1
|
Pennacchietti V, Pagano L, Malagrinò F, Diop A, Di Felice M, Di Matteo S, Marcocci L, Pietrangeli P, Toto A, Gianni S. Characterization of the folding and binding properties of the PTB domain of FRS2 with phosphorylated and unphosphorylated ligands. Arch Biochem Biophys 2023; 745:109703. [PMID: 37543351 DOI: 10.1016/j.abb.2023.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
PTB (PhosphoTyrosine Binding) domains are protein domains that exert their function by binding phosphotyrosine residues on other proteins. They are commonly found in a variety of signaling proteins and are important for mediating protein-protein interactions in numerous cellular processes. PTB domains can also exhibit binding to unphosphorylated ligands, suggesting that they have additional binding specificities beyond phosphotyrosine recognition. Structural studies have reported that the PTB domain from FRS2 possesses this peculiar feature, allowing it to interact with both phosphorylated and unphosphorylated ligands, such as TrkB and FGFR1, through different topologies and orientations. In an effort to elucidate the dynamic and functional properties of these protein-protein interactions, we provide a complete characterization of the folding mechanism of the PTB domain of FRS2 and the binding process to peptides mimicking specific regions of TrkB and FGFR1. By analyzing the equilibrium and kinetics of PTB folding, we propose a mechanism implying the presence of an intermediate along the folding pathway. Kinetic binding experiments performed at different ionic strengths highlighted the electrostatic nature of the interaction with both peptides. The specific role of single amino acids in early and late events of binding was pinpointed by site-directed mutagenesis. These results are discussed in light of previous experimental works on these protein systems.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Sara Di Matteo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
2
|
Dixit G, Gonzalez‐Bosquet J, Skurski J, Devor EJ, Dickerson EB, Nothnick WB, Issuree PD, Leslie KK, Maretzky T. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med 2023; 13:e1223. [PMID: 37165578 PMCID: PMC10172618 DOI: 10.1002/ctm2.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mutations in the receptor tyrosine kinase gene fibroblast growth factor receptor 2 (FGFR2) occur at a high frequency in endometrial cancer (EC) and have been linked to advanced and recurrent disease. However, little is known about how these mutations drive carcinogenesis. METHODS Differential transcriptomic analysis and two-step quantitative real-time PCR (qRT-PCR) assays were applied to identify genes differentially expressed in two cohorts of EC patients carrying mutations in the FGFR2 gene as well as in EC cells harbouring mutations in the FGFR2. Candidate genes and target signalling pathways were investigated by qRT-PCR assays, immunohistochemistry and bioinformatics analysis. The functional roles of differently regulated genes were analysed using in vitro and in vivo experiments, including 3D-orthotypic co-culture systems, cell proliferation and migration protocols, as well as colony and focus formation assays together with murine xenograft tumour models. The molecular mechanisms were examined using CRISPR/Cas9-based loss-of-function and pharmacological approaches as well as luciferase reporter techniques, cell-based ectodomain shedding assays and bioinformatics analysis. RESULTS We show that common FGFR2 mutations significantly enhance the sensitivity to FGF7-mediated activation of a disintegrin and metalloprotease (ADAM)17 and subsequent transactivation of the epidermal growth factor receptor (EGFR). We further show that FGFR2 mutants trigger the activation of ADAM10-mediated Notch signalling in an ADAM17-dependent manner, highlighting for the first time an intimate cooperation between EGFR and Notch pathways in EC. Differential transcriptomic analysis in EC cells in a cohort of patients carrying mutations in the FGFR2 gene identified a strong association between FGFR2 mutations and increased expression of members of the Notch pathway and ErbB receptor family. Notably, FGFR2 mutants are not constitutively active but require FGF7 stimulation to reprogram Notch and EGFR pathway components, resulting in ADAM17-dependent oncogenic growth. CONCLUSIONS These findings highlight a pivotal role of ADAM17 in the pathogenesis of EC and provide a compelling rationale for targeting ADAM17 protease activity in FGFR2-driven cancers.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Jesus Gonzalez‐Bosquet
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Joseph Skurski
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
| | - Eric J. Devor
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Erin B. Dickerson
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Animal Cancer Care and Research ProgramUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Warren B. Nothnick
- Cell Biology and PhysiologyCenter for Reproductive SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Priya D. Issuree
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kimberly K. Leslie
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Division of Molecular MedicineDepartments of Internal Medicine and Obstetrics and GynecologyThe University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Thorsten Maretzky
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
3
|
Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66:26-37. [PMID: 35690568 DOI: 10.1016/j.cytogfr.2022.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
The process of wound healing involves a complex and vast interplay of growth factors and cytokines that coordinate the recruitment and interaction of various cell types. A series of events involving inflammation, proliferation, and remodeling eventually leads to the restoration of the damaged tissue. Abrogation in the regulation of these events has been shown to result in excessive scarring or non-healing wounds. While the process of wound healing is not fully elucidated, it has been documented that the early events of wound healing play a key role in the outcome of the wound. Furthermore, high levels of inflammation have been shown to lead to scarring. The regulation of these events may result in scarless wound healing, especially in adults. The inhibition of transforming growth factor-β (TGF-β) and the administration of keratinocyte growth factors (KGF), KGF-1 and KGF-2, has in recent years yielded positive results in the acceleration of wound closure and reduced scarring. Here, we encapsulate recent knowledge on the roles of TGF-β, KGF1, and KGF2 in wound healing and scar formation and highlight the areas that need further investigation. We also discuss potential future directions for the use of growth factors in wound management.
