1
|
Soltani S, Sangsefidi ZS, Asoudeh F, Torabynasab K, Zeraattalab-Motlagh S, Hejazi M, Khalighi Sikaroudi M, Meshkini F, Razmpoosh E, Abdollahi S. Effect of Low-Fat Diet on Depression Score in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Nutr Rev 2025; 83:e741-e750. [PMID: 38899499 DOI: 10.1093/nutrit/nuae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
CONTEXT Current evidence on the effect of a low-fat (LF) diet on depression scores has been inconsistent. OBJECTIVE To explore the effect of an LF diet on depression scores of adults by systematic review and meta-analysis of randomized controlled trials (RCTs). DATA SOURCES The PubMed, ISI Web of Science, Scopus, and CENTRAL databases were searched from inception to June 7, 2023, to identify trials investigating the effect of an LF diet (fat intake ≤30% of energy intake) on the depression score. DATA EXTRACTION Random-effects meta-analyses were used to estimate pooled summary effects of an LF diet on the depression score (as Hedges g). DATA ANALYSIS Finding from 10 trials with 50 846 participants indicated no significant change in depression score following LF diets in comparison with usual diet (Hedges g = -0.11; 95% CI, -0.25 to 0.03; P = 0.12; I2 = 70.7% [for I2, 95% CI, 44%, 85%]). However, a significant improvement was observed in both usual diet and LF diets when the content of protein was 15-20% of calorie intake (LF, normal protein diet: n = 5, Hedges g = -0.21, 95% CI, -0.24 to -0.01, P = 0.04, I2 = 0%; usual, normal protein diet: n = 3, Hedges g = -0.28, 95% CI, -0.51 to -0.05, P = 0.01, I2 = 0%). Sensitivity analysis also found the depression score improved following LF diet intervention in participants without baseline depression. CONCLUSION This study revealed that LF diet may have small beneficial effect on depression score in the studies enrolled mentally healthy participants. Moreover, achieving to adequate dietary protein is likely to be a better intervention than manipulating dietary fat to improve depression scores. However, it is not clear whether this effect will last in the long term. Conducting more studies may change the results due to the low-certainty of evidence. SYSTEMATIC REVIEW REGISTRATION CRD42023420978 (https://www.crd.york.ac.uk/PROSPERO).
Collapse
Affiliation(s)
- Sepideh Soltani
- Research Center of Addiction and Behavioral Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Asoudeh
- Research Center for Biochemistry and Nutrition in Metabolic Disease, Kashan University of Medical Sciences, Kashan, Iran
| | - Kimia Torabynasab
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Hejazi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Khalighi Sikaroudi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Razmpoosh
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
2
|
Nikdasti A, Khodadadi ES, Ferdosi F, Dadgostar E, Yahyazadeh S, Heidari P, Ehtiati S, Vakili O, Khatami SH. Nutritional Strategies in Major Depression Disorder: From Ketogenic Diet to Modulation of the Microbiota-Gut-Brain Axis. Mol Neurobiol 2025; 62:2973-2994. [PMID: 39192045 DOI: 10.1007/s12035-024-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. While traditional pharmacological treatments are effective for many cases, a significant proportion of patients do not achieve full remission or experience side effects. Nutritional interventions hold promise as an alternative or adjunctive approach, especially for treatment-resistant depression. This review examines the potential role of nutrition in managing MDD through addressing biological deficits and modulating pathways relevant to its pathophysiology. Specifically, it explores the ketogenic diet and gut microbiome modulation through various methods, including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation. Numerous studies link dietary inadequacies to increased MDD risk and deficiencies in nutrients like omega-3 s, vitamins D and B, magnesium, and zinc. These deficiencies impact neurotransmitters, inflammation, and other biological factors in MDD. The gut-brain axis also regulates mood, stress response, and immunity, and disruptions are implicated in MDD. While medications aid acute symptoms, nutritional strategies may improve long-term outcomes by preventing relapse and promoting sustained remission. This comprehensive review aims to provide insights into nutrition's multifaceted relationship with MDD and its potential for developing more effective integrated treatment approaches.
