1
|
Zeidan MA, Alkabbani MA, Giovannuzzi S, Khaleel EF, El-Hamaky AA, Khattab NA, Badi R, Abubakr A, Hamdy AM, Fares M, Tawfik HO, Supuran CT, Eldehna WM, Shaldam MA. Shooting an Arrow against Convulsion: Novel Triazole-Grafted Benzenesulfonamide Derivatives as Carbonic Anhydrase II and VII Inhibitors. J Med Chem 2025; 68:8873-8893. [PMID: 40237575 DOI: 10.1021/acs.jmedchem.5c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study investigates new anticonvulsant substances that target the epilepsy-associated carbonic anhydrase isoforms II and VII. The 1,2,3-triazole with a benzenesulfonamide motif is present in the produced molecules. Of these, 5b and 5c exhibited remarkable selectivity and inhibitory efficacy toward hCA VII and hCA II over hCA I. The KI values of 5b and 5c were 6.3 and 10.1 nM, respectively, and 21.6 and 18.9 nM, respectively. In a pilocarpine-induced paradigm, in vivo assessments showed decreased seizure severity and susceptibility with delayed seizure onset and diminished intensity. The quick absorption and in vivo stability of 5b were demonstrated by pharmacokinetic investigations. Evaluations of toxicity showed no neurotoxic effects and a high safety margin (LD50 > 2000 mg/kg). Mechanistic research has shown effectiveness in maintaining neuronal integrity, reducing mTOR activation, and raising hippocampus KCC2 levels. Compound 5b's binding interactions with hCA II and hCA VII were clarified by docking and dynamics experiments.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nourhan A Khattab
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Abdelhameed Abubakr
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City PO box 11829, Cairo, Egypt
| | - Abdallah M Hamdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City PO box 11829, Cairo, Egypt
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ERU, Badr City, Cairo 11829, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| |
Collapse
|
2
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Mishra KA, Sethi KK. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer's disease. Arch Pharm (Weinheim) 2024:e2400748. [PMID: 39506506 DOI: 10.1002/ardp.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and a principal basis of dementia in the elderly population globally. Recently, human carbonic anhydrases (hCAs, EC 4.2.1.1) were demonstrated as possible new targets for treating AD. hCAs are vital for maintaining pH balance and performing other physiological processes as they catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Current research indicates that hCA plays a role in brain functions critical for transmitting neural signals. Activation of carbonic anhydrase (CA) has emerged as a promising avenue in addressing memory loss and cognitive issues. Conversely, the exploration of CA inhibition represents a novel frontier in this field. By enhancing glial fitness and cerebrovascular health and blocking amyloid-β (Aβ)-induced mitochondrial dysfunction pathways, cytochrome C (CytC) release, caspase 9 activation, and H2O2 generation in neurons, CA inhibitors improve cognition and lessen the pathology caused by Aβ. Recent research has pushed hCAs into the spotlight as critical players in AD pathogenesis and precise therapeutic targets. The captivating dilemma of choosing between hCA inhibitors and activators looms large, as inhibitors reduce Aβ aggregation and improve cerebral blood flow, while activators enhance cerebrovascular functions and restore pH balance. The current review sheds light on the clinical evidence for hCAs and the roles of inhibitors and activators in AD. Additionally, this review offers a fascinating outlook on the data that may aid medicinal chemists in designing and developing new leads that are more effective and selective for upcoming in vitro and in vivo studies, allowing for the discovery and introduction of novel drug candidates for the treatment of AD to the market and into the clinical pipeline.