Collapse
Affiliation(s)
| | | | - Hui Qi
- Wenzhou Medical University, China
| | | | | | - Lu Chao
- Wenzhou Medical University, China
| | | |
Collapse
|
4
|
Jiang SQ, Pan T, Yu JL, Zhang Y, Wang T, Li P, Li F. Thermal and wine processing enhanced Clematidis Radix et Rhizoma ameliorate collagen Ⅱ induced rheumatoid arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114993. [PMID: 35032583 DOI: 10.1016/j.jep.2022.114993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clematidis Radix et Rhizoma, a kind of traditional Chinese medicine, is derived from Clematis chinensis Osbeck, Clematis hexapetala Pall. and Clematis manshurica Rupr. This herb shows great effects on expelling wind and dispelling dampness in ancient and it has anti-inflammatory and analgesic activity in modern clinical application. AIM OF THE STUDY This experiment aimed to research anti-rheumatoid arthritis effect of crude and wine processed RC based on glycolysis metabolism to provide new ideas treating RA. MATERIALS AND METHODS Network pharmacology was applied to preliminarily forecast the potential pathways of common targets of RC and RA. RAW264.7 macrophages were induced by LPS, NO production, glucose uptake, lactate production, ROS and MMP were detected as instructions in vitro. ELISA was used to measure the content of HK2, PKM2 and LDHA involving in glycolysis process. Gut microbiota was analyzed by 16S rRNA gene amplicon sequencing in CIA rats. RESULTS Crude and wine processed RC had good anti-inflammatory effect by reducing NO in RAW264.7 macrophages and ameliorating inflammatory infiltration and cartilage surface erosion in CIA rats. Whether in LPS-induced macrophages or CIA rats, crude and wine processed RC could inhibit glycolysis by down-regulating the expression of PKM2, causing less glucose uptake and lactic acid, which lead to less ROS and higher MMP to normal. PI3K-AKT and HIF-1α pathways were deduced to possibly play a crucial part in controlling glycolysis metabolism by network pharmacology analysis. Besides, it was displayed that Firmicutes and Bacteroidetes were prominent gut microbiota in CIA rats feces. CC-H and PZ-H groups could both increase the relative abundance of Firmicutes and decrease Bacteroidetes. These microbiota also played a role in RA pathological process via involving in energy metabolism, carbohydrate metabolism and immune system. CONCLUSION Crude and wine processed RC have a good influence in ameliorating rheumatoid arthritis by inhibiting glycolysis and modulating gut microbiota together.
Collapse
Affiliation(s)
- Si-Qi Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ting Pan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jia-Lin Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ting Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Fei Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China; School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China.
| |
Collapse
|
5
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
7
|
Batchu S, Kellish AS, Hakim AA. Assessing alveolar rhabdomyosarcoma cell lines as tumor models by comparison of mRNA expression profiles. Gene 2020; 760:145025. [PMID: 32758582 DOI: 10.1016/j.gene.2020.145025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
Abstract
Numerous cell lines for human alveolar rhabdomyosarcoma (ARMS) have been developed and are widely used to study biological processes of this myogenic cancer. The present study investigated the resemblance of commonly used ARMS cell lines to primary tumors in regards to gene expression. RNA-sequencing data was retrieved from published datasets for 4 commonly used ARMS cell lines and 35 ARMS primary tumors. The genes with most variable expression across primary tumors were used to calculate rank-based Spearman's correlation. The observed median correlations ranged from 0.36 to 0.61. RH-41 showed the highest median correlation while KYM-1 was the least correlated cell line. A significant number of genes dysregulated between tumors and non-tumors also exhibited similar expression patterns between tumors and cell lines, including The findings suggest that ARMS cell lines exhibit changes in gene expression compared to primary tumors and may not be completely representative of the disease process.
Collapse
Affiliation(s)
- Sai Batchu
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Alec S Kellish
- Cooper Medical School at Rowan University, Camden, NJ, United States
| | - Abraham A Hakim
- Cooper Medical School at Rowan University, Camden, NJ, United States
| |
Collapse
|
8
|
Hu X, Wang Q, Tang M, Barthel F, Amin S, Yoshihara K, Lang FM, Martinez-Ledesma E, Lee SH, Zheng S, Verhaak RGW. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res 2019; 46:D1144-D1149. [PMID: 29099951 PMCID: PMC5753333 DOI: 10.1093/nar/gkx1018] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023] Open
Abstract
Gene fusion represents a class of molecular aberrations in cancer and has been exploited for therapeutic purposes. In this paper we describe TumorFusions, a data portal that catalogues 20 731 gene fusions detected in 9966 well characterized cancer samples and 648 normal specimens from The Cancer Genome Atlas (TCGA). The portal spans 33 cancer types in TCGA. Fusion transcripts were identified via a uniform pipeline, including filtering against a list of 3838 transcript fusions detected in a panel of 648 non-neoplastic samples. Fusions were mapped to somatic DNA rearrangements identified using whole genome sequencing data from 561 cancer samples as a means of validation. We observed that 65% of transcript fusions were associated with a chromosomal alteration, which is annotated in the portal. Other features of the portal include links to SNP array-based copy number levels and mutational patterns, exon and transcript level expressions of the partner genes, and a network-based centrality score for prioritizing functional fusions. Our portal aims to be a broadly applicable and user friendly resource for cancer gene annotation and is publicly available at http://www.tumorfusions.org.
