1
|
Kim HJ, Park JJ, Lee JS. Transformation of sperm structure in Octopus vulgaris: From spermatogenesis to spermatophoric release. PLoS One 2025; 20:e0316519. [PMID: 39841767 PMCID: PMC11753710 DOI: 10.1371/journal.pone.0316519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025] Open
Abstract
The present study describes the differentiation process of male germ cells in Octopus vulgaris, the morphology of sperm in the testis and spermatophore, and the sperm released after the spermatophoric reaction. During spermatogenesis, the male sperm cell gradually elongates from a round shape, with cytoplasm shifting toward the head and the acrosome forming. Additionally, in the spermatid stage, the flagellum develops within the posterior nuclear channel and extends outside the cytoplasm. The sperm is composed of a head and a tail. The head is approximately 17.9 μm long and consists of a highly electron-dense nucleus and a helical acrosome. The tail is divided into three parts: the mid-piece, principal-piece, and end-piece. The mid-piece forms a mitochondrial sheath with 7-8 mitochondria surrounding a "9+2" axoneme. The principal-piece is composed of an axoneme, outer dense fibers, and fibrous sheath, while the end piece lacks outer dense fibers or fibrous sheath. The sperm in the testis and spermatophore, and the sperm released after the spermatophoric reaction have the same structure. However, in the sperm located in the testis and spermatophore, the structure of the acrosome is unclear due to the presence of cytoplasm in the head. In contrast, sperm released after the spermatophoric reaction lack their cytoplasm, revealing the helical acrosome. This unique sperm morphology, adapted for internal fertilization, is thought to be advantageous for fertilization and long-term storage within the female reproductive system.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Jung Jun Park
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
2
|
Cavarocchi E, Drouault M, Ribeiro JC, Simon V, Whitfield M, Touré A. Human asthenozoospermia: Update on genetic causes, patient management, and clinical strategies. Andrology 2025. [PMID: 39748639 DOI: 10.1111/andr.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation. These activation processes rely on the micro-environment of the genital tracts. In particular, during capacitation, a panoply of ion transporters located at the surface of the sperm cells mediate complex ion exchanges, which induce an increase in plasma membrane fluidity, the alkalinization of the cytoplasm and protein phosphorylation cascades that are compulsory for sperm hyperactivation and fertilization potential. As a consequence, both structural and functional defects of the sperm flagellum can affect sperm motility, resulting in asthenozoospermia, which constitutes the most predominant pathological condition associated with human male infertility. OBJECTIVES Herein, we have performed a literature review to provide a comprehensive description of the recent advances in the genetics of human asthenozoospermia. RESULTS AND DISCUSSION We describe the currently knowledge on gene mutations that affect sperm morphology and motility, namely, asthenoteratozoospermia; we also specify the gene mutations that exclusively affect sperm function and activation, resulting in functional asthenozoospermia. We discuss the benefit of this knowledge for patient and couple management, in terms of genetic counselling and diagnosis of male infertility as a sole phenotype or in association with ciliary defects. Last, we discuss the current strategies that have been initiated for the development of potential therapeutical and contraceptive strategies targeting genes that are essential for sperm function and activation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Canada
| | - Maëva Drouault
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Joao C Ribeiro
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Violaine Simon
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| |
Collapse
|
3
|
Cai X, Zhang H, Kong S, Xu W, Zheng J, Wang N, He S, Li S, Shen Y, Wang K, Zhang Z, Cai H, Ma F, Bai S, Zhu F, Xiao F, Wang F. TMEM232 is required for the formation of sperm flagellum and male fertility in mice. Cell Death Dis 2024; 15:806. [PMID: 39516485 PMCID: PMC11549365 DOI: 10.1038/s41419-024-07200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Asthenoteratozoospermia is a major cause of male infertility. Thus far, the identified related genes can explain only a small share of asthenoteratozoospermia cases, suggesting the involvement of other genes. The transmembrane protein TMEM232 is highly expressed in mouse testes. In the present study, to determine its function of TMEM232 in testes, we constructed a Tmem232-null mouse model using CRISPR-Cas9 technology. Tmem232 knockout (KO) male mice was completely infertile, and their sperm were immotile, with morphological defects of the flagellum. Electron microscopy revealed an aberrant midpiece-principal junction and the loss of the fourth outer microtubule doublet in the sperm of Tmem232-/- mice. Sperm cells presented an 8 + 2 conformation and an irregular arrangement of the mitochondrial sheath. Proteomic analysis revealed altered expression of proteins related to flagellar motility, sperm capacitation, the integrity and stability of sperm structure, especially an upregulated expression of multiple ribosome components in TMEM232-deficient spermatids. Additionally, TMEM232 was observed to be involved in autophagy by interacting with autophagy-related proteins, such as ATG14, to regulate ribosome homeostasis during spermiogenesis. These results suggest that TMEM232, as a potential scaffold protein involving in the correct assembly, distribution, and stability maintenance of certain functional complexes by recruiting key intracellular proteins, is essential for the formation of a highly structured flagellum and plays an important role in the autophagic elimination of cytosolic ribosomes to provide energy for sperm motility.
Collapse
Affiliation(s)
- Xinying Cai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Jie Zheng
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Ning Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shuai He
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Shupei Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yiru Shen
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zengyunou Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Haijian Cai
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Fang Ma
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Fuxi Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fengli Xiao
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.
- The Center for Scientific Research of Anhui Medical University, Hefei Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Al-Ali H, Baig A, Alkhanjari RR, Murtaza ZF, Alhajeri MM, Elbahrawi R, Abdukadir A, Bhamidimarri PM, Kashir J, Hamdan H. Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics. Cell Commun Signal 2024; 22:523. [PMID: 39468561 PMCID: PMC11514797 DOI: 10.1186/s12964-024-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Septins are a family of cytokinesis-related proteins involved in regulating cytoskeletal design, cell morphology, and tissue morphogenesis. Apart from cytokinesis, as a fourth component of cytoskeleton, septins aid in forming scaffolds, vesicle sorting and membrane stability. They are also known to be involved in the regulation of intracellular calcium (Ca2+) via the STIM/Orai complex. Infertility affects ~ 15% of couples globally, while male infertility affects ~ 7% of men. Global pregnancy and live birth rates following fertility treatment remain relatively low, while there has been an observable decline in male fertility parameters over the past 60 years. Low fertility treatment success can be attributed to poor embryonic development, poor sperm parameters and fertilisation defects. While studies from the past few years have provided evidence for the role of septins in fertility related processes, the functional role of septins and its related complexes in cellular processes such as oocyte activation, fertilization, and sperm maturation are not completely understood. This review summarizes the available knowledge on the role of septins in spermatogenesis and oocyte activation via Ca2+ regulation, and cytoskeletal dynamics throughout pre-implantation embryonic development. We aim to identify the currently less known mechanisms by which septins regulate these immensely important mechanisms with a view of identifying areas of investigation that would benefit our understanding of cell and reproductive biology, but also provide potential avenues to improve current methods of fertility treatment.
