1
|
Åhl A, Ruiz-Caldas MX, Nocerino E, Conceição ALC, Nygård K, McDonald S, Viljanen M, Mathew AP, Bergström L. Multimodal structural humidity-response of cellulose nanofibril foams derived from wood and upcycled cotton textiles. Carbohydr Polym 2025; 357:123485. [PMID: 40159006 DOI: 10.1016/j.carbpol.2025.123485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
We have produced foams from cellulose nanofibrils from upcycled cotton (upCNF) and wood (wCNF) through unidirectional (UIT) and multidirectional ice-templating (MIT) and investigated the structural humidity response through in-situ WAXS, SAXS, and micro tomography (μCT) between 10 and 95 % relative humidity (RH). The upCNF and wCNF WAXS patterns displayed a shape- and position shift as the RH was increased, with a compression in the (200) direction and an elongation in the (004) direction. The average separation distance extracted from the 1D SAXS patterns revealed no significant change for the upCNF foams regardless of RH and processing route, while a significant increase was observed for the wCNF foams. The μCT measurements of the upCNF foams showed a slight shift in macropore distribution towards larger pores between 50 and 80 % RH which can be attributed to the weakening and partial disintegration of the pore wall as more moisture is introduced. The humidity-induced structural alterations of the upCNF foam were significantly lower compared to the wCNF foams, confirming our claim of upCNF being more moisture resistant than wCNF foams.
Collapse
Affiliation(s)
- Agnes Åhl
- Department of Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
| | | | - Elisabetta Nocerino
- Department of Chemistry, Stockholm University, Stockholm SE-106 91, Sweden; PSI Center for Neutron and Muon Sciences, Villigen PSI CH-5232, Switzerland.
| | | | - Kim Nygård
- MAX IV Laboratory, Lund University, Lund SE-22484, Sweden.
| | | | - Mira Viljanen
- MAX IV Laboratory, Lund University, Lund SE-22484, Sweden.
| | - Aji P Mathew
- Department of Chemistry, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Lennart Bergström
- Department of Chemistry, Stockholm University, Stockholm SE-106 91, Sweden; Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Stockholm University, Stockholm SE-114 18, Sweden.
| |
Collapse
|
2
|
Magalhães S, Aliaño-González MJ, Cruz PF, Rosenberg R, Haffke D, Norgren M, Alves L, Medronho B, da Graça Rasteiro M. Customising Sustainable Bio-Based Polyelectrolytes: Introduction of Charged and Hydrophobic Groups in Cellulose. Polymers (Basel) 2024; 16:3105. [PMID: 39599196 PMCID: PMC11597907 DOI: 10.3390/polym16223105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Cellulose has been widely explored as a sustainable alternative to synthetic polymers in industrial applications, thanks to its advantageous properties. The introduction of chemical modifications on cellulose structure, focusing on cationic and hydrophobic modifications, can enhance its functionality and expand the range of applications. In the present work, cationization was carried out through a two-step process involving sodium periodate oxidation followed by a reaction with the Girard T reagent, yielding a degree of substitution for cationic groups (DScationic) between 0.3 and 1.8. Hydrophobic modification was achieved via esterification with fatty acids derived from commercial plant oils, using an enzyme-assisted, environmentally friendly method. Lipase-catalysed hydrolysis, optimised at 0.25% enzyme concentration and with a 1 h reaction time, produced an 84% yield of fatty acids, confirmed by FTIR and NMR analyses. The degree of substitution for hydrophobic groups (DShydrophobic) ranged from 0.09 to 0.66. The molecular weight (MW) of the modified cellulose derivatives varied from 1.8 to 141 kDa. This dual modification strategy enables the creation of cellulose-based polymers with controlled electrostatic and hydrophobic characteristics, customisable for specific industrial applications. Our approach presents a sustainable and flexible solution for developing cellulose derivatives tailored to diverse industrial needs.
Collapse
Affiliation(s)
- Solange Magalhães
- University of Coimbra, CERES, Department of Chemical Engineering, Pólo II–R. Silvio Lima, 3030-790 Coimbra, Portugal; (S.M.); (M.d.G.R.)
| | - María José Aliaño-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain;
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal;
| | - Pedro F. Cruz
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Rose Rosenberg
- Physical Chemistry, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; (R.R.); (D.H.)
| | - Dirk Haffke
- Physical Chemistry, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; (R.R.); (D.H.)
| | - Magnus Norgren
- FSCN Research Centre, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden;
| | - Luís Alves
- University of Coimbra, CERES, Department of Chemical Engineering, Pólo II–R. Silvio Lima, 3030-790 Coimbra, Portugal; (S.M.); (M.d.G.R.)
| | - Bruno Medronho
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal;
- FSCN Research Centre, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden;
| | - Maria da Graça Rasteiro
- University of Coimbra, CERES, Department of Chemical Engineering, Pólo II–R. Silvio Lima, 3030-790 Coimbra, Portugal; (S.M.); (M.d.G.R.)
| |
Collapse
|
3
|
Jurczyková T, Kmeťová E, Kačík F, Lexa M, Dědič D. Evaluating the Effectiveness of Cellulose-Based Surfactants in Expandable Graphite Wood Coatings. Polymers (Basel) 2024; 16:2832. [PMID: 39408542 PMCID: PMC11478889 DOI: 10.3390/polym16192832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study deals with the design of modern environmentally friendly and non-toxic flame retardants based on expandable graphite 25 K + 180 (EG) modified by cellulose ethers (Lovose TS 20, Tylose MH 300, Klucel H) and nanocellulose (CNC) that are biocompatible with wood and, therefore, are a prerequisite for an effective surfactant for connecting EG to wood. The effectiveness of the formulations and surfactants was verified using a radiant heat source test. The cohesion of the coating to the wood surface and the cohesion of the expanded graphite layer were also assessed. The fire efficiency of the surfactants varied greatly. Still, in combination with EG, they were all able to provide sufficient protection-the total relative mass loss was, in all cases, in the range of 7.38-7.83% (for untreated wood it was 88.67 ± 1.33%), and the maximum relative burning rate decreased tenfold compared to untreated wood, i.e., to 0.04-0.05%·s-1. Good results were achieved using Klucel H + EG and CNC + EG formulations. Compared to Klucel H, CNC provides significantly better cohesion of the expanded layer, but its high price increases the cost of the fireproof coating.