Collapse
Affiliation(s)
- Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Elaheh Sadat Khodadadi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Oliveira JC, Garcez A, Dias-da-Costa JS, Olinto MTA. Association between healthy dietary pattern and common mental disorders in women: a cross-sectional population-based study. Nutr Neurosci 2025:1-9. [PMID: 39773357 DOI: 10.1080/1028415x.2024.2448923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES Scientific evidence suggests an association between diet quality and the prevalence of common mental disorders (CMD) in women. Thus, this study aimed to investigate the association between a healthy dietary pattern and CMD among women. METHODS A cross-sectional population-based study was conducted on a representative sample of 1128 women, aged 20-69 years, residing in the urban area of São Leopoldo, RS, Brazil. A validated food frequency questionnaire was used to assess dietary intake. A healthy dietary pattern, primarily consisting of fruits and vegetables, was identified using principal component analysis. CMD were evaluated using the Self-Reporting Questionnaire (SRQ-20: score ≥ 8). Prevalence ratios (PR) with 95% confidence intervals (CI) were estimated using multivariate Poisson regression with robust variance. RESULTS The overall prevalence of CMD was 33.2% (95% CI: 30.6-36.1). After adjusting for potential confounding factors, a statistically significant inverse relationship between a healthy dietary pattern and CMD was observed. High adherence to a healthy dietary pattern was associated with a lower prevalence of CMD (PR = 0.74; 95% CI: 0.59-0.95; p = 0.017). Women with a higher score on the healthy dietary pattern were 26% less likely to have CMD. CONCLUSIONS This study highlights a significant inverse association between a healthy dietary pattern and CMD in women. A high prevalence of CMD was also observed in this population group. These findings underscore the importance of promoting healthy dietary intake to prevent psychiatric disorders.
Collapse
Affiliation(s)
- Jéssica Casagrande Oliveira
- Post-Gratuate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
| | - Anderson Garcez
- Post-Gratuate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul State, UFRGS, Porto Alegre, Brazil
| | | | - Maria Teresa Anselmo Olinto
- Post-Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Federal University of Rio Grande do Sul State, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
4
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
5
|
Kumar M, Bhatt B, Gusain C, Mahajan N, Bishnoi M. Sex-specific effects of ketogenic diet on anxiety-like behavior and neuroimmune response in C57Bl/6J mice. J Nutr Biochem 2024; 127:109591. [PMID: 38311044 DOI: 10.1016/j.jnutbio.2024.109591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The ketogenic diet (KD) has been shown to reduce anxiety and enhance cognitive functions in neurological diseases. However, the sex-specific effects of KD on anxiety-like behavior in healthy individuals and the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are unelucidated. This study investigated the sex-specific effects of KD on anxiety-like behavior and the neuroimmune response in the prefrontal cortex (PFC) and hippocampus of healthy C57BL/6J male and female mice. Animals were fed either a control diet (CD- 17% fat, 65% carb, 18% protein) or a KD (80% fat, 5% carb, 15% protein) for 4 weeks. KD increased the levels of circulating β-hydroxybutyrate (BHB) both in males and females. However, PFC BHB levels were found to be elevated only in KD males. Moreover, KD did not affect the behavior of females but improved motor abilities and reduced anxiety levels in males. KD suppressed the mRNA expression of the pan microglial markers (Cd68, P2ry12) and induced morphological changes in the male PFC microglia. A sex-specific decrease in IL1β and an increase in IL-10 levels was found in the PFC of KD males. A similar trend was observed in the hippocampus of males where KD reduced the mRNA expression of P2ry12, Il1β, and cFos. Additionally, BHB increased the production of IL-10 whereas it decreased the production of IL1β from human microglia in in-vitro conditions. In summary, these results demonstrate that the anxiolytic and motor function enhancement abilities of KD are male-specific. Reduced pro-inflammatory and improved anti-inflammatory factors in the male PFC and hippocampus may underlie these effects.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India; Adjunct faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India.