Collapse
Affiliation(s)
- Hana Al-Ali
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Amna Baig
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rayyah R Alkhanjari
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Zoha F Murtaza
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Maitha M Alhajeri
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rawdah Elbahrawi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Azhar Abdukadir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
- Center for Biotechnology, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
5
|
Mao B, Zhang SS, Zhao LT, Huang HR, Ma FD, Shi WJ, Li S, Nie ZY, Xiao HD, Xie XD, Li PQ. The role of SLC26A8 homozygous variants in male infertility and flagellum abnormalities. Asian J Androl 2024; 26:544-546. [PMID: 38978230 PMCID: PMC11449409 DOI: 10.4103/aja202421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/21/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Bin Mao
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- The Reproductive Medicine Center, Lanzhou University First Hospital, Lanzhou 730000, China
| | - Sha-Sha Zhang
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang-Tao Zhao
- School of Second Clinical Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Hui-Rong Huang
- School of Second Clinical Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng-Die Ma
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wen-Jing Shi
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shan Li
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zi-Yan Nie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Han-Dan Xiao
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Dong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pei-Qiang Li
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Zhang Y, Liu G, Huang L, He X, Su Y, Nie X, Mao Z, Xing X. SUN5 interacts with nuclear membrane LaminB1 and cytoskeletal GTPase Septin12 mediating the sperm head-and-tail junction. Mol Hum Reprod 2024; 30:gaae022. [PMID: 38870534 DOI: 10.1093/molehr/gaae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiyi He
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Chen J, Liu M. Centriolar appendages evolve into the inner sheath of mammalian flagella. J Cell Biol 2024; 223:e202401149. [PMID: 38381149 PMCID: PMC10880463 DOI: 10.1083/jcb.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The annulus, a septin-based structure in vertebrate sperm connecting the MP and PP, has unclear migration mechanics. In this issue, Hoque et al. (https://doi.org/10.1083/jcb.202307147) report that the CBY3/CIBAR1 complex ensures its precise positioning by regulating membrane properties.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Hoque M, Li FQ, Weber WD, Chen JJ, Kim EN, Kuo PL, Visconti PE, Takemaru KI. The Cby3/ciBAR1 complex positions the annulus along the sperm flagellum during spermiogenesis. J Cell Biol 2024; 223:e202307147. [PMID: 38197861 PMCID: PMC10783431 DOI: 10.1083/jcb.202307147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Proper compartmentalization of the sperm flagellum is essential for fertility. The annulus is a septin-based ring that demarcates the midpiece (MP) and the principal piece (PP). It is assembled at the flagellar base, migrates caudally, and halts upon arriving at the PP. However, the mechanisms governing annulus positioning remain unknown. We report that a Chibby3 (Cby3)/Cby1-interacting BAR domain-containing 1 (ciBAR1) complex is required for this process. Ablation of either gene in mice results in male fertility defects, caused by kinked sperm flagella with the annulus mispositioned in the PP. Cby3 and ciBAR1 interact and colocalize to the annulus near the curved membrane invagination at the flagellar pocket. In the absence of Cby3, periannular membranes appear to be deformed, allowing the annulus to migrate over the fibrous sheath into the PP. Collectively, our results suggest that the Cby3/ciBAR1 complex regulates local membrane properties to position the annulus at the MP/PP junction.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - William David Weber
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Jie Chen
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Gao Y, Liu L, Tian S, Liu C, Lv M, Wu H, Tang D, Song B, Shen Q, Xu Y, Zhou P, Wei Z, Zhang F, Cao Y, He X. Whole-exome sequencing identifies ADGB as a novel causative gene for male infertility in humans: from motility to fertilization. Andrology 2024. [PMID: 38385883 DOI: 10.1111/andr.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVES In male mice, adgb-knockout has been reported to cause male infertility with spermatogenesis defects involving flagella and acrosome. However, this remains unclear for humans. MATERIALS AND METHODS Sequencing studies were conducted in a research hospital on samples from three unrelated infertile men with severe asthenoteratozoospermia from Han Chinese families. Data were collected through rigorous in silico analysis. Sanger sequencing were performed to identify pathogenic mutations. Sperm cells from patients were characterized using electron microscopy and used to verify the pathogenicity of the genetic factors through functional assays. Intracytoplasmic sperm injections (ICSI) assays were performed in ADGB-affected males. MAIN RESULTS Herein, in a cohort of 105 Han Chinese men with idiopathic asthenoteratozoospermia, we reported the identification of bi-allelic deleterious variants of ADGB in three infertile men from unrelated families using whole-exome sequencing. We found one homozygous frameshift ADGB variant (NM_024694.4: c.2801_2802del:p.K934Rfs*33), one homozygous missense ADGB variant (NM_024694.4: c.C3167T:p.T1056I), and one compound heterozygous ADGB variant (NM_024694.4: c.C3167T:p.T1056I; c.C3197T:p.A1066V). These variants were rare in general population and were predicted to be damaging by multiple bioinformatics tools. Further, the spermatozoa from patients harboring ADGB variants showed multiple acrosome and flagellum malformations under light and electron microscopy. Functional assays revealed the structural defects associated with dysregulation of ADGB and multiple spermatogenesis proteins. Notably, the fertilization success via ICSI treatment in all three patients, as well as the normal expression of PLCζ but CaM deficiency in the spermatozoa, suggesting that ICSI other than in vitro fertilization (IVF) is an optimal treatment for ADGB-deficient patients. DISCUSSION AND CONCLUSION Our findings provide new information for the molecular diagnosis of asthenoteratozoospermia and valuable reference for personalized genetic counselling and clinical treatment for these patients. The underlying risk of IVF failure behind sperm defects was highlighted.