Collapse
Affiliation(s)
- Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Program in Bioinformatics and Biostatistics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Qianghu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Floris Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Samirkumar Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Frederick M Lang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soo Hyun Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siyuan Zheng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
9
|
Wang S, Wu M, Ma S. Integrative Analysis of Cancer Omics Data for Prognosis Modeling. Genes (Basel) 2019; 10:genes10080604. [PMID: 31405076 PMCID: PMC6727084 DOI: 10.3390/genes10080604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/11/2023] Open
Abstract
Prognosis modeling plays an important role in cancer studies. With the development of omics profiling, extensive research has been conducted to search for prognostic markers for various cancer types. However, many of the existing studies share a common limitation by only focusing on a single cancer type and suffering from a lack of sufficient information. With potential molecular similarity across cancer types, one cancer type may contain information useful for the analysis of other types. The integration of multiple cancer types may facilitate information borrowing so as to more comprehensively and more accurately describe prognosis. In this study, we conduct marginal and joint integrative analysis of multiple cancer types, effectively introducing integration in the discovery process. For accommodating high dimensionality and identifying relevant markers, we adopt the advanced penalization technique which has a solid statistical ground. Gene expression data on nine cancer types from The Cancer Genome Atlas (TCGA) are analyzed, leading to biologically sensible findings that are different from the alternatives. Overall, this study provides a novel venue for cancer prognosis modeling by integrating multiple cancer types.
Collapse
Affiliation(s)
- Shuaichao Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Zou J, Lei T, Guo P, Yu J, Xu Q, Luo Y, Ke R, Huang D. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol Med Rep 2018; 19:759-770. [PMID: 30535440 PMCID: PMC6323238 DOI: 10.3892/mmr.2018.9712] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023] Open
Abstract
Senescence is a result of cellular stress and is a potential mechanism for regulating cancer. As a member of the mitogen-activated protein kinase family, ERK1/2 (extracellular signal-regulated protein kinase) has an important role in delivering extracellular signals to the nucleus, and these signals regulate the cell cycle, cell proliferation and cell development. Previous studies demonstrated that ERK1/2 is closely associated with cell aging; however other previous studies suggested that ERK1/2 exerts an opposite effect on aging models and target proteins, even within the same cell model. Recent studies demonstrated that the effect of ERK1/2 on aging is likely associated with its target proteins and regulators, negative feedback loops, phosphorylated ERK1/2 factors and ERK1/2 translocation from the cytoplasm to the nucleus. The present review aims to examine the mechanism of ERK1/2 and discuss its role in cellular outcomes and novel drug development.
Collapse
Affiliation(s)
- Junrong Zou
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingting Lei
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518110, P.R. China
| | - Jason Yu
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Qichao Xu
- Department of Pharmacology, The People's Hospital of Xinyu City, Xinyu, Jiangxi 338025, P.R. China
| | - Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Ke
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Deqiang Huang
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Suen KM, Lin CC, Seiler C, George R, Poncet-Montange G, Biter AB, Ahmed Z, Arold ST, Ladbury JE. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells. Int J Biochem Cell Biol 2018; 94:89-97. [PMID: 29208567 DOI: 10.1016/j.biocel.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 01/14/2023]
Abstract
Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.
Collapse
Affiliation(s)
- K M Suen
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Unit 1954, 1515 Holcombe Blvd, Houston, TX 77030, USA; Graduate School of Biological Sciences, The University of Texas MD Anderson Cancer Center, Unit 1954, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - C C Lin
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - C Seiler
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - R George
- Structural Biology STP, The Francis Crick Institute, Lincolns Inn Fields Laboratory, 44 Lincolns Inn Fields, Holborn, London, WC2A 3LY, UK
| | - G Poncet-Montange
- Orthogon Therapeutics, 960 Turnpike Street, Unit 10, Canton, MA 02021, USA
| | - A B Biter
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, 1102 Bates Avenue, Houston, TX 77030, USA
| | - Z Ahmed
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Unit 1954, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - S T Arold
- Division of Biological and Environmental Sciences and Engineering, CBRC, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - J E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK.
| |
Collapse
|
12
|
Lake D, Corrêa SAL, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 2016; 73:4397-4413. [PMID: 27342992 PMCID: PMC5075022 DOI: 10.1007/s00018-016-2297-8] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry, UK.
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
13
|
Kanodia J, Chai D, Vollmer J, Kim J, Raue A, Finn G, Schoeberl B. Deciphering the mechanism behind Fibroblast Growth Factor (FGF) induced biphasic signal-response profiles. Cell Commun Signal 2014; 12:34. [PMID: 24885272 PMCID: PMC4036111 DOI: 10.1186/1478-811x-12-34] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/28/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Fibroblast Growth Factor (FGF) pathway is driving various aspects of cellular responses in both normal and malignant cells. One interesting characteristic of this pathway is the biphasic nature of the cellular response to some FGF ligands like FGF2. Specifically, it has been shown that phenotypic behaviors controlled by FGF signaling, like migration and growth, reach maximal levels in response to intermediate concentrations, while high levels of FGF2 elicit weak responses. The mechanisms leading to the observed biphasic response remains unexplained. RESULTS A combination of experiments and computational modeling was used to understand the mechanism behind the observed biphasic signaling responses. FGF signaling involves a tertiary surface interaction that we captured with a computational model based on Ordinary Differential Equations (ODEs). It accounts for FGF2 binding to FGF receptors (FGFRs) and heparan sulfate glycosaminoglycans (HSGAGs), followed by receptor-phosphorylation, activation of the FRS2 adapter protein and the Ras-Raf signaling cascade. Quantitative protein assays were used to measure the dynamics of phosphorylated ERK (pERK) in response to a wide range of FGF2 ligand concentrations on a fine-grained time scale for the squamous cell lung cancer cell line H1703. We developed a novel approach combining Particle Swarm Optimization (PSO) and feature-based constraints in the objective function to calibrate the computational model to the experimental data. The model is validated using a series of extracellular and intracellular perturbation experiments. We demonstrate that in silico model predictions are in accordance with the observed in vitro results. CONCLUSIONS Using a combined approach of computational modeling and experiments we found that competition between binding of the ligand FGF2 to HSGAG and FGF receptor leads to the biphasic response. At low to intermediate concentrations of FGF2 there are sufficient free FGF receptors available for the FGF2-HSGAG complex to enable the formation of the trimeric signaling unit. At high ligand concentrations the ligand binding sites of the receptor become saturated and the trimeric signaling unit cannot be formed. This insight into the pathway is an important consideration for the pharmacological inhibition of this pathway.
