1
|
Chen L, Chen Y, Yu X, Liang S, Guan Y, Yang J, Guan B. Long-term prevalence of vitamin deficiencies after bariatric surgery: a meta-analysis. Langenbecks Arch Surg 2024; 409:226. [PMID: 39030449 DOI: 10.1007/s00423-024-03422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Bariatric surgery can lead to short-mid-term vitamin deficiencies, but the long-term vitamin deficiencies is unclear. This study aimed to conduct a meta-analysis regarding the long-term prevalence (≥ 5 years) of vitamin deficiencies after bariatric surgery. METHODS We searched the EMBASE, PubMed, and CENTRAL databases for clinical studies until June 2023. Meta-analysis, sensitivity, subgroup, and meta-regression analyses were performed. RESULTS This meta-analysis included 54 articles with follow-up duration ranging from 5 to 17 years. The most prevalent vitamin deficiencies after surgery were vitamin D (35.8%), followed by vitamin E (16.5%), vitamin A (13.4%), vitamin K (9.6%), and vitamin B12 (8.5%). Subgroup analyses showed that the prevalence of vitamin A and folate deficiencies increased with the follow-up time. Roux-en-Y gastric bypass had a higher rate of vitamin B12 deficiency than sleeve gastrectomy and biliopancreatic diversion with duodenal switch (BPD-DS). Studies conducted in Europe had higher vitamin A deficiency (25.8%) than in America (0.8%); Asian studies had more vitamin B12 but less vitamin D deficiency than European and American studies. Meta-regression analysis displayed that publication year, study design, preoperative age, BMI, and quality assessment score were not associated with vitamin A, B12, D, and folate deficiencies rate. CONCLUSION A high prevalence of vitamin deficiencies was found after bariatric surgery in the long-term follow-up, especially vitamin D, E, A, K, and B12. The variation in study regions, surgical procedures, and follow-up time are associated with different postoperative vitamin deficiencies; it is necessary to develop more targeted vitamin supplement programs.
Collapse
Affiliation(s)
- Lu Chen
- School of Health, Dongguan Polytechnic, Dongguan, 523808, China
| | - Yanya Chen
- College of Nursing, Jinan University, Guangzhou, 510632, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuefen Yu
- Comprehensive Special Diagnosis Department, First Affiliated Hospital of Jinan University, Guangzhou, 5106305, China
| | - Sihua Liang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuejie Guan
- Department of General Practice Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Jingge Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Bingsheng Guan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Balboa E, Saud F, Parra-Ruiz C, de la Fuente M, Landskron G, Zanlungo S. Exploring the lutein therapeutic potential in steatotic liver disease: mechanistic insights and future directions. Front Pharmacol 2024; 15:1406784. [PMID: 38978979 PMCID: PMC11228318 DOI: 10.3389/fphar.2024.1406784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.
Collapse
Affiliation(s)
- Elisa Balboa
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Faride Saud
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Glauben Landskron
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Lerner UH. Vitamin A - discovery, metabolism, receptor signaling and effects on bone mass and fracture susceptibility. Front Endocrinol (Lausanne) 2024; 15:1298851. [PMID: 38711977 PMCID: PMC11070503 DOI: 10.3389/fendo.2024.1298851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The first evidence of the existence of vitamin A was the observation 1881 that a substance present in small amounts in milk was necessary for normal development and life. It was not until more than 100 years later that it was understood that vitamin A acts as a hormone through nuclear receptors. Unlike classical hormones, vitamin A cannot be synthesized by the body but needs to be supplied by the food as retinyl esters in animal products and ß-carotene in vegetables and fruits. Globally, vitamin A deficiency is a huge health problem, but in the industrialized world excess of vitamin A has been suggested to be a risk factor for secondary osteoporosis and enhanced susceptibility to fractures. Preclinical studies unequivocally have shown that increased amounts of vitamin A cause decreased cortical bone mass and weaker bones due to enhanced periosteal bone resorption. Initial clinical studies demonstrated a negative association between intake of vitamin A, as well as serum levels of vitamin A, and bone mass and fracture susceptibility. In some studies, these observations have been confirmed, but in other studies no such associations have been observed. One meta-analysis found that both low and high serum levels of vitamin A were associated with increased relative risk of hip fractures. Another meta-analysis also found that low levels of serum vitamin A increased the risk for hip fracture but could not find any association with high serum levels of vitamin A and hip fracture. It is apparent that more clinical studies, including large numbers of incident fractures, are needed to determine which levels of vitamin A that are harmful or beneficial for bone mass and fracture. It is the aim of the present review to describe how vitamin A was discovered and how vitamin A is absorbed, metabolized and is acting as a ligand for nuclear receptors. The effects by vitamin A in preclinical studies are summarized and the clinical investigations studying the effect by vitamin A on bone mass and fracture susceptibility are discussed in detail.
Collapse
Affiliation(s)
- Ulf H. Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Breniere T, Fanciullino AL, Dumont D, Le Bourvellec C, Riva C, Borel P, Landrier JF, Bertin N. Effect of long-term deficit irrigation on tomato and goji berry quality: from fruit composition to in vitro bioaccessibility of carotenoids. FRONTIERS IN PLANT SCIENCE 2024; 15:1339536. [PMID: 38328704 PMCID: PMC10847359 DOI: 10.3389/fpls.2024.1339536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Drought is a persistent challenge for horticulture, affecting various aspects of fruit development and ultimately fruit quality, but the effect on nutritional value has been under-investigated. Here, fruit quality was studied on six tomato genotypes and one goji cultivar under deficit irrigation (DI), from fruit composition to in vitro bioaccessibility of carotenoids. For both species, DI concentrated most health-related metabolites in fresh fruit. On a dry mass basis, DI increased total phenolic and sugar concentration, but had a negative or insignificant impact on fruit ascorbic acid, organic acid, and alcohol-insoluble matter contents. DI also reduced total carotenoids content in tomato (-18.7% on average), especially β-carotene (-32%), but not in goji berry DW (+15.5% and +19.6%, respectively). DI reduced the overall in vitro bioaccessibility of carotenoids to varying degrees depending on the compound and plant species. Consequently, mixed micelles produced by digestion of fruits subjected to DI contained either the same or lesser quantities of carotenoids, even though fresh fruits could contain similar or higher quantities. Thus, DI effects on fruit composition were species and genotype dependent, but an increase in the metabolite concentration did not necessarily translate into greater bioaccessibility potentially due to interactions with the fruit matrix.
Collapse
Affiliation(s)
- Thomas Breniere
- INRAE, PSH UR1115, Avignon, France
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- Avignon Université, UPR4278 LaPEC, Avignon, France
| | - Anne-Laure Fanciullino
- INRAE, PSH UR1115, Avignon, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | | | | | - Patrick Borel
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | | | | |
Collapse
|
5
|
Rezig L, Abdelkrim YZ. Phytosterols: Potential Therapeutic Effects and Challenges in Food Industry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:453-462. [PMID: 38036893 DOI: 10.1007/978-3-031-43883-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increases in serum total and low-density lipoprotein (LDL) cholesterol are known as hypercholesterolemia, and it is a significant risk factor for the emergence of cardiovascular illnesses. Any action strategy for lowering serum cholesterol is supported by lifestyle changes. Phytosterols are organic substances from the triterpene family. Phytosterols can lower serum LDL cholesterol levels because of their structural resemblance to cholesterol. Phytosterols are used to enrich or fortify a broad spectrum of food products. Phytosterols are quickly oxidized, just like cholesterol and unsaturated fatty acids. The utilization of free phytosterols for the manufacture of functional meals is highlighted in this chapter, which also focuses on the therapeutic effects of phytosterols and their technological concerns in the industrial field.