| | - Babita Bhatt
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Chitralekha Gusain
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Nayan Mahajan
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| |
Collapse
|
6
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
7
|
Khalooeifard R, Rahmani J, Ghoreishy SM, Tavakoli A, Najjari K, Talebpour M. Evaluate the Effects of Different Types of Preoperative Restricted Calorie Diets on Weight, Body Mass Index, Operation Time and Hospital Stay in Patients Undergoing Bariatric Surgery: a Systematic Review and Meta Analysis Study. Obes Surg 2024; 34:236-249. [PMID: 38052747 DOI: 10.1007/s11695-023-06973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
Previous studies investigated low-calorie diets (LCD), very-low-calorie diets (VLCD), and very-low-calorie ketogenic diets (VLCKD) in relation to weight loss and outcomes for bariatric surgery patients. However, the overall effects of these diets on various outcomes remain unclear. This study aimed to assess the impact of preoperative restricted calorie diets on weight, body mass index (BMI), operation time (OT), and hospital stay (HS) in bariatric surgery patients. Seventeen articles were analyzed, revealing the highest weight loss (-8.62) and BMI reduction (-5.75) with VLCKD. Due to insufficient data, the impact of these diets on OT and HS could not be determined. Further interventional studies are required to determine the ideal preoperative diet that achieves optimal weight loss, patient compliance, tolerance, acceptance, and surgical outcomes.
Collapse
Affiliation(s)
- Razieh Khalooeifard
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jamal Rahmani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosrow Najjari
- Advanced Minimally Invasive Surgery Fellowship, Department of General Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Talebpour
- Advanced Minimally Invasive Surgery Fellowship, Department of General Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
González Ibáñez F, Halvorson T, Sharma K, McKee CG, Carrier M, Picard K, Vernoux N, Bisht K, Deslauriers J, Lalowski M, Tremblay MÈ. Ketogenic diet changes microglial morphology and the hippocampal lipidomic profile differently in stress susceptible versus resistant male mice upon repeated social defeat. Brain Behav Immun 2023; 114:383-406. [PMID: 37689276 DOI: 10.1016/j.bbi.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaushik Sharma
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Department of Chemistry, Purdue University, West Lafayette, Indiana, United States
| | - Chloe Grace McKee
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Department of Chemistry, Purdue University, West Lafayette, Indiana, United States
| | | | - Maciej Lalowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland; Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Finland
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, British Columbia, Canada.
| |
Collapse
|
9
|
Mrozek W, Socha J, Sidorowicz K, Skrok A, Syrytczyk A, Piątkowska-Chmiel I, Herbet M. Pathogenesis and treatment of depression: Role of diet in prevention and therapy. Nutrition 2023; 115:112143. [PMID: 37562078 PMCID: PMC10299949 DOI: 10.1016/j.nut.2023.112143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
In recent years, there has been a significant increase in depression, which is related to, among other things, the COVID-19 pandemic. Depression can be fatal if not treated or if treated inappropriately. Depression is the leading cause of suicide attempts. The disease is multifactorial, and pharmacotherapy often fails to bring satisfactory results. Therefore, increasingly more importance is attached to the natural healing substances and nutrients in food, which can significantly affect the therapy process and prevention of depressive disorders. A proper diet is vital to preventing depression and can be a valuable addition to psychological and pharmacologic treatment. An inadequate diet may reduce the effectiveness of antidepressants or increase their side effects, leading to life-threatening symptoms. This study aimed to review the literature on the pathogenesis of the development and treatment of depression, with particular emphasis on dietary supplements and the role of nutrition in the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Weronika Mrozek
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Justyna Socha
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Klara Sidorowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Skrok
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Syrytczyk
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
10
|
Lavercombe M. Recommendations from the Medical Education Editor. Respirology 2023; 28:903-905. [PMID: 37621177 DOI: 10.1111/resp.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Mark Lavercombe
- Department of Respiratory & Sleep Disorders Medicine, Western Health, Melbourne, Victoria, Australia
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
González Ibáñez F, Halvorson T, Sharma K, McKee C, Carrier M, Picard K, Vernoux N, Bisht K, Deslauriers J, Lalowski M, Tremblay MÈ. Ketogenic diet alters microglial morphology and changes the hippocampal lipidomic profile distinctively in stress susceptible versus resistant male mice upon repeated social defeat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555135. [PMID: 37693370 PMCID: PMC10491121 DOI: 10.1101/2023.08.28.555135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Katherine Picard
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | | | - Maciej Lalowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Finland
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada
| |
Collapse
|
12
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
13
|
Guzzo EFM, de Lima Rosa G, Domingues AM, Padilha RB, Coitinho AS. Reduction of seizures and inflammatory markers by betamethasone in a kindling seizure model. Steroids 2023; 193:109202. [PMID: 36828350 DOI: 10.1016/j.steroids.2023.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic disease characterized by an ongoing predisposition to seizures. Although inflammation has emerged as a crucial factor in the etiology of epilepsy, no approaches to anti-inflammatory treatment have been clinically proven to date. Betamethasone (a corticosteroid drug used in the clinic for its anti-inflammatory and immunosuppressive effects) has never been evaluated in attenuating the intensity of seizures in a kindling animal model of seizures. Using a kindling model in male wistar rats, this study evaluated the effect of betamethasone on the severity of seizures and levels of pro-inflammatory interleukins. Seizures were induced by pentylenetetrazole (30 mg/kg) on alternate days for 15 days. The animals were divided into four groups: a control group treated with saline, another control group treated with diazepam (2 mg/kg), and two groups treated with betamethasone (0.125 and 0.250 mg/kg, respectively). Open field test was conducted. Betamethasone treatments were effective in reducing the intensity of epileptic seizures. There were lower levels of Tumor Necrosis Factor-α and interleukin-1β in the cortex, compared to the saline group, on the other hand, levels in the hippocampus remained similar to the control groups. There was no change in the levels of interleukin-6 in the evaluated structures. Serum inflammatory mediators remained similar. Lower quantities of inflammatory mediators in the central nervous system may have been the key to the reduced severity of seizures on the Racine scale.