Collapse
Affiliation(s)
- Yang Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Liting Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Shixiong Tian
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Chunyu Liu
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Bing Song
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Feng Zhang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang Z, Fang K, Wan Y, Yin Y, Li M, Xu K, Li T, Cao Y, Lv Y, Lu G, Liu H, Huang T. TTC6-Mediated Stabilization of the Flagellum Annulus Ensures the Rapid and Directed Motion of Sperm. Cells 2023; 12:2091. [PMID: 37626901 PMCID: PMC10453820 DOI: 10.3390/cells12162091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sperm motility and structural integrity are essential for successful fertilization in vivo, and any hindrance of the correct assembly of the axoneme and peri-axonemal structures in the sperm flagellum can lead to fertility problems. While there has been considerable advancement in studying diseases related to the flagellum, the underlying mechanisms that control sperm movement are not yet fully understood. In this study, we reveal that the tetratricopeptide repeat protein 6 (Ttc6) gene, expressed mainly in the testes, plays a crucial role in maintaining male fertility in mice. We further demonstrate that the knockout of Ttc6 in mice results in decreased sperm motility and induces an abnormal circular swimming pattern, consequently leading to male subfertility. Morphological analysis showed an atypical hairpin-like appearance of the spermatozoa, and ultrastructural studies showed unsheathed flagella at the juncture between the midpiece and principal piece. Collectively, these findings suggest that TTC6 plays an essential role in maintaining the stability of the annulus region of the sperm flagellum, thus ensuring the swift and directed motion of sperm.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Kailun Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Ke Xu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- The Model Animal Research Centre, Shandong University, Jinan 250010, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Shandong Key Laboratory of Reproductive Medicine, Shandong First Medical University, Jinan 250012, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.W.); (Y.W.); (Y.Y.); (M.L.); (K.X.); (T.L.); (Y.C.); (G.L.); (H.L.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, China
| |
Collapse
|
11
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
12
|
Wang HY, Shen YR, Tsai YC, Wu SR, Wang CY, Kuo PL. Proper phosphorylation of septin 12 regulates septin 4 and soluble adenylyl cyclase expression to induce sperm capacitation. J Cell Physiol 2023; 238:597-609. [PMID: 36715674 DOI: 10.1002/jcp.30951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Sport Management, and Biotechnology, Chi-Mei Medical Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
15
|
Keppner A, Correia M, Santambrogio S, Koay TW, Maric D, Osterhof C, Winter DV, Clerc A, Stumpe M, Chalmel F, Dewilde S, Odermatt A, Kressler D, Hankeln T, Wenger RH, Hoogewijs D. Androglobin, a chimeric mammalian globin, is required for male fertility. eLife 2022; 11:72374. [PMID: 35700329 PMCID: PMC9249397 DOI: 10.7554/elife.72374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Miguel Correia
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | | | - Teng Wei Koay
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Darko Maric
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Carina Osterhof
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Denise V Winter
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Angèle Clerc
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - David Hoogewijs
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
17
|
Chen H, Li P, Du X, Zhao Y, Wang L, Tian Y, Song X, Shuai L, Bai X, Chen L. Homozygous Loss of Septin12, but not its Haploinsufficiency, Leads to Male Infertility and Fertilization Failure. Front Cell Dev Biol 2022; 10:850052. [PMID: 35547809 PMCID: PMC9082362 DOI: 10.3389/fcell.2022.850052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The SEPTIN12 gene has been associated with male infertility. Male Septin12+/− chimera mice were infertile, supporting the prevailing view that SEPTIN12 haploinsufficiency causes male infertility. In this study, we identified a heterozygous mutation on SEPTIN12, c.72C>A (p.Cys24Ter) in the male partner of a patient couple, who had a previous fertilization failure (FF) after intracytoplasmic sperm injection (ICSI) and became pregnant after ICSI together with artificial oocyte activation (AOA). To investigate the role of SEPTIN12 in FF and oocyte activation, we constructed Septin12 knockout mice. Surprisingly, Septin12−/− male mice, but not Septin12+/− male mice, are infertile, and have reduced sperm counts and abnormal sperm morphology. Importantly, AOA treatment enhances the 2-cell embryo rate of ICSI embryos injected with Septin12−/− sperm, indicating that FF caused by male Septin12 deficiency is overcome by AOA. Mechanistically, loss of PLCζ around the acrosome might be the reason for FF of Septin12−/− sperm. Taken together, our data indicated that homozygous knockout of Septin12, but not Septin12 haploinsufficiency, leads to male infertility and FF.
Collapse
Affiliation(s)
- Haixia Chen
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Li
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Xiaoling Du
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lingling Wang
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| | - Ye Tian
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueru Song
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaohong Bai
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingyi Chen
- Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Institute of Translational Medicine, Tianjin, China
| |
Collapse
|
18
|
Gao Y, Wu H, Xu Y, Shen Q, Xu C, Geng H, Lv M, Tan Q, Li K, Tang D, Song B, Zhou P, Wei Z, He X, Cao Y. Novel biallelic mutations in SLC26A8 cause severe asthenozoospermia in humans owing to midpiece defects: Insights into a putative dominant genetic disease. Hum Mutat 2021; 43:434-443. [PMID: 34923715 DOI: 10.1002/humu.24322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
To investigate the genetic cause of male infertility characterized by severe asthenozoospermia, two unrelated infertile men with severe asthenozoospermia from nonconsanguineous Chinese families were enrolled, and whole exome sequencing were performed to identify the potential pathogenic mutations. Novel compound heterozygous mutations (NK062 III-1: c.290T>C, p.Leu97Pro; c.1664delT, p.Ile555Thrfs*11/NK038 III-1: c.212G>T, p.Arg71Leu; c.290T>C, p.Leu97Pro) in SLC26A8 were identified. All mutations were inherited from their heterozygous parents and are predicted to be disease-causing by sorts intolerant from tolerant, PolyPhen-2, Mutation Taster, and Combined Annotation Dependent Depletion. In silico mutant SLC26A8 models predict that mutations p.Leu97Pro and p.Arg71Leu cause changes in the α-helix, which may result in functional defects in the protein. Notably, heterozygous male carriers of each mutation in both families were able to reproduce naturally, which is inconsistent with previous reports. Ultrastructural analysis revealed severe asthenozoospermia associated with absence of the mitochondrial sheath and annulus in spermatozoa from both the probands, and both structural defects were verified by HSP60 and SEPT4 immunofluorescence analysis. SLC26A8 levels were significantly reduced in spermatozoa from patients harboring biallelic SLC26A8 mutations, and both patients achieved good prognosis following intracytoplasmic sperm injection. Our findings indicate that mutations in SLC26A8 could manifest as a recessive genetic cause of severe asthenozoospermia and male infertility.
Collapse
Affiliation(s)
- Yang Gao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Chuan Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Hao Geng
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Qing Tan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
19
|
Ogata H, Tsukamoto M, Yamashita K, Iwamori T, Takahashi H, Kaneko T, Iwamori N, Inai T, Iida H. Effects of Calyculin a on the Motility and Protein Phosphorylation in Frozen-Thawed Bull Spermatozoa. Zoolog Sci 2021; 38:531-543. [PMID: 34854285 DOI: 10.2108/zs210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
In this study, we examined the effects of calyculin A, a phosphatase inhibitor, on motility, protein phosphorylation, and the distribution of phospho-(Ser/Thr) PKA substrates in frozen-thawed bull spermatozoa that are actually used by most farmers for breeding. The data showed that calyculin A, which has been reported to have a positive effect on the motility of ejaculated fresh spermatozoa, distinctly decreased the motility of frozen-thawed bull spermatozoa even if a cell activator, such as caffeine, was present in the incubation medium and that the suppressive effect of calyculin A was dose-dependent and continued for at least 200 min. Immunoblot analyses revealed that de novo protein phosphorylation was not detected in spermatozoa exposed to caffeine or dbcAMP (a cell-permeable cAMP analog), while the addition of calyculin A to the medium brought about the appearance of several phosphorylated proteins at 50 kDa and 75 kDa, suggesting that 50 kDa and 75 kDa proteins, which were phosphorylated by activation of cAMP-dependent PKA, were not dephosphorylated and were accumulated in spermatozoa due to the suppression of calyculin A-sensitive protein phosphatases. Immunofluorescence microscopy revealed that calyculin A caused, alone or in conjunction with caffeine or dbcAMP, the accumulation of phospho-PKA substrates at the annulus, although caffeine or dbcAMP alone did not. This study suggested that calyculin A decreases the motility of frozen-thawed bull spermatozoa concomitant with the accumulation of phospho-(Ser/Thr) PKA substrates at the annulus of flagella.
Collapse
Affiliation(s)
- Honami Ogata
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mariko Tsukamoto
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenichi Yamashita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga 841-0052, Japan
| | - Tokuko Iwamori
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hideyuki Takahashi
- Kuju Agriculture Research Center, Kyushu University, Oita 878-0201, Japan
| | - Takane Kaneko
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan,
| |
Collapse
|
20
|
Mazaheri Moghaddam M, Mazaheri Moghaddam M, Amini M, Bahramzadeh B, Baghbanzadeh A, Biglari A, Sakhinia E. Evaluation of SEPT2 and SEPT4 transcript contents in spermatozoa from men with asthenozoospermia and teratozoospermia. Health Sci Rep 2021; 4:e436. [PMID: 34849407 PMCID: PMC8611181 DOI: 10.1002/hsr2.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIMS Motility and morphological defects of spermatozoa can cause male infertility. Sperm RNAs are related to sperm quality. They are considered to have clinical values as a biomarker for assessing sperm quality and fertility potential. The annulus, located in the mammalian sperm tail, is required for motility and terminal differentiation of the spermatozoa. SEPT2, 4, 6, 7, and 12 proteins are the main components of the annulus in the sperm tail. The study aimed to evaluate SEPT2 and SEPT4 mRNA contents in the spermatozoa of patients with asthenozoospermia and teratozoospermia. METHODS We evaluated transcript levels of SEPT2 and SEPT4 in the sperm samples of 20 asthenozoospermic, 20 teratozoospermic, and 20 normozoospermic samples using quantitative PCR. RESULTS The SEPT2 transcript level was significantly decreased in the asthenozoospermia samples compared with the normal group (P = .013). However, SEPT4 was not significantly different between these two groups. The transcript levels of SEPT2 and SEPT4 were not statistically different between teratozoospermic and normozoospermic groups. CONCLUSION In conclusion, downregulation of SEPT2 in patients with asthenozoospermia appears to be associated with poor sperm motility.
Collapse
Affiliation(s)
- Madiheh Mazaheri Moghaddam
- Department of Genetics and Molecular MedicineSchool of Medicine, Zanjan University of Medical Sciences (ZUMS)ZanjanIran
| | | | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Bahramzadeh
- Al‐Zahra Hospital, Women's Reproductive Health Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amir Baghbanzadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Biglari
- Department of Genetics and Molecular MedicineSchool of Medicine, Zanjan University of Medical Sciences (ZUMS)ZanjanIran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
21
|
Abstract
Asthenozoospermia (AZS), defined by reduced motility or absent sperm motility, is one of the main causes of male infertility. This condition may be divided into isolated AZS in the absence of other symptoms and syndromic AZS, which is characterized by several concurrent clinical symptoms. Sperm motility depends on fully functional flagellum, energy availability, and the crosstalk of several signaling pathways; therefore, mutations in genes involved in flagellar assembly and motile regulation can cause AZS. Thus, it is crucial to understand the genetic causes and mechanisms contributing to AZS. In this review, we summarize the current knowledge about the particular genes and mechanisms involved in intact flagellum, energy availability, and signaling transduction that could cause human AZS and discuss the respective gene defects known to be responsible for these abnormalities. Additionally, we discuss intracytoplasmic sperm injection outcomes and offspring health where available in these cases.
Collapse
Affiliation(s)
- Chaofeng Tu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; College of Life Science, Hunan Normal University, Changsha, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
22
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
23
|
Gönczi M, Dienes B, Dobrosi N, Fodor J, Balogh N, Oláh T, Csernoch L. Septins, a cytoskeletal protein family, with emerging role in striated muscle. J Muscle Res Cell Motil 2020; 42:251-265. [PMID: 31955380 PMCID: PMC8332580 DOI: 10.1007/s10974-020-09573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Appropriate organization of cytoskeletal components are required for normal distribution and intracellular localization of different ion channels and proteins involved in calcium homeostasis, signal transduction, and contractile function of striated muscle. Proteins of the contractile system are in direct or indirect connection with the extrasarcomeric cytoskeleton. A number of other molecules which have essential role in regulating stretch-, voltage-, and chemical signal transduction from the surface into the cytoplasm or other intracellular compartments are already well characterized. Sarcomere, the basic contractile unit, is comprised of a precisely organized system of thin (actin), and thick (myosin) filaments. Intermediate filaments connect the sarcomeres and other organelles (mitochondria and nucleus), and are responsible for the cellular integrity. Interacting proteins have a very diverse function in coupling of the intracellular assembly components and regulating the normal physiological function. Despite the more and more intense investigations of a new cytoskeletal protein family, the septins, only limited information is available regarding their expression and role in striated, especially in skeletal muscles. In this review we collected basic and specified knowledge regarding this protein group and emphasize the importance of this emerging field in skeletal muscle biology.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421, Homburg, Saar, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.