Collapse
Affiliation(s)
- Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Yosser Zina Abdelkrim
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR11IPT04/LR16IPT04)/Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis - University Tunis El Manar, Tunis, Tunisia
- Process Engineering Department, Institut Supérieur des Études Technologiques de Bizerte, Direction Générale des Études Technologiques, Tunis, Tunisia
| |
Collapse
|
6
|
Chen Y, Wu H, Cui X. Influence of dietary bioactive compounds on the bioavailability and excretion of PFOA and its alternative HFPO-TA: Mechanism exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165560. [PMID: 37454837 DOI: 10.1016/j.scitotenv.2023.165560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Oral ingestion is considered an important route of human exposure to perfluorooctanoic acid (PFOA) and its alternative hexafluoropropylene oxide trimer acid (HFPO-TA). Bioactive compounds are widely used as dietary supplements and food additives. However, little is known about the influence of dietary bioactive compounds on the bioavailability of PFOA and HFPO-TA. Here, three dietary bioactive compounds, β-carotene, quercetin and curcumin, were selected to study their influence on the relative bioavailability (RBA) of PFOA and HFPO-TA in soil using a mouse model. Compared to the control group (68.7 ± 6.27 %), quercetin and curcumin at medium and high doses (20 and 100 mg/kg/d) significantly (p < 0.05) decreased PFOA RBA to 55.2 ± 4.85-56.4 ± 4.57 % and 48.3 ± 5.49-48.6 ± 5.44 %, respectively. Mechanism study showed that medium- and high-dose quercetin as well as high-dose curcumin increased urinary excretion of PFOA by 33.6-35.6 % and 32.2 % through upregulating renal expression of multidrug resistance protein 2 (Mrp2) (1.52-1.63 folds) and Mrp4 (1.26-1.53 folds), thereby reducing PFOA accumulation. In PFOA-treated groups, quercetin at medium and high doses dramatically downregulated the hepatic expression of organic anion transport polypeptides (Oatp1a6, Oatp1b2), organic anion transport proteins (Oat1, Oat2), and fatty acid binding proteins (FABP4, FABP12), while curcumin at medium and high doses inhibited the hepatic expression of Oatp1a6, Oat1 and Oat2. These downregulated genes may reduce the transport of PFOA from blood to liver, and in turn decrease the PFOA RBA. However, β-carotene, quercetin and curcumin exhibited no significant effect on RBA and excretion of HFPO-TA (p > 0.05). This indicated the different absorption mechanisms between PFOA and HFPO-TA, and further research is warranted. This study provided a novel perspective for establishing environmentally friendly ways to reduce health hazards from per- and polyfluoroalkyl substances (PFASs).
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Ahmed RO, Ali A, Leeds T, Salem M. RNA-Seq analysis of the pyloric caecum, liver, and muscle reveals molecular mechanisms regulating fillet color in rainbow trout. BMC Genomics 2023; 24:579. [PMID: 37770878 PMCID: PMC10537910 DOI: 10.1186/s12864-023-09688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The characteristic pink-reddish color in the salmonids fillet is an important, appealing quality trait for consumers and producers. The color results from diet supplementation with carotenoids, which accounts for up to 20-30% of the feed cost. Pigment retention in the muscle is a highly variable phenotype. In this study, we aimed to understand the molecular basis for the variation in fillet color when rainbow trout (Oncorhynchus mykiss) fish families were fed an Astaxanthin-supplemented diet. We used RNA-Seq to study the transcriptome profile in the pyloric caecum, liver, and muscle from fish families with pink-reddish fillet coloration (red) versus those with lighter pale coloration (white). RESULTS More DEGs were identified in the muscle (5,148) and liver (3,180) than in the pyloric caecum (272). Genes involved in lipid/carotenoid metabolism and transport, ribosomal activities, mitochondrial functions, and stress homeostasis were uniquely enriched in the muscle and liver. For instance, the two beta carotene genes (BCO1 and BCO2) were significantly under-represented in the muscle of the red fillet group favoring more carotenoid retention. Enriched genes in the pyloric caecum were involved in intestinal absorption and transport of carotenoids and lipids. In addition, the analysis revealed the modulation of several genes with immune functions in the pyloric caecum, liver, and muscle. CONCLUSION The results from this study deepen our understanding of carotenoid dynamics in rainbow trout and can guide us on strategies to improve Astaxanthin retention in the rainbow trout fillet.
Collapse
Affiliation(s)
- Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Tim Leeds
- Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, United States, Agricultural Research Service, Kearneysville, WV, 25430, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
10
|
Research Progress on Lycopene in Swine and Poultry Nutrition: An Update. Animals (Basel) 2023; 13:ani13050883. [PMID: 36899740 PMCID: PMC10000198 DOI: 10.3390/ani13050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has been paid to lycopene as a functional additive for swine and poultry feed. In this review, we systematically summarized the latest research progress on lycopene in swine and poultry nutrition during the past ten years (2013-2022). We primarily focused on the effects of lycopene on productivity, meat and egg quality, antioxidant function, immune function, lipid metabolism, and intestinal physiological functions. The output of this review highlights the crucial foundation of lycopene as a functional feed supplement for animal nutrition.
Collapse
|
11
|
Elefson S, Greiner L. Evaluation of saturated and unsaturated fat with vitamin A or beta-carotene supplementation in nursery pigs. Transl Anim Sci 2023; 7:txad089. [PMID: 37575660 PMCID: PMC10414355 DOI: 10.1093/tas/txad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
One hundred and fifty-two nursery pigs (PIC, Hendersonville, TN) were randomly assigned to mix sex pens and one of six dietary treatments in a 3 × 2 factorial. Diets included no added fat, 3% added choice white grease, or 3% added soy oil with either a supplemented vitamin A (for a total of 11,640 IU vitamin A/kg, Rovimix A 1000, DSM, Parsippany, NJ, US) or beta-carotene (for a total of 8,708 IU vitamin A/kg equivalent, Rovimix β-Carotene 10%, DSM). Pigs were given a 3-d adaptation period upon arrival. Pigs were weighed at the start of the study and at the end of each phase. A blood sample was taken from one pig per pen at the start and end of the study. Tissues were collected from eight pigs at the start of the study and six pigs per treatment at the end of the study. Data were analyzed via the GLIMMIX procedure in SAS 9.4 (SAS Inst., Cary, NC). Pen was the experimental unit, and repeated measures were used for growth performance and blood parameters. There was no fat by supplement interaction (P > 0.05) on body weight (BW), but there was a tendency (P = 0.054) for heavier BWs when soy oil was added to diets. There was no difference (P > 0.05) in average daily feed intake or average daily gain (ADG). There was an improved gain:feed (P = 0.02) when pigs were fed choice white grease over no added fat. There were time differences (P < 0.05) for plasma vitamins A (retinol), D (25 hydroxy vitamin D3), and E (alpha-tocopherol). Vitamin A and D values were higher at the end of the study, whereas vitamin E values were lower at the end of the study. The choice white grease diets had the highest (P < 0.05) plasma vitamins D and E (6.74 ng/mL and 2.87 ppm, respectively). Pigs supplemented with vitamin A had higher (P < 0.05) hepatic vitamin A than pigs supplemented with beta-carotene (19.9 vs. 15.6 ppm, respectively). There were no differences (P < 0.05) between immunoglobulins G and M or mRNA abundance of select genes (retinol binding protein 2, alcohol dehydrogenase class 1, lecithin retinol acyltransferase phosphatidylcholine-retinol O-acyltransferase, and beta-carotene oxygenase 1). In conclusion, fat inclusion level and type, with either vitamin A or beta-carotene supplementation, did not affect the overall nursery pig growth performance. The addition of fat resulted in an increase in ADG and BW. Diets with choice white grease had the highest plasma vitamins D and E, and supplemental vitamin A increased hepatic vitamin A.
Collapse
Affiliation(s)
- Sarah Elefson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Laura Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Pasquariello R, Anipchenko P, Pennarossa G, Crociati M, Zerani M, Brevini TA, Gandolfi F, Maranesi M. Carotenoids in female and male reproduction. PHYTOCHEMISTRY 2022; 204:113459. [PMID: 36183866 DOI: 10.1016/j.phytochem.2022.113459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are among the best-known pigments in nature, confer color to plants and animals, and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot synthesize carotenoids. Carotenoids' source is only alimentary and after their assumption, they are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins and vitamin A, which play an essential role in tissue growth and regulate different aspects of the reproductive functions. However, their mechanisms of action and potential therapeutic effects are still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive functions in species of veterinary interest. In female, carotenoids and their derivatives regulate not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy; Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129, Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Tiziana Al Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| |
Collapse
|
13
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
14
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
15
|
Tunçer E, Bayramoğlu B. Molecular dynamics simulations of duodenal self assembly in the presence of different fatty acids. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Oduro-Obeng H, Apea-Bah FB, Wang K, Fu BX, Beta T. Effect of cooking duration on carotenoid content, digestion and potential absorption efficiencies among refined semolina and whole wheat pasta products. Food Funct 2022; 13:5953-5970. [PMID: 35587106 DOI: 10.1039/d2fo00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bioaccessibility of carotenoids varies among different foods due to factors such as food matrix composition and type or extent of processing. Hence it is important to understand the extent to which these factors influence carotenoid bioaccessibility after the consumption and digestion of food. This study evaluated the carotenoid content, micellization efficiency, digestive stability, antioxidant activity and bioaccessibility of carotenoids as impacted by wheat cultivar and cooking duration among whole wheat flour (WWF) and refined semolina (RS) pasta. WWF and RS pasta were processed from three durum wheat cultivars (AAC Spitfire, CDC Precision, and Transcend) and cooked to al dente (Al), fully cooked (FCT) or overcooked (OC). The study showed that the wheat cultivar and cooking duration were significant functions of bioaccessible lutein in RS samples while only the cultivar influenced the bioaccessibility of zeaxanthin and lutein in WWF samples. In both WWF and RS, the effect of the cultivar on the bioaccessibility of lutein and zeaxanthin was similar and was as follows: Transcend > CDC Precision > AAC Spitfire. Cooking to Al significantly caused an increment in bioaccessible lutein in RS samples regardless of the wheat cultivar. This influence of cooking duration (Al > FCT > OC) was inversely related to the lutein concentrations in undigested pasta (OC = FCT > Al). DPPH scavenging activity among WWF samples was about 2-fold greater or more than that of RS samples regardless of the cultivar or cooking duration before and after digestion. Our data suggest that the effect of wheat cultivar and cooking duration modulates the bioaccessibility and antioxidant activity of RS and WWF pasta products.