Collapse
Affiliation(s)
- Edson Fernando Muller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
15
|
Taoulost S, Rasgon N, Ferretti CJ, Hollander E. The role of ketogenic therapy in developmental disorders. J Psychiatr Res 2023; 161:307-309. [PMID: 36989905 DOI: 10.1016/j.jpsychires.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Samia Taoulost
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Casara Jean Ferretti
- Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Hollander
- Psychiatric Research Institute of Montefiore Einstein (PRIME), Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Wu T, Liu R, Zhang L, Rifky M, Sui W, Zhu Q, Zhang J, Yin J, Zhang M. Dietary intervention in depression - a review. Food Funct 2022; 13:12475-12486. [PMID: 36408608 DOI: 10.1039/d2fo02795j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mental illness that affects the normal lives of over 300 million people. Unfortunately, about 30% to 40% of patients do not adequately respond to pharmacotherapy and other therapies. This review focuses on exploring the relationship between dietary nutrition and depression, aiming to find safer and efficient ingredients to alleviate depression. Diet can affect depression in numerous ways. These pathways include the regulation of tryptophan metabolism, inflammation, hypothalamic-pituitary-adrenal (HPA) axis, microbe-gut-brain axis, brain-derived neurotrophic factor (BDNF) and epigenetics. Furthermore, probiotics, micronutrients, and other active substances exhibit significant antidepressant effects by regulating the above pathways. These provide insights for developing antidepressant foods.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ling Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Mohamed Rifky
- Eastern University of Sri Lanka, Chenkalady 999011, Sri Lanka
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China. .,Tianjin Agricultural University, and China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
17
|
Saito ER, Warren CE, Hanegan CM, Larsen JG, du Randt JD, Cannon M, Saito JY, Campbell RJ, Kemberling CM, Miller GS, Edwards JG, Bikman BT. A Novel Ketone-Supplemented Diet Improves Recognition Memory and Hippocampal Mitochondrial Efficiency in Healthy Adult Mice. Metabolites 2022; 12:1019. [PMID: 36355101 PMCID: PMC9693360 DOI: 10.3390/metabo12111019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/13/2023] Open
Abstract
Mitochondrial dysfunction and cognitive impairment are common symptoms in many neurologic and psychiatric disorders, as well as nonpathological aging. Ketones have been suggested as therapeutic for their efficacy in epilepsy and other brain pathologies such as Alzheimer's disease and major depressive disorder. However, their effects on cognitive function in healthy individuals is less established. Here, we explored the mitochondrial and performative outcomes of a novel eight-week ketone-supplemented ketogenic (KETO) diet in healthy adult male and female mice. In a novel object recognition test, KETO mice spent more time with the novel, compared to familiar, object, indicating an improvement in recognition memory. High-resolution respirometry on permeabilized hippocampal tissue returned significant reductions in mitochondrial O2 consumption. No changes in ATP production were observed, yielding a significantly higher ATP:O2 ratio, a measure of mitochondrial efficiency. Together, these findings demonstrate the KETO diet improves hippocampal mitochondrial efficiency. They add to a growing body of evidence that suggests ketones and ketogenic diets are neuroprotective and metabolically and cognitively relevant, even in healthy adults. They also suggest that ketogenic lifestyle changes may be effective strategies for protecting against cognitive decline associated with aging and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
18
|
Yang Y, Wang X, Xiao A, Han J, Wang Z, Wen M. Ketogenic diet prevents chronic sleep deprivation-induced Alzheimer’s disease by inhibiting iron dyshomeostasis and promoting repair via Sirt1/Nrf2 pathway. Front Aging Neurosci 2022; 14:998292. [PMID: 36118706 PMCID: PMC9475074 DOI: 10.3389/fnagi.2022.998292] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Sleep deprivation (SD) is one of the main risk factors for Alzheimer’s disease (AD), but the underlying mechanism is still unclear. Ketogenic diet (KD) has been shown widely neuroprotective effects but less known about its effect on SD-induced AD. In the present study, a continuous 21 days SD mouse model with or without KD was established. The changes of cognitive