of adhesion molecules. These changes are associated with the adhesion of platelets to leukocytes and the vessel wall. The interaction of platelets with neutrophils promotes the recruitment of neutrophils into inflammatory tissue and thus participates in host defense. This interaction of neutrophils with platelets is mainly mediated through P-selectin and beta(2) and beta(3) integrins (CD11b/CD18, CD41/CD61). Platelets can also interact with endothelial cells and monocytes. Adherent platelets promote the 'secondary capture' of neutrophils and other leukocytes. In addition, platelets secrete neutrophil and endothelial activators inducing production of inflammatory cytokines. Thus, platelets are important amplifiers of acute inflammation.
Collapse
Affiliation(s)
- Alexander Zarbock
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908-1394, USA.
| | | | | |
Collapse
|
19
|
Holinstat M, Voss B, Bilodeau ML, Hamm HE. Protease-activated receptors differentially regulate human platelet activation through a phosphatidic acid-dependent pathway. Mol Pharmacol 2007; 71:686-94. [PMID: 17151288 DOI: 10.1124/mol.106.029371] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathological conditions such as coronary artery disease are clinically controlled via therapeutic regulation of platelet activity. Thrombin, through protease-activated receptor (PAR) 1 and PAR4, plays a central role in regulation of human platelet function in that it is known to be the most potent activator of human platelets. Currently, direct thrombin inhibitors used to block platelet activation result in unwanted side effects of excessive bleeding. An alternative therapeutic strategy would be to inhibit PAR-mediated intracellular platelet signaling pathways. To elucidate the best target, we are studying differences between the two platelet thrombin receptors, PAR1 and PAR4, in mediating thrombin's action. In this study, we show that platelet activation by PAR1-activating peptide (PAR1-AP) requires a phospholipase D (PLD)-mediated phosphatidic acid (PA) signaling pathway. We show that this PAR1-specific PA-mediated effect is not regulated through differential granule secretion after PAR-induced platelet activation. Perturbation of this signaling pathway via inhibition of lipid phosphate phosphatase-1 (LPP-1) by propranolol or inhibition of the phosphatidylcholine-derived phosphatidic acid (PA) formation by PLD with a primary alcohol significantly attenuated platelet activation by PAR1-AP. Platelet activation by thrombin or PAR4-AP was insensitive to these inhibitors. Furthermore, these inhibitors significantly attenuated activation of Rap1 after stimulation by PAR1-AP but not thrombin or PAR4-AP. Because PA metabolites such as diacylglycerol play an important role in intracellular signaling, identifying crucial differences in PA regulation of PAR-induced platelet activation may lead to a greater understanding of the role of PAR1 versus PAR4 in progression of thrombosis.
Collapse
Affiliation(s)
- Michael Holinstat
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Jalagadugula G, Dhanasekaran DN, Kim S, Kunapuli SP, Rao AK. Early growth response transcription factor EGR-1 regulates Galphaq gene in megakaryocytic cells. J Thromb Haemost 2006; 4:2678-86. [PMID: 16995904 DOI: 10.1111/j.1538-7836.2006.02229.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Galphaq (Gene GNAQ) plays a major role in platelet signal transduction but little is known regarding its transcriptional regulation. OBJECTIVES We studied Galphaq promoter activity using luciferase reporter gene assays in human erythroleukemia (HEL) cells treated with phorbol 12-myristate 13-acetate (PMA) for 24 h to induce megakaryocytic transformation. METHODS AND RESULTS PMA-treated HEL cells showed enhanced Galphaq expression. Reporter (luciferase) gene studies on 5' upstream construct (up to -116 bp from ATG) revealed a negative regulatory site at -238/-202 and two positive sites at -203/-138 and -1116/-731. The positive regulatory region -203/-138 contained overlapping Sp1/AP-2/EGR-1 consensus sites. Gel shift studies on Galphaq oligonucleotides 1 (-203/-175) and 2 (-174/-152) using HEL cell extracts demonstrated protein binding that was due to early growth response factor EGR-1 at two sites. Mutations in either EGR-1 site markedly decreased the gene activity, indicating functional relevance. Mutation of consensus E-Box motif (-185/-180) had no effect. Reduction in the expression of endogenous EGR-1 with antisense oligonucleotide to EGR-1 inhibited PMA-induced Galphaq transcription. Correspondingly, Egr-1 deficient mouse platelets also showed approximately 50% reduction in the Galphaq expression relative to wild-type platelets. CONCLUSIONS These studies suggest that Galphaq gene is regulated during PMA-induced megakaryocytic differentiation by EGR-1, an early growth response transcription factor that regulates a wide array of genes and plays a major role in diverse activities, including cell proliferation, differentiation and apoptosis, and in vascular response to injury and atherosclerosis.