| |
Collapse
|
24
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
25
|
Rafaee A, Mohseni Meybodi A, Yaghmaei P, Hosseini SH, Sabbaghian M. Single-nucleotide polymorphism c.474G>A in the SEPT12 gene is a predisposing factor in male infertility. Mol Reprod Dev 2019; 87:251-259. [PMID: 31880374 DOI: 10.1002/mrd.23310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/13/2019] [Indexed: 01/12/2023]
Abstract
SEPT12 is a testis-specific gene involved in the terminal differentiation of male germ cells. SEPT12 protein is required for sperm head-tail formation and acts as a fundamental constituent of sperm tail annulus. In this study, we screened genetic variations in exons 5, 6, 7 of the SEPT12 and assessed the annulus status in teratozoospermic, globozoospermic, and patients with immotile short tail sperm. DNA sequencing was performed for 90 teratozoospermic and 30 normozoospermic individuals. Immunocytochemistry, transmission electron microscopy and western blotting were conducted to evaluate annulus status and the expression level of SEPT12 in patients with a distinct exonic variation (c.474G>A), respectively. Five polymorphisms identified within the desired regions of the SEPT12, among them c.474G>A had the potential to induce aberrant splicing results in the expression of a truncated protein. The annulus was detected in most of the spermatozoa from teratozoospermic and normozoospermic men with c.474G>A. In contrast, in the patient with short tail sperm defect carrying c.474G>A, 99% of spermatozoa were devoid of the annulus. Based on our findings there would be no association between exons 5, 6, 7 polymorphisms of the SEPT12 gene and the occurrence of mentioned disease but c.474G>A would be a predisposing factor in male infertility.
Collapse
Affiliation(s)
- Alemeh Rafaee
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Seyedeh Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
27
|
Li WN, Zhu L, Jia MM, Yin SL, Lu GX, Liu G. Missense mutation in DNAJB13 gene correlated with male fertility in asthenozoospermia. Andrology 2019; 8:299-306. [PMID: 31342671 DOI: 10.1111/andr.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The most common type of male infertility is asthenospermia. We cloned DnaJ heat shock protein family member B13 (Dnajb13/DNAJB13), a type II HSP40 family member that is highly expressed in the testis. DNAJB13 plays a crucial role in sperm flagellar function. OBJECTIVES The aim of this study was to investigate whether a correlation exists between DNAJB13 and low sperm motility in infertile men. MATERIALS AND METHODS In the present study, we performed a mutation screening of the DNAJB13 gene in 92 idiopathic asthenozoospermia patients and 200 men with normal fertility. Additionally, we used immunoelectron microscopy, co-immunoprecipitation, mass spectrometric detection, indirect immunofluorescence assay, transmission electron microscopy studies, isobaric tags for relative and absolute quantitation, and multiple reaction monitoring studies to analyze changes in DNAJB13 protein. RESULTS A novel c.106T>C mutation of DNAJB13 was present in nearly 10% (9/92) of idiopathic asthenozoospermia patients and was absent in 200 fertile men. A computer-assisted sperm analyzer and transmission electron microscopy analysis using samples from 9 patients with DNAJB13 mutations demonstrated that most spermatozoa were immotile due to sperm tail defects. Multiple reaction monitoring results indicated that DNAJB13 protein levels were reduced after gene mutation. We achieved a pregnancy rate of 100% in 8 patients with DNAJB13 mutations using ICSI. DISCUSSION AND CONCLUSION The DNAJB13 heterozygous variant may affect fertility. ICSI can help these patients with low fertility to father children.
Collapse
Affiliation(s)
- W N Li
- Hunan Guangxiu Hi-tech Life Technology Co., Ltd., Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - L Zhu
- The Xiangtan Central Hospital, Yuhu District, Xiangtan, China
| | - M M Jia
- Shanxi Provincial Maternal and Child Health Care Hospital, Yanta District, Xi'an, China
| | - S L Yin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - G X Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - G Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| |
Collapse
|
28
|
A blueprint of septin expression in human tissues. Funct Integr Genomics 2019; 19:787-797. [PMID: 31089837 DOI: 10.1007/s10142-019-00690-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
Abstract
Septins are GTP-binding proteins that polymerize to form filaments involved in several important biological processes. In human, 13 distinct septins genes are classified in four groups. Filaments formed by septins are complex and usually involve members of each group in specific positions. Expression data from GTEx database, a publicly available expression database with thousands of samples derived from multiple human tissues, was used to evaluate the expression of septins. The brain is noticeably a hotspot for septin expression where few genes contribute to a large portion of septin transcript pool. Co-expression data between septins suggests two predominant specific complexes in brain tissues and one filament in other tissues. SEPT3 and SEPT5 are two genes highly expressed in the brain and with a strong co-expression in all brain tissues. Additional analysis shows that the expression of these two genes is highly variable between individuals, but significantly dependent on the individual's age. Age-dependent decrease of expression from those two septins involved in synapses reinforces their possible link with cognitive decay and neurodegenerative diseases associated with aging. Analysis of enrichment of Gene Ontology terms from lists of genes consistently co-expressed with septins suggests participation in diverse biological processes, pointing out some novel roles for septins. Interestingly, we observed strong consistency of some of these terms with experimentally described roles of septins. Coordination of septins expression with genes involved in DNA repair and cell cycle control may provide insights for previously described links between septins and cancer.
Collapse
|
29
|
Xia X, Zhou X, Quan Y, Hu Y, Xing F, Li Z, Xu B, Xu C, Zhang A. Germline deletion of Cdyl causes teratozoospermia and progressive infertility in male mice. Cell Death Dis 2019; 10:229. [PMID: 30850578 PMCID: PMC6408431 DOI: 10.1038/s41419-019-1455-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/02/2022]
Abstract
Chromodomain Y (CDY) is one of the candidate genes for male dyszoospermia related to Y chromosome microdeletion (YCM). However, the function of CDY in regulating spermatogenesis has not been completely determined. The mouse Cdyl (CDY-like) gene is the homolog of human CDY. In the present study, we generated a germline conditional knockout (cKO) model of mouse Cdyl. Significantly, the CdylcKO male mice suffered from the defects in spermatogonia maintenance and spermatozoon morphogenesis, demonstrating teratozoospermia and a progressive infertility phenotype in early adulthood. Importantly, patterns of specific histone methylation and acetylation were extensively changed, which disturbed the transcriptome in CdylcKO testis. Our findings indicated that Cdyl is crucial for spermatogenesis and male fertility, which provides novel insights into the function of CDY gene, as well as the pathogenesis of YCM-related reproductive failure.
Collapse
Affiliation(s)
- Xiaoyu Xia
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaowei Zhou
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yanmei Quan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yanqin Hu
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Fengying Xing
- Department of Laboratory Animal Science, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhengzheng Li
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bufang Xu
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Chen Xu
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Aijun Zhang
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine; Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai, 200025, China. .,Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
30
|
Avidor-Reiss T, Fishman EL. It takes two (centrioles) to tango. Reproduction 2019; 157:R33-R51. [PMID: 30496124 PMCID: PMC6494718 DOI: 10.1530/rep-18-0350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Cells that divide during embryo development require precisely two centrioles during interphase and four centrioles during mitosis. This precise number is maintained by allowing each centriole to nucleate only one centriole per cell cycle (i.e. centriole duplication). Yet, how the first cell of the embryo, the zygote, obtains two centrioles has remained a mystery in most mammals and insects. The mystery arose because the female gamete (oocyte) is thought to have no functional centrioles and the male gamete (spermatozoon) is thought to have only one functional centriole, resulting in a zygote with a single centriole. However, recent studies in fruit flies, beetles and mammals, including humans, suggest an alternative explanation: spermatozoa have a typical centriole and an atypical centriole. The sperm typical centriole has a normal structure but distinct protein composition, whereas the sperm atypical centriole is distinct in both. During fertilization, the atypical centriole is released into the zygote, nucleates a new centriole and participates in spindle pole formation. Thus, the spermatozoa's atypical centriole acts as a second centriole in the zygote. Here, we review centriole biology in general and especially in reproduction, we describe the discovery of the spermatozoon atypical centriole, and we provide an updated model for centriole inherence during sexual reproduction. While we focus on humans and other non-rodent mammals, we also provide a broader evolutionary perspective.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| | - Emily L. Fishman
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| |
Collapse
|
31
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
32
|
Shen YR, Wang HY, Kuo YC, Shih SC, Hsu CH, Chen YR, Wu SR, Wang CY, Kuo PL. SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility. PLoS Genet 2017; 13:e1006631. [PMID: 28346465 PMCID: PMC5386304 DOI: 10.1371/journal.pgen.1006631] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/10/2017] [Accepted: 02/10/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are critical for numerous cellular processes through the formation of heteromeric filaments and rings indicating the importance of structural regulators in septin assembly. Several posttranslational modifications (PTMs) mediate the dynamics of septin filaments in yeast. However, little is known about the role of PTMs in regulating mammalian septin assembly, and the in vivo significance of PTMs on mammalian septin assembly and function remains unknown. Here, we showed that SEPT12 was phosphorylated on Ser198 using mass spectrometry, and we generated SEPT12 phosphomimetic knock-in (KI) mice to study its biological significance. The homozygous KI mice displayed poor male fertility due to deformed sperm with defective motility and loss of annulus, a septin-based ring structure. Immunohistochemistry of KI testicular sections suggested that SEPT12 phosphorylation inhibits septin ring assembly during annulus biogenesis. We also observed that SEPT12 was phosphorylated via PKA, and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Collectively, our data indicate that SEPT12 phosphorylation inhibits SEPT12 filament formation, leading to loss of the sperm annulus/septin ring and poor male fertility. Thus, we provide the first in vivo genetic evidence characterizing importance of septin phosphorylation in the assembly, cellular function and physiological significance of septins.
Collapse
Affiliation(s)
- Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yu Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chuan Shih
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 2016; 91:217-232. [PMID: 27779748 DOI: 10.1111/cge.12905] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Infertility, defined by the inability of conceiving a child after 1 year is estimated to concern approximately 50 million couples worldwide. As the male gamete is readily accessible and can be studied by a simple spermogram it is easier to subcategorize male than female infertility. Subjects with a specific sperm phenotype are more likely to have a common origin thus facilitating the search for causal factors. Male infertility is believed to be often multifactorial and caused by both genetic and extrinsic factors, but severe cases of male infertility are likely to have a predominant genetic etiology. Patients presenting with a monomorphic teratozoospermia such as globozoospermia or macrospermia with more than 85% of the spermatozoa presenting this specific abnormality have been analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm anomalies such as severe alteration of sperm motility, in particular multiple morphological anomalies of the sperm flagella (MMAF) or sperm unability to fertilize the oocyte (oocyte activation failure syndrome) has also enable the identification of new infertility genes. Here we review the recent works describing the identification and characterization of gene defects having a direct qualitative effect on sperm morphology or function.
Collapse
Affiliation(s)
- P F Ray
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Biochimie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
| | - A Toure
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | - C Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - C Coutton
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
34
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
35
|
Mutations in DNAJB13, Encoding an HSP40 Family Member, Cause Primary Ciliary Dyskinesia and Male Infertility. Am J Hum Genet 2016; 99:489-500. [PMID: 27486783 DOI: 10.1016/j.ajhg.2016.06.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disease due to functional or ultra-structural defects of motile cilia. Affected individuals display recurrent respiratory-tract infections; most males are infertile as a result of sperm flagellar dysfunction. The great majority of the PCD-associated genes identified so far encode either components of dynein arms (DAs), which are multiprotein-ATPase complexes essential for ciliary motility, or proteins involved in DA assembly. To identify the molecular basis of a PCD phenotype characterized by central complex (CC) defects but normal DA structure, a phenotype found in ∼15% of cases, we performed whole-exome sequencing in a male individual with PCD and unexplained CC defects. This analysis, combined with whole-genome SNP genotyping, identified a homozygous mutation in DNAJB13 (c.833T>G), a gene encoding a HSP40 co-chaperone whose ortholog in the flagellated alga Chlamydomonas localizes to the radial spokes. In vitro studies showed that this missense substitution (p.Met278Arg), which involves a highly conserved residue of several HSP40 family members, leads to protein instability and triggers proteasomal degradation, a result confirmed by the absence of endogenous DNAJB13 in cilia and sperm from this individual. Subsequent DNAJB13 analyses identified another homozygous mutation in a second family; the study of DNAJB13 transcripts obtained from airway cells showed that this mutation (c.68+1G>C) results in a splicing defect consistent with a loss-of-function mutation. Overall, this study, which establishes mutations in DNAJB13 as a cause of PCD, unveils the key role played by DNAJB13 in the proper formation and function of ciliary and flagellar axonemes in humans.
Collapse
|
36
|
Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J. Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 2016; 27:2708-25. [PMID: 27385335 PMCID: PMC5007091 DOI: 10.1091/mbc.e16-05-0337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
A tripartite split-GFP system faithfully reports the order of the subunits in septin hetero-octamers (and thus can serve as a “molecular ruler”), conversely yields little or no false signal even with very highly expressed cytosolic proteins, and detects authentic interactions of other cellular proteins that are bona fide septin-binding proteins. Various methods can provide a readout of the physical interaction between two biomolecules. A recently described tripartite split-GFP system has the potential to report by direct visualization via a fluorescence signal the intimate association of minimally tagged proteins expressed at their endogenous level in their native cellular milieu and can capture transient or weak interactions. Here we document the utility of this tripartite split-GFP system to assess in living cells protein–protein interactions in a dynamic cytoskeletal structure—the septin collar at the yeast bud neck. We show, first, that for septin–septin interactions, this method yields a robust signal whose strength reflects the known spacing between the subunits in septin filaments and thus serves as a “molecular ruler.” Second, the method yields little or no spurious signal even with highly abundant cytosolic proteins readily accessible to the bud neck (including molecular chaperone Hsp82 and glycolytic enzyme Pgk1). Third, using two proteins (Bni5 and Hsl1) that have been shown by other means to bind directly to septins at the bud neck in vivo, we validate that the tripartite split-GFP method yields the same conclusions and further insights about specificity. Finally, we demonstrate the capacity of this approach to uncover additional new information by examining whether three other proteins reported to localize to the bud neck (Nis1, Bud4, and Hof1) are able to interact physically with any of the subunits in the septin collar and, if so, with which ones.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
37
|
Dirami T, Rode B, Wolf JP, Gacon G, Dulioust E, Touré A. Assessment of the frequency of sperm annulus defects in a large cohort of patients presenting asthenozoospermia. Basic Clin Androl 2015; 25:10. [PMID: 26576287 PMCID: PMC4645475 DOI: 10.1186/s12610-015-0026-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The annulus is a ring-shaped structure located beneath the plasma membrane that connects the midpiece and the principal piece of mammalian sperm flagellum. It has been suggested that the annulus acts as a morphological organizer, guiding flagellum assembly during spermiogenesis, and as a diffusion barrier, confining proteins to distinct compartments of the flagellum in mature sperm. Previous studies on small cohorts of patients have attempted to correlate annulus defects with the occurrence of human asthenozoospermia. An absence of the annulus has been shown to be frequently associated with asthenozoospermia. FINDINGS We tried to obtain a more precise estimate of the frequency of annulus defects, by screening a large cohort of 254 men presenting asthenozoospermia (mean progressive motility of 24 %) by the immunodetection of SLC26A8, a transmembrane protein that has been shown to be specifically localized to the annulus. By contrast to previous reports, our results indicate that annulus defects are associated with asthenozoospermia in only 1.2 % of cases. CONCLUSIONS We conclude that defects or an absence of the annulus are not frequently associated with asthenozoospermia. The use of annulus defects as a diagnostic endpoint in patients is therefore not appropriate.
Collapse
Affiliation(s)
- Thassadite Dirami
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France
| | - Baptiste Rode
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France ; Assistance Publique-Hôpitaux de Paris, GH Cochin Broca Hôtel Dieu, Laboratoire d'Histologie Embryologie - Biologie de la Reproduction, Paris, 75014 France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France
| | - Emmanuel Dulioust
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France ; Assistance Publique-Hôpitaux de Paris, GH Cochin Broca Hôtel Dieu, Laboratoire d'Histologie Embryologie - Biologie de la Reproduction, Paris, 75014 France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France ; Department of Genetics, Development and Reproduction, Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, 24 rue du faubourg Saint Jacques, Paris, 75014 France
| |
Collapse
|
38
|
Zi Z, Zhang Z, Li Q, An W, Zeng L, Gao D, Yang Y, Zhu X, Zeng R, Shum WW, Wu J. CCNYL1, but Not CCNY, Cooperates with CDK16 to Regulate Spermatogenesis in Mouse. PLoS Genet 2015; 11:e1005485. [PMID: 26305884 PMCID: PMC4549061 DOI: 10.1371/journal.pgen.1005485] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Cyclin Y-like 1 (Ccnyl1) is a newly-identified member of the cyclin family and is highly similar in protein sequences to Cyclin Y (Ccny). However, the function of Ccnyl1 is poorly characterized in any organism. Here we found that Ccnyl1 was most abundantly expressed in the testis of mice and was about seven times higher than the level of Ccny. Male Ccnyl1-/- mice were infertile, whereas both male and female Ccny-/- mice displayed normal fertility. These results suggest that Ccnyl1, but not Ccny, is indispensable for male fertility. Spermatozoa obtained from Ccnyl1-/- mice displayed significantly impaired motility, and represented a thinned annulus region and/or a bent head. We found that the protein, but not the mRNA, level of cyclin-dependent kinase 16 (CDK16) was decreased in the testis of Ccnyl1-/- mice. Further study demonstrated that CCNYL1 interacted with CDK16 and this interaction mutually increased the stability of these two proteins. Moreover, the interaction increased the kinase activity of CDK16. In addition, we observed an alteration of phosphorylation levels of CDK16 in the presence of CCNYL1. We identified the phosphorylation sites of CDK16 by mass spectrometry and revealed that several phosphorylation modifications on the N-terminal region of CDK16 were indispensable for the CCNYL1 binding and the modulation of CDK16 kinase activity. Our results therefore reveal a previously unrecognized role of CCNYL1 in regulating spermatogenesis through the interaction and modulation of CDK16. Infertility is a global public health issue that affects up to 15% of reproductive-age couples worldwide, and male infertility contributes to about 50% of these cases. However, our knowledge of the genetic causes of infertility is still limited. Nowadays, the knockout or mutant animal models have become valuable tools for identifying dysfunctional genes in the infertile population. Here, we show that CCNYL1 is specifically and highly expressed in the testis and mainly localized on the plasma membrane of spermatocytes and spermatids. Using the Ccnyl1 knockout model, we found that male but not female Ccnyl1-/- mice were infertile, accompanied by sperm defects in both motility and structural integrity. Most cyclins are known to function by forming complexes with CDKs, and our study shows for the first time that the partner for CCNYL1 is CDK16. We found that the interaction between CCNYL1 and CDK16 was indispensable for the stability and activity of CDK16. Phosphorylation modifications on CDK16 were also involved in this process. Our study thus reveals an important role of CCNYL1 in regulating male mouse fertility by cooperating with CDK16 and provides insights into the mechanisms underlying cases of male infertility with similar phenotypes.