Collapse
Affiliation(s)
- Tereza Jurczyková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| | - Elena Kmeťová
- Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - Martin Lexa
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| | - Daniel Dědič
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| |
Collapse
|
4
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
5
|
Furlan Sandrini DM, Morgado DL, de Oliveira AJA, de Moraes DA, Varanda LC, Frollini E. Cellulose esters: Synthesis for further formation of films with magnetite nanoparticles incorporated. Int J Biol Macromol 2024; 264:130594. [PMID: 38437931 DOI: 10.1016/j.ijbiomac.2024.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the homogeneous synthesis of cellulose acetate (CA) and propionate (CP) with varying degrees of substitution (DS) from sisal cellulose in a N, N-dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. These esters were used to prepare neat (CADSF/CPDSF) and nanocomposite films (CADSFFe/CPDSFFe) from prior synthesized magnetite nanoparticles (NPs, Fe3O4, 5.1 ± 0.5 nm). Among the CA and CP series, the composite CA0.7FFe and the neat CP0.7F films exhibited the highest modulus of elasticity, 2105 MPa and 2768 MPa, respectively, probably a consequence of the continuous fibrous structures present on the surface of these films. Microsphere formation on the film's surface was observed in scanning electron microscopy micrographs. This points to applications in the controlled release of targeted substances. The VSM analysis showed that the cellulosic matrices preserved the superparamagnetic characteristics of the NPs. This study suggested a reduced coupling effect between nanoparticles inside polymeric films due to magnetic saturation at low fields. CA0.7FFe and CA1.3FFe composite films reached a saturation magnetization (MSAT) of 46 emu/g around 7 kOe field. Hosting magnetite nanoparticles in cellulose ester matrices may be an interesting way to develop new functional cellulose-based materials, which have the potential for diverse applications, including microelectromechanical systems and microsensors.
Collapse
Affiliation(s)
- Daiana M Furlan Sandrini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Daniella Lury Morgado
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Daniel A de Moraes
- Colloidal Materials Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Laudemir C Varanda
- Colloidal Materials Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Elisabete Frollini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil.
| |
Collapse
|
6
|
Negi A, Tehrani-Bagha AR. Cellulose Functionalization Using N-Heterocyclic-Based Leaving Group Chemistry. Polymers (Basel) 2024; 16:149. [PMID: 38201814 PMCID: PMC10780667 DOI: 10.3390/polym16010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
There has been continuous interest in developing novel activators that facilitate the functionalization of cellulosic materials. In this paper, we developed a strategy in which trisubstituted triazinium salts act as cellulose preactivators. As leaving groups, these triazinium salts utilize N-heterocycles (pyridine, imidazole, and nicotinic acid). Initially, we optimized the synthetic route for developing these novel cellulose preactivators (triazinium salts), whose structures were confirmed using NMR spectroscopy. The surface zeta potential of cellulose changed from a negative value to a positive one after preactivation due to the cationic nature of these preactivators. To enhance the scope of the study, we functionalized the cellulose-preactivated materials with a series of amine- or hydroxy-containing aliphatic and aromatic hydrocarbons, nucleophilic amino acids (cysteine), colorants (2-aminoanthraquinone and 2-amino-3-methyl-anthraquinone), and biopolymer (zein protein). The treated samples were analyzed using FTIR, time-gated Raman spectroscopy, and reflection spectroscopy, and the success of the functionalization process was validated. To widen the scope of such chemistries, we synthesized four reactive agents containing N-heterocyclic-based leaving groups (pyridine and nicotinic acid) and successfully functionalized cellulose with them in one step. The proposed single- and two-step functionalization approaches will provide opportunities for chemically linking various chemical compounds to cellulose for different applications.
Collapse
Affiliation(s)
| | - Ali R. Tehrani-Bagha
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| |
Collapse
|
7
|
Ludovici F, Hartmann R, Rudolph M, Liimatainen H. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:16176-16184. [PMID: 38022739 PMCID: PMC10647933 DOI: 10.1021/acssuschemeng.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
The extraction of various minerals is commonly conducted through froth flotation, which is a versatile separation method in mineral processing. In froth flotation, depressants are employed to improve the flotation selectivity by modifying the wettability of the minerals and reducing their natural or induced floatability. However, the environmental impact of many current flotation chemicals poses a challenge to the sustainability and selectivity of the ore beneficiation processes. To mitigate this issue, cellulose, particularly nanocelluloses, has been explored as a potential alternative to promote sustainable mineral processing. This study focused on silylated cellulose nanocrystals (CNCs) as biodepressants for sulfide minerals in froth flotation. CNCs containing thiol silane groups or bifunctional CNCs containing both thiol and propyl silanes were synthesized using an aqueous silylation reaction, and their performance in the flotation of chalcopyrite and pyrite was investigated in the presence of a sodium isobutyl xanthate collector. The results showed that the modified CNCs exhibited preferential interaction between chalcopyrite, and the flotation recovery of chalcopyrite decreased from ∼76% to ∼24% in the presence of thiol-grafted CNCs at pH 6, while the pyrite recovery decreased only from ∼82% to ∼75%, indicating the efficient selectivity of thiol-silylated CNCs toward chalcopyrite depression.
Collapse
Affiliation(s)
- Feliciana Ludovici
- Fiber
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Robert Hartmann
- Fraunhofer
Center for Chemical-Biotechnological Processes, 06237 Leuna, Germany
| | - Martin Rudolph
- Helmholtz-Zentrum-Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
| | - Henrikki Liimatainen
- Fiber
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| |
Collapse
|
8
|
Garg S, Goel N. Encapsulation of heavy metal ions via adsorption using cellulose/ZnO composite: First principles approach. J Mol Graph Model 2023; 124:108566. [PMID: 37487371 DOI: 10.1016/j.jmgm.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
The primary goal of the current research is to describe an effective and eco-friendly adsorbent for the removal of aquatic micropollutants. The design of the cellulose-modified zinc oxide (ZnO) nanocomposite was successfully carried out by density functional calculations. The proposed structures of the constituent and composite materials were confirmed using formation energy (Ef), frontier orbitals, band gaps (Egap), density of state (DOS) plots, natural bond orbitals (NBO), and UV-Vis spectral analysis. The cellulose/(ZnO)12 composite was further used for the adsorption of different heavy metal ions such as Hg(II), Pb(II), Cd(II), Ni(II), and As(III) through calculation of electronic and optical properties. The values of the adsorption energy (Eads) show that the As(III) interacted better with the composite in both phases, i.e., gas (-806.98 kcal/mol) and aqueous (-491.66 kcal/mol). The analysis of frontier molecular orbital data exhibited a decrease in the Egap of composite@metal ion complexes. The high negative value of the solvation energies (ΔEsol) indicates the suitability of composite@metal ions in an aqueous environment. The nature of interactions between metal ions and the composite unit is analyzed by noncovalent interactions (NCI) and the quantum theory of atoms in molecules (QTAIM). The theoretical results of the present study show the feasibility of the cellulose/(ZnO)12 composite for the removal of heavy metal ions and provide useful information to experimentalists to treat contaminated water.