Collapse
Affiliation(s)
- G Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
22
|
Yoshida M, Sato Y, Shimura T, Ohkubo S, Honma S, Tanaka T, Kurimoto T, Nakahata N. Distinct effects of z-335, a new thromboxane A2 receptor antagonist, on rabbit platelets and aortic smooth muscle. Pharmacology 2006; 79:50-6. [PMID: 17139194 DOI: 10.1159/000097632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 09/19/2006] [Indexed: 11/19/2022]
Abstract
The effect of a novel thromboxane A2 receptor (TP) antagonist, (+/-)-sodium[2-(4-chlorophenylsulfonylaminomethyl)- indan-5-yl]acetate monohydrate (Z-335), on the U46619-induced responses was compared between rabbit platelets and aorta. Z-335 inhibited platelet shape change induced by U46619 with higher efficacy than SQ29548, a common TP antagonist. The U46619-induced platelet aggregation was inhibited by Z-335 in a noncompetitive manner, while it was competitively inhibited by SQ29548. Z-335 inhibited U46619-induced vasoconstriction of rabbit aorta with higher efficacy than SQ29548. The pA2 value of Z-335 in aortic vasoconstriction was significantly higher than in platelet shape change. The competitive binding study showed the higher pKi value of Z-335 against [3H]-SQ29548 binding in rabbit aortic smooth muscle cells than in platelets. These data suggest that Z-335 has useful characteristics of TP antagonism.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Blood Platelets/cytology
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Bridged Bicyclo Compounds, Heterocyclic
- Cell Shape/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelins/pharmacology
- Fatty Acids, Unsaturated
- Hydrazines/metabolism
- Hydrazines/pharmacology
- In Vitro Techniques
- Indans/pharmacology
- Inositol Phosphates/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Norepinephrine/pharmacology
- Platelet Aggregation/drug effects
- Rabbits
- Radioligand Assay
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Tritium
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Makoto Yoshida
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pozgajová M, Sachs UJH, Hein L, Nieswandt B. Reduced thrombus stability in mice lacking the α2A-adrenergic receptor. Blood 2006; 108:510-4. [PMID: 16507775 DOI: 10.1182/blood-2005-12-4835] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet activation plays a central role in hemostasis and thrombosis. Many platelet agonists function through G-protein–coupled receptors. Epinephrine activates the α2A-adrenergic receptor (α2A) that couples to Gz in platelets. Although α2A was originally cloned from platelets, its role in thrombosis and hemostasis is still unclear. Through analysis of α2A-deficient mice, variable tail bleeding times were observed. In vitro, epinephrine potentiated activation/aggregation responses of wild-type but not α2A-deficient platelets as determined by flow cytometry and aggregometry, whereas perfusion studies showed no differences in platelet adhesion and thrombus formation on collagen. To test the in vivo relevance of α2A deficiency, mice were subjected to 3 different thrombosis models. As expected, α2A-deficient mice were largely protected from lethal pulmonary thromboembolism induced by the infusion of collagen/epinephrine. In a model of FeCl3-induced injury in mesenteric arterioles, α2A–/– mice displayed a 2-fold increase in embolus formation, suggesting thrombus instability. In a third model, the aorta was mechanically injured, and blood flow was measured with an ultrasonic flow probe. In wild-type mice, all vessels occluded irreversibly, whereas in 24% of α2A-deficient mice, the initially formed thrombi embolized and blood flow was reestablished. These results demonstrate that α2A plays a significant role in thrombus stabilization.
Collapse
Affiliation(s)
- Miroslava Pozgajová
- Rudolf Virchow Center, Deutsche Forschungsgemeinschaft (DFG) Center for Experimental Biomedicine, the Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Platelets play a central role in hemostasis and thrombosis but also in the initiation of atherosclerosis, making platelet receptors and their intracellular signaling pathways important molecular targets for antithrombotic and anti-inflammatory therapy. Historically, much of the knowledge about hemostasis and thrombosis has been derived from patients suffering from bleeding and thrombotic disorders and the identification of the underlying molecular defects. In recent years, the availability of genetically modified mouse strains with defined defects in platelet function and the development of in vivo models to assess platelet-related physiologic and pathophysiologic processes have opened new ways to identify the individual roles and the interplay of platelet proteins in adhesion, activation, aggregation, secretion, and procoagulant activity in vitro and in vivo. This review will summarize key findings made by these approaches and discuss them in the context of human disease.