function, pathological hallmarks of AD, ferroptosis, and intracellular signal pathways in mice were detected by Morris water maze, ThS staining, diaminobenzidine (DAB)-enhanced Perls’ stain, antioxidant assay, immuno-histochemistry, and western blot. The results showed that KD can prevent the cognitive deficiency, amyloid deposition and hyperphosphorylated tau induced by chronic SD. Analysis of ferroptosis revealed that KD can inhibit iron dyshomeostasis by down-regulating the expression of TfR1 and DMT1 and up-regulating the expression of FTH1, FPN1. Meanwhile, KD alleviated oxidative stress with elevated xCT/GPX4 axis, FSP1 and reduced MDA. In addition, KD could promote neuronal repair by enhancing BDNF and DCX. Further studies demonstrated that KD activated Sirt1/Nrf2 signaling pathway in the hippocampus in SD-exposed mice. Our finding firstly suggested that KD could prevent chronic SD-induced AD by inhibiting ferroptosis and improving the neuronal repair ability via Sirt1/Nrf2 signaling pathway.
Collapse
|
19
|
Colangeli L, Gentileschi P, Sbraccia P, Guglielmi V. Ketogenic Diet for Preoperative Weight Reduction in Bariatric Surgery: A Narrative Review. Nutrients 2022; 14:nu14173610. [PMID: 36079867 PMCID: PMC9460892 DOI: 10.3390/nu14173610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bariatric surgery (BS) is the most effective treatment in reducing weight and the burden of comorbidities in patients with severe obesity. Despite the overall low mortality rate, intra- and post-operative complications remains quite common. Weight loss before BS reduces surgical risk, but studies are inconclusive regarding which is the best approach to apply. In this review, we summarize the current evidence on the effect of a ketogenic diet (KD) before BS. All studies agree that KD leads to considerable weight loss and important improvements in terms of surgical risk, but populations, interventions and outcomes are very heterogeneous. KD appears to be a safe and effective approach to induce weight loss before BS. However, randomized controlled trials with better-defined dietary protocols and homogeneous outcomes are necessary in order to draw firm conclusions.
Collapse
Affiliation(s)
- Luca Colangeli
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Obesity Medical Center, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Paolo Gentileschi
- Department of Bariatric and Metabolic Surgery, San Carlo of Nancy Hospital, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Obesity Medical Center, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Obesity Medical Center, Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
20
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
21
|
Ceolin G, Breda V, Koning E, Meyyappan AC, Gomes FA, Moreira JD, Gerchman F, Brietzke E. A Possible Antidepressive Effect of Dietary Interventions: Emergent Findings and Research Challenges. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2022; 9:151-162. [PMID: 35496470 PMCID: PMC9034261 DOI: 10.1007/s40501-022-00259-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Purpose Despite recent advancements in the treatment of depression, the prevalence of affected individuals continues to grow. The development of new strategies has been required and emerging evidence has linked a possible antidepressant effect with dietary interventions. In this review, we discuss recent findings about the possible antidepressant effect of dietary interventions with an emphasis on the results of randomized controlled trials. Recent findings A high consumption of refined sugars and saturated fat and a low dietary content of fruits and vegetables has been associated with the development of depression. There is evidence supporting a small to moderate beneficial effect of a Mediterranean-type diet in depression. In addition, new dietary protocols are being studied for their use as possible interventions, such as the ketogenic diet, Nordic diet, and plant-based diet. Summary Lifestyle interventions surrounding diet and nutrition are a relatively affordable way to enhance response to treatment and to be employed as an adjunct in mental health care. Most studies, however, are limited by the difficulty in controlling for the placebo effect. Mediterranean-style diets seem to be the most promising as an adjunctive treatment for mood disorders. Larger randomized controlled trials that could assess predictors of response to dietary interventions are needed to establish a clear positive effect of diet and guide clinical care and nutritional recommendations concerning mental health care.