Collapse
Affiliation(s)
- Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| |
Collapse
|
4
|
Eybek A, Kaya MO, Güleç Ö, Demirci T, Musatat AB, Özdemir O, Öner MNK, Kaya Y, Arslan M. Bovine carbonic anhydrase (bCA) inhibitors: Synthesis, molecular docking and theoretical studies of bisoxadiazole-substituted sulfonamide derivatives. Int J Biol Macromol 2024; 267:131489. [PMID: 38608980 DOI: 10.1016/j.ijbiomac.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
This paper describes the in vitro inhibition potential of bisoxadiazole-substituted sulfonamide derivatives (6a-t) against bovine carbonic anhydrase (bCA) after they were designed through computational analyses and evaluated the predicted interaction via molecular docking. First, in silico ADMET predictions and physicochemical property analysis of the compounds provided insights into solubility and permeability, then density functional theory (DFT) calculations were performed to analyse their ionization energies, nucleophilicity, in vitro electron affinity, dipole moments and molecular interactions under vacuum and dimethyl sulfoxide (DMSO) conditions. After calculating the theoretical inhibition constants, IC50 values determined from enzymatic inhibition were found between 12.93 and 45.77 μM. Molecular docking evaluation revealed favorable hydrogen bonding and π-interactions of the compounds within the bCA active site. The experimentally most active compound, 6p, exhibited the strongest inhibitory activity with a theoretical inhibition constant value of 9.41 nM and H-bonds with Gln91, Thr198, and Trp4 residues and His63 Pi-cation interactions with His63 residues. Overall, the study reveals promising bCA blocking potential for the synthesized derivatives, similar to acetazolamide.
Collapse
Affiliation(s)
- Abdulbaki Eybek
- Chemistry, Faculty of Arts and Science, Siirt University, 56100 Siirt, Turkey
| | - Mustafa Oğuzhan Kaya
- Basic Sciences, Faculty of Veterinary, Siirt University, 56100 Siirt, Turkey; Chemistry, Faculty of Arts and Science, Kocaeli University, 41001 Kocaeli, Turkey.
| | - Özcan Güleç
- Chemistry, Faculty of Sciences, Sakarya University, 54050, Sakarya, Turkey
| | - Tuna Demirci
- Scientific and Technological Research Laboratory, Düzce University, 81620 Düzce, Turkey
| | | | - Oğuzhan Özdemir
- Veterinary Science Department, Technical Sciences Vocational School, Batman University, 72000 Batman, Turkey
| | - Mine Nazan Kerimak Öner
- Medicinal and Aromatic Plants Program, İzmit Vocational School, Kocaeli University, 41285 Kocaeli, Turkey
| | - Yeşim Kaya
- Chemistry, Faculty of Arts and Science, Kocaeli University, 41001 Kocaeli, Turkey
| | - Mustafa Arslan
- Chemistry, Faculty of Sciences, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
5
|
Sari S, Yurtoğlu S, Zengin M, Marcinkowska M, Siwek A, Saraç S. Azoles display promising anticonvulsant effects through possible PPAR-α activation. Neurosci Lett 2024; 828:137750. [PMID: 38548219 DOI: 10.1016/j.neulet.2024.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Azoles such as nafimidone, denzimol and loreclezole are known for their clinical efficacy against epilepsy, and loreclezole acts by potentiating γ-aminobutyric acid (GABA)-ergic currents. In the current study, we report a series of azole derivatives in alcohol ester and oxime ester structure showing promising anticonvulsant effects in 6 Hz and maximal electro shock (MES) models with minimal toxicity. The most promising of the series, 5f, was active in both 6 Hz and MES tests with a median effective dose (ED50) of 118.92 mg/kg in 6 Hz test and a median toxic dose (TD50) twice as high in mice. The compounds were predicted druglike and blood-brain barrier (BBB) penetrant in silico. Contrary to what was expected, the compounds showed no in vitro affinity to GABAA receptors (GABAARs) in radioligand binding assays; however, they were found structurally similar to peroxisome proliferator-activated receptors alpha (PPAR-α) agonists and predicted to show high affinity and agonist-like binding to PPAR-α in molecular docking studies. As a result, 5f emerged as a safe azole anticonvulsant with a wide therapeutic window and possible action through PPAR-α activation.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Sibel Yurtoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Siwek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Baskent University, Ankara, Turkey
| |
Collapse
|
6
|