Collapse
Affiliation(s)
- B Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
25
|
Zhang J, Zhang Y, Wan SG, Wei SS, Lee WH, Zhang Y. Bm-TFF2, a trefoil factor protein with platelet activation activity from frog Bombina maxima skin secretions. Biochem Biophys Res Commun 2005; 330:1027-33. [PMID: 15823546 DOI: 10.1016/j.bbrc.2005.03.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Indexed: 11/18/2022]
Abstract
In mammals, trefoil factor family (TFF) proteins are involved in mucosal maintenance and repair, and they are also implicated in tumor suppression and cancer progression. A novel two domain TFF protein from frog Bombina maxima skin secretions (Bm-TFF2) has been purified and cloned. It activated human platelets in a dose-dependent manner and activation of integrin alpha(IIb)beta(3) was involved. Aspirin and apyrase did not largely reduce platelet response to Bm-TFF2 (a 30% inhibition), indicating that the aggregation is not substantially dependent on ADP and thromboxane A2 autocrine feedback. Elimination of external Ca(2+) with EGTA did not influence the platelet aggregation induced by Bm-TFF2, meanwhile a strong calcium signal (cytoplasmic Ca(2+) release) was detected, suggesting that activation of phospholipase C (PLC) is involved. Subsequent immunoblotting revealed that, unlike in platelets activated by stejnulxin (a glycoprotein VI agonist), PLCgamma2 was not phosphorylated in platelets activated by Bm-TFF2. FITC-labeled Bm-TFF2 bound to platelet membranes. Bm-TFF2 is the first TFF protein reported to possess human platelet activation activity.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Animal Toxinology, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | |
Collapse
|
26
|
Dorsam RT, Kim S, Murugappan S, Rachoor S, Shankar H, Jin J, Kunapuli SP. Differential requirements for calcium and Src family kinases in platelet GPIIb/IIIa activation and thromboxane generation downstream of different G-protein pathways. Blood 2004; 105:2749-56. [PMID: 15546949 DOI: 10.1182/blood-2004-07-2821] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G(12/13) or G(q) signaling pathways activate platelet GPIIb/IIIa when combined with G(i) signaling. We tested whether combined G(i) and G(z) pathways also cause GPIIb/IIIa activation and compared the signaling requirements of these events. Platelet aggregation occurred by combined stimulation of G(i) and G(z) pathways in human platelets and in P2Y1-deficient and G alpha(q)-deficient mouse platelets, confirming that the combination of G(i) and G(z) signaling causes platelet aggregation. When G(i) stimulation was combined with G(z) stimulation, there was a small mobilization of intracellular calcium. Chelation of intracellular calcium decreased the extent of this platelet aggregation, whereas it abolished the G(q) plus G(i)-mediated platelet aggregation. Costimulation of G(i) plus G(z) pathways also caused thromboxane generation that was dependent on outside-in signaling and was inhibited by PP2, a Src family tyrosine kinase inhibitor. Src family tyrosine kinase inhibitors also inhibited platelet aggregation and decreased the PAC-1 binding caused by costimulation of G(i) and G(z) signaling pathways in aspirin-treated platelets. However, Src family kinase inhibitors did not affect G(q) plus G(i)-mediated platelet aggregation. We conclude that the combination of G(i) plus G(z) pathways have different requirements than G(q) plus G(i) pathways for calcium and Src family kinases in GPIIb/IIIa activation and thromboxane production.