Collapse
Affiliation(s)
- Gilciane Ceolin
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, 752 King Street West, Kingston, ON K7L 7X3 Canada.,Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Vitor Breda
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, 752 King Street West, Kingston, ON K7L 7X3 Canada.,Department of Psychiatry, Queen's University School of Medicine, Kingston, ON Canada
| | - Elena Koning
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, 752 King Street West, Kingston, ON K7L 7X3 Canada
| | - Arun Chinna Meyyappan
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, 752 King Street West, Kingston, ON K7L 7X3 Canada
| | - Fabiano A Gomes
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, 752 King Street West, Kingston, ON K7L 7X3 Canada.,Department of Psychiatry, Queen's University School of Medicine, Kingston, ON Canada
| | - Júlia Dubois Moreira
- Department of Nutrition, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC Brazil
| | - Fernando Gerchman
- Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS Brazil.,Postgraduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Elisa Brietzke
- Centre for Neuroscience Studies (CNS), Queen's University, Kingston, 752 King Street West, Kingston, ON K7L 7X3 Canada.,Department of Psychiatry, Queen's University School of Medicine, Kingston, ON Canada
| |
Collapse
|
22
|
Arulsamy A, Shaikh MF. Epilepsy-associated comorbidities among adults: A plausible therapeutic role of gut microbiota. Neurobiol Dis 2022; 165:105648. [PMID: 35121147 DOI: 10.1016/j.nbd.2022.105648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a debilitating disorder that affects about 70 million people in the world currently. Most patients with epilepsy (PWE) often reported at least one type of comorbid disorder. These may include neuropsychiatric disorders, cognitive deficits, migraine, cardiovascular dysfunction, systemic autoimmune disorders and others. Current treatment strategies against epilepsy-associated comorbidities have been based on targeting each disorder separately with either anti-seizure medications (ASMs), anti-inflammatories or anti-depressant drugs, which have often given inconsistent and ineffective results. Gut dysbiosis may be a common pathological pathway between epilepsy and its comorbid disorders, and thus may serve as a possible intervention target. Therefore, this narrative review aimed to elucidate the potential pathological and therapeutic role of the gut microbiota in adult epilepsy-associated comorbidities. This review noticed a scarcity in the current literature on studies investigating the direct role of the gut microbiota in relation to epilepsy-associated comorbidities. Nevertheless, gut dysbiosis have been implicated in both epilepsy and its associated comorbidities, with similarities seen in the imbalance of certain gut microbiota phyla (Firmicutes), but differences seen in the mechanism of action. Current gut-related interventions such as probiotics have been consistently reported across studies to provide beneficial effects in correcting gut dysbiosis and improving various disorders, independent of epilepsy. However, whether these beneficial effects may translate towards epilepsy-associated comorbidities have yet to be determined. Thus, future studies determining the therapeutic potential of gut microbiota interventions in PWE with epilepsy-associated comorbidities may effectively improve their quality of life.
Collapse
Affiliation(s)
- Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| |
Collapse
|
23
|
The Role of Ketogenic Metabolic Therapy on the Brain in Serious Mental Illness: A Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220009. [PMID: 36483840 PMCID: PMC9728807 DOI: 10.20900/jpbs.20220009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In search of interventions targeting brain dysfunction and underlying cognitive impairment in schizophrenia, we look at the brain and beyond to the potential role of dysfunctional systemic metabolism on neural network instability and insulin resistance in serious mental illness. We note that disrupted insulin and cerebral glucose metabolism are seen even in medication-naïve first-episode schizophrenia, suggesting that people with schizophrenia are at risk for Type 2 diabetes and cardiovascular disease, resulting in a shortened life span. Although glucose is the brain's default fuel, ketones are a more efficient fuel for the brain. We highlight evidence that a ketogenic diet can improve both the metabolic and neural stability profiles. Specifically, a ketogenic diet improves mitochondrial metabolism, neurotransmitter function, oxidative stress/inflammation, while also increasing neural network stability and cognitive function. To reverse the neurodegenerative process, increasing the brain's access to ketone bodies may be needed. We describe evidence that metabolic, neuroprotective, and neurochemical benefits of a ketogenic diet potentially provide symptomatic relief to people with schizophrenia while also improving their cardiovascular or metabolic health. We review evidence for KD side effects and note that although high in fat it improves various cardiovascular and metabolic risk markers in overweight/obese individuals. We conclude by calling for controlled clinical trials to confirm or refute the findings from anecdotal and case reports to address the potential beneficial effects of the ketogenic diet in people with serious mental illness.