Singh GK, Kumari B, Das N, Zaman K, Prasad P, Singh RB. Design, synthesis, molecular docking and pharmacological evaluation of some thiadiazole based nipecotic acid derivatives as a potential anticonvulsant and antidepressant agents. 3 Biotech 2024; 14:71. [PMID: 38362592 PMCID: PMC10864245 DOI: 10.1007/s13205-023-03897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
In our continuous effort to develop novel antiepileptic drug, a new series of nipecotic acid derivatives having1,3,4-thiadiazole nucleus were designed and synthesized. This study aims to improve the lipophilicity of nipecotic acid by attaching some lipophilic anchors like thiadiazole and substituted aryl acid derivatives. In our previous study, we noticed that the N-substituted oxadiazole derivative of nipecotic acid exhibited significant antiepileptic activity in the rodent model. The synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, Mass, and elemental analysis. The anticonvulsant activity was evaluated by using the maximal electroshock-induced seizure model in rats (MES) and the subcutaneous pentylenetetrazol (scPTZ) test in mice. None of the compounds were found to be active in the MES model whereas compounds (TN2, TN9, TN12, TN13, and TN15) produced significant protection against the scPTZ-induced seizures model. The compounds showing antiepileptic activity were additionally evaluated for antidepressant activity by using the forced swim test, 5-hydroxytryptophan (5-HTP)-induced head twitch test, and learned helplessness test. All the molecules that showed anticonvulsant activity (TN2, TN9, TN12, TN13, and TN15), also exerted significant antidepressant effects in the animal models. The selected compounds were subjected to different toxicity studies. Compounds were found to have no neurotoxicity in the rota-rod test and devoid of hepatic and renal toxicity in 30 days repeated oral toxicity test. Further, a homology model was developed to perform the in-silico molecular docking and dynamics studies which revealed the similar binding of compound TN9 within the active binding pocket and were found to be the most potent anti-epileptic agent. The market expectation for newly developed antiepileptic thiadiazole-based nipecotic acid derivatives is significant, driven by their potential to offer improved therapeutic outcomes and reduced side effects, addressing a critical need in epilepsy treatment. These innovative compounds hold promise for meeting the demand for more effective and safer antiepileptic medications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03897-1.
Collapse
Affiliation(s)
- Gireesh Kumar Singh
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, Bihar 824236 India
| | - Bindu Kumari
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, Bihar 824236 India
| | - Nirupam Das
- Department of Pharmaceutical Science, SSMPS, Assam University, Silchar, Assam 788151 India
| | - Kamaruz Zaman
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pratibha Prasad
- Department of Neurology, All India Institute of Medical Sciences, Deoghar, Jharkhand 814142 India
| | - Ravi Bhushan Singh
- Institute of Pharmacy, Harischandra P.G. College, Bawanbeegha, Azamgarh Road, Varanasi, 221002 India
| |
Collapse
|
7
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
8
|
Belete TM. Recent Progress in the Development of New Antiepileptic Drugs with Novel Targets. Ann Neurosci 2023; 30:262-276. [PMID: 38020406 PMCID: PMC10662271 DOI: 10.1177/09727531231185991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a chronic neurological disorder that affects approximately 50-70 million people worldwide. Epilepsy has a significant economic and social burden on patients as well as on the country. The recurrent, spontaneous seizure activity caused by abnormal neuronal firing in the brain is a hallmark of epilepsy. The current antiepileptic drugs provide symptomatic relief by restoring the balance of excitatory and inhibitory neurotransmitters. Besides, about 30% of epileptic patients do not achieve seizure control. The prevalence of adverse drug reactions, including aggression, agitation, irritability, and associated comorbidities, is also prevalent. Therefore, researchers should focus on developing more effective, safe, and disease-modifying agents based on new molecular targets and signaling cascades. Summary This review overviews several clinical trials that help identify promising new targets like lactate dehydrogenase inhibitors, c-jun n-terminal kinases, high mobility group box-1 antibodies, astrocyte reactivity inhibitors, cholesterol 24-hydroxylase inhibitors, glycogen synthase kinase-3 beta inhibitors, and glycolytic inhibitors to develop a new antiepileptic drug. Key messages Approximately 30% of epileptic patients do not achieve seizure control. The current anti-seizure drugs are not disease modifying, cure or prevent epilepsy. Lactate dehydrogenase inhibitor, cholesterol 24-hydroxylase inhibitor, glycogen synthase kinase-3 beta inhibitors, and mTOR inhibitors have a promising antiepileptogenic effect.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, Africa