Collapse
Affiliation(s)
- Hannah Oduro-Obeng
- University of Manitoba, Department of Food and Human Nutritional Sciences, Winnipeg, MB R3T 2N2, Canada.
| | - Franklin B Apea-Bah
- University of Manitoba, Department of Food and Human Nutritional Sciences, Winnipeg, MB R3T 2N2, Canada.
| | - Kun Wang
- Grain Research Laboratory, Canadian Grain Commission, 303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - Bin Xiao Fu
- Grain Research Laboratory, Canadian Grain Commission, 303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - Trust Beta
- University of Manitoba, Department of Food and Human Nutritional Sciences, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
17
|
Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaer MP, Gundogan K, Lepp HL, de Man AME, Muscogiuri G, Pietka M, Pironi L, Rezzi S, Cuerda C. ESPEN micronutrient guideline. Clin Nutr 2022; 41:1357-1424. [PMID: 35365361 DOI: 10.1016/j.clnu.2022.02.015] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. Recent research has shown the importance of MNs in common pathologies, with significant deficiencies impacting the outcome. OBJECTIVE This guideline aims to provide information for daily clinical nutrition practice regarding assessment of MN status, monitoring, and prescription. It proposes a consensus terminology, since many words are used imprecisely, resulting in confusion. This is particularly true for the words "deficiency", "repletion", "complement", and "supplement". METHODS The expert group attempted to apply the 2015 standard operating procedures (SOP) for ESPEN which focuses on disease. However, this approach could not be applied due to the multiple diseases requiring clinical nutrition resulting in one text for each MN, rather than for diseases. An extensive search of the literature was conducted in the databases Medline, PubMed, Cochrane, Google Scholar, and CINAHL. The search focused on physiological data, historical evidence (published before PubMed release in 1996), and observational and/or randomized trials. For each MN, the main functions, optimal analytical methods, impact of inflammation, potential toxicity, and provision during enteral or parenteral nutrition were addressed. The SOP wording was applied for strength of recommendations. RESULTS There was a limited number of interventional trials, preventing meta-analysis and leading to a low level of evidence. The recommendations underwent a consensus process, which resulted in a percentage of agreement (%): strong consensus required of >90% of votes. Altogether the guideline proposes sets of recommendations for 26 MNs, resulting in 170 single recommendations. Critical MNs were identified with deficiencies being present in numerous acute and chronic diseases. Monitoring and management strategies are proposed. CONCLUSION This guideline should enable addressing suboptimal and deficient status of a bundle of MNs in at-risk diseases. In particular, it offers practical advice on MN provision and monitoring during nutritional support.
Collapse
Affiliation(s)
- Mette M Berger
- Department of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Alan Shenkin
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Karin Amrein
- Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Diabetology, Austria.
| | - Marc Augsburger
- University Centre of Legal Medicine Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland.
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Michael P Casaer
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Intensive Care Medicine, Leuven, Belgium.
| | - Kursat Gundogan
- Division of Intensive Care Medicine, Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey.
| | | | - Angélique M E de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy; United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II, University, Naples, Italy.
| | - Magdalena Pietka
- Pharmacy Department, Stanley Dudrick's Memorial Hospital, Skawina, Poland.
| | - Loris Pironi
- Alma Mater Studiorum - University of Bologna, Department of Medical and Surgical Sciences, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Centre for Chronic Intestinal Failure - Clinical Nutrition and Metabolism Unit, Italy.
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation (SNHf), Epalinges, Switzerland.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
18
|
Li C, Gao Y, Huan Y, Ren P, Zhi J, Wu A, Xu J, Wei Z, Xue C, Tang Q. Colon and gut microbiota greatly affect the absorption and utilization of astaxanthin derived from Haematococcus pluvialis. Food Res Int 2022; 156:111324. [PMID: 35651077 DOI: 10.1016/j.foodres.2022.111324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Astaxanthin has been widely favored as a health food supplement by individuals but its absorption in the body seems not to be satisfactory. In addition, the peak time of astaxanthin derived from Haematococcus pluvialis in the plasma was much longer than other carotenoids found in our previous research. Thus, it is necessary to explore the process that affects the absorption of astaxanthin in order to potentially find a novel approach to improve the absorption in the future. In this study, we confirmed that the colon has an ability to absorb astaxanthin and conducted acute feeding experiments with the treatment of antibiotics in C57BL/6J mice and chronic feeding experiments in germ-free (GF) mice to detect the relationship between the gut microbiota and the absorption of astaxanthin. Our study showed that the decrease of gut microbiota led to a less oral absorbability, which might be related to the decreased expression of SR-BI in the small intestine and the reduction of free form and Z-astaxanthin converted by the gut microbiota found in the vitro culture. The experiments of anaerobic culture also implied that Lactobacillus might play an important role in the absorption of astaxanthin.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jinjin Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Axue Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
19
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|
20
|
Li X, Xin Y, Mo Y, Marozik P, He T, Guo H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020523. [PMID: 35056839 PMCID: PMC8781140 DOI: 10.3390/molecules27020523] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Phytosterols are natural sterols widely found in plants that have a variety of physiological functions, and their role in reducing cholesterol absorption has garnered much attention. Although the bioavailability of phytosterols is only 0.5–2%, they can still promote cholesterol balance in the body. A mechanism of phytosterols for lowering cholesterol has now been proposed. They not only reduce the uptake of cholesterol in the intestinal lumen and affect its transport, but also regulate the metabolism of cholesterol in the liver. In addition, phytosterols can significantly reduce the plasma concentration of total cholesterol, triglycerides, and low-density lipoprotein cholesterol (LDL-C), with a dose-response relationship. Ingestion of 3 g of phytosterols per day can reach the platform period, and this dose can reduce LDL-C by about 10.7%. On the other hand, phytosterols can also activate the liver X receptor α-CPY7A1 mediated bile acids excretion pathway and accelerate the transformation and metabolism of cholesterol. This article reviews the research progress of phytosterols as a molecular regulator of cholesterol and the mechanism of action for this pharmacological effect.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang 524023, China;
| | - Yan Xin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Y.X.); (Y.M.)
| | - Yuqian Mo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Y.X.); (Y.M.)
| | - Pavel Marozik
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Taiping He
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang 524023, China;
- Correspondence: (T.H.); (H.G.); Tel.: +86-759-2388-523 (T.H.); +86-769-2289-6576 (H.G.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang 524023, China;
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Y.X.); (Y.M.)
- Correspondence: (T.H.); (H.G.); Tel.: +86-759-2388-523 (T.H.); +86-769-2289-6576 (H.G.)
| |
Collapse
|
21
|
Li R, Yuan G, Li D, Xu C, Du M, Tan S, Liu Z, He Q, rong L, Li J. Enhancing the bioaccessibility of puerarin through the collaboration of high internal phase Pickering emulsions with β-carotene. Food Funct 2022; 13:2534-2544. [DOI: 10.1039/d1fo03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puerarin is a medicinal and edible flavonoid compound found in the traditional Chinese medicine Pueraria lobata rhizome that has potential biological benefifits, including for the treatment of diabetes and memory...