Collapse
Affiliation(s)
- Robert T Dorsam
- Department of Pharmacology, and The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Maayani S, Schwarz TE, Patel ND, Craddock-Royal BD, Tagliente TM. Agonist concentration-dependent differential responsivity of a human platelet purinergic receptor: pharmacological and kinetic studies of aggregation, deaggregation and shape change responses mediated by the purinergic P2Y1 receptor in vitro. Platelets 2004; 14:445-62. [PMID: 14713514 DOI: 10.1080/09537100310001612399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Platelet shape change (SC), aggregation and deaggregation responses are integral components of hemostasis that are elicited and modulated in vivo by the simultaneous activation of several membrane receptors. Selective activation of the purinergic P2Y1 receptor in vivo elicits a sustained SC and a small, transient aggregation response that is reversed rapidly by a robust deaggregation response (Platelets 2003; 14: 89). Using a kinetics-based turbidimetric approach to study the modulation of these concurrent components of human platelet responses, we demonstrate that these P2Y1 receptor-related responses and a number of their kinetic and steady-state characteristics are differentially elicited and modulated. P2Y1 receptor agonist concentrations that elicited aggregation (pEC50 for ADP, 2-MeSADP; 5.88, 6.69) were 10-fold greater than those that elicited SC (7.33, 7.67). The magnitude of the aggregation response was agonist concentration-dependent, saturable and was associated with an agonist concentration-dependent deceleration of the deaggregation response. Gi-coupled receptor (alpha 2A-adrenoceptor, EP3 and P2Y12 receptors) agonists also enhanced aggregation through deceleration of the deaggregation response, and an inhibitor of PI3K activity (wortmannin) inhibited aggregation through acceleration of the deaggregation response. Neither treatment affected the extent or the kinetics of the SC response. The aggregation but not the SC response was rapidly desensitized by P2Y1 receptor activation by ADP. The affinity of the presence of a single P2Y1 receptor subtype. The differential characteristics and modulation of the SC and aggregation responses by a single receptor support the idea that different signaling pathways activated at different occupancy states of the same receptor underlie the two responses. P2Y1 receptor-mediated platelet aggregation and SC responses provide a convenient model for studying the phenomenon of agonist-directed signaling by differential occupancy of the same membrane receptor.
Collapse
Affiliation(s)
- Saul Maayani
- Department of Anesthesiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The G-protein-mediated signaling system has evolved as one of the most widely used transmembrane signaling mechanisms in eukaryotic organisms. Mammalian cells express many G-protein-coupled receptors as well as several types of heterotrimeric G-proteins and effectors. This review focuses on recent data from studies in mutant mice, which have elucidated some of the roles of G-protein-mediated signaling in physiology and pathophysiology.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
29
|
Dorsam RT, Tuluc M, Kunapuli SP. Role of protease-activated and ADP receptor subtypes in thrombin generation on human platelets. J Thromb Haemost 2004; 2:804-12. [PMID: 15099288 DOI: 10.1111/j.1538-7836.2004.00692.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activated platelet surface serves as an integral part of the prothrombinase complex upon activation by potent platelet agonists such as thrombin and collagen. We determined the receptor specificity through which thrombin was enhancing collagen-induced thrombin generation. Whereas SFLLRN or AYPGKF alone produced minimal thrombin generation or phosphatidylserine exposure through protease activated receptor (PAR) stimulation, they caused a leftward shift in the collagen-induced thrombin generation dose-response curve. Although SFLLRN or AYPGKF potentiated collagen-induced thrombin generation, neither of them potentiated to the same extent as thrombin. However, SFLLRN and AYPGKF together potentiated collagen-induced thrombin generation to the same extent as thrombin. We conclude that thrombin mediates its procoagulant activity through activation of both PAR1 and PAR4 receptors. Similarly, neither PAR1 nor PAR4 stimulation alone mimicked the annexin V-binding response caused by thrombin stimulation. The combination of PAR activating peptides caused minimal increases in annexin V binding, but caused significant thrombin generation, suggesting that events other than phosphatidylserine exposure may play a role in platelet prothrombinase complex formation. We also investigated the ability of ADP to potentiate agonist-induced thrombin generation. Whereas P2Y(1) antagonism did not affect collagen or thrombin-induced thrombin generation, P2Y(12) antagonism did decrease both collagen- and thrombin-induced thrombin generation, suggesting that ADP potentiates thrombin generation primarily through the P2Y(12) receptor. Collectively, these results suggest that stimulation of both the PAR1 and PAR4 receptors are necessary for thrombin-induced procoagulant activity, and that the P2Y(12) receptor, but not the P2Y(1) receptor, is responsible for the potentiation of agonist-induced platelet procoagulant activity.
Collapse
Affiliation(s)
- R T Dorsam
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
30
|
Offermanns S. G-proteins as transducers in transmembrane signalling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:101-30. [PMID: 12865075 DOI: 10.1016/s0079-6107(03)00052-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The G-protein-mediated signalling system has evolved as one of the most widely used transmembrane signalling mechanisms in mammalian organisms. All mammalian cells express G-protein-coupled receptors as well as several types of heterotrimeric G-proteins and effectors. G-protein-mediated signalling is involved in many physiological and pathological processes. This review summarizes some general aspects of G-protein-mediated signalling and focusses on recent data especially from studies in mutant mice which have elucidated some of the cellular and biological functions of heterotrimeric G-prtoteins.
Collapse
Affiliation(s)
- Stefan Offermanns
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 2003; 278:33492-500. [PMID: 12766172 DOI: 10.1074/jbc.m302401200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.
Collapse
MESH Headings
- ADP Ribose Transferases/pharmacology
- Actins/chemistry
- Botulinum Toxins/pharmacology
- Calcium/metabolism
- Calcium Channels/chemistry
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Electrophysiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Genes, Dominant
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Confocal
- Models, Biological
- Patch-Clamp Techniques
- Precipitin Tests
- Protein Binding
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- TRPC Cation Channels
- Thapsigargin/chemistry
- Thapsigargin/pharmacology
- Thrombin/chemistry
- Time Factors
- Transfection
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/chemistry
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Höltje M, Winter S, Walther D, Pahner I, Hörtnagl H, Ottersen OP, Bader M, Ahnert-Hilger G. The vesicular monoamine content regulates VMAT2 activity through Galphaq in mouse platelets. Evidence for autoregulation of vesicular transmitter uptake. J Biol Chem 2003; 278:15850-8. [PMID: 12604601 DOI: 10.1074/jbc.m212816200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Variations in the neurotransmitter content of secretory vesicles enable neurons to adapt to network changes. Vesicular content may be modulated by vesicle-associated Go(2), which down-regulates the activity of the vesicular monoamine transmitter transporters VMAT1 in neuroendocrine cells and VMAT2 in neurons. Blood platelets resemble serotonergic neurons with respect to transmitter storage and release. In streptolysin O-permeabilized platelets, VMAT2 activity is also down-regulated by the G protein activator guanosine 5'-(beta(i)gamma-imido)triphosphate (GMppNp). Using serotonin-depleted platelets from peripheral tryptophan hydroxylase knockout (Tph1-/-) mice, we show here that the vesicular filling initiates the G protein-mediated down-regulation of VMAT2 activity. GMppNp did not influence VMAT2 activity in naive platelets from Tph1-/- mice. GMppNp-mediated inhibition could be reconstituted, however, when preloading Tph1-/- platelets with serotonin or noradrenaline. Galpha(q) mediates the down-regulation of VMAT2 activity as revealed from uptake studies performed with platelets from Galpha(q) deletion mutants. Serotonergic, noradrenergic, as well as thromboxane A(2) receptors are not directly involved in the down-regulation of VMAT2 activity. It is concluded that in platelets the vesicle itself regulates transmitter transporter activity via its content and vesicle-associated Galpha(q).
Collapse
Affiliation(s)
- Markus Höltje
- Institut für Anatomie der Charité, Humboldt Universität zu Berlin, Philippstrasse 12, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahmad SS, London FS, Walsh PN. The assembly of the factor X-activating complex on activated human platelets. J Thromb Haemost 2003; 1:48-59. [PMID: 12871539 DOI: 10.1046/j.1538-7836.2003.00020.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet membranes provide procoagulant surfaces for the assembly and expression of the factor X-activating complex and promote the proteolytic activation and assembly of the prothrombinase complex resulting in normal hemostasis. Recent studies from our laboratory and others indicate that platelets possess specific, high-affinity, saturable, receptors for factors XI, XIa, IX, IXa, X, VIII, VIIIa, V, Va and Xa, prothrombin, and thrombin. Studies described in this review support the hypothesis that the factor X-activating complex on the platelet surface consists of three receptors (for the enzyme, factor IXa; the substrate, factor X; and the cofactor, factor VIIIa), the colocalization of which results in a 24 million-fold acceleration of the rate of factor X activation. Whether the procoagulant surface of platelets is defined exclusively by procoagulant phospholipids, or whether specific protein receptors exist for the coagulant factors and proteases, is currently unresolved. The interaction between coagulation proteins and platelets is critical to the maintenance of normal hemostasis and is pathogenetically important in human disease.
Collapse
Affiliation(s)
- S S Ahmad
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
34
|
Dorsam RT, Kim S, Jin J, Kunapuli SP. Coordinated signaling through both G12/13 and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets. J Biol Chem 2002; 277:47588-95. [PMID: 12297512 DOI: 10.1074/jbc.m208778200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of GPIIb/IIIa is known to require agonist-induced inside-out signaling through G(q), G(i), and G(z). Although activated by several platelet agonists, including thrombin and thromboxane A(2), the contribution of the G(12/13) signaling pathway to GPIIb/IIIa activation has not been investigated. In this study, we used selective stimulation of G protein pathways to investigate the contribution of G(12/13) activation to platelet fibrinogen receptor activation. YFLLRNP is a PAR-1-specific partial agonist that, at low concentrations (60 microm), selectively activates the G(12/13) signaling cascade resulting in platelet shape change without stimulating the G(q) or G(i) signaling pathways. YFLLRNP-mediated shape change was completely inhibited by the p160(ROCK) inhibitor, Y-27632. At this low concentration, YFLLRNP-mediated G(12/13) signaling caused platelet aggregation and enhanced PAC-1 binding when combined with selective G(i) or G(z) signaling, via selective stimulation of the P2Y(12) receptor or alpha(2A)-adrenergic receptor, respectively. Similar data were obtained when using low dose (10 nm), a thromboxane A(2) mimetic, to activate G(12/13) in the presence of G(i) signaling. These results suggest that selective activation of G(12/13) causes platelet GPIIb/IIIa activation when combined with G(i) signaling. Unlike either G(12/13) or G(i) activation alone, co-activation of both G(12/13) and G(i) resulted in a small increase in intracellular calcium. Chelation of intracellular calcium with dimethyl BAPTA dramatically blocked G(12/13) and G(i)-mediated platelet aggregation. No significant effect on aggregation was seen when using selective inhibitors for p160(ROCK), PKC, or MEKK1. PI 3-kinase inhibition lead to near abolishment of platelet aggregation induced by co-stimulation of G(q) and G(i) pathways, but not by G(12/13) and G(i) pathways. These data demonstrate that co-stimulation of G(12/13) and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets in a mechanism that involves intracellular calcium, and that PI 3-kinase is an important signaling molecule downstream of G(q) but not downstream of G(12/13) pathway.
Collapse
Affiliation(s)
- Robert T Dorsam
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
35
|
den Dekker E, Gorter G, Heemskerk JWM, Akkerman JWN. Development of platelet inhibition by cAMP during megakaryocytopoiesis. J Biol Chem 2002; 277:29321-9. [PMID: 11997386 DOI: 10.1074/jbc.m111390200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostacyclin is a potent inhibitor of agonist-induced Ca2+ increases in platelets, but in the megakaryocytic cell line MEG-01 this inhibition is absent. Using human megakaryocytic cell lines representing different stages in megakaryocyte (Mk) maturation as well as stem cells and immature and mature megakaryocytes, we show that the inhibition by prostacyclin develops at a late maturation stage shortly before platelets are formed. This late appearance is not caused by insufficient cAMP formation or absent protein kinase A (PKA) activity in immature cells. Instead, the appearance of Ca2+ inhibition by prostacyclin is accompanied by a sharp increase in the expression of the catalytic subunit of PKA (PKA-C) but not by changes in the expression of the PKA-regulatory subunits Ialpha/beta, IIalpha, and IIbeta. Overexpression of PKA-C in the megakaryocytic cell line CHRF-288-11 potentiates the Ca2+ inhibition by prostacyclin. Thus, up-regulation of PKA-C appears to be a key step in the development of Ca2+ inhibition by prostacyclin in platelets.
Collapse
Affiliation(s)
- Els den Dekker
- Laboratory for Thrombosis and Haemostasis, Department of Haematology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Aktas B, Hönig-Liedl P, Walter U, Geiger J. Inhibition of platelet P2Y12 and alpha2A receptor signaling by cGMP-dependent protein kinase. Biochem Pharmacol 2002; 64:433-9. [PMID: 12147294 DOI: 10.1016/s0006-2952(02)01113-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The important role of cGMP and cGMP-dependent protein kinase (cGPK) for the inhibition of platelet activation and aggregation is well established and due to the inhibition of fundamental platelet responses such as agonist-stimulated calcium increase, exposure of adhesion receptors and actin polymerization. The diversity of cGMP binding proteins and their synergistic interaction with cAMP signaling in inhibiting platelets indicates that a variety of cGMP targets contribute to its antiplatelet action. Since stimulation of G(i)-proteins was recently shown to be essential for complete platelet activation/aggregation, the possibility that G(i)-signaling events are cGMP/cGPK targets was investigated. Thus, the effect of elevated cGMP levels and selective cGPK activation on purinergic and adrenergic receptor-evoked decrease of platelet cAMP content was closely examined. Experiments with a selective activator of cGPK demonstrate for the first time a cGMP-caused G(i)-protein inhibition and our data suggest that this effect is mediated by cGPK. Considering the essential role of G(i)-signaling for platelet activation, we propose that inhibition of G(i)-mediated signaling by cGMP/cGPK is an important mechanism of action underlying the platelet inhibition by cGMP-elevating endothelium derived factors and drugs.
Collapse
Affiliation(s)
- Barsom Aktas
- Institut für Klinische Biochemie und Pathobiochemie, Medizinische Universitätsklinik, Josef-Schneider Str. 2, D-97078, Würzburg, Germany
| | | | | | | |
Collapse
|
37
|
Gu JL, Müller S, Mancino V, Offermanns S, Simon MI. Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci U S A 2002; 99:9352-7. [PMID: 12077299 PMCID: PMC123144 DOI: 10.1073/pnas.102291599] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The G(12) subfamily of heterotrimeric G-proteins consists of two members, G(12) and G(13). Gene-targeting studies have revealed a role for G(13) in blood vessel development. Mice lacking the alpha subunit of G(13) die around embryonic day 10 as the result of an angiogenic defect. On the other hand, the physiological role of G(12) is still unclear. To address this issue, we generated G alpha(12)-deficient mice. In contrast to the G alpha(13)-deficient mice, G alpha(12)-deficient mice are viable, fertile, and do not show apparent abnormalities. However, G alpha(12) does not seem to be entirely redundant, because in the offspring generated from G alpha(12)+/- G alpha(13)+/- intercrosses, at least one intact G alpha(12) allele is required for the survival of animals with only one G alpha(13) allele. In addition, G alpha(12) and G alpha(13) showed a difference in mediating cell migratory response to lysophosphatidic acid in embryonic fibroblast cells. Furthermore, mice lacking both G alpha(12) and G alpha(q) die in utero at about embryonic day 13. These data indicate that the G alpha(12)-mediated signaling pathway functionally interacts not only with the G alpha(13)- but also with the G alpha(q/11)-mediated signaling systems.
Collapse
Affiliation(s)
- Jennifer L Gu
- Division of Biology, 147-75 California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Cardiovascular diseases are often accompanied and aggravated by pathologic platelet activation. Tight regulation of platelet function is an essential prerequisite for intact vessel physiology or effective cardiovascular therapy. Physiological platelet antagonists as well as various pharmacological vasodilators inhibit platelet function by activating adenylyl and guanylyl cyclases and increasing intracellular cyclic AMP (cAMP) and cyclic GMP (cGMP) levels, respectively. Elevation of platelet cyclic nucleotides interferes with basically all known platelet activatory signaling pathways, and effectively blocks complex intracellular signaling networks, cytoskeletal rearrangements, fibrinogen receptor activation, degranulation, and expression of pro-inflammatory signaling molecules. The major target molecules of cyclic nucleotides in platelets are cyclic nucleotide-dependent protein kinases that mediate their effects through phosphorylation of specific substrates. They directly affect receptor/G-protein activation and interfere with a variety of signal transduction pathways, including the phospholipase C, protein kinase C, and mitogen-activated protein kinase pathways. Regulation of these pathways blocks several steps of cytosolic Ca(2+) elevation and controls a multitude of cytoskeleton-associated proteins that are directly involved in organization of the platelet cytoskeleton. Due to their multiple sites of action and strong inhibitory potencies, cyclic nucleotides and their regulatory pathways are of particular interest for developing new approaches for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- U R Schwarz
- Institut für Klinische Biochemie und Pathobiochemie, Medizinische Universitätsklinik, Josef-Schneider Str. 2, 97080, Würzburg, Germany
| | | | | |
Collapse
|
39
|
Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 2001; 413:74-8. [PMID: 11544528 DOI: 10.1038/35092573] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Platelets are critical in haemostasis and in arterial thrombosis, which causes heart attacks and other events triggered by abnormal clotting. The coagulation protease thrombin is a potent activator of platelets ex vivo. However, because thrombin also mediates fibrin deposition and because multiple agonists can trigger platelet activation, the relative importance of platelet activation by thrombin in haemostasis and thrombosis is unknown. Thrombin triggers cellular responses at least in part through protease-activated receptors (PARs). Mouse platelets express PAR3 and PAR4 (ref. 9). Here we show that platelets from PAR4-deficient mice failed to change shape, mobilize calcium, secrete ATP or aggregate in response to thrombin. This result demonstrates that PAR signalling is necessary for mouse platelet activation by thrombin and supports the model that mouse PAR3 (mPAR3) does not by itself mediate transmembrane signalling but instead acts as a cofactor for thrombin cleavage and activation of mPAR4 (ref. 10). Importantly, PAR4-deficient mice had markedly prolonged bleeding times and were protected in a model of arteriolar thrombosis. Thus platelet activation by thrombin is necessary for normal haemostasis and may be an important target in the treatment of thrombosis.
Collapse
Affiliation(s)
- G R Sambrano
- Cardiovascular Research Institute, University of California, 513 Parnassus Avenue, San Francisco, California 94143-0130, USA
| | | | | | | | | |
Collapse
|
40
|
Jantzen HM, Milstone DS, Gousset L, Conley PB, Mortensen RM. Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest 2001; 108:477-83. [PMID: 11489941 PMCID: PMC209362 DOI: 10.1172/jci12818] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The intracellular signaling pathways by which G protein-coupled receptors on the platelet surface initiate aggregation, a critical process for hemostasis and thrombosis, are not well understood. In particular, the contribution of the G(i) pathway has not been directly addressed. We have investigated the activation of platelets from mice in which the gene for the predominant platelet G alpha(i) subtype, G alpha(i2), has been disrupted. In intact platelets from G alpha(i2)-deficient mice, the inhibition of adenylyl cyclase by ADP was found to be partially impaired compared with wild-type platelets. Moreover, both ADP-dependent platelet aggregation and the activation of the integrin alpha IIb beta 3 (GPIIb-IIIa) were strongly reduced in platelets from G alpha(i2)-deficient mice. In addition, G alpha(i2)-deficient platelets displayed impaired activation at low thrombin concentrations. This defect was mimicked by blocking the adenylyl cyclase--coupled platelet ADP receptor (P2Y(12)) on wild-type platelets with a selective antagonist. These observations suggest that G alpha(i2) is involved in the inhibition of platelet adenylyl cyclase in vivo and is a critical component of the signaling pathway for integrin activation by ADP, resulting in platelet aggregation. In addition, thrombin-dependent activation of mouse platelets is mediated, at least in part, by secreted ADP acting on the G alpha(i2)-linked ADP receptor.
Collapse
Affiliation(s)
- H M Jantzen
- COR Therapeutics Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
In the treatment and prevention of cardiovascular diseases, inhibition of platelet aggregation is of fundamental importance. Inhibition of platelet aggregation can be achieved by either inhibition of membrane receptors or by interception of signalling pathways. While receptor antagonism provides high specificity, the inhibition of platelet signal transduction is more effective. The effectiveness results from the inhibition of platelets, regardless of the cause of activation. These common pathway inhibitors are either intercepting platelet activating mechanisms or amplifying the action of endogenous platelet inhibitors. The physiological anti-aggregants are the endothelial factors NO and prostacyclin, which elevate intracellular cGMP or cAMP content, respectively. By administration of NO-releasing agents, prostacyclin analogues or other cyclic nucleotide elevating drugs the platelet anti-aggregatory action of endothelial factors can be effectively mimicked. Besides antiplatelet activity these drugs also act on vascular smooth muscle causing relaxation and therefore vasodilation, an additional beneficial effect. Inhibition of phosphodiesterases causes elevation of platelet cyclic nucleotide content and thus inhibits platelet aggregation and causes vasodilation. Another relevant target for anti-aggregatory treatment is the arachidonic acid metabolic pathway. This pathway can be intercepted by blockade of either cyclooxygenase-1 (COX-1) or thromboxane synthase. Inhibition of these enzymes may be further amplified by additional antagonism of the thromboxane receptor thus not only preventing formation of thromboxane but also activation of thromboxane receptor by thromboxane precursors, which were particularly effective in clinical trials. In vivo these precursors may be metabolised to prostacyclin in the endothelium and consequently provide additional platelet anti-aggregatory activity. A rather new target for platelet anti-aggregatory treatment is the ecto-nucleotidase CD-39 which limits the plasma level of nucleotides. While several of the novel anti-aggregatory drugs were disappointing in clinical studies combinations of drugs with different effector enzymes showed potent antithrombotic efficacy.
Collapse
Affiliation(s)
- J Geiger
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical University Clinic, University of Wuerzburg, Germany.
| |
Collapse
|