Collapse
Affiliation(s)
- Jitendra Kanodia
- Merrimack Pharmaceuticals, Suite B7201, 1 Kendall Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Flotillins in receptor tyrosine kinase signaling and cancer. Cells 2014; 3:129-49. [PMID: 24709906 PMCID: PMC3980747 DOI: 10.3390/cells3010129] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/23/2023] Open
Abstract
Flotillins are highly conserved proteins that localize into specific cholesterol rich microdomains in cellular membranes. They have been shown to be associated with, for example, various signaling pathways, cell adhesion, membrane trafficking and axonal growth. Recent findings have revealed that flotillins are frequently overexpressed in various types of human cancers. We here review the suggested functions of flotillins during receptor tyrosine kinase signaling and in cancer. Although flotillins have been implicated as putative cancer therapy targets, we here show that great caution is required since flotillin ablation may result in effects that increase instead of decrease the activity of specific signaling pathways. On the other hand, as flotillin overexpression appears to be related with metastasis formation in certain cancers, we also discuss the implications of these findings for future therapy aspects.
Collapse
|
15
|
Guenther MK, Graab U, Fulda S. Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Lett 2013; 337:200-9. [PMID: 23684925 DOI: 10.1016/j.canlet.2013.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022]
Abstract
Rhabdomyosarcoma (RMS) frequently exhibits concomitant activation of the PI3K/Akt/mTOR and the Ras/MEK/ERK pathways. Therefore, we investigated whether pharmacological cotargeting of these two key survival pathways suppresses RMS growth. Here, we identify a synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in RMS. The dual PI3K/mTOR inhibitor PI103 and the MEK inhibitor UO126 synergize to trigger apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1), whereas either agent alone induces minimal cell death. Similarly, genetic knockdown of p110α and MEK1/2 cooperates to induce apoptosis. Molecular studies reveal that cotreatment with PI103/UO126 cooperates to suppress PI3K/Akt/mTOR and Ras/MEK/ERK signaling, whereas either compound alone is not only less effective to inhibit signaling, but even cross-activates the other pathway. Accordingly, PI103 alone increases ERK phosphorylation, while UO126 enhances Akt phosphorylation, consistent with negative crosstalks between these two signaling pathways. Furthermore, PI103/UO126 cotreatment causes downregulation of several antiapoptotic proteins such as XIAP, Bcl-xL and Mcl-1 as well as increased expression and decreased phosphorylation of the proapoptotic protein BimEL, thus shifting the balance towards apoptosis. Consistently, PI103/UO126 cotreatment cooperates to trigger Bax activation, loss of mitochondrial membrane potential, caspase activation and caspase-dependent apoptosis. This identification of a synthetic lethal interaction between PI3K/mTOR and MEK inhibitors has important implications for the development of novel treatment strategies in RMS.
Collapse
Affiliation(s)
- Monika Katharina Guenther
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
16
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
17
|
Madakashira BP, Kobrinski DA, Hancher AD, Arneman EC, Wagner BD, Wang F, Shin H, Lovicu FJ, Reneker LW, Robinson ML. Frs2α enhances fibroblast growth factor-mediated survival and differentiation in lens development. Development 2012; 139:4601-12. [PMID: 23136392 DOI: 10.1242/dev.081737] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most growth factor receptor tyrosine kinases (RTKs) signal through similar intracellular pathways, but they often have divergent biological effects. Therefore, elucidating the mechanism of channeling the intracellular effect of RTK stimulation to facilitate specific biological responses represents a fundamental biological challenge. Lens epithelial cells express numerous RTKs with the ability to initiate the phosphorylation (activation) of Erk1/2 and PI3-K/Akt signaling. However, only Fgfr stimulation leads to lens fiber cell differentiation in the developing mammalian embryo. Additionally, within the lens, only Fgfrs activate the signal transduction molecule Frs2α. Loss of Frs2α in the lens significantly increases apoptosis and decreases phosphorylation of both Erk1/2 and Akt. Also, Frs2α deficiency decreases the expression of several proteins characteristic of lens fiber cell differentiation, including Prox1, p57(KIP2), aquaporin 0 and β-crystallins. Although not normally expressed in the lens, the RTK TrkC phosphorylates Frs2α in response to binding the ligand NT3. Transgenic lens epithelial cells expressing both TrkC and NT3 exhibit several features characteristic of lens fiber cells. These include elongation, increased Erk1/2 and Akt phosphorylation, and the expression of β-crystallins. All these characteristics of NT3-TrkC transgenic lens epithelial cells depend on Frs2α. Therefore, tyrosine phosphorylation of Frs2α mediates Fgfr-dependent lens cell survival and provides a mechanistic basis for the unique fiber-differentiating capacity of Fgfs on mammalian lens epithelial cells.
Collapse
|
18
|
Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 2012; 40:139-46. [PMID: 22260680 DOI: 10.1042/bst20110609] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues.
Collapse
|
19
|
Amaddii M, Meister M, Banning A, Tomasovic A, Mooz J, Rajalingam K, Tikkanen R. Flotillin-1/reggie-2 protein plays dual role in activation of receptor-tyrosine kinase/mitogen-activated protein kinase signaling. J Biol Chem 2012; 287:7265-78. [PMID: 22232557 DOI: 10.1074/jbc.m111.287599] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.
Collapse
Affiliation(s)
- Monia Amaddii
- From the Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Tomasovic A, Traub S, Tikkanen R. Molecular networks in FGF signaling: flotillin-1 and cbl-associated protein compete for the binding to fibroblast growth factor receptor substrate 2. PLoS One 2012; 7:e29739. [PMID: 22235335 PMCID: PMC3250484 DOI: 10.1371/journal.pone.0029739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/04/2011] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.
Collapse
Affiliation(s)
- Ana Tomasovic
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Traub
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
21
|
Hisaoka K, Tsuchioka M, Yano R, Maeda N, Kajitani N, Morioka N, Nakata Y, Takebayashi M. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J Biol Chem 2011; 286:21118-28. [PMID: 21515689 DOI: 10.1074/jbc.m111.224683] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway, in contrast to that of 5-HT. The current data show that amitriptyline-induced FGFR activation might occur by the MMP-dependent shedding of FGFR ligands, such as FGF-2, thus resulting in GDNF production.
Collapse
Affiliation(s)
- Kazue Hisaoka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, 3-1 Aoyama, Kure 737-0023, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Riluzole-induced glial cell line-derived neurotrophic factor production is regulated through fibroblast growth factor receptor signaling in rat C6 glioma cells. Brain Res 2011; 1384:1-8. [PMID: 21295555 DOI: 10.1016/j.brainres.2011.01.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/26/2023]
Abstract
Riluzole is approved for the treatment of amyotrophic lateral sclerosis (ALS); however, recent accumulating evidence suggests that riluzole is also effective for the treatment of psychiatric disorders, such as mood disorders. Plastic change in the brain induced by neurotrophic factors/growth factors is thought to be involved in the mechanism of antidepressants. This study investigated the mechanism of riluzole-induced glial cell line-derived neurotrophic factor (GDNF) production in rat C6 glioma cells (C6 cells), a model of astrocytes. The study investigated the phosphorylation of cAMP response element binding protein (CREB), an important transcriptional factor of the gdnf gene, and found that riluzole increased CREB phosphorylation in a time-dependent manner, peaking at 40min after treatment. The riluzole-induced CREB phosphorylation was completely blocked by a mitogen-activated protein kinase kinase (MEK) inhibitor (U0126). Riluzole increased extracellular signal-regulated kinase (ERK) activation prior to CREB phosphorylation. These results suggest that riluzole rapidly activates the MEK/ERK/CREB pathway. Furthermore, two types of fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors (SU5402 and PD173074) completely blocked riluzole-induced CREB phosphorylation. In addition, riluzole rapidly phosphorylated FGFR substrate 2α (FRS2α), a major adaptor protein of FGFR. These findings suggest that riluzole induces CREB phosphorylation through FGFR. In addition, PD173074 inhibited riluzole-induced GDNF production. In contrast, l-glutamate and a glutamate transporter inhibitor (t-PDC) did not yield any effects in either CREB phosphorylation or GDNF production. These findings suggest that riluzole rapidly activates a MEK/ERK/CREB pathway through FGFR in a glutamate transporter-independent manner, followed by GDNF expression in C6 cells.
Collapse
|
23
|
Haling JR, Wang F, Ginsberg MH. Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) reprograms growth factor signaling by inhibiting threonine phosphorylation of fibroblast receptor substrate 2alpha. Mol Biol Cell 2009; 21:664-73. [PMID: 20032303 PMCID: PMC2820429 DOI: 10.1091/mbc.e09-08-0659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in expression of PEA-15 contribute to diabetes, tumor invasion, and cellular senescence. PEA-15 increases activation of the ERK MAP kinase pathway; the present study shows that it does so by interfering with ERK1/2 phosphorylation of FRS2, terminator of downstream signaling from FGF receptors. Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway.
Collapse
Affiliation(s)
- Jacob R Haling
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | | | | |
Collapse
|
24
|
Sato T, Gotoh N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment. Expert Opin Ther Targets 2009; 13:689-700. [PMID: 19456272 DOI: 10.1517/14728220902942330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There are two members--FRS2alpha and FRS2beta--in the fibroblast growth factor receptor substrate 2 (FRS2) family of docking/scaffolding adaptor proteins. These proteins function downstream of certain kinds of receptor tyrosine kinases (RTKs) that are important for tumorigenesis. FRS2alpha acts as a control centre for fibroblast growth factor receptor signalling and encourages tumorigenesis, while FRS2beta regulates EGFR signalling negatively, and might have a tumour suppressive role. Therefore, both proteins could be good therapeutic targets for the treatment of cancer. OBJECTIVE To examine the physiological and pathological roles of FRS2, especially in cancer, and describe their potential value as therapeutic targets. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Although it is still difficult to develop small compounds to modify functions of FRS2 adaptor proteins, such compounds may be useful as the next generation of molecular targeting drugs. Combination therapy with RTK-targeting drugs and FRS2-targeting drugs may be useful for cancer treatment in the near future.
Collapse
Affiliation(s)
- Takuya Sato
- The University of Tokyo, Institute of Medical Science, Division of Systems Biomedical Technology, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
25
|
FGF-receptor substrate 2 functions as a molecular sensor integrating external regulatory signals into the FGF pathway. Cell Res 2009; 19:1165-77. [PMID: 19652666 DOI: 10.1038/cr.2009.95] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor substrate 2alpha (FRS2alpha) is the main mediator of signaling in the FGF pathway. Recent studies have shown that mitogen-activated protein kinase (MAPK) phosphorylates serine and threonine residues in FRS2, negatively affecting FGF-induced tyrosine phosphorylation (PY) of FRS2. Several kinds of stimuli can induce serine/threonine phosphorylation (PS/T) of FRS2, indicating that FRS2 may be useful for studying crosstalk between growth factor signaling pathways. Here, we report that FGF-induced PY of FRS2 can be attenuated by EGF co-stimulation in PC12 cells; this inhibitory effect could be completely reversed by U0126, an inhibitor of MEK. We further identified the ERK1/2-binding motif in FRS2 and generated FRS2-3KL, a mutant lacking MAPK binding and PT upon FGF and/or EGF stimulation. Unlike wild-type (WT) FRS2, FGF-induced PY of FRS2-3KL could not be inhibited by EGF co-stimulation, and FRS2-3KL-expressing PC12 cells exhibited more differentiating potential than FRS2-WT-expressing cells in response to FGF treatment. These results suggest that PS/T of FRS2 mediated by the FRS2-MAPK negative regulatory loop may function as a molecular switch integrating negative regulatory signals from other pathways into FGFR-generated signal transduction.