Collapse
Affiliation(s)
- Shivangi Garg
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Manicardi T, Baioni e Silva G, Longati AA, Paiva TD, Souza JPM, Pádua TF, Furlan FF, Giordano RLC, Giordano RC, Milessi TS. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries' Portfolios. Foods 2023; 12:3007. [PMID: 37628006 PMCID: PMC10453364 DOI: 10.3390/foods12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Xylooligosaccharides (XOS) are nondigestible compounds of great interest for food and pharmaceutical industries due to their beneficial prebiotic, antibacterial, antioxidant, and antitumor properties. The market size of XOS is increasing significantly, which makes its production from lignocellulosic biomass an interesting approach to the valorization of the hemicellulose fraction of biomass, which is currently underused. This review comprehensively discusses XOS production from lignocellulosic biomass, aiming at its application in integrated biorefineries. A bibliometric analysis is carried out highlighting the main players in the field. XOS production yields after different biomass pretreatment methods are critically discussed using Microsoft PowerBI® (2.92.706.0) software, which involves screening important trends for decision-making. Enzymatic hydrolysis and the major XOS purification strategies are also explored. Finally, the integration of XOS production into biorefineries, with special attention to economic and environmental aspects, is assessed, providing important information for the implementation of biorefineries containing XOS in their portfolio.
Collapse
Affiliation(s)
- Tainá Manicardi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Gabriel Baioni e Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Andreza A. Longati
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thiago D. Paiva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - João P. M. Souza
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Thiago F. Pádua
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Felipe F. Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Roberto C. Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thais S. Milessi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
10
|
Cavallo V, Pruvost S, Gerard JF, Fina A. Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites. Polymers (Basel) 2023; 15:3226. [PMID: 37571119 PMCID: PMC10421470 DOI: 10.3390/polym15153226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Poly(methylmethacrylate-co-methacrylic acid) (PMMA-co-MAA) polymers were prepared via cobalt-mediated free radical copolymerization and were characterized after synthesis. The synthesis led to a 98.5% conversion and a final ratio between the two units, MMA/MAA, was equal to 63:37 mol%. PMMA-co-MAA was then used as a matrix for cellulose-based nanocomposites to tailor filler compatibility, thanks to the presence of carboxylic groups capable of generating strong H-bonds with the cellulose surface. Cellulose nanofibers (CNFs) were dispersed using a solution with a mixture of two solvents to tailor compatibility of both the components. For this purpose, CNFs were successfully re-dispersed in methanol using the solvent exchange method and tetrahydrofuran/methanol mixtures at different ratios were used for the preparation of the films. Fully transparent films of PMMA-co-MAA + CNF were prepared up to 15 wt% of CNF with a good dispersion in the matrix. This dispersion state leads to the reinforcement of the polymethacrylate matrix, increasing its tensile strength whilst preserving optical transparency.
Collapse
Affiliation(s)
- Valentina Cavallo
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France; (V.C.); (S.P.)
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy
| | - Sébastien Pruvost
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France; (V.C.); (S.P.)
| | - Jean-François Gerard
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France; (V.C.); (S.P.)
| | - Alberto Fina
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy
| |
Collapse
|
11
|
Nejström M, Andreasson B, Sjölund J, Eivazi A, Svanedal I, Edlund H, Norgren M. On Structural and Molecular Order in Cellulose Acetate Butyrate Films. Polymers (Basel) 2023; 15:polym15092205. [PMID: 37177351 PMCID: PMC10181278 DOI: 10.3390/polym15092205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Cellulose acetate butyrate (CAB) is a possible candidate, being a raw material derived from renewable resources, to replace fossil-based materials. This is due to its thermoplastic properties and the relative ease with which it could be implemented within the existing industry. With a significant amount of variation in CAB on the market today, a knowledge gap has been identified regarding the understanding of the polymer structural arrangement in films. This relates to the underlying mechanisms that regulate CAB film material properties, insights that are important in product development. In this study, commercially available CAB was investigated with XRD, SEM, AFM, and TOPEM DSC in order to obtain physicochemical information related to its micro-structural features in solvent-cast films. The film-forming ability relates mostly to the number of hydroxyl groups, and the semi-crystallinity of the films depends on the type and position of the side groups along the cellulose backbone. The appearance of signs of possible cholesteric ordering in the films could be connected to higher amounts of hydroxyl groups along the backbone that disturb the helix arrangement, while the overall order was primarily related to the butyrate substitution and secondarily related to the molecular weight of the particular CAB studied. Cold crystallization was also observed in one CAB sample.