| |
Collapse
|
9
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
10
|
Liu T, Cao L, Zhang T, Fu H. Molecular docking studies, anti-Alzheimer's disease, antidiabetic, and anti-acute myeloid leukemia potentials of narcissoside. Arch Physiol Biochem 2023; 129:405-415. [PMID: 33075241 DOI: 10.1080/13813455.2020.1828483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this research, we explored their capacity for Narcissoside antioxidant and anticholinergic, antidiabetic, and anti-acute myeloid leukaemia. Narcissoside's antioxidant activities were elucidated by the use of various bioanalytical assays. Narcissoside's radical scavenging activities were evaluated by DPPH• and ABTS•+ scavenging activities. On the other hand, IC50 values were calculated for DPPH•, and ABTS•+ scavenging, acetylcholinesterase, and α-glucosidase inhibition effects of narcissoside. IC50 values narcissoside, as 11.54 nM for AChE and 65.58 nM for α-glucosidase were calculated with % Activity-[Inhibitory] graphs. Then, ADME/T analysis of narcissoside molecule was performed to calculate the drug becoming parameters.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| | - Lixia Cao
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| | - Tingting Zhang
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| | - Huan Fu
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Rezaei M, Ghafouri S, Asgari A, Barkley V, Fathollahi Y, Rostami S, Shojaei A, Mirnajafi‐Zadeh J. Involvement of dopamine D 2 -like receptors in the antiepileptogenic effects of deep brain stimulation during kindling in rats. CNS Neurosci Ther 2023; 29:587-596. [PMID: 36514209 PMCID: PMC9873507 DOI: 10.1111/cns.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Deep brain electrical stimulation (DBS), as a potential therapy for drug resistive epileptic patients, has inhibitory action on epileptogenesis. In the present investigation, the role of dopamine D2 -like receptors in the antiepileptogenic action of DBS was studied. METHODS Seizures were induced in adult rats by stimulating the perforant path in a semi-rapid kindling method. Five minutes after the last kindling stimulation, daily DBS was applied to the perforant path at the pattern of low frequency stimulation (LFS; 1 Hz; pulse duration: 0.1 ms; intensity: 50-150 μA; 4 trains of 200 pulses at 5 min intervals). Sulpiride (10 μg/1 μl, i.c.v.), a selective dopamine D2 -like receptor antagonist, was administered prior to the daily LFS application. RESULTS Kindling stimulations increased cumulative daily behavioral seizure stages, daily afterdischarge duration (dADD), and population spike amplitude (PS) in dentate gyrus following perforant path stimulation, while applying LFS decreased the kindled seizures' parameters. In addition, kindling potentiated the early (at 10-50 ms inter-pulse interval) and late (at 150-1000 ms inter-pulse interval) paired-pulse inhibition and decreased the paired-pulse facilitation (at 70-100 ms inter-pulse interval). These effects were also inhibited by applying LFS. All inhibitory effects of LFS on kindling procedure were prevented by sulpiride administration. CONCLUSION These data may suggest that LFS exerts its preventive effect on kindling development, at least partly, through the receptors on which sulpiride acts which are mainly dopamine D2 -like (including D2 , D3 , and D4 ) receptors.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Samireh Ghafouri
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Azam Asgari
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Victoria Barkley
- Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sareh Rostami
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
12
|
Sapmaz A, Çalışır Ü, Akkemik E, Çiçek B. Microwave Assisted Synthesis of Benzo-Azacrown Ethers and In Vitro Inhibition Studies on hCA I–II. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