Collapse
|
22
|
Khan SI, Kumar A, Panda PK, Gupta N. Xerophthalmia with secondary malabsorption syndrome in a young lady. J Family Med Prim Care 2021; 10:3515-3518. [PMID: 34760784 PMCID: PMC8565163 DOI: 10.4103/jfmpc.jfmpc_1020_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/08/2022] Open
Abstract
Delayed recognition and treatment of vitamin A deficiency (VAD) in adults leads to devastating complications. A 24-year-old woman presented with diarrhea, malaise, and shortness of breath. Her medical history included blunt abdominal trauma for which, she had bowel resection surgery and revision surgery within a year of the last surgery at the age of 8 years. She had difficulty in night vision and dry eyes. The best-corrected visual acuity was 6/18 in the BE. On slit-lamp examination in the both eyes (BE), the conjunctiva was thick, dry-looking with wrinkling, and the cornea had diffused superficial punctate keratitis and in the left eye, there was corneal xerosis of 1.5 × 1.5 mm. Tear film breakup time was 0-s in the BE. Schirmer's were 30 mm BE. The rest of the ocular examination was within normal limits. A clinical diagnosis of xerophthalmia secondary to malabsorption was made and treated with systemic vitamin A and intense lubrication. With time, ophthalmic conditions improved, but she died due to poor general wellbeing and repeated hospital-acquired infections. The infrequent presentation of VAD in adults and the unusual etiology in this patient make this case interesting, whereas its potentially devastating consequences highlight the importance of its early recognition, treatment, and regular follow up needed by both patient and physician in the community (general practitioner and ophthalmologists) for the prevention of VAD complications and poor prognosis.
Collapse
Affiliation(s)
- Shama Irfan Khan
- Department of Opthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Arvind Kumar
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Prasan Kumar Panda
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Neeti Gupta
- Department of Opthalmology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| |
Collapse
|
23
|
Shilpa S, Shwetha HJ, Perumal MK, Ambedkar R, Hanumanthappa M, Baskaran V, Lakshminarayana R. Turmeric, red pepper, and black pepper affect carotenoids solubilized micelles properties and bioaccessibility: Capsaicin/piperine improves and curcumin inhibits carotenoids uptake and transport in Caco-2 cells. J Food Sci 2021; 86:4877-4891. [PMID: 34658029 DOI: 10.1111/1750-3841.15926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/17/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the role of spices/spice active principles on physical, biochemical, and molecular targets of bioaccessibility/bioavailability. Carotenoids-rich micellar fraction obtained through simulated digestion of green leafy vegetables (GLV) with individual or two/three combinations were correlated to their influence on bioaccessibility, cellular uptake, and basolateral secretion of carotenoids in Caco-2 cells. Results suggest that carotenoids' bioaccessibility depends on micelles physicochemical properties, which is affected due to the presence of co-treated dietary spices and their composition. Increased bioaccessibility of β-carotene (BC) and lutein (LUT) is found in GLV (spinach) digested with turmeric (TM) than red pepper (RP) and black pepper (BP). In contrast, enhanced cellular uptake and secretion of BC and LUT-rich triglyceride-rich lipoprotein is observed in the presence of RP and BP compared to the control group. In contrast, TM inhibited absorption, while retinol levels significantly reduced in the presence of TM and RP than BP. Control cells have indicated higher cleavage of β-carotene to retinol than the spice-treated group. Besides, spice active principles modulate facilitated transport of carotenoids by scavenger receptor class B type 1 (SR-B1) protein. The effect of spices on carotenoids' bioavailability is validated with active spice principles. Overall, carotenoids' bioavailability (cellular uptake and basolateral secretion) was found in the following order of treatments; piperine > capsaicin > piperine + capsaicin > curcumin + capsaicin + piperine > control > turmeric. These findings suggested that the interaction of specific dietary factors, including spice ingredients at the enterocyte level, could provide greater insight into carotenoid absorption. PRACTICAL APPLICATION: Spices/spice active principles play a role in the digestion process by stimulating digestive enzymes and bile acids secretion. Since carotenoids are lipid soluble and have low bioavailability, spice ingredients' influence on intestinal absorption of carotenoids is considered crucial. Hence, understanding the interaction of co-consumed spices on the absorption process of carotenoids may help to develop functional foods/formulation of nutraceuticals to improve their health benefits.
Collapse
Affiliation(s)
- Shivaprasad Shilpa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| | - Hulikere Jagdish Shwetha
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Rudrappa Ambedkar
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| | | | - Vallikannan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Rangaswamy Lakshminarayana
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, India
| |
Collapse
|
24
|
Liu R, Hannon BA, Robinson KN, Raine LB, Hammond BR, Renzi-Hammond LM, Cohen NJ, Kramer AF, Hillman CH, Teran-Garcia M, Khan NA. Single Nucleotide Polymorphisms in CD36 Are Associated with Macular Pigment among Children. J Nutr 2021; 151:2533-2540. [PMID: 34049394 PMCID: PMC8417927 DOI: 10.1093/jn/nxab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND High macular pigment optical density (MPOD) has been associated with improved eye health and better cognitive functions. Genetic variations have been associated with MPOD in adults. However, these associations between genetic variations and MPOD have not been studied in children. OBJECTIVES This was a secondary analysis of the FK2 (Fitness Improves Thinking in Kids 2) trial (n = 134, 41% male). The aim was to determine differences in MPOD among children (aged 7-9 y) based on genetic variants that either are biologically relevant to lutein (L) and zeaxanthin (Z) accumulation or have been associated with MPOD in adults. METHODS MPOD was measured using customized heterochromatic flicker photometry via a macular densitometer. DXA was used to assess whole-body and visceral adiposity. DNA was extracted from saliva samples and was genotyped for 26 hypothesis-driven single nucleotide polymorphisms and 75 ancestry-informative markers (AIMs). Habitual diet history was obtained via 3-d food logs completed by parents (n = 88). General linear models were used to compare MPOD between different genotypes. Principal component analysis was performed for the AIMs to account for ethnic heterogeneity. RESULTS Children carrying ≥1 minor allele on β-carotene-15,15'-monooxygenase (BCO1)-rs7501331 (T allele) (P = 0.045), cluster of differentiation 36(CD36)-rs1527483 (T allele) (P = 0.038), or CD36-rs3173798 (C allele) (P = 0.001) had significantly lower MPOD (range: 14.1%-26.4%) than those who were homozygotes for the major alleles. MPOD differences based on CD36-rs3173798 genotypes persisted after adjustment for dietary L and Z intake. CONCLUSIONS The findings indicate that genetic variations of CD36 and BCO1 contribute to MPOD in children. The influence of genetic variation in CD36-rs3173798 persisted after adjusting for variation in dietary intake.This trial was registered at clinicaltrials.gov as NCT01619826.
Collapse
Affiliation(s)
- Ruyu Liu
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katie N Robinson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lauren B Raine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Billy R Hammond
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Lisa M Renzi-Hammond
- Department of Psychology, University of Georgia, Athens, GA, USA
- College of Public Health, Institute of Gerontology, University of Georgia, Athens, GA, USA
| | - Neal J Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Nutrition, Learning, and Memory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
25
|
Fatemi SA, Elliott KEC, Bello A, Peebles ED. Effects of the in ovo injection of vitamin D 3 and 25-hydroxyvitamin D 3 in Ross 708 broilers subsequently challenged with coccidiosis. I. performance, meat yield and intestinal lesion incidence 1,2,3. Poult Sci 2021; 100:101382. [PMID: 34403989 PMCID: PMC8368027 DOI: 10.1016/j.psj.2021.101382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
Effects of the in ovo administration of vitamin D3 (D3) and 25-hydroxyvitamin D3 (25OHD3) on broiler intestinal lesion incidence, performance and breast meat yield after a coccidiosis challenge were investigated. On each of 10 incubator tray levels, 10 Ross 708 broiler hatching eggs were randomly assigned to each of the following 5 in ovo injection treatments administrated at 18 d of incubation (doi): 1) noninjected; 2) diluent; diluent containing either 3) 2.4 μg D3 (D3), 4) 2.4 μg 25OHD3 (25OHD3), or 5) 2.4 μg D3 + 2.4 μg 25OHD3 (D3+25OHD3). A 50 μL solution volume was injected into each egg using an Inovoject multi-egg injector. Four male chicks were randomly assigned to each of 80 battery cages in each of 2 rooms. Half of the treatment-replicate cages (8) in each room were challenged with a 20× live coccidial vaccine at 14 d of age (doa). One randomly selected bird from each of 4 treatment-replicate cages was scored for coccidiosis lesions before and 2 wk after challenge. Mean BW, BW gain (BWG), feed intake, and feed conversion ratio were determined for all birds from 0 to 14, 15 to 28, and 29 to 41 doa. Carcass weight, and the absolute and relative (% of carcass weight) weights of carcass parts were determined in 3 birds per treatment-replicate cage at 42 doa. Hatchability of live embryonated injected eggs and hatch residue were not affected by treatment. Across challenge treatment, birds in the 25OHD3 treatment group experienced an increase in BWG between 29 and 41 doa when compared to the D3 or diluent-injected birds. Furthermore, pectoralis major muscle percentage tended (P = 0.059) to increase in birds belonging to the 25OHD3 treatment in comparison to birds in the D3 or diluent-injected treatments. These results indicate that regardless of challenge treatment, 2.4 μg of 25OHD3 may increase the BWG and breast meat yield of birds relative to those that only received an injection of commercial diluent.