Collapse
|
26
|
Minegishi Y, Iwanari H, Mochizuki Y, Horii T, Hoshino T, Kodama T, Hamakubo T, Gotoh N. Prominent expression of FRS2β protein in neural cells and its association with intracellular vesicles. FEBS Lett 2009; 583:807-14. [DOI: 10.1016/j.febslet.2009.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 12/12/2022]
|
27
|
Yang X, Qiao D, Meyer K, Friedl A. Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res 2009; 69:1668-77. [PMID: 19176400 DOI: 10.1158/0008-5472.can-07-6385] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factors (FGF) play diverse roles in development, wound healing, and angiogenesis. The intracellular signal transduction pathways, which mediate these pleiotropic activities, remain incompletely understood. We show here that the proangiogenic factors FGF2 and FGF8b can activate signal transducers and activators of transcription (STAT) in mouse microvascular endothelial cells (EC). Both FGF2 and FGF8b activate STAT5 and to a lesser extent STAT1, but not STAT3. The FGF2-dependent activation of endothelial STAT5 was confirmed in vivo with the Matrigel plug angiogenesis assay. In tissue samples of human gliomas, a tumor type wherein FGF-induced angiogenesis is important, STAT5 is detected in tumor vessel EC nuclei, consistent with STAT5 activation. By forced expression of constitutively active or dominant-negative mutant STAT5A in mouse brain ECs, we further show that STAT5 activation is both necessary and sufficient for FGF-induced cell migration, invasion, and tube formation, which are key events in vascular endothelial morphogenesis and angiogenesis. In contrast, STAT5 is not required for brain EC mitogenesis. The cytoplasmic tyrosine kinases Src and Janus kinase 2 (Jak2) both seem to be involved in the activation of STAT5, as their inhibition reduces FGF2- and FGF8b-induced STAT5 phosphorylation and EC tube formation. Constitutively active STAT5A partially restores tube formation in the presence of Src or Jak2 inhibitors. These observations show that FGFs use distinct signaling pathways to induce angiogenic phenotypes. Together, our findings implicate the FGF-Jak2/Src-STAT5 cascade as a critical angiogenic FGF signaling pathway.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Pathology, Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
28
|
Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem J 2008; 413:37-49. [PMID: 18373495 DOI: 10.1042/bj20071594] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An understanding of cellular signalling from a systems-based approach has to be robust to assess the effects of point mutations in component proteins. Outcomes of these perturbations should be predictable in terms of downstream response, otherwise a holistic interpretation of biological processes or disease states cannot be obtained. Two single, proximal point mutations (S252W and P253R) in the extracellular region of FGFR2 (fibroblast growth factor receptor 2) prolong growth factor engagement resulting in dramatically different intracellular phenotypes. Following ligand stimulation, the wild-type receptor undergoes rapid endocytosis into lysosomes, whereas (SW)FGFR2 (the S252W FGFR2 point mutation) and (PR)FGFR2 (the P253R FGFR2 point mutation) remain on the cell membrane for an extended period of time, modifying protein recruitment and elevating downstream ERK (extracellular-signal-regulated kinase) phosphorylation. FLIM (fluorescent lifetime imaging microscopy) reveals that direct interaction of FRS2 (FGFR substrate 2) with wild-type receptor occurs primarily at the vesicular membrane, whereas the interaction with the P253R receptor occurs exclusively at the plasma membrane. These observations suggest that the altered FRS2 recruitment by the mutant receptors results in an abnormal cellular signalling mechanism. In the present study these profound intracellular phenotypes resulting from extracellular receptor modification reveal a new level of complexity which will challenge a systems biology interpretation.
Collapse
|
29
|
Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 2008; 99:1319-25. [PMID: 18452557 PMCID: PMC11159094 DOI: 10.1111/j.1349-7006.2008.00840.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 03/27/2008] [Indexed: 12/26/2022] Open
Abstract
The FRS2 family of adaptor/scaffold proteins has two members, FRS2alpha and FRS2beta. Both proteins contain N-terminal myristylation sites for localization on the plasma membrane and a PTB domain for binding to limited species of receptor tyrosine kinases (RTKs), including the FGF receptor, the neurotophin receptor, RET, and ALK. Activation of these RTKs allows FRS2 proteins to become phosphorylated of tyrosine residues and then bind to Grb2 and Shp2, a SH2 domain-containing adaptor and a tyrosine phosphatase, respectively. Subsequently, Shp2 activates a Ras/ERK pathway and Grb2 activates a Ras/ERK, phosphatidyl inositol (PI)-3 kinase and ubiquitination/degradation pathways by binding to SOS, Gab1, and Cbl via the SH3 domains of Grb2. FRS2alpha acts as 'a conning center' in FGF signaling mainly because it induces sustained levels of activation of ERK via Shp2-binding sites and Grb2-binding sites, though the contribution of the former is greater. Indeed, FRS2alpha knockout mice and mice with mutated Shp2-binding sites exhibit a variety of phenotypes due to defects in FGF signaling in vivo. Although FRS2beta binds to the EGF receptor, it does not induce tyrosine phosphorylation on the receptor. Instead, it inhibits EGF signaling, resulting in inhibition of EGF-induced cell proliferation and cell transformation. Based on these findings, the involvement of FRS2 proteins in tumorigenesis should be studied extensively to be validated as candidate biomarkers for the effectiveness of treatments targeting RTKs such as the FGF receptor and EGF receptor.
Collapse
Affiliation(s)
- Noriko Gotoh
- Division of Systems Biomedical Technology, Institute of Medical Science, University of Tokyo.
| |
Collapse
|
30
|
Kang ES, Oh MA, Lee SA, Kim TY, Kim SH, Gotoh N, Kim YN, Lee JW. EGFR phosphorylation-dependent formation of cell-cell contacts by Ras/Erks cascade inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:833-43. [PMID: 17368581 DOI: 10.1016/j.bbamcr.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/10/2007] [Accepted: 02/12/2007] [Indexed: 11/19/2022]
Abstract
Cell-cell contacts play important roles in the homeostasis of normal epithelium and in the steps of metastasis of tumor cells, although signaling mechanisms to regulate cell-cell contacts are unclear. In this study, we observed that phenotype of no cell-cell contacts in rat intestinal epithelial cell subline (RIE1-Sca) correlated with increased Erk1/2 signaling activity, compared to that of parental RIE1 cells growing in colonies. Furthermore, cell-cell contacts between RIE1-Sca cells were reformed by treatment with a specific MEK inhibitor (U0126), with translocation of ZO1 and beta-catenin to cell-cell contacts, without changes of their expression levels. U0126 treatment also increased EGFR phosphorylation in a ligand-independent manner. Pretreatment with EGFR kinase inhibitor abolished U0126 treatment-mediated EGFR phosphorylation, and expression of dominant negative H-Ras N17 allowed EGFR phosphorylation and cell-cell contacts even without U0126 treatment. Furthermore, the expression of a nonphosphorylatable EGFR Y5F mutant abolished U0126-mediated cell-cell contacts. U0126 treatment also caused less efficient wound healing by keeping monolayer integrity intact, compared to control untreated cells. This U0126-mediated reduction in wound healing was further altered either by pretreatment of EGFR kinase inhibitor or expression of H-Ras N17 or EGFR Y5F. Taken together, this study supports a unique mechanism of cell-cell contact formation through MEK/Erks inhibition-mediated EGFR phosphorylation.
Collapse
Affiliation(s)
- Eun-Sil Kang
- Cancer Research Institute, Department of Molecular and Clinical Oncology, College of Medicine, Seoul National University, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Csiszár A. Structural and functional diversity of adaptor proteins involved in tyrosine kinase signalling. Bioessays 2006; 28:465-79. [PMID: 16615089 DOI: 10.1002/bies.20411] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adaptors are proteins of multi-modular structure without enzymatic activity. Their capacity to organise large, temporary protein complexes by linking proteins together in a regulated and selective fashion makes them of outstanding importance in the establishment and maintenance of specificity and efficiency in all known signal transduction pathways. This review focuses on the structural and functional characterisation of adaptors involved in tyrosine kinase (TK) signalling. TK-linked adaptors can be distinguished by their domain composition and binding specificities. However, such structural classifications have proven inadequate as indicators of functional roles. A better way to understand the logic of signalling networks might be to look at functional aspects of adaptor proteins such as signalling specificity, negative versus positive contribution to signal propagation, or their position in the signalling hierarchy. All of these functions are dynamic, suggesting that adaptors have important regulatory roles rather than acting only as stable linkers in signal transduction.
Collapse
|
32
|
Huang L, Watanabe M, Chikamori M, Kido Y, Yamamoto T, Shibuya M, Gotoh N, Tsuchida N. Unique role of SNT-2/FRS2β/FRS3 docking/adaptor protein for negative regulation in EGF receptor tyrosine kinase signaling pathways. Oncogene 2006; 25:6457-66. [PMID: 16702953 DOI: 10.1038/sj.onc.1209656] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The membrane-linked docking protein SNT-2/FRS2beta/FRS3 becomes tyrosine phosphorylated in response to fibroblast growth factors (FGFs) and neurotrophins and serves as a platform for recruitment of multiple signaling proteins, including Grb2 and Shp2, to FGF receptors or neurotrophin receptors. We previously reported that SNT-2 is not tyrosine phosphorylated significantly in response to epidermal growth factor (EGF) but that it inhibits ERK activation via EGF stimulation by forming a complex with ERK2. In the present report, we show that expression of SNT-2 suppressed EGF-induced cell transformation and proliferation, and expression level of SNT-2 is downregulated in cancer. The activities of the major signaling molecules in EGF receptor (EGFR) signal transduction pathways, including autophosphorylation of EGFR, were attenuated in cells expressing SNT-2 but not in cells expressing SNT-2 mutants lacking the ERK2-binding domain. Furthermore, SNT-2 constitutively bound to EGFR through the phosphotyrosine binding (PTB) domain both with and without EGF stimulation. Treatment of cells with MEK inhibitor U0126 partially restored the phosphorylation levels of MEK and EGFR in cells expressing SNT-2. On the basis of these findings, we propose a novel mechanism of negative control of EGFR tyrosine kinase activity with SNT-2 by recruiting ERK2, which is the site of negative-feedback loop from ERK, ultimately leading to inhibition of EGF-induced cell transformation and proliferation.
Collapse
Affiliation(s)
- L Huang
- Department of Molecular Cellular Oncology and Microbiology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Manuvakhova M, Thottassery JV, Hays S, Qu Z, Rentz SS, Westbrook L, Kern FG. Expression of the SNT-1/FRS2 phosphotyrosine binding domain inhibits activation of MAP kinase and PI3-kinase pathways and antiestrogen resistant growth induced by FGF-1 in human breast carcinoma cells. Oncogene 2006; 25:6003-14. [PMID: 16682955 DOI: 10.1038/sj.onc.1209592] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor (FGF) signaling can bypass the requirement for estrogen receptor (ER) activation in the growth of ER-positive (ER+) breast cancer cells. Fibroblast growth factor-1 stimulation leads to phosphorylation of the adaptor protein Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT-1) on C-terminal tyrosine residues, whereas it is constitutively bound through its N-terminal phosphotyrosine-binding domain (PTB) to FGF receptors (FGFRs). By expressing the PTB domain of SNT-1 (SNT-1 PTB) in an inducible manner in an ER+ breast carcinoma line, ML20, we asked whether we could uncouple FGFR activation from its downstream signaling components and abrogate FGF-1-induced antiestrogen-resistant growth. Induction of SNT-1 PTB resulted in a significant decrease of FGF-1-dependent tyrosine phosphorylation of endogenous SNT-1, strong inhibition of complex formation between SNT-1, Gab-1 and Sos-1, and reduced activation of Ras, mitogen-activated protein kinase (MAP kinase), and Akt. SNT-1 PTB also inhibited the phosphorylation of p70S6K on Thr421/Ser424 and Ser411, which may result from the abrogation of MAP kinase activity. Moreover, we also observed a decreased phosphorylation of the MAP kinase-independent site Thr389. This may reflect both inhibition of PI-3 kinase pathways and mammalian target of rapamycin (mTOR)-dependent signaling, as the phosphorylation of Thr389 site was sensitive to treatment with the PI3-K and mTOR inhibitors, LY294002 and rapamycin, respectively. Collectively these results suggest that SNT-1 plays a pivotal role in FGF-dependent activation of the Ras-MAP kinase, PI-3 kinase, and mTOR pathways in these cells. Fibroblast growth factor-1 dependent colony formation of ML20 cells in media containing the pure antiestrogen ICI 182,780 was also markedly inhibited upon induction of SNT-1 PTB, suggesting that blockade of FGFR-SNT-1 interactions might abrogate FGF-mediated antiestrogen resistance in breast cancers.
Collapse
Affiliation(s)
- M Manuvakhova
- Drug Discovery Division, Biochemistry and Molecular Biology Department, Southern Research Institute, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Omi M, Fisher M, Maihle NJ, Dealy CN. Studies on epidermal growth factor receptor signaling in vertebrate limb patterning. Dev Dyn 2005; 233:288-300. [PMID: 15778992 DOI: 10.1002/dvdy.20353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) regulates multiple patterning events in Drosophila limb development, but its role in vertebrate limb morphogenesis has received little attention. The EGFR and several of its ligands are expressed in developing vertebrate limbs in manners consistent with potential patterning roles. To gain insight into functions of EGFR signaling in vertebrate limb development, we expressed a constitutively active EGFR in developing chick limbs in ovo. Expression of activated EGFR causes pre- and postaxial polydactyly, including mirror-image-type digit duplication, likely due to induction of ectopic expression and/or modulation of genes involved in anterior-posterior (AP) patterning such as Sonic hedgehog (Shh), dHand, Patched (Ptc), Gli3, Hoxd13, Hoxd11, bone morphogenetic protein 2 (Bmp2), Gremlin, and FGF4. Activation of EGFR signaling dorsalizes the limb and alters expression of the dorsal-ventral (DV) patterning genes Wnt7a, Lmx, and En1. Ectopic and/or extended FGF8 expressing apical ectodermal ridges (AERs) are also seen. Interdigital regression is inhibited and the digits fail to separate, leading to syndactyly, likely due to antiapoptotic and pro-proliferative effects of activated EGFR signaling on limb mesoderm, and/or attenuation of interdigital Bmp4 expression. These findings suggest potential roles for EGFR signaling in AP and DV patterning, AER formation, and cell survival during limb morphogenesis.
Collapse
Affiliation(s)
- Minoru Omi
- Center for Limb and Skeletal Development, Department of BioStructure and Function, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
35
|
Huang L, Gotoh N, Zhang S, Shibuya M, Yamamoto T, Tsuchida N. SNT-2 interacts with ERK2 and negatively regulates ERK2 signaling in response to EGF stimulation. Biochem Biophys Res Commun 2004; 324:1011-7. [PMID: 15485655 DOI: 10.1016/j.bbrc.2004.09.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Indexed: 11/17/2022]
Abstract
The control of cellular responses with fibroblast growth factors and neurotrophins is mediated through membrane-linked docking proteins, SNT (suc1-binding neurotrophic target)-1/FRS2alpha and SNT-2/FRS2beta. ERK1/2 are members of the mitogen-activated protein kinase family that regulate diverse cellular activities in response to various stimuli. Here, we demonstrate that SNT-2 does not become tyrosine phosphorylated significantly in response to EGF but forms a complex with ERK2 via the region of 186-252 amino acid residues, and the complex formation is enhanced upon EGF stimulation. SNT-2 downregulates ERK2 phosphorylation, suppresses and delays ERK2 nuclear accumulation which occurs following EGF stimulation. In contrast, the mutant SNT-2 which carries deletion of 186-252 amino acids and lacks ERK2 binding does not have these effects. These observations suggest that SNT-2 negatively regulates ERK2 signaling activated via EGF stimulation through direct binding to ERK2.
Collapse
Affiliation(s)
- Lin Huang
- Department of Molecular Cellular Oncology and Microbiology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yujima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|