13
|
Yakan H, Muğlu H, Türkeş C, Demir Y, Erdoğan M, Çavuş MS, Beydemir Ş. A novel series of thiosemicarbazone hybrid scaffolds: Design, Synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Basit A, Ahmad S, Khan KUR, Aati HY, Sherif AE, Ovatlarnporn C, Khan S, Rao H, Arshad MA, Shahzad MN, Perveen S. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front Chem 2023; 10:1077581. [PMID: 36688045 PMCID: PMC9853444 DOI: 10.3389/fchem.2022.1077581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Cardamine amara L. (Brassicaceae) is an important edible plant with ethnomedicinal significance. This study aimed at evaluating the phytochemical composition, anti-inflammatory, antioxidant and cytotoxicity aspects of the hydro-alcoholic extract of C. amara (HAECA). Methods: The phytochemical composition was evaluated through total phenolic contents (TPC), total flavonoid contents (TFC) determination and UPLC-QTOF-MS profiling. Anti-inflammatory evaluation of HAECA was carried out through the carrageenan induced paw edema model. Four in vitro methods were applied in the antioxidant evaluation of HAECA. MTT assay was used to investigate the toxicity profile of the species against human normal liver cells (HL7702), human liver cancer cell lines (HepG2) and human breast cancer cell lines (MCF-7). Three major compounds (Gentisic acid, skullcapflavone and conidendrine) identified in UPLC-Q-TOF-MS analysis were selected for in silico study against cyclooxygenase (COX-I and COX-II). Results and Discussion: The findings revealed that HAECA is rich in TPC (39.32 ± 2.3 mg GAE/g DE) and TFC (17.26 ± 0.8 mg RE/g DE). A total of 21 secondary metabolites were tentatively identified in UPLC-Q-TOF-MS analysis. In the MTT cytotoxicity assay, the extract showed low toxicity against normal cell lines, while significant anticancer activity was observed against human liver and breast cancer cells. The carrageenan induced inflammation was inhibited by HAECA in a dose dependent manner and showed a marked alleviation in the levels of oxidative stress (catalase, SOD, GSH) and inflammatory markers (TNF-α, IL-1β). Similarly, HAECA showed maximum antioxidant activity through the Cupric reducing power antioxidant capacity (CUPRAC) assay (31.21 ± 0.3 mg TE/g DE). The in silico study revealed a significant molecular docking score of the three studied compounds against COX-I and COX-I. Conclusively the current study encourages the use of C. amara as a novel polyphenolic rich source with anti-inflammatory and antioxidant potential and warrants further investigations on its toxicity profile.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Adeel Arshad
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States,*Correspondence: Kashif ur Rehman Khan, ; Chitchamai Ovatlarnporn, ; Shagufta Perveen,
| |
Collapse
|
15
|
Zareei S, Mohammadi-Khanaposhtani M, Adib M, Mahdavi M, Taslimi P. Sulfonamide-phosphonate hybrids as new carbonic anhydrase inhibitors: In vitro enzymatic inhibition, molecular modeling, and ADMET prediction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Channar PA, Alharthy RD, Ejaz SA, Saeed A, Iqbal J. Synthesis, Biological Evaluation, and Molecular Dynamics of Carbothioamides Derivatives as Carbonic Anhydrase II and 15-Lipoxygenase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248723. [PMID: 36557863 PMCID: PMC9785969 DOI: 10.3390/molecules27248723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
A series of hydrazine-1-carbothioamides derivatives (3a-3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found to be selective inhibitors of CA II, while other derivatives exhibited CA II and 15-LOX inhibition. In silico studies of the most potent inhibitors of both b-CA II and 15-LOX were carried out to find the possible binding mode of compounds in their active site. Furthermore, MD simulation results confirmed that these ligands are stably bound to the two targets, while the binding energy further confirmed the inhibitory effects of the 3h compound. As these compounds may have a role in particular diseases, the reported compounds are of great relevance for future applications in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Pervaiz Ali Channar
- Department of Basic sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Rima D. Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
- Correspondence: (A.S.); or (J.I.)