Collapse
Affiliation(s)
- Malin Nejström
- FSCN, Surface and Colloid Engineering, Mid Sweden University, 85170 Sundsvall, Sweden
- Nouryon, 85467 Sundsvall, Sweden
| | | | - Johanna Sjölund
- FibRe-Centre for Lignocellulose-Based Thermoplastics, Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Alireza Eivazi
- FSCN, Surface and Colloid Engineering, Mid Sweden University, 85170 Sundsvall, Sweden
| | - Ida Svanedal
- FSCN, Surface and Colloid Engineering, Mid Sweden University, 85170 Sundsvall, Sweden
| | - Håkan Edlund
- FSCN, Surface and Colloid Engineering, Mid Sweden University, 85170 Sundsvall, Sweden
| | - Magnus Norgren
- FSCN, Surface and Colloid Engineering, Mid Sweden University, 85170 Sundsvall, Sweden
| |
Collapse
|
12
|
Bartoli M, Piatti E, Tagliaferro A. A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications. Polymers (Basel) 2023; 15:1567. [PMID: 36987346 PMCID: PMC10056897 DOI: 10.3390/polym15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The development of new scaffolds and materials for tissue engineering is a wide and open realm of material science. Among solutions, the use of biopolymers represents a particularly interesting area of study due to their great chemical complexity that enables creation of specific molecular architectures. However, biopolymers do not exhibit the properties required for direct application in tissue repair-such as mechanical and electrical properties-but they do show very attractive chemical functionalities which are difficult to produce through in vitro synthesis. The combination of biopolymers with nanostructured carbon fillers could represent a robust solution to enhance composite properties, producing composites with new and unique features, particularly relating to electronic conduction. In this paper, we provide a review of the field of carbonaceous nanostructure-containing biopolymer composites, limiting our investigation to tissue-engineering applications, and providing a complete overview of the recent and most outstanding achievements.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
13
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
14
|
Synthesis, scale inhibition performance evaluation and mechanism study of 3-amino-1-propane sulfonic acid modified polyaspartic acid copolymer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Rossato Viana A, Bianchin Bottari N, Santos D, Bolson Serafin M, Garlet Rossato B, Moresco RN, Wolf K, Ourique A, Hörner R, de Moraes Flores ÉM, Chitolina Schetinger MR, Stefanello Vizzotto B, Maria Fontanari Krause L. Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:972-987. [PMID: 36208226 DOI: 10.1080/15287394.2022.2130844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer and infectious diseases are among the leading causes of death in the world. Despite the diverse array of treatments available, challenges posed by resistance, side effects, high costs, and inaccessibility persist. In the Solanaceae plant family, few studies with Vassobia breviflora species relating to biological activity are known, but promising results have emerged. The phytochemicals present in the ethyl acetate fraction were obtained using ESI-MS-QTOF, and the antioxidants assays 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), plasma ferric reduction capacity (FRAP), and total antioxidant capacity (TAC). Cytotoxic activity was evaluated by MTT, Neutral Red, and lactate dehydrogenase (LDH) released. The production of reactive oxygen species, nitric oxide, and purinergic enzymes was also investigated. Antibacterial activity was measured through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activity, in addition to genotoxicity in plasmid DNA. Five major masses were identified D-glucopyranose II, allyl disulfide, γ-lactones, pharbilignoside, and one mass was not identified. V. breviflora exhibited relevant antioxidant and cytotoxic activity against the HeLa cell line and enhanced expression effect in modulation of purinergic signaling. Antibacterial activities in the assays in 7 ATCC strains and 8 multidrug-resistant clinical isolates were found. V. breviflora blocked biofilm formation in producing bacteria at the highest concentrations tested. However, there was no plasmid DNA cleavage at the concentrations tested. Data demonstrated that V. breviflora exhibited an antioxidant effect through several methods and proved to be a promising therapeutic alternative for use against tumor cells via purinergic signaling and multidrug-resistant microorganisms, presenting an anti-biofilm effect.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Daniel Santos
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Marissa Bolson Serafin
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Bruna Garlet Rossato
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Rafael Noal Moresco
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Katianne Wolf
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Aline Ourique
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Rosmari Hörner
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | | | | | | | | |
Collapse
|
16
|
Gökmen FÖ, Pekel Bayramgil N. Preparation and characterization of some cellulose derivatives nanocomposite films. Carbohydr Polym 2022; 297:120030. [DOI: 10.1016/j.carbpol.2022.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
|
17
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|
18
|
Montroni D, Di Giosia M, Calvaresi M, Falini G. Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules 2022; 27:molecules27175633. [PMID: 36080399 PMCID: PMC9457544 DOI: 10.3390/molecules27175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.
Collapse
|
19
|
|
20
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int J Mol Sci 2022; 23:6564. [PMID: 35743006 PMCID: PMC9223682 DOI: 10.3390/ijms23126564] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.T.); (N.S.L.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|
21
|
Costa C, Medronho B, Filipe A, Romano A, Lindman B, Edlund H, Norgren M. On the formation and stability of cellulose-based emulsions in alkaline systems: Effect of the solvent quality. Carbohydr Polym 2022; 286:119257. [DOI: 10.1016/j.carbpol.2022.119257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
|
22
|
Di X, Liang X, Shen C, Pei Y, Wu B, He Z. Carbohydrates Used in Polymeric Systems for Drug Delivery: From Structures to Applications. Pharmaceutics 2022; 14:739. [PMID: 35456573 PMCID: PMC9025897 DOI: 10.3390/pharmaceutics14040739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/17/2023] Open
Abstract
Carbohydrates, one of the most important compounds in living organisms, perform numerous roles, including those associated with the extracellular matrix, energy-related compounds, and information. Of these, polymeric carbohydrates are a class of substance with a long history in drug delivery that have attracted more attention in recent years. Because polymeric carbohydrates have the advantages of nontoxicity, biocompatibility, and biodegradability, they can be used in drug targeting, sustained drug release, immune antigens and adjuvants. In this review, various carbohydrate-based or carbohydrate-modified drug delivery systems and their applications in disease therapy have been surveyed. Specifically, this review focuses on the fundamental understanding of carbohydrate-based drug delivery systems, strategies for application, and the evaluation of biological activity. Future perspectives, including opportunities and challenges in this field, are also discussed.