Collapse
Affiliation(s)
- S A Fatemi
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA.
| | - K E C Elliott
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - A Bello
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - E D Peebles
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
26
|
Sriwichai W, Collin M, Avallone S. Partial disintegration of vegetable cell wall during cooking improves vitamin K1 (Phylloquinone) bioaccessibility in in vitro digestion. INT J VITAM NUTR RES 2021; 91:439-450. [PMID: 34134516 DOI: 10.1024/0300-9831/a000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vegetables rich in vitamin K consumption could prevent bleeding and maintain bone status. The aims of the present work were to investigate i) the effect of household cooking (i.e., boiling for 5 min at 100 °C in distilled water and stir-frying for 3 min at 180 °C in hot canola oil) on phylloquinone bioaccessibility of five rich phylloquinone leafy vegetables, namely Water spinach (Ipomoea aquatic Forssk), Amaranth (Amaranthus blitum subsp. oleraceus L.), Chinese broccoli (Brassica alboglabra), Pak choi (Brassica rapa L.) and Drumstick (Moringa oleifera Lam.), and ii) the structural changes of these leaves before and after in vitro gastro-intestinal digestion. All the experiments were realized in triplicate for each vegetable. The amounts of phylloquinone in leafy vegetables were noticeable in almost all species and ranged from 94 to 182 μg/100 g DM. Their cell wall polysaccharide contents greatly varied from 4.3 to 8.4 g for 100 g. The content in bioaccessible phylloquinone was low in raw leaves (<25 μg/100 g DM) as well as its bioaccessibility (<15%). Leaf pectin content impaired phylloquinone bioaccessibility using principal component analysis. Boiling and stir-frying significantly improved the bioaccessibility of phylloquinone in leaves by a factor of three to twelve and two to seven respectively (p<0.05). These variations were associated with changes in leaf structure. Palisade and spongy cells appeared ruptured and disorganized after stir-frying. Given the estimated bioaccessibility of phylloquinones, the consumption of 500 g of cooked wet leaves per day would cover phylloquinone needs of an individual adult average body weight.
Collapse
Affiliation(s)
- Wichien Sriwichai
- Faculty of Agro-Industry, Department of Innovation and Technology of Product Development, King Mongkut's University of Technology North Bangkok, Prachinburi, Thailand
| | - Myriam Collin
- Institut de Recherche pour le Développement, UMR DIADE 2, IRD/CIRAD F2F-Palmiers, IRD, Montpellier, France
| | - Sylvie Avallone
- UMR QualiSud, Université de Montpellier, CIRAD, Institut Agro, Université d'Avignon, Université de la Réunion, Montpellier, France
| |
Collapse
|
27
|
Transcriptome Analysis Provides Insights into the Mechanism of Astaxanthin Enrichment in a Mutant of the Ridgetail White Prawn Exopalaemon carinicauda. Genes (Basel) 2021; 12:genes12050618. [PMID: 33919403 PMCID: PMC8143343 DOI: 10.3390/genes12050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.
Collapse
|
28
|
Hernández-Olivas E, Muñoz-Pina S, Andrés A, Heredia A. Impact of Cooking Preparation on In Vitro Digestion of Eggs Simulating Some Gastrointestinal Alterations in Elders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4402-4411. [PMID: 33835800 PMCID: PMC8719756 DOI: 10.1021/acs.jafc.0c07418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 06/02/2023]
Abstract
This study aimed to in vitro assess the impact of the cooking process of eggs (hard-boiled, poached, and omelet) on nutrients digestibility and vitamins A and D3 bioaccessibility under elderly gastrointestinal (GI) conditions. Three elderly digestion models were mimicked: oral (E1); oral and gastric (E2); and oral, gastric, and intestinal (E3), and a healthy adult model (C). Proteolysis extent reduced after digestion of omelet under the E3 model (p < 0.05) (up to 37% of reduction). Thus, hard-boiled and poached were more recommendable to enhance protein digestibility in elders. Altered GI conditions negatively influence neither the absorbable lipid fraction nor the cholesterol stability. Finally, vitamin A bioaccessibility was not affected but D3 slightly decreased with the elderly (E3). Hence, the digestion of nutrients was dependent on the resulting matrix, poached being the greater supplier of protein and lipid end-digestion products. Poached and omelet, however, offer a high net supply of bioaccessible vitamin D3 for elders.
Collapse
|
29
|
Böhm V, Lietz G, Olmedilla-Alonso B, Phelan D, Reboul E, Bánati D, Borel P, Corte-Real J, de Lera AR, Desmarchelier C, Dulinska-Litewka J, Landrier JF, Milisav I, Nolan J, Porrini M, Riso P, Roob JM, Valanou E, Wawrzyniak A, Winklhofer-Roob BM, Rühl R, Bohn T. From carotenoid intake to carotenoid blood and tissue concentrations - implications for dietary intake recommendations. Nutr Rev 2021; 79:544-573. [PMID: 32766681 PMCID: PMC8025354 DOI: 10.1093/nutrit/nuaa008] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is uncertainty regarding carotenoid intake recommendations, because positive and negative health effects have been found or are correlated with carotenoid intake and tissue levels (including blood, adipose tissue, and the macula), depending on the type of study (epidemiological vs intervention), the dose (physiological vs supraphysiological) and the matrix (foods vs supplements, isolated or used in combination). All these factors, combined with interindividual response variations (eg, depending on age, sex, disease state, genetic makeup), make the relationship between carotenoid intake and their blood/tissue concentrations often unclear and highly variable. Although blood total carotenoid concentrations <1000 nmol/L have been related to increased chronic disease risk, no dietary reference intakes (DRIs) exist. Although high total plasma/serum carotenoid concentrations of up to 7500 nmol/L are achievable after supplementation, a plateauing effect for higher doses and prolonged intake is apparent. In this review and position paper, the current knowledge on carotenoids in serum/plasma and tissues and their relationship to dietary intake and health status is summarized with the aim of proposing suggestions for a "normal," safe, and desirable range of concentrations that presumably are beneficial for health. Existing recommendations are likewise evaluated and practical dietary suggestions are included.
Collapse
Affiliation(s)
- Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Lietz
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Begoña Olmedilla-Alonso
- Institute of Food Science, Technology and Nutrition, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - David Phelan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, Waterford, Ireland
| | | | | | - Patrick Borel
- C2VN, INRAE, INSERM, Aix Marseille Univ, Marseille, France
| | - Joana Corte-Real
- Population Health Department, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Centro De Investigaciones Biomédicas and Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Vigo, Spain
| | | | | | | | - Irina Milisav
- University of Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Health Sciences, Ljubljana, Slovenia and with University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - John Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, Waterford, Ireland
| | - Marisa Porrini
- Universitàdegli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Patrizia Riso
- Universitàdegli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Johannes M Roob
- Research Unit Chronic Inflammation in Nephrology, Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | | | - Agata Wawrzyniak
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary and with CISCAREX UG, Berlin, Germany
| | - Torsten Bohn
- Population Health Department, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
30
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Zhao YJ, Xiao J, Huangyang MD, Zhao R, Wang Q, Zhang Y, Li JT. Transcriptome sequencing and analysis for the pigmentation of scale and skin in common carp (Cyprinus carpio). Mol Biol Rep 2021; 48:2399-2410. [PMID: 33742327 DOI: 10.1007/s11033-021-06273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Teleost scale not only provides a protective layer resisting penetration and pathogens but also participate in coloration. It is interesting to study the mechanism of teleost scale formation. Furthermore, whether there existed consensus genes between scale coloration and skin coloration has not been examined yet. METHODS AND RESULTS We analyzed the transcriptome profiles of red scale, white scale, red skin, and white skin of common carp (Cyprinus carpio). Pair-wise comparison identified 3391 differentially expressed genes (DEGs) between scale and skin, respectively. The 1765 up-regulated genes (UEGs) in scale, as the down-regulated genes in skin, preferred mineralization and other scale development-related processes. The 1626 skin UEGs were enriched in the morphogenesis of skin and appendages. We also identified 195 UEGs in white scale and 223 UEGs in red scale. The white scale UEGs primarily participated in regulation of growth and cell migration. The UEGs in red scale preferred pigment cell differentiation and retinoid metabolic process. A total of 22 DEGs had consensus expression patterns in skin and scale of the same coloration. The expression levels of these DEGs clearly grouped skin and scale of the same coloration together with principle component analysis and correlation analysis. Eleven consensus DEGs were homologous to the orthologs of Poropuntius huangchuchieni, 82% of which were under strong purifying selection. Eight processes including lipid storage and lipid catabolism were shared in both scale pigmentation and skin pigmentation. CONCLUSIONS We identified consensus DEGs and biological processes in scale and skin pigmentation. Our transcriptome analysis will contribute to further elucidation of mechanisms of teleost scale formation and coloration.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jun Xiao
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Mei-Di Huangyang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
32
|
Chaijan M, Srirattanachot K, Nisoa M, Cheong L, Panpipat W. Practical use of
β
‐carotene‐loaded nanoemulsion as a functional colorant in sausages made from goat meat surimi‐like material. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| | - Kesinee Srirattanachot
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| | - Mudtorlep Nisoa
- School of Science Walailak University Nakhon Si Thammarat80161Thailand
| | - Ling‐Zhi Cheong
- Department of Food Science and Engineering School of Marine Science Ningbo University Ningbo315211China
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| |
Collapse
|
33
|
López-Gámez G, Elez-Martínez P, Quiles-Chuliá A, Martín-Belloso O, Hernando-Hernando I, Soliva-Fortuny R. Effect of pulsed electric fields on carotenoid and phenolic bioaccessibility and their relationship with carrot structure. Food Funct 2021; 12:2772-2783. [PMID: 33687388 DOI: 10.1039/d0fo03035j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenolic compounds (PC) and carotenoids from carrots are bound to dietary fibre or stored in vacuoles and chromoplasts, respectively. To exert their antioxidant effects these compounds must be released during digestion, which is hindered by such barriers. Pulsed electric fields (PEF) modify cell membrane permeability, thus enhancing their bioaccessibility. The effect of PEF on the carrot carotenoid and PC content and bioaccessibility was investigated. With this purpose, PEF-treated carrots (5 pulses of 3.5 kV cm-1) were stored for 24 h at 4 °C and microstructure was evaluated before subjecting them to in vitro digestion. PEF did not affect carotenoid content, whereas their bioaccessibility improved (11.9%). Likewise, PEF increased the content of some PC, e.g. coumaric acid (163.2%), probably caused by their better extractability. Conversely, caffeic acid derivatives decreased, which may be associated to greater contact with oxidative enzymes. Total PC bioaccessibility (20.8%) and some derivatives increased, e.g. caffeoylshikimic (68.9%), whereas some decreased (e.g. ferulic acid). Structural changes caused by PEF may improve bioaccessibility of carotenoids and PC by favouring their release and easy access to digestive enzymes. However, other antioxidants may be further degraded or entrapped during digestion. Therefore, PEF is an effective technology for obtaining carrots with enhanced carotenoids and phenolic bioaccessibility.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Department of Food Technology, Agrotecnio Centre, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Banerjee M, Chawla R, Kumar A. Antioxidant supplements in age-related macular degeneration: are they actually beneficial? Ther Adv Ophthalmol 2021; 13:25158414211030418. [PMID: 34471798 PMCID: PMC8404659 DOI: 10.1177/25158414211030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related macular degeneration (ARMD) is one of the prominent causes of central visual loss in the older age group in the urbanized, industrialized world. In recent years, many epidemiological studies and clinical trials have evaluated the role of antioxidants and micronutrients to prevent the progression of ARMD. In this article, we review some of these major studies. In addition, we review the absorption and bioavailability and possible undesirable effects of these nutrients after ingestion. The role of genotypes and inappropriate use of these supplements are also discussed. From all the above evidence, we conclude that it may not be prudent to prescribe these formulations without a proper assessment of the individual's health and dietary status. The effectiveness of all the components in antioxidant formulations is controversial. Thus, these supplements should not be prescribed just for the purpose of providing patients some kind of therapy, which may give a false sense of mental satisfaction.
Collapse
Affiliation(s)
- Mousumi Banerjee
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
36
|
Hernández-Olivas E, Muñoz-Pina S, Sánchez-García J, Andrés A, Heredia A. Understanding the role of food matrix on the digestibility of dairy products under elderly gastrointestinal conditions. Food Res Int 2020; 137:109454. [DOI: 10.1016/j.foodres.2020.109454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
|
37
|
Lee HJ, Shin C, Chun YS, Kim J, Jung H, Choung J, Shim SM. Physicochemical properties and bioavailability of naturally formulated fat-soluble vitamins extracted from agricultural products for complementary use for natural vitamin supplements. Food Sci Nutr 2020; 8:5660-5672. [PMID: 33133568 PMCID: PMC7590293 DOI: 10.1002/fsn3.1804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of the current study was to evaluate the physicochemical properties, digestive stability, storage stability, and intestinal absorption of formulated natural vitamins (FNV) by mixing fat-soluble vitamins extracted from agricultural products with their synthetic vitamin (SYNV) counterparts using a 6 to 4 ratio (w:w, dry weight). The FNV A, D, E, and K were evenly dispersed without crystal growth in the dispersion specifications for the functional tablet foods. The FNV A, D, E, and K had 89, 73, 65, and 36% of the digestive recovery, respectively, which was comparable to that of the SYNV. FNV D, E, and K were retained over 77%, but rapidly decreased to 15% after 6 months during accelerated storage at 25 30 and 35℃. The comparable radical scavenging capacity was found between the FNV and the SYNV. Results from the current study suggest that fat-soluble vitamins extracted from agricultural products could be reasonable complementary use for natural vitamin supplements.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Food Science and BiotechnologySejong UniversitySeoulRepublic of Korea
| | - Changho Shin
- Department of Sports ScienceSungkyunkwan UniversityGyeonggi‐doRepublic of Korea
| | | | - Jongkyu Kim
- Aribio Co., Ltd.Gyeonggi‐doRepublic of Korea
| | - Hansang Jung
- Department of Physical EducationKangnam UniversityGyeonggi‐doRepublic of Korea
| | | | - Soon Mi Shim
- Department of Food Science and BiotechnologySejong UniversitySeoulRepublic of Korea
| |
Collapse
|
38
|
Hammaz F, Charles F, Kopec RE, Halimi C, Fgaier S, Aarrouf J, Urban L, Borel P. Temperature and storage time increase provitamin A carotenoid concentrations and bioaccessibility in post-harvest carrots. Food Chem 2020; 338:128004. [PMID: 32950868 DOI: 10.1016/j.foodchem.2020.128004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 01/12/2023]
Abstract
The aim was to enhance provitamin A carotenoid (proVA CAR) concentrations and bioaccessibility in carrots by manipulating post-harvest factors. To that end, we assessed the effects of Ultraviolet-C light, pulsed light, storage temperature, and storage duration. We also measured CAR bioaccessibility by using an in vitro model. Pulsed light, but not Ultraviolet-C, treatment increased proVA CAR concentrations in the cortex tissue (p < 0.05). Longer storage times and higher temperatures also increased concentrations (p < 0.05). The maximal increase induced by pulsed light was obtained after treatment with 20 kJ/m2 and 3-days of storage at 20 °C. However, the positive effect induced by pulsed light decreased considerably over the next seven days. ProVA CAR in carrots with the highest concentrations also proved to be more bioaccessible (p < 0.05). Thus, proVA CAR concentrations in stored carrots can be increased significantly through storage times and temperatures. Pulsed light can also significantly increase proVA CAR concentrations, but only temporarily.