Collapse
Affiliation(s)
- Zhenzhen Zi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Zhuzhen Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingrun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei An
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liyong Zeng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dayuan Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Yang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Winnie Waichi Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail: (WWS); (JW)
| | - Jiarui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (WWS); (JW)
| |
Collapse
|
39
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|
40
|
Kuo YC, Shen YR, Chen HI, Lin YH, Wang YY, Chen YR, Wang CY, Kuo PL. SEPT12 orchestrates the formation of mammalian sperm annulus by organizing core octameric complexes with other SEPT proteins. J Cell Sci 2015; 128:923-34. [PMID: 25588830 DOI: 10.1242/jcs.158998] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Male infertility has become a worldwide health problem, but the etiologies of most cases are still unknown. SEPT12, a GTP-binding protein, is involved in male fertility. Two SEPT12 mutations (SEPT12(T89M) and SEPT12(D197N)) have been identified in infertile men who have a defective sperm annulus with a bent tail. The function of SEPT12 in the sperm annulus is still unclear. Here, we found that SEPT12 formed a filamentous structure with SEPT7, SEPT 6, SEPT2 and SEPT4 at the sperm annulus. The SEPT12-based septin core complex was assembled as octameric filaments comprising the SEPT proteins 12-7-6-2-2-6-7-12 or 12-7-6-4-4-6-7-12. In addition, the GTP-binding domain of SEPT12 was crucial for its interaction with SEPT7, and the N- and C-termini of SEPT12 were required for the interaction of SEPT12 with itself to polymerize octamers into filaments. Mutant mice carrying the SEPT12(D197N) mutation, which disrupts SEPT12 filament formation, showed a disorganized sperm annulus, bent tail, reduced motility and loss of the SEPT ring structure at the sperm annulus. These phenotypes were also observed in an infertile man carrying SEPT12(D197N). Taken together, our results demonstrate the molecular architecture of SEPT12 filaments at the sperm annulus, their mechanical support of sperm motility, and their correlation with male infertility.
Collapse
Affiliation(s)
- Yung-Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Hau-Inh Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Basic Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Yih Wang
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pao-Lin Kuo
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
41
|
Dolat L, Hu Q, Spiliotis ET. Septin functions in organ system physiology and pathology. Biol Chem 2014; 395:123-41. [PMID: 24114910 DOI: 10.1515/hsz-2013-0233] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023]
Abstract
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression.
Collapse
|
42
|
Abstract
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.
Collapse
Affiliation(s)
- Jarema Malicki
- MRC Centre for Developmental and Biomedical Genetics; Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
43
|
Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013; 34:494-515. [PMID: 23506885 DOI: 10.1016/j.mam.2012.07.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 02/08/2023]
Abstract
The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl(-), HCO3(-), sulfate, oxalate, I(-), and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10-14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3(-) as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active investigation.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
44
|
Colley SM, Wintle L, Searles R, Russell V, Firman RC, Smith S, DeBoer K, Merriner DJ, Genevieve B, Bentel JM, Stuckey BGA, Phillips MR, Simmons LW, de Kretser DM, O'Bryan MK, Leedman PJ. Loss of the nuclear receptor corepressor SLIRP compromises male fertility. PLoS One 2013; 8:e70700. [PMID: 23976951 PMCID: PMC3744554 DOI: 10.1371/journal.pone.0070700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/20/2013] [Indexed: 11/24/2022] Open
Abstract
Nuclear receptors (NRs) and their coregulators play fundamental roles in initiating and directing gene expression influencing mammalian reproduction, development and metabolism. SRA stem Loop Interacting RNA-binding Protein (SLIRP) is a Steroid receptor RNA Activator (SRA) RNA-binding protein that is a potent repressor of NR activity. SLIRP is present in complexes associated with NR target genes in the nucleus; however, it is also abundant in mitochondria where it affects mitochondrial mRNA transcription and energy turnover. In further characterisation studies, we observed SLIRP protein in the testis where its localization pattern changes from mitochondrial in diploid cells to peri-acrosomal and the tail in mature sperm. To investigate the in vivo effects of SLIRP, we generated a SLIRP knockout (KO) mouse. This animal is viable, but sub-fertile. Specifically, when homozygous KO males are crossed with wild type (WT) females the resultant average litter size is reduced by approximately one third compared with those produced by WT males and females. Further, SLIRP KO mice produced significantly fewer progressively motile sperm than WT animals. Electron microscopy identified disruption of the mid-piece/annulus junction in homozygous KO sperm and altered mitochondrial morphology. In sum, our data implicates SLIRP in regulating male fertility, wherein its loss results in asthenozoospermia associated with compromised sperm structure and mitochondrial morphology.
Collapse
Affiliation(s)
- Shane M. Colley
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | - Larissa Wintle
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | | | - Victoria Russell
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | - Renee C. Firman
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - Stephanie Smith
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Kathleen DeBoer
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Ben Genevieve
- Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Jacqueline M. Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
| | - Bronwyn G. A. Stuckey
- Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, Nedlands, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| | - Michael R. Phillips
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - David M. de Kretser
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Moira K. O'Bryan
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Peter J. Leedman
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
- * E-mail:
| |
Collapse
|
45
|
Abstract
Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
| | - Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
46
|
Escalier D, Touré A. [Morphological defects of sperm flagellum implicated in human male infertility]. Med Sci (Paris) 2012; 28:503-11. [PMID: 22643004 DOI: 10.1051/medsci/2012285015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The assembly of sperm flagella involves specific components and processes that are still poorly defined. Several morphological defects of the different structures that compose the axoneme have been described and associated to human male infertility. These morphological defects can be classified in 15 main categories. Most of them have been associated to consanguinity and/or familial cases, suggesting their genetic origin. However, so far only few genes have been causally involved.
Collapse
|
47
|
The emerging functions of septins in metazoans. EMBO Rep 2011; 12:1118-26. [PMID: 21997296 DOI: 10.1038/embor.2011.193] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023] Open
Abstract
Septins form a subfamily of highly related GTP-binding proteins conserved from eukaryotic protists to mammals. In most cases, septins function in close association with cell membranes and the actin and microtubule cytoskeleton to regulate a wide variety of key cellular processes. Further underscoring their importance, septin abnormalities are associated with several human diseases. Remarkably, septins have the ability to polymerize into assemblies of different sizes in vitro and in vivo. In cells, these structures act in the formation of diffusion barriers and scaffolds that maintain subcellular polarity. Here, we focus on the emerging roles of vertebrate septins in ciliogenesis, neurogenesis, tumorigenesis and host-pathogen interactions, and discuss whether unifying themes underlie the molecular function of septins in health and disease.
Collapse
|
48
|
Wittinghofer A. Highlight on septins. Biol Chem 2011; 392:679-80. [DOI: 10.1515/bc.2011.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
No abstract available
Collapse
|