Collapse
Affiliation(s)
- Xiangjie Di
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Liang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Yuwen Pei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Bin Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (X.D.); (X.L.); (C.S.); (Y.P.); (B.W.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Angel N, Li S, Yan F, Kong L. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Khan R, Haider S, Razak SIA, Haider A, Khan MUA, Wahit MU, Bukhari N, Ahmad A. Recent advances in renewable polymer/metal oxide systems used for tissue engineering. RENEWABLE POLYMERS AND POLYMER-METAL OXIDE COMPOSITES 2022:395-445. [DOI: 10.1016/b978-0-323-85155-8.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Wang CG, Li N, Wu G, Lin TT, Lee AMX, Yang SW, Li Z, Luo DHK. Carbon Dioxide Mediated Cellulose Dissolution and Derivatization to Cellulose Carbonates in a Low-pressure System. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Mendes ISF, Prates A, Evtuguin DV. Production of rayon fibres from cellulosic pulps: State of the art and current developments. Carbohydr Polym 2021; 273:118466. [PMID: 34560932 DOI: 10.1016/j.carbpol.2021.118466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
The increasing demand for cellulosic fibres is continuously driven by the growing earth population and requirements of the textile industry. The annual cotton production of ca. 25 million tons is no longer enough to meet the market demands. This market gap of cellulosic fibres is progressively filled by regenerated cellulosic fibres derived from the dissolving pulp. The conventional industrial process of viscose production is far from being environmentally friendly due to the use of hazardous reagents. Alternatively, new trends in the production of regenerated fibres are related to the direct dissolution of cellulose in appropriate environmentally sound recyclable solvents, allowing high quality rayon fibres. This article reviews the sources of dissolving pulps used for the production of viscose and its quality parameters related to the performance of viscose production. The prospective cellulose regeneration processes, both commercialized and under development, are reviewed regarding current and future developments in the area.
Collapse
Affiliation(s)
- Inês S F Mendes
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - António Prates
- CAIMA-Indústria de Celulose S.A., P-2250 Constância, Portugal.
| | - Dmitry V Evtuguin
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Wet spinning to prepare filaments from three cellulose carbonated derivatives: Synthesis, characterization and filament properties. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Halama K, Schaffer A, Rieger B. Allyl group-containing polyvinylphosphonates as a flexible platform for the selective introduction of functional groups via polymer-analogous transformations. RSC Adv 2021; 11:38555-38564. [PMID: 35493229 PMCID: PMC9044137 DOI: 10.1039/d1ra06452e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Polyvinylphosphonates are highly promising candidates for (bio)medical applications as they exhibit a tunable lower critical solution temperature, high biocompatibility of homo- and copolymers, and a broad foundation for post-synthetic modifications. In this work we explored polymer-analogous transformations with statistical polyvinylphosphonates comprising diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP). The C[double bond, length as m-dash]C double bonds were used as a starting point for a cascade of organic transformations. Initially, the reactive moieties were successfully introduced via bromination, epoxidations with OXONE and mCPBA, or thiol-ene click chemistry with methyl thioglycolate (6). The obtained substrates were then employed in a variety of consecutive reactions depending on the introduced functional motif: (1) the brominated substrates were converted with sodium azide to enable the copper-mediated alkyne-azide coupling with phenylacetylene (1). (2) The epoxides were reacted with sodium azide for an alkyne-azide click coupling with 1 as well as small nucleophilic compounds (phenol (2), benzylamine (3), and 4-amino-2,1,3-benzothiadiazol (4)). Afterwards the non-converted allyl groups were reacted with thiochloesterol (5) to form complex polymer conjugates. (3) An acid-labile hydrazone-linked conjugate was formed in a two-step approach. The polymeric substrates were characterized by NMR, FTIR, and UV/Vis spectroscopy as well as elemental analysis and gel permeation chromatography to monitor the structural changes of the polymeric substrates and to prove the success of these modification approaches.
Collapse
Affiliation(s)
- Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching near Munich Germany
| | - Andreas Schaffer
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching near Munich Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching near Munich Germany
| |
Collapse
|
29
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
30
|
Tamaddon F, Ahmadi‐AhmadAbadi E, Kargar H. Nanoalkalinecellulose immobilized on magnetic nanoparticles as a green catalyst for the synthesis of tetrahydrodipyrazolopyridines and mechanistic insights under base catalysis. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Hossein Kargar
- Department of Biomedical Engineering Meybod University Meybod Iran
| |
Collapse
|
31
|
Carvalho JPF, Silva ACQ, Silvestre AJD, Freire CSR, Vilela C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2744. [PMID: 34685185 PMCID: PMC8537411 DOI: 10.3390/nano11102744] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022]
Abstract
Cellulose, the most abundant natural polymer, is a versatile polysaccharide that is being exploited to manufacture innovative blends, composites, and hybrid materials in the form of membranes, films, coatings, hydrogels, and foams, as well as particles at the micro and nano scales. The application fields of cellulose micro and nanoparticles run the gamut from medicine, biology, and environment to electronics and energy. In fact, the number of studies dealing with sphere-shaped micro and nanoparticles based exclusively on cellulose (or its derivatives) or cellulose in combination with other molecules and macromolecules has been steadily increasing in the last five years. Hence, there is a clear need for an up-to-date narrative that gathers the latest advances on this research topic. So, the aim of this review is to portray some of the most recent and relevant developments on the use of cellulose to produce spherical micro- and nano-sized particles. An attempt was made to illustrate the present state of affairs in terms of the go-to strategies (e.g., emulsification processes, nanoprecipitation, microfluidics, and other assembly approaches) for the generation of sphere-shaped particles of cellulose and derivatives thereof. A concise description of the application fields of these cellulose-based spherical micro and nanoparticles is also presented.
Collapse
Affiliation(s)
| | | | | | | | - Carla Vilela
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (A.J.D.S.); (C.S.R.F.)
| |
Collapse
|
32
|
Kang RH, Kim D. Thermally Induced Silane Dehydrocoupling: Hydrophobic and Oleophilic Filter Paper Preparation for Water Separation and Removal from Organic Solvents. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5775. [PMID: 34640171 PMCID: PMC8510372 DOI: 10.3390/ma14195775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023]
Abstract
Organic solvents with high purity are essential in various fields such as optical, electronic, pharmaceutical, and chemical areas to prevent low-quality products or undesired side-products. Constructing methods to remove impurities such as water residue in organic solvents has been a significant challenge. Within this article, we report for the first time a new method for the preparation of hydrophobic and oleophilic filter paper (named OCFP), based on thermally induced silane dehydrocoupling between cellulose-based filter paper and octadecylsilane. We comprehensively characterized OCFP using various characterization techniques (FTIR, XPS, XRD, and EDS). OCFP showed super-hydrophobic and oleophilic properties as well as remarkable water separation and removal efficiency (>93%) in various organic solvents with sustained reusability. In addition, the analytical results both before and after filtration of an NMR solvent using OCFP indicated that OCFP has an excellent solvent drying efficiency. This work presents a new strategy for the development of super-hydrophobic cellulose-based filter paper, which has great potential for solvent drying and water separation.