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (A.S.); or (J.I.)
| |
Collapse
|
17
|
Mishra AK, Singh V, Kumar A, Singh H. Synthesis, Computational Study, and Anticonvulsant Activity of Newly
Synthesized 2-aminobenzothiazole Derivatives. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405081808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Despite the fact that anticonvulsant drugs targeting multiple targets have been
used in the health center, their effectiveness and tolerability in the treatment of seizures have not improved
much. As a result, innovative anticonvulsant medicines are still needed urgently to overcome the
significant toxicity of currently existing medications.
Objective:
This study aimed to synthesize 2-aminobenzothiazole derivatives as anticonvulsant agents,
compute physicochemical parameters, and conduct a docking investigation.
Methods:
Condensing 4-(2-(benzo[d]thiazole-2-ylamino) acetamido) benzoyl chloride with substituted
phenols in acetone in anhydrous potassium carbonate in the presence of potassium iodide in dry acetone
yielded benzothiazole derivatives. IR and NMR spectroscopy were used to characterize the structures of
freshly synthesized substances. To estimate their drug-like candidates, a number of molecular attributes of
these derivatives were computed. The carbonic anhydrase enzyme was used to perform molecular docking
on these synthesized compounds. The synthetic compounds were tested for biological activity, such as
anticonvulsant activity and enzyme inhibitor activity for carbonic anhydrase.
Results:
The findings showed that V-5 (4-chlorophenyl 4-(2-(benzo[d]thiazol-2-ylamino)acetamido)benzoate)
had the strongest anticonvulsant effect out of all the eight target compounds.
Conclusion:
The outcome of this research was that V-5 could be a promising new lead molecule for the
development of anticonvulsant drugs.
Collapse
Affiliation(s)
- Arun Kumar Mishra
- Central Facility of Instrumentation, Pharmacy Academy, IFTM University, Moradabad 244001, India
| | - Vachan Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad 244001, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad 244001, India
| | - Harpreet Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad 244001, India
| |
Collapse
|
18
|
Gantner ME, Prada Gori DN, Llanos MA, Talevi A, Angeli A, Vullo D, Supuran CT, Gavernet L. Identification of New Carbonic Anhydrase VII Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2022; 62:4760-4770. [PMID: 36126250 DOI: 10.1021/acs.jcim.2c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human carbonic anhydrase VII (hCA VII) constitutes a promising molecular target for the treatment of epileptic seizures and other central nervous system disorders due to its almost exclusive expression in neurons. Achieving isoform selectivity is one of the main challenges for the discovery of new hCA inhibitors, since nonspecific inhibition may lead to tolerance and side effects. In the present work, we report the development of a molecular docking protocol based on AutoDock4Zn for the search of new hCA VII inhibitors by virtual screening. The docking protocol was applied to the screening of two sets of compounds: a ZINC15 subset of sulfur-containing structures and an in-house library consisting of synthetic and commercial candidates (including approved drugs). Five compounds were selected from the first screening campaign and three from the second one, and they were tested in vitro against the enzyme. Among the eight selected structures, four showed Ki values in the low nanomolar range. These confirmed hits include three approved drugs: meloxicam, piroxicam, and nitrofurantoin, which also showed good selectivity for hCA VII versus hCA II.
Collapse
Affiliation(s)
- Melisa E Gantner
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Denis N Prada Gori
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Manuel A Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| |
Collapse
|
19
|
Antiepileptic Drugs and Their Dual Mechanism of Action on Carbonic Anhydrase. J Clin Med 2022; 11:jcm11092614. [PMID: 35566738 PMCID: PMC9105189 DOI: 10.3390/jcm11092614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The benefit of using inhibitors of carbonic anhydrase (CA), such as acetazolamide, in the treatment of epilepsy has previously been described. (2) Methods: In this paper, the effect on CA of the most well-known antiepileptic drugs was studied in vitro and in vivo. The effects, after chronic treatment, of carbamazepine, phenytoin, valproate, