1
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
2
|
Alvaro CG, Thorner J. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response. J Biol Chem 2016; 291:7788-95. [PMID: 26907689 PMCID: PMC4824985 DOI: 10.1074/jbc.r116.714980] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeast Saccharomyces cerevisiae were isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview.
Collapse
Affiliation(s)
- Christopher G Alvaro
- From the Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Jeremy Thorner
- From the Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
3
|
Vlachos S, Harden N. Genetic evidence for antagonism between Pak protein kinase and Rho1 small GTPase signaling in regulation of the actin cytoskeleton during Drosophila oogenesis. Genetics 2011; 187:501-12. [PMID: 21098722 PMCID: PMC3030492 DOI: 10.1534/genetics.110.120998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/18/2010] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.
Collapse
Affiliation(s)
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
4
|
Navarro-Olmos R, Kawasaki L, Domínguez-Ramírez L, Ongay-Larios L, Pérez-Molina R, Coria R. The beta subunit of the heterotrimeric G protein triggers the Kluyveromyces lactis pheromone response pathway in the absence of the gamma subunit. Mol Biol Cell 2010; 21:489-98. [PMID: 20016006 PMCID: PMC2814793 DOI: 10.1091/mbc.e09-06-0472] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022] Open
Abstract
The Kluyveromyces lactis heterotrimeric G protein is a canonical Galphabetagamma complex; however, in contrast to Saccharomyces cerevisiae, where the Ggamma subunit is essential for mating, disruption of the KlGgamma gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Ggamma, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and DeltaGgamma cells of K. lactis. In contrast to the moderate sterility shown by the single DeltaKlGalpha, the double DeltaKlGalpha DeltaKlGgamma mutant displayed full sterility. A partial sterile phenotype of the DeltaKlGgamma mutant was obtained in conditions where the KlGbeta subunit interacted defectively with the Galpha subunit. The addition of a CCAAX motif to the C-end of KlGbeta, partially suppressed the lack of both KlGalpha and KlGgamma subunits. In cells lacking KlGgamma, the KlGbeta subunit cofractionated with KlGalpha in the plasma membrane, but in the DeltaKlGalpha DeltaKlGgamma strain was located in the cytosol. When the KlGbeta-KlGalpha interaction was affected in the DeltaKlGgamma mutant, most KlGbeta fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gbeta subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Ggamma subunit.
Collapse
Affiliation(s)
- Rocío Navarro-Olmos
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Laura Kawasaki
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Lenin Domínguez-Ramírez
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California at Davis, Davis, CA 95616
| | - Laura Ongay-Larios
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Rosario Pérez-Molina
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| | - Roberto Coria
- *Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico and
| |
Collapse
|
5
|
Yu L, Qi M, Sheff MA, Elion EA. Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase. Mol Biol Cell 2008; 19:1739-52. [PMID: 18256288 PMCID: PMC2291402 DOI: 10.1091/mbc.e07-08-0757] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/18/2008] [Accepted: 01/29/2008] [Indexed: 01/10/2023] Open
Abstract
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.
Collapse
Affiliation(s)
- Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Mark A. Sheff
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Elaine A. Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| |
Collapse
|
6
|
Bhattacharjya S, Gingras R, Xu P. An NMR-based identification of a peptide fragment from the beta-subunit of a G-protein showing specific interactions with the GBB domain of the Ste20 kinase in budding yeast. Biochem Biophys Res Commun 2006; 347:1145-50. [PMID: 16870141 DOI: 10.1016/j.bbrc.2006.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/09/2006] [Indexed: 11/28/2022]
Abstract
In mitogen-activated protein kinase (MAPK) cascades of budding yeast, pheromone-induced mating signal is transmitted by interactions between the beta-subunit of a G-protein (G-beta) and the G-beta binding (GBB) domain of Ste20 kinase. Previously, mutational analyses of the beta-subunit of G-protein had identified two critical mutations which abrogate binding of the GBB domain of Ste20. In this work, we have identified, by use of NMR spectroscopy, a peptide fragment from the G-beta that shows specific interactions with the isolated GBB domain of Ste20. A model structure of the Ste20/G-beta complex reveals that the interface of the hetero-complex may be sustained by parallel orientation of two potentially interacting helical segments that are further stabilized by ionic, hydrogen bond, and helix macro-dipole interactions.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
7
|
Lei M, Robinson MA, Harrison SC. The active conformation of the PAK1 kinase domain. Structure 2005; 13:769-78. [PMID: 15893667 DOI: 10.1016/j.str.2005.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/13/2005] [Accepted: 03/14/2005] [Indexed: 11/24/2022]
Abstract
The p21-activated kinases (PAKs) participate in cytoskeletal control networks, downstream of Rho-family GTPases. A structure of PAK1 in an autoregulated, "off" state showed that a regulatory region, N-terminal to the kinase domain, forces the latter into an inactive conformation, prevents phosphorylation of Thr423 in the activation loop, and promotes dimerization. We have now determined structures at 1.8 A resolution for the free PAK1 kinase domain, with a mutation in the active site that blocks enzymatic activity, and for the same domain with a "phosphomimetic" mutation in the activation loop. The two very similar structures show that even in the absence of a phosphorylated Thr423, the kinase has an essentially active conformation. When Cdc42 binds the regulatory region and dissociates the dimer, PAK1 will be in an "intermediate-active" state, with a capacity to phosphorylate itself or other substrates even prior to modification of its activation loop.
Collapse
Affiliation(s)
- Ming Lei
- Laboratory of Molecular Medicine, Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
8
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|
9
|
Smith DG, Garcia-Pedrajas MD, Hong W, Yu Z, Gold SE, Perlin MH. An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. EUKARYOTIC CELL 2004; 3:180-9. [PMID: 14871948 PMCID: PMC329500 DOI: 10.1128/ec.3.1.180-189.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathways are conserved from fungi to humans and have been shown to play important roles in mating and filamentous growth for both Saccharomyces cerevisiae and dimorphic fungi and in infectivity for pathogenic fungi. STE20 encodes a protein kinase of the p21-activated protein kinase family that regulates more than one of these cascades in yeasts. We hypothesized that an Ste20p homologue would play a similar role in the dimorphic plant pathogen Ustilago maydis. The full-length copy of the U. maydis gene was obtained from a genomic library; it lacked introns and was predicted to encode a protein of 826 amino acids, whose sequence confirmed its identity as the first Ste20p homologue to be isolated from a plant pathogen. The predicted protein contained both an N-terminal regulatory Cdc42-Rac interactive binding domain and a C-terminal catalytic kinase domain. Disruption of the gene smu1 resulted in a delayed mating response in a mating-type-specific manner and also in a severe reduction in disease production on maize. Unlike the Ustilago bypass of cyclase (ubc) mutations previously identified in genes in the pheromone-responsive MAPK cascade, mutation of smu1 does not by itself act as an extragenic suppressor of the filamentous phenotype of a uac1 mutant. Thus, the direct connection of Smu1p to MAPK cascade function has yet to be established. Even so, Smu1, though not absolutely required for mating, is necessary for wild-type mating and pathogenicity.
Collapse
Affiliation(s)
- David G Smith
- Department of Biology, University of Louisville, Louisville, Kentucky 40208, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, 2208 Natural Sciences I, University of California, Irvine, CA 92697-2300, USA.
| |
Collapse
|
11
|
Müller-Taubenberger A, Bretschneider T, Faix J, Konzok A, Simmeth E, Weber I. Differential localization of the Dictyostelium kinase DPAKa during cytokinesis and cell migration. J Muscle Res Cell Motil 2003; 23:751-63. [PMID: 12952073 DOI: 10.1023/a:1024475628061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Dictyostelium kinase DPAKa is a member of the p21-activated kinase (PAK) family, consisting of an N-terminal domain characterized by a coiled-coil region and proline-rich motifs, a Rac-binding CRIB-domain, and a highly conserved C-terminal kinase domain. In this study we show that cells overexpressing a C-terminal DPAKa fragment comprising the kinase domain are significantly impaired in motility and phagocytosis, whereas DPAKa-null cells display no obvious phenotypic change. We analyzed the in vivo localization of full-length and truncated DPAKa tagged with green fluorescent protein (GFP). The N-terminal fragments show a highly dynamic cortical localization without a permanent polarized enrichment, whereas the C-terminal fragment is homogenously distributed throughout the cell. The localization of full-length DPAKa is similar to that of myosin II at the rear end of locomoting cells and at the base of phagocytic cups. During mitosis DPAKa is gradually recruited to the cell cortex starting at metaphase, which also parallels the dynamics of myosin II cortical recruitment. However, in contrast to myosin II, DPAKa does not accumulate in the cleavage furrow but stays uniformly distributed throughout the cell cortex. This finding contrasts with previous work claiming accumulation of DPAKa in the cleavage furrow of dividing cells. Our results suggest that the N-terminus directs DPAKa to the cortex, and the C-terminus is necessary for restricting its localization to the rear of moving cells during chemotaxis. Therefore, DPAKa may play distinct roles in myosin II regulation during cell movement and cell division.
Collapse
|
12
|
Yamagishi K, Kimura T, Suzuki M, Shinmoto H. Suppression of fruit-body formation by constitutively active G-protein alpha-subunits ScGP-A and ScGP-C in the homobasidiomycete Schizophyllum commune. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2797-2809. [PMID: 12213926 DOI: 10.1099/00221287-148-9-2797] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heterotrimeric G-protein alpha-subunit family plays multiple roles in eukaryotic cells, such as the regulation of growth and development, of pathogenicity and of the transmission of pheromone stimulation. In the homobasidiomycete Schizophyllum commune, some genes encoding heterotrimeric G-protein alpha-subunits (SCGPalpha1, SCGPalpha2, ScGP-A, ScGP-B and ScGP-C) have been reported. In this study, constitutively active mutants of ScGP-A, ScGP-B and ScGP-C were generated by site-directed mutagenesis and introduced into the S. commune monokaryon strain to investigate the function of each gene. Northern analysis showed that the mutated genes were strongly expressed when compared with endogenous G-proteins in many clones. Upon macroscopic examination, some transformed clones expressing ScGP-A (Q207R) and ScGP-C (Q204R) mutant genes exhibited a slight suppression of aerial-hyphae formation in the monokaryon strain. In contrast to the slight suppression of aerial-hyphae formation in the monokaryon, most clones expressing mutated ScGP-A or ScGP-C genes failed to form fruit-bodies in the dikaryon strain. This observation indicated that ScGP-A and ScGP-C played a role in suppressing fruit-body formation in the dikaryon. Furthermore, these phenotypes were similar to the phenotype of the thn mutant in S. commune to some extent. Since the thn-1 gene encodes a putative regulator of the G-protein signalling protein (RGS), ScGP-A and ScGP-C might be targets of thn-1.
Collapse
Affiliation(s)
- Kenji Yamagishi
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| | - Toshiyuki Kimura
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| | - Masahiro Suzuki
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| | - Hiroshi Shinmoto
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| |
Collapse
|
13
|
Rashid T, Banerjee M, Nikolic M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 2001; 276:49043-52. [PMID: 11604394 DOI: 10.1074/jbc.m105599200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.