Collapse
Affiliation(s)
- Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
33
|
Ciuzas D, Krugly E, Sriubaite S, Pauliukaityte I, Baniukaitiene O, Bulota M, Martuzevicius D. Electrospun cellulose fibers from ionic liquid: Practical implications toward robust morphology. J Appl Polym Sci 2021. [DOI: 10.1002/app.51525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Darius Ciuzas
- Department of Environmental Technology Kaunas University of Technology Kaunas Lithuania
| | - Edvinas Krugly
- Department of Environmental Technology Kaunas University of Technology Kaunas Lithuania
| | - Simona Sriubaite
- Department of Polymer Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Ingrida Pauliukaityte
- Department of Environmental Technology Kaunas University of Technology Kaunas Lithuania
| | - Odeta Baniukaitiene
- Department of Polymer Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Mindaugas Bulota
- Department of Polymer Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Dainius Martuzevicius
- Department of Environmental Technology Kaunas University of Technology Kaunas Lithuania
| |
Collapse
|
34
|
Hurtuková K, Fajstavrová K, Rimpelová S, Vokatá B, Fajstavr D, Kasálková NS, Siegel J, Švorčík V, Slepička P. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4051. [PMID: 34300969 PMCID: PMC8306805 DOI: 10.3390/ma14144051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
This study involved the preparation and characterization of structures with a honeycomb-like pattern (HCP) formed using the phase separation method using a solution mixture of chloroform and methanol together with cellulose acetate. Fluorinated ethylene propylene modified by plasma treatment was used as a suitable substrate for the formation of the HCP structures. Further, we modified the HCP structures using silver sputtering (discontinuous Ag nanoparticles) or by adding Ag nanoparticles in PEG into the cellulose acetate solution. The material morphology was then determined using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the material surface chemistry was studied using energy dispersive spectroscopy (EDS) and wettability was analyzed with goniometry. The AFM and SEM results revealed that the surface morphology of pristine HCP with hexagonal pores changed after additional sample modification with Ag, both via the addition of nanoparticles and sputtering, accompanied with an increase in the roughness of the PEG-doped samples, which was caused by the high molecular weight of PEG and its gel-like structure. The highest amount (approx. 25 at %) of fluorine was detected using the EDS method on the sample with an HCP-like structure, while the lowest amount (0.08%) was measured on the PEG + Ag sample, which revealed the covering of the substrate with biopolymer (the greater fluorine extent means more of the fluorinated substrate is exposed). As expected, the thickness of the Ag layer on the HCP surface depended on the length of sputtering (either 150 s or 500 s). The sputtering times for Ag (150 s and 500 s) corresponded to layers with heights of about 8 nm (3.9 at % of Ag) and 22 nm (10.8 at % of Ag), respectively. In addition, we evaluated the antibacterial potential of the prepared substrate using two bacterial strains, one Gram-positive of S. epidermidis and one Gram-negative of E. coli. The most effective method for the construction of antibacterial surfaces was determined to be sputtering (150 s) of a silver nanolayer onto a HCP-like cellulose structure, which proved to have excellent antibacterial properties against both G+ and G- bacterial strains.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Klára Fajstavrová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| |
Collapse
|
35
|
Singh V, Indoria S, Jisha K, Gardas RL. Structure and Solubility of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Control of the aqueous solubility of cellulose by hydroxyl group substitution and its effect on processing. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Bessa W, Trache D, Derradji M, Bentoumia B, Tarchoun AF, Hemmouche L. Effect of silane modified microcrystalline cellulose on the curing kinetics, thermo-mechanical properties and thermal degradation of benzoxazine resin. Int J Biol Macromol 2021; 180:194-202. [PMID: 33737176 DOI: 10.1016/j.ijbiomac.2021.03.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
In the frame of developing sustainable, eco-friendly and high performance materials, microcrystalline cellulose modified through silane coupling agent (MCC Si) is used as a reinforcing agent of benzoxazine resin to manufacture composites at different loadings of 5, 10, 15, 20 wt%. The structural, morphological and crystallinity characterizations of the modified MCC were initially performed to scrutinize the changes and confirm the modification. Then, an investigation on the crosslinking process of the prepared composites was held through curing kinetic study employing isoconversional methods. The kinetic data revealed a decrease in the average values of activation energy and the pre-exponential factor, particularly for composite supplemented with 10% MCC Si, whereas all samples disclosed a tendency of an autocatalytic curing mechanism. Furthermore, the study of the dynamic mechanical properties and degradation features of the cured specimens, respectively, indicated a superior stiffness attributable to the good interaction between BA-a and MCC Si, and enhanced thermal stability for the composites compared to pristine resin.
Collapse
Affiliation(s)
- Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Mehdi Derradji
- Process Engineering Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Benaouda Bentoumia
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria; Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Larbi Hemmouche
- Materials Engineering Laboratory, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| |
Collapse
|
38
|
Palasingh C, Ström A, Amer H, Nypelö T. Oxidized xylan additive for nanocellulose films - A swelling modifier. Int J Biol Macromol 2021; 180:753-759. [PMID: 33727189 DOI: 10.1016/j.ijbiomac.2021.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
Polymeric wood hemicelluloses are depicted to join cellulose, starch and chitosan as key polysaccharides for sustainable materials engineering. However, the approaches to incorporate hemicelluloses in emerging bio-based products are challenged by lack of specific benefit, other than the biomass-origin, although their utilization would contribute to sustainable material use since they currently are a side stream that is not valorized. Here we demonstrate wood-xylans as swelling modifiers for neutral and charged nanocellulose films that have already entered the sustainable packaging applications, however, suffer from humidity sensitivity. The oxidative modification is used to modulate the water-solubility of xylan and hence enable adsorption in an aqueous environment. A high molecular weight grade, hence less water-soluble, adsorbed preferentially on the neutral surface while the adsorbed amount on a negatively charged surface was independent of the molecular weight, and hence, solubility. The adsorption of the oxidized xylans on a neutral cellulose surface resulted in an increase in the amount of water in the film while on the negatively charged cellulose the total amount of water decreased. The finding of synergy of two hygroscopic materials to decrease swelling in hydrophilic bio-polymer films demonstrates the oxidized macromolecule xylan as structurally functional component in emerging cellulose products.