Collapse
|
24
|
Danan A, Westman EC, Saslow LR, Ede G. The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Front Psychiatry 2022; 13:951376. [PMID: 35873236 PMCID: PMC9299263 DOI: 10.3389/fpsyt.2022.951376] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND HYPOTHESIS The robust evidence base supporting the therapeutic benefit of ketogenic diets in epilepsy and other neurological conditions suggests this same metabolic approach may also benefit psychiatric conditions. STUDY DESIGN In this retrospective analysis of clinical care, 31 adults with severe, persistent mental illness (major depressive disorder, bipolar disorder, and schizoaffective disorder) whose symptoms were poorly controlled despite intensive psychiatric management were admitted to a psychiatric hospital and placed on a ketogenic diet restricted to a maximum of 20 grams of carbohydrate per day as an adjunct to conventional inpatient care. The duration of the intervention ranged from 6 to 248 days. STUDY RESULTS Three patients were unable to adhere to the diet for >14 days and were excluded from the final analysis. Among included participants, means and standard deviations (SDs) improved for the Hamilton Depression Rating Scale scores from 25.4 (6.3) to 7.7 (4.2), P < 0.001 and the Montgomery-Åsberg Depression Rating Scale from 29.6 (7.8) to 10.1 (6.5), P < 0.001. Among the 10 patients with schizoaffective illness, mean (SD) of the Positive and Negative Syndrome Scale (PANSS) scores improved from 91.4 (15.3) to 49.3 (6.9), P < 0.001. Significant improvements were also observed in metabolic health measures including weight, blood pressure, blood glucose, and triglycerides. CONCLUSIONS The administration of a ketogenic diet in this semi-controlled setting to patients with treatment-refractory mental illness was feasible, well-tolerated, and associated with significant and substantial improvements in depression and psychosis symptoms and multiple markers of metabolic health.
Collapse
Affiliation(s)
- Albert Danan
- Rangueil Faculty of Medicine, University of Toulouse, Toulouse, France
| | - Eric C Westman
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura R Saslow
- Department of Health Behavior and Biological Sciences, School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Georgia Ede
- Independent Researcher, Northampton, MA, United States
| |
Collapse
|
25
|
Field R, Pourkazemi F, Rooney K. Effects of a low-carbohydrate ketogenic diet on reported pain, blood biomarkers and quality of life in patients with chronic pain: A pilot randomised clinical trial. PAIN MEDICINE 2021; 23:326-338. [PMID: 34534353 DOI: 10.1093/pm/pnab278] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A low-carbohydrate ketogenic diet has been reported to improve chronic pain by reducing inflammation, oxidative stress, and sensitivity within the nervous system. The main aim of this trial is to evaluate the effects of a ketogenic diet on reported pain, blood biomarkers and quality of life in patients with chronic pain. METHODS Participants with chronic musculoskeletal pain were recruited for a 12-week diet intervention that commenced with a 3-week run-in diet removing ultra-processed foods, followed by randomisation to either a whole-food/well-formulated ketogenic diet (WFKD) or to continue with the minimally processed whole-food diet (WFD). Outcome measures included: average pain (visual analogue scale VAS), blood biomarkers, anthropometrics, adherence, depression, anxiety, sleep, ketones, quality of life, diet satisfaction and macronutrient intake. RESULTS Average weekly pain improved for both groups. WFKD group VAS reduced by 17.9 ± 5.2 mm (p = 0.004) and the WFD group VAS reduced 11.0 ± 9.0 mm (p = 0.006). Both groups also reported improved quality of life (WFKD = 11.5 ± 2.8%, p = 0.001 and WFD = 11.0 ± 3.5%, p = 0.014). The WFKD group also demonstrated significant improvements in pain interference (p = 0.013), weight (p < 0.005), depression (p = 0.015), anxiety (p = 0.013), and inflammation (hsCRP) (p = 0.009). Significant average pain reduction remained at three-month follow-up for both groups (WFKD p = 0.031, WFD p = 0.011). CONCLUSION The implementation of a whole-food diet that restricts ultra-processed foods is a valid pain management tool, however a low-carbohydrate ketogenic diets may have potentially greater pain reduction, weight loss and mood improvements.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, NSW Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, NSW Australia
| |
Collapse
|
26
|
The psychological impact of COVID-19 pandemic on patients included in a bariatric surgery program. Eat Weight Disord 2021; 26:1737-1747. [PMID: 32857287 PMCID: PMC7453189 DOI: 10.1007/s40519-020-00988-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The COVID-19 pandemic has radically impacted the world lifestyle. Epidemics are well-known to cause mental distress, and patients with a current or past history of obesity are at increased risk for the common presence of psychological comorbidities. This study investigates the psychological impact of the current pandemic in patients participating in a bariatric surgery program. METHODS Patients were consecutively enrolled during the Italian lockdown among those waiting for bariatric surgery or attending a post-bariatric follow-up, and were asked to complete through an online platform the Depression Anxiety Stress Scales-21 and a self-assessment questionnaire of 22 items evaluating the resilience, change in eating behavior and emotional responses referring to the ongoing pandemic. RESULTS 59% of the 434 enrolled subjects reported of being worried about the pandemic, and 63% specifically reported of being worried about their or their relatives' health. 37% and 56% felt lonelier and more bored, respectively. 66% was hungrier with increased frequency of snacking (55%) and 39% reported more impulse to eat. Noteworthy, 49% felt unable to follow a recommended diet. No difference in terms of psychological profile was recorded among pre and post-bariatric subjects. Logistic regression analysis on post-bariatric patients showed a relationship between snacking, hunger, eating impulsivity, and anxiety, stress, and/or depression symptoms. CONCLUSION The pandemic led to increased psychological distress in patients with a current or past history of obesity, reducing quality of life and affecting dietary compliance. Targeted psychological support is warranted in times of increased stress for fragile subjects such as pre- and post-bariatric patients. LEVEL OF EVIDENCE Level V: cross-sectional descriptive study.
Collapse
|
27
|
Sourbron J, Thevissen K, Lagae L. The Ketogenic Diet Revisited: Beyond Ketones. Front Neurol 2021; 12:720073. [PMID: 34393987 PMCID: PMC8363000 DOI: 10.3389/fneur.2021.720073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Jastrzębska W, Boniecka I, Szostak-Węgierek D. Validity and efficacy of diets used for preoperative weight reduction among patients qualified for bariatric surgery. POLISH JOURNAL OF SURGERY 2021; 93:53-58. [PMID: 33949320 DOI: 10.5604/01.3001.0014.7953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Bariatric surgery is the most effective method of weight reduction among patients suffering from morbid obesity. Reduction of body weight before surgery is an important element. The aim of the study was to present the current knowledge on preoperative weight reduction and diet for this purpose. MATERIAL AND METHODS To achieve the aims of the paper, articles available in the PubMed / MEDLINE database published in 2005-2020 were used, as well as the guidelines of societies such as Metabolic and Bariatric Surgery Chapter of the Association of Polish Surgeons, American Association of Clinical Endocrinologists, The Obesity Society and American Society for Metabolic & Bariatric Surgery, International Federation for Surgery of Obesity and Metabolic Disorders-European Chapter and European Association for the Study of Obesity. RESULTS Studies show that even a modest reduction in weight in the early preoperative period facilitates surgery and reduces the number of complications. The available data do not support the effect of preoperative weight loss on increased postoperative weight loss. The use of balanced, energy-restricted diet in the preoperative period prepares the patient for changes in the way of nutrition, which improves the nutritional status of patient. Low calorie (LCD) or very low calorie (VLCD) diet can be an effective method of weight loss before surgery, however, this approach does not allow to modify eating habits. The use of a very low calorie ketogenic diet (VLCKD) remains under discussion. CONCLUSIONS There is a need for large randomized trials to assess short and long term benefits of preoperative weight loss and methods of weight loss among patients qualified for bariatric surgery, also the standardization of nutritional management in the preoperative period.
Collapse
Affiliation(s)
| | - Iwona Boniecka
- Department of Clinical Dietetics, Medical University of Warsaw, Poland
| | | |
Collapse
|
29
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|