Collapse
Affiliation(s)
- T Rashid
- Molecular and Developmental Neurobiology Medical Research Council Centre, New Hunt's House, King's College London, London, SE1 1UL, United Kingdom
| | | | | |
Collapse
|
14
|
Song J, Chen Z, Xu P, Gingras R, Ng A, Leberer E, Thomas DY, Ni F. Molecular interactions of the Gbeta binding domain of the Ste20p/PAK family of protein kinases. An isolated but fully functional Gbeta binding domain from Ste20p is only partially folded as shown by heteronuclear NMR spectroscopy. J Biol Chem 2001; 276:41205-12. [PMID: 11509560 DOI: 10.1074/jbc.m103449200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transmission of the mating signal of the budding yeast Saccharomyces cerevisiae requires Ste20p, a member of the serine/threonine protein kinases of the Ste20p/PAK family, to link the Gbeta subunit of the heterotrimeric G protein to the mitogen-activated protein kinase cascades. The binding site of Ste20p to the Gbeta subunit was mapped to a consensus sequence of SSLphiPLI/VXphiphibeta (X for any residue; phi for A, I, L, S or T; beta for basic residues), which was shown to be a novel Gbeta binding (GBB) motif present only in the noncatalytic C-terminal domains of the Ste20p/PAK family of protein kinases (Leeuw, T., Wu, C., Schrag, J. D., Whiteway, M., Thomas, D. Y., and Leberer, E. (1998) Nature 391, 191-195; Leberer, E., Dignard, D., Thomas, D. Y., and Leeuw, T. (2000) Biol. Chem. 381, 427-431). Here, we report the results of an NMR study on two GBB motif peptides and the entire C-terminal domain derived from Ste20p. The NMR data show that the two peptide fragments are not uniquely structured in aqueous solution, but in the presence of 40% trifluoroethanol, the longer 37-residue peptide exhibited two well defined, but flexibly linked helical structure elements. Heteronuclear NMR data indicate that the fully functional 86-residue C-terminal domain of Ste20p is again unfolded in aqueous solution but has helical secondary structure preferences similar to those of the two peptide fragments. The NMR results on the two GBB peptides and the entire GBB domain all indicate that the two important binding residues, Ser(879) and Ser(880), are located at the junction between two helical segments. These experimental observations with the prototype GBB domain of a novel family of Gbeta-controlled effectors may have important implications in understanding the molecular mechanisms of the signal transduction from the heterotrimeric G protein to the mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- J Song
- Biomolecular NMR Laboratory and the Montréal Joint Centre for Structural Biology, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xia C, Ma W, Stafford LJ, Marcus S, Xiong WC, Liu M. Regulation of the p21-activated kinase (PAK) by a human Gbeta -like WD-repeat protein, hPIP1. Proc Natl Acad Sci U S A 2001; 98:6174-9. [PMID: 11371639 PMCID: PMC33441 DOI: 10.1073/pnas.101137298] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The family of p21-activated protein kinases (PAKs) is composed of serine-threonine kinases whose activity is regulated by the small guanosine triphosphatases (GTPases) Rac and Cdc42. In mammalian cells, PAKs have been implicated in the regulation of mitogen-activated protein cascades, cellular morphological and cytoskeletal changes, neurite outgrowth, and cell apoptosis. Although the ability of Cdc42 and Rac GTPases to activate PAK is well established, relatively little is known about the negative regulation of PAK or the identity of PAK cellular targets. Here, we describe the identification and characterization of a human PAK-interacting protein, hPIP1. hPIP1 contains G protein beta-like WD repeats and shares sequence homology with the essential fission yeast PAK regulator, Skb15, as well as the essential budding yeast protein, MAK11. Interaction of hPIP1 with PAK1 inhibits the Cdc42/Rac-stimulated kinase activity through the N-terminal regulatory domains of PAK1. Cotransfection of hPIP1 in mammalian cells inhibits PAK-mediated c-Jun N-terminal kinase and nuclear factor kappa B signaling pathways. Our results demonstrate that hPIP1 is a negative regulator of PAK and PAK signaling pathways.
Collapse
Affiliation(s)
- C Xia
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, and Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|