Collapse
Affiliation(s)
- Chonnipa Palasingh
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna Ström
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Hassan Amer
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Tulln, Konrad-Lorenz Straße 24, 3430 Tulln, Austria; Department of Natural and Microbial Products Chemistry, National Research Centre, 33 AlBohous St., Dokki, Giza, Egypt
| | - Tiina Nypelö
- Applied Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
39
|
Low waste process of rapid cellulose transesterification using ionic liquid/DMSO mixed solvent: Towards more sustainable reaction systems. Carbohydr Polym 2021; 256:117560. [DOI: 10.1016/j.carbpol.2020.117560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 01/06/2023]
|
40
|
The Potential for Regenerated Protein Fibres within a Circular Economy: Lessons from the Past Can Inform Sustainable Innovation in the Textiles Industry. SUSTAINABILITY 2021. [DOI: 10.3390/su13042328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humanity is currently facing a crisis of excess, with a growing population and the trend towards disposable goods, and the world’s resources are under tremendous pressure. This is especially evident in the textiles industry, with increasing consumer numbers and the trend of ‘fast fashion’ causing demand to be at an all-time high, with non-renewable feedstocks depleting and production of natural fibres also under strain. Considering the future of textile production, it can be beneficial to investigate our past for inspiration towards more sustainable approaches. Much of the research into regenerated protein fibres was performed out of necessity during wartime, and while this demonstrates the potential for food waste to be exploited as a resource, the manufacturing methods used at the time now present issues for a circular economy due to the high amounts of toxic waste produced. Using a range of historical and modern literature sources, including journal articles, patents and conference papers, this review presents the historical precedent and research performed into azlons, regenerated fibres produced from waste protein-rich materials. Historical evidence shows that the success of these azlon fibres was short-lived, partly due to negative associations with deprivation and hardship, alongside the emergence of alternative man-made fibres, which were devoid of these connotations with never-before-seen physical properties. The social and political climate leading to the creation, and ultimate demise, of azlons is explored along with the influence of evolving technologies and the marketing of these textile products to consumers. Although the creation of products from waste is not a new concept, the literature has identified that the synergy between the challenges faced in a time of resource scarcity and the current trend of problematic excess reveals an exciting opportunity to learn from our past to create a greener future. Lessons that could help with the current crisis within the textile industry are extracted and presented within the concept of a circular textiles economy. Our findings show that there is notable potential for one regenerated protein fibre, made from casein extracted from milk waste, to be manufactured within a localised, circular economy in conjunction with the principles of green chemistry and sustainable textiles technology.
Collapse
|
41
|
|
42
|
Yu W, Chen W, Yang H. Evaluation of structural effects on the antiscaling performance of various graft cellulose-based antiscalants in RO membrane scaling control. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Adewuyi A, Otuechere CA, Adebayo OL, Ajisodun I. Synthesis and toxicity profiling of sebacic acid-modified cellulose from unexploited watermelon exocarp. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Heise K, Delepierre G, King AWT, Kostiainen MA, Zoppe J, Weder C, Kontturi E. Chemical Modification of Reducing End-Groups in Cellulose Nanocrystals. Angew Chem Int Ed Engl 2021; 60:66-87. [PMID: 32329947 PMCID: PMC7821002 DOI: 10.1002/anie.202002433] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 12/31/2022]
Abstract
Native plant cellulose has an intrinsic supramolecular structure. Consequently, it can be isolated as nanocellulose species, which can be utilized as building blocks for renewable nanomaterials. The structure of cellulose also permits its end-wise modification, i.e., chemical reactions exclusively on one end of a cellulose chain or a nanocellulose particle. The premises for end-wise modification have been known for decades. Nevertheless, different approaches for the reactions have emerged only recently, because of formidable synthetic and analytical challenges associated with the issue, including the adverse reactivity of the cellulose reducing end and the low abundance of newly introduced functionalities. This Review gives a full account of the scientific underpinnings and challenges related to end-wise modification of cellulose nanocrystals. Furthermore, we present how the chemical modification of cellulose nanocrystal ends may be applied to directed assembly, resulting in numerous possibilities for the construction of new materials, such as responsive liquid crystal templates and composites with tailored interactions.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 16300FI-00076 AaltoEspooFinland
| | - Gwendoline Delepierre
- Adolphe Merkle InstituteUniversité de FribourgChemin des Verdiers 4CH-1700FribourgSwitzerland
| | - Alistair W. T. King
- Materials Chemistry DivisionChemistry DepartmentUniversity of HelsinkiA.I. Virtasen aukio 1, P.O. Box 55FI-00014HelsinkiFinland
| | - Mauri A. Kostiainen
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 16300FI-00076 AaltoEspooFinland
| | - Justin Zoppe
- Omya International AGBaslerstrasse 42CH-4665OftringenSwitzerland
| | - Christoph Weder
- Adolphe Merkle InstituteUniversité de FribourgChemin des Verdiers 4CH-1700FribourgSwitzerland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 16300FI-00076 AaltoEspooFinland
| |
Collapse
|
45
|
Chain architectures of various cellulose-based antiscalants on the inhibition of calcium carbonate scale. Sci Rep 2020; 10:21906. [PMID: 33318513 PMCID: PMC7736879 DOI: 10.1038/s41598-020-78408-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Two series of cellulose-based antiscalants with different chain architectures, i.e., linear carboxymethyl cellulose (CMC) and branch-shaped carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA), were synthesized. The carboxyl groups were distributed on CMC backbone but mainly on the grafted chains of CMC-g-PAA. The addition of CMC and CMC-g-PAA can both increase the surface energy of CaCO3 scale and decrease its crystal nucleation rate, thereby inhibiting CaCO3 scale formation. The structural effects of these cellulose-based antiscalants, especially the chain architectures, on the scale inhibition were investigated in detail. High degree of carboxymethyl substitution caused better inhibition effect of linear CMC. However, CMC-g-PAA with an appropriate content of carboxyl groups but high average number of PAA grafted chains can achieve high inhibition performance. Besides, with similar contents of carboxyl groups, CMC-g-PAA showed much better inhibition performance than CMC due to the distinct multi-dimensional spatial structure of graft copolymer in solution, causing the enhanced chelation and dispersion effects. Characterization of CaCO3 crystal by scanning electron microscopy and X-ray diffraction confirmed that crystal distortion effect obviously existed in CMC but quite minor in CMC-g-PAA. The differences between the scale-inhibition performance of CMC and CMC-g-PAA should be attributed to the different scale-inhibition mechanisms originated in their distinct chain architectures.