Collapse
Affiliation(s)
- Faiza Hammaz
- C2VN, INRAE, INSERM, Aix Marseille Univ, Marseille, France
| | - Florence Charles
- Qualisud, Avignon Université, CIRAD, Université de Montpellier, Montpellier Sup'Agro, Université de la Réunion, F-84000 Avignon, France
| | - Rachel E Kopec
- Division of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; Foods for Health Discovery Theme, The Ohio State University, USA
| | | | - Salah Fgaier
- Qualisud, Avignon Université, CIRAD, Université de Montpellier, Montpellier Sup'Agro, Université de la Réunion, F-84000 Avignon, France
| | - Jawad Aarrouf
- Qualisud, Avignon Université, CIRAD, Université de Montpellier, Montpellier Sup'Agro, Université de la Réunion, F-84000 Avignon, France
| | - Laurent Urban
- Qualisud, Avignon Université, CIRAD, Université de Montpellier, Montpellier Sup'Agro, Université de la Réunion, F-84000 Avignon, France
| | - Patrick Borel
- C2VN, INRAE, INSERM, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
39
|
Goupy P, Genot C, Hammaz F, Halimi C, Caris‐Veyrat C, Borel P. Mechanisms Governing the Transfer of Pure and Plant Matrix Carotenoids Toward Emulsified Triglycerides. Mol Nutr Food Res 2020; 64:e1900911. [DOI: 10.1002/mnfr.201900911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Pascale Goupy
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale » INRAEAvignon Université F‐84000 Avignon France
| | - Claude Genot
- UR1268 BIA « Biopolymères Interactions Assemblages »INRAE F‐44316 Nantes France
| | - Faiza Hammaz
- C2VNINRAEINSERMAix Marseille Univ F‐13005 Marseille France
| | | | - Catherine Caris‐Veyrat
- UMR408 SQPOV « Sécurité et Qualité des Produits d'Origine Végétale » INRAEAvignon Université F‐84000 Avignon France
| | - Patrick Borel
- C2VNINRAEINSERMAix Marseille Univ F‐13005 Marseille France
| |
Collapse
|
40
|
Ullah H, Khan A, Rehman NU, Halim SA, Khan H, Khan I, Csuk R, Al-Rawahi A, Al-Hatmi S, Al-Harrasi A. Lophenol and lathosterol from resin of Commiphora kua possess hepatoprotective effects in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112558. [PMID: 31926985 DOI: 10.1016/j.jep.2020.112558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Drug induced liver damage remains a prevalent concern in healthcare and may reduce the effectiveness of therapy by compromising therapeutic regimens. Many Commiphora species are known for their medicinal properties, and some of them are used traditionally for hepatoprotective effect. In the course of our drugs discovery from natural sources, phytosterols (lophenol (Lop) and lathosterol (Lat)), isolated from Commiphora kua were studied to evaluate their hepatoprotective effects in acetaminophen (APAP) induced hepatotoxicity in mice. AIMS AND OBJECTIVE To evaluate the hepatoprotective effects of phytosterols isolated from C. kua using in vivo experimental model. MATERIALS AND METHODS Mice of either sex were divided into 7 groups: Vehicle, silymarin (SLY), acetaminophen (APAP), Lop 25, Lop 50, Lat 25, Lat 50 (n = 5). Vehicle group received only vehicle (0.1% DMSO solution) for 7 days, APAP group received single dose of acetaminophen on day 7 and SLY group received silymarin for 7 days. Lop 25 and Lop 50 received low and high doses of Lop (25 μg/kg BW and 50 μg/kg BW), respectively, for 7 days, while Lat 25 and Lat 50 received low and high doses of Lat (25 μg/kg BW and 50 μg/kg BW) for 7 days. On day 7, all animals except Vehicle group kept fasted for 18 h and received APAP i. p. 400 mg/kg BW. After 20 h of APAP administration, the animals anesthetized with light chloroform and scarified by cervical decapitation. The blood serum and liver tissue samples were collected for biochemical and histopathological analysis. Liver function tests (LFTs) including lactate deydrogenase (LDH), alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and direct bilirubin) were used as biochemical parameters. While catalase (CAT), superoxide dismutase (SOD) and reduced glutathione (GSH) were taken as anti-oxidant enzymes. RESULTS Significant increase in levels of ALT, AST, ALP, LDH and direct bilirubin, and significant decrease in concentration of anti-oxidant enzymes (SOD, CAT and GSH) was observed in APAP-treated group. Similarly, histological slides showed obvious signs of damage to liver cells, reflecting acetaminophen induced hepatotoxicity. Treatment of test animals with phytosterols resulted in significant recovery of LFTs profile and concentration of anti-oxidant enzymes. Similarly, significant improvement of liver tissues was noted in histological analysis. CONCLUSIONS Both phytosterols possessed hepatoprotective potential and should be further evaluated for acute toxicity studies and pharmacokinetics/pharmacodynamics profile.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Imran Khan
- Department of Pharmacy, University of Swabi, Swabi, 23430, Pakistan
| | - Rene Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saif Al-Hatmi
- Oman Botanic Garden, Diwan of Royal Court, P.O. Box 808, PC 122, Muscat, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| |
Collapse
|
41
|
Denissen KFM, Boonen A, Nielen JTH, Feitsma AL, van den Heuvel EGHM, Emans PJ, Stehouwer CDA, Sep SJS, van Dongen MCJM, Dagnelie PC, Eussen SJPM. Consumption of dairy products in relation to the presence of clinical knee osteoarthritis: The Maastricht Study. Eur J Nutr 2019; 58:2693-2704. [PMID: 30242468 PMCID: PMC6768906 DOI: 10.1007/s00394-018-1818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/11/2018] [Indexed: 12/05/2022]
Abstract
PURPOSE Observational studies showed inverse associations between milk consumption and knee osteoarthritis (knee OA). There is lack of information on the role of specific dairy product categories. We explored the association between dairy consumption and the presence of knee osteoarthritis in 3010 individuals aged 40-75 years participating in The Maastricht Study. METHODS The presence of knee OA was defined according to a slightly modified version of the American College of Rheumatology (ACR) clinical classification criteria. Data on dairy consumption were appraised by a 253-item FFQ covering 47 dairy products with categorization on fat content, fermentation or dairy type. Multivariable logistic regression analyses were performed to estimate odd ratios (ORs) and 95% confidence intervals (95%CI), while correcting for relevant factors. RESULTS 427 (14%) participants were classified as having knee OA. Significant inverse associations were observed between the presence of knee OA and intake of full-fat dairy and Dutch, primarily semi-hard, cheese, with OR for the highest compared to the lowest tertile of intake of 0.68 (95%CI 0.50-0.92) for full-fat dairy, and 0.75 (95%CI 0.56-0.99) for Dutch cheese. No significant associations were found for other dairy product categories. CONCLUSION In this Dutch population, higher intake of full-fat dairy and Dutch cheese, but not milk, was cross-sectionally associated with the lower presence of knee OA. Prospective studies need to assess the relationship between dairy consumption, and in particular semi-hard cheeses, with incident knee OA.
Collapse
Affiliation(s)
- Karlijn F M Denissen
- Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Annelies Boonen
- CAPHRI Care and Public Health Research Institute, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Division of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center +, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Johannes T H Nielen
- Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center +, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Anouk L Feitsma
- FrieslandCampina, Stationsplein 4, PO Box 1551, 3800 BN, Amersfoort, The Netherlands
| | | | - Pieter J Emans
- Department of Orthopaedics, Maastricht University Medical Center +, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Division of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center +, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Simone J S Sep
- CAPHRI Care and Public Health Research Institute, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Division of Rheumatology, Department of Internal Medicine, Maastricht University Medical Center +, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Rehabilitation Medicine, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Martien C J M van Dongen
- Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
42
|
Lafrenière J, Couillard C, Lamarche B, Laramée C, Vohl MC, Lemieux S. Associations between self-reported vegetable and fruit intake assessed with a new web-based 24-h dietary recall and serum carotenoids in free-living adults: a relative validation study. J Nutr Sci 2019; 8:e26. [PMID: 31428333 PMCID: PMC6683236 DOI: 10.1017/jns.2019.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to assess the relative validity of a new web-based 24-h dietary recall (R24W) in terms of vegetable and fruit (VF) intake assessment using serum carotenoid concentrations as reference biomarkers. A total of seventy-four women and seventy-three men (mean age 47·5 (sd 13·3) years; mean BMI 25·5 (sd 4·4) kg/m2) completed the R24W four times to assess their VF intake. Serum carotenoids were obtained from 12-h fasted blood samples and measured by HPLC. Raw and de-attenuated partial Spearman's correlations were performed to determine how usual vegetable and/or fruit intake was associated with serum carotenoids. Relevant confounders were selected using a stepwise regression analysis. Finally, cross-classification was used to determine agreement between intake of VF and serum carotenoids. Intake of total dietary carotenoids was significantly associated (r 0·40; P < 0·01) with total serum carotenoids (without lycopene). Total VF intake was also associated with total serum carotenoid concentrations without lycopene (r 0·44; P < 0·01). HDL-cholesterol, waist circumference and age were identified as confounders in the association between total VF intake and total serum carotenoids (without lycopene). De-attenuated partial correlation adjusted for these confounders increased the associations between dietary carotenoids and total serum carotenoids without lycopene (r 0·49; P < 0·01) and between total VF intake and total serum carotenoids without lycopene (r 0·48; P < 0·01). Almost 80 % of respondents were classified in the same or the adjacent quartile for total VF intake and total serum carotenoids without lycopene, while less than 6 % were classified in the opposite quartile. Overall, these observations support the appropriateness of the R24W to assess the dietary intake of VF.