Collapse
|
46
|
Esen E, Hädinger P, Meier MAR. Sustainable Fatty Acid Modification of Cellulose in a CO 2-Based Switchable Solvent and Subsequent Thiol-Ene Modification. Biomacromolecules 2020; 22:586-593. [PMID: 33289549 DOI: 10.1021/acs.biomac.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Searching for more sustainable materials as an alternative to petroleum-based products is of increasing interest due to different environmental issues. Cellulose and fatty acids are two very promising candidates for biobased material design. Herein, we report a sustainable synthesis of fatty acid cellulose esters (FACEs) via transesterification of cellulose with methyl-10-undecenoate in a CO2-based switchable solvent system. FACEs with a degree of substitution between 0.70 and 1.97 were synthesized by simple variation of reaction parameters and characterized in detail. Subsequently, a FACE with a degree of substitution (DS) of 0.70 was modified via thiol-ene reaction, demonstrating an efficient and versatile method to tune the structure and properties of the new cellulose derivatives. Films were produced from each sample via solvent casting, and their mechanical properties were examined using tensile tests. Elastic moduli (E) ranging from 90 to 635 MPa and elongations at break between 2 and 23% were observed, depending on the DS of the FACE and the type of thiol employed for the modification. Finally, contact angle measurements confirmed an increase in the surface hydrophobicity (75-91°) for the thiol-ene-modified samples.
Collapse
Affiliation(s)
- Eren Esen
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Pauline Hädinger
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum (MZE), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Michael A R Meier
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum (MZE), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| |
Collapse
|
47
|
Heise K, Delepierre G, King AWT, Kostiainen MA, Zoppe J, Weder C, Kontturi E. Chemische Modifizierung der reduzierenden Enden von Cellulosenanokristallen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finnland
| | - Gwendoline Delepierre
- Adolphe Merkle Institute Université de Fribourg Chemin des Verdiers 4 CH-1700 Fribourg Schweiz
| | - Alistair W. T. King
- Materials Chemistry Division Chemistry Department University of Helsinki A.I. Virtasen aukio 1, P.O. Box 55 FI-00014 Helsinki Finnland
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finnland
| | - Justin Zoppe
- Omya International AG Baslerstrasse 42 CH-4665 Oftringen Schweiz
| | - Christoph Weder
- Adolphe Merkle Institute Université de Fribourg Chemin des Verdiers 4 CH-1700 Fribourg Schweiz
| | - Eero Kontturi
- Department of Bioproducts and Biosystems Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finnland
| |
Collapse
|
48
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Scapin S, Formaggio F, Glisenti A, Biondi B, Scocchi M, Benincasa M, Peggion C. Sustainable, Site-Specific Linkage of Antimicrobial Peptides to Cotton Textiles. Macromol Biosci 2020; 20:e2000199. [PMID: 32852141 DOI: 10.1002/mabi.202000199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/07/2020] [Indexed: 11/10/2022]
Abstract
A new general method to covalently link a peptide to cotton via thiazolidine ring formation is developed. Three different analogues of an ultrashort antibacterial peptide are synthesized to create an antibacterial fabric. The chemical ligation approach to the heterogeneous phase made up of insoluble cellulose fibers and a peptide solution in water is adapted. The selective click reaction occurs between an N-terminal cysteine on the peptide and an aldehyde on the cotton matrix. The aldehyde is generated on the primary alcohol of glucose by means of the enzyme laccase and the cocatalyst 2,2,6,6-tetramethylpiperidine-1-oxyl. This keeps the pyranose rings intact and may bring a benefit to the mechanical properties of the fabric. The presence of the peptide on cotton is demonstrated through instant colorimetric tests, UV spectroscopy, IR spectroscopy, and X-ray photoelectron spectroscopy analysis. The antibacterial activity of the peptides is maintained even after their covalent attachment to cotton fibers.
Collapse
Affiliation(s)
- Stefano Scapin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Antonella Glisenti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
50
|
Tarchoun AF, Trache D, Klapötke TM, Krumm B, Khimeche K, Mezroua A. A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: Synthesis and characterization. Carbohydr Polym 2020; 249:116820. [PMID: 32933667 DOI: 10.1016/j.carbpol.2020.116820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
In the current investigation, azidodeoxy-microcrystalline cellulose nitrate (AMCCN) as a novel promising nitrogen-rich energetic biopolymer was synthesized, and its features were compared to those of azidodeoxy-pristine cellulose nitrate (APCN), conventional cellulose nitrate (PCN) and microcrystalline cellulose nitrate (MCCN). The produced nitrated samples and their precursors were fully characterized using various analytical techniques. In addition, the heats of combustion and mechanical sensitivities of all nitrated biopolymers were evaluated, and their energetic performances were predicted by EXPLO5 V6.04 software. The obtained results provide evidence for the effectiveness of the applied chemical functionalization approach to synthesize the relatively insensitive AMCCN and APCN with nitrogen content of 22.75 % and 22.50 %, density of 1.718 g/cm3 and 1.706 g/cm3, and detonation velocity of 7707 m/s and 7533 m/s, respectively, which are higher than those of PCN. This work opens avenues to design promising energetic biopolymers based on renewable microcrystalline cellulose for potential application in advanced high performance solid propellants and explosives.
Collapse
Affiliation(s)
- Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria; Department of Chemistry, Ludwig Maximilian University Butenandtstrasse 5-13 (D), D-81377, Munich, Germany.
| | - Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig Maximilian University Butenandtstrasse 5-13 (D), D-81377, Munich, Germany.
| | - Burkhard Krumm
- Department of Chemistry, Ludwig Maximilian University Butenandtstrasse 5-13 (D), D-81377, Munich, Germany
| | - Kamel Khimeche
- UER Procédés Energétiques, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria
| | - Abderrahmane Mezroua
- UER Procédés Energétiques, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria
| |
Collapse
|