Collapse
Affiliation(s)
- J. Lafrenière
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - C. Couillard
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - B. Lamarche
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - C. Laramée
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - M. C. Vohl
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - S. Lemieux
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| |
Collapse
|
43
|
Werkmann V. Comment on "Plasma alkylresorcinol metabolite, a biomarker of whole-grain wheat and rye intake, and risk of ischemic stroke: a case-control study". Am J Clin Nutr 2019; 110:524-525. [PMID: 31367761 DOI: 10.1093/ajcn/nqz084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Verena Werkmann
- From the Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN
| |
Collapse
|
44
|
Dietary and serum vitamins A and E and colorectal cancer risk in Chinese population: a case–control study. Eur J Cancer Prev 2019; 28:268-277. [DOI: 10.1097/cej.0000000000000452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr 2019; 38:69-96. [PMID: 30130464 DOI: 10.1146/annurev-nutr-082117-051628] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data have shown that interindividual variability in the bioavailability of vitamins A (β-carotene), D, and E, and carotenoids (lutein and lycopene), as well as that of phytosterols, is modulated by single nucleotide polymorphisms (SNPs). The identified SNPs are in or near genes involved in intestinal uptake or efflux of these compounds, as well as in genes involved in their metabolism and transport. The phenotypic effect of each SNP is usually low, but combinations of SNPs can explain a significant part of the variability. Nevertheless, results from these studies should be considered preliminary since they have not been validated in other cohorts. Guidelines for future studies are provided to ensure that sound associations are elucidated that can be used to build consolidated genetic scores that may allow recommended dietary allowances to be tailored to individuals or groups by taking into account the multiloci genotypic signature of people of different ethnic origin or even of individuals.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRA, INSERM, Aix Marseille Université, 13005 Marseille, France; ,
| | | |
Collapse
|
46
|
Gavahian M, Mousavi Khaneghah A, Lorenzo JM, Munekata PE, Garcia-Mantrana I, Collado MC, Meléndez-Martínez AJ, Barba FJ. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Nguyen HT, Marquis M, Anton M, Marze S. Studying the real-time interplay between triglyceride digestion and lipophilic micronutrient bioaccessibility using droplet microfluidics. 2 application to various oils and (pro)vitamins. Food Chem 2019; 275:661-667. [DOI: 10.1016/j.foodchem.2018.09.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/06/2018] [Accepted: 09/20/2018] [Indexed: 01/16/2023]
|
48
|
Baudry J, Ducros V, Druesne-Pecollo N, Galan P, Hercberg S, Debrauwer L, Amiot MJ, Lairon D, Kesse-Guyot E. Some Differences in Nutritional Biomarkers are Detected Between Consumers and Nonconsumers of Organic Foods: Findings from the BioNutriNet Project. Curr Dev Nutr 2019; 3:nzy090. [PMID: 30842992 PMCID: PMC6397420 DOI: 10.1093/cdn/nzy090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Meta-analyses have compared the nutrient content of both organic and nonorganic foods. However, the impacts of such variations on human nutritional biomarkers still need to be assessed. OBJECTIVE In a nested clinical study from the NutriNet-Santé study, we aimed to compare the nutritional status of "organic" and "nonorganic" food consumers matched on a propensity score. METHODS Based on self-reported organic food consumption assessed through a food frequency questionnaire (FFQ), 150 low and 150 high organic food consumers were selected with <10% or >50% of organic food in their diet, respectively (expressed as the proportion of organic food in the whole diet in g/d). Participants were matched using a propensity score derived from socio-demographic, food, and health variables. Fasting plasma samples were analyzed using acknowledged laboratory methods for measurements of iron status, magnesium, copper, cadmium, carotenoids, vitamins A and E, and fatty acids. RESULTS We found significant differences between low and high organic food consumers with similar dietary patterns, with respect to plasma concentrations of magnesium, fat-soluble micronutrients (α-carotene, β-carotene, lutein, and zeaxanthin), fatty acids (linoleic, palmitoleic, γ-linolenic, and docosapentanoeic acids), and some fatty acid desaturase indexes. No differences between the 2 groups were detected for plasma concentrations of iron, copper, cadmium, lycopene, β-cryptoxanthin, or vitamins A and E. CONCLUSION If confirmed by other studies, our data suggest that a high consumption of organic foods, compared with very low consumption, modulates to some extent, the nutritional status of individuals with similar dietary patterns. Further research including prospective cohort studies is needed to evaluate the clinical relevance of such differences.
Collapse
Affiliation(s)
- Julia Baudry
- Nutritional Epidemiology Research team (EREN), Paris 13 University, Inserm (U1153), Inra (U1125), Sorbonne Paris City Epidemiology and Statistics Center, Cnam, COMUE Sorbonne-Paris- City, Bobigny, France
| | - Véronique Ducros
- Biochemistry department, Grenoble-Alpes Hospital, Grenoble cedex 9, France
| | - Nathalie Druesne-Pecollo
- Nutritional Epidemiology Research team (EREN), Paris 13 University, Inserm (U1153), Inra (U1125), Sorbonne Paris City Epidemiology and Statistics Center, Cnam, COMUE Sorbonne-Paris- City, Bobigny, France
| | - Pilar Galan
- Nutritional Epidemiology Research team (EREN), Paris 13 University, Inserm (U1153), Inra (U1125), Sorbonne Paris City Epidemiology and Statistics Center, Cnam, COMUE Sorbonne-Paris- City, Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research team (EREN), Paris 13 University, Inserm (U1153), Inra (U1125), Sorbonne Paris City Epidemiology and Statistics Center, Cnam, COMUE Sorbonne-Paris- City, Bobigny, France
- Public Health Department, Avicenne hospital, AP-HP, Bobigny, France
| | - Laurent Debrauwer
- Toxalim, Université de Toulouse University, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Josèphe Amiot
- MOISA, Université Montpellier University, CIRAD, CIHEAM-IAMM, INRA, Montpellier SupAgro, Montpellier, France
| | - Denis Lairon
- Aix Marseille University, INSERM, INRA, Marseille, France
| | - Emmanuelle Kesse-Guyot
- Nutritional Epidemiology Research team (EREN), Paris 13 University, Inserm (U1153), Inra (U1125), Sorbonne Paris City Epidemiology and Statistics Center, Cnam, COMUE Sorbonne-Paris- City, Bobigny, France
| |
Collapse
|
49
|
Bohn T, Desmarchelier C, El SN, Keijer J, van Schothorst E, Rühl R, Borel P. β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. Proc Nutr Soc 2019; 78:68-87. [PMID: 30747092 DOI: 10.1017/s0029665118002641] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-Carotene intake and tissue/blood concentrations have been associated with reduced incidence of several chronic diseases. Further bioactive carotenoid-metabolites can modulate the expression of specific genes mainly via the nuclear hormone receptors: retinoic acid receptor- and retinoid X receptor-mediated signalling. To better understand the metabolic conversion of β-carotene, inter-individual differences regarding β-carotene bioavailability and bioactivity are key steps that determine its further metabolism and bioactivation and mediated signalling. Major carotenoid metabolites, the retinoids, can be stored as esters or further oxidised and excreted via phase 2 metabolism pathways. In this review, we aim to highlight the major critical control points that determine the fate of β-carotene in the human body, with a special emphasis on β-carotene oxygenase 1. The hypothesis that higher dietary β-carotene intake and serum level results in higher β-carotene-mediated signalling is partly questioned. Alternative autoregulatory mechanisms in β-carotene / retinoid-mediated signalling are highlighted to better predict and optimise nutritional strategies involving β-carotene-related health beneficial mediated effects.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, rue 1 A-B Thomas Edison, L-1445 Strassen, Luxembourg
| | | | - Sedef N El
- Engineering Faculty, Food Engineering Department, Ege University, Izmir, Turkey
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Patrick Borel
- C2VN, Aix-Marseille Univ., INRA, INSERM, Marseille, France
| |
Collapse
|
50
|
Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018; 10:nu10121919. [PMID: 30518135 PMCID: PMC6316334 DOI: 10.3390/nu10121919] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Vitamin E (VE) has a recognized leading role as a contributor to the protection of cell constituents from oxidative damage. However, evidence suggests that the health benefits of VE go far beyond that of an antioxidant acting in lipophilic environments. In humans, VE is channeled toward pathways dealing with lipoproteins and cholesterol, underlining its relevance in lipid handling and metabolism. In this context, both VE intake and status may be relevant in physiopathological conditions associated with disturbances in lipid metabolism or concomitant with oxidative stress, such as obesity. However, dietary reference values for VE in obese populations have not yet been defined, and VE supplementation trials show contradictory results. Therefore, a better understanding of the role of genetic variants in genes involved in VE metabolism may be crucial to exert dietary recommendations with a higher degree of precision. In particular, genetic variability should be taken into account in targets concerning VE bioavailability per se or concomitant with impaired lipoprotein transport. Genetic variants associated with impaired VE liver balance, and the handling/resolution of oxidative stress might also be relevant, but the core information that exists at present is insufficient to deliver precise recommendations.
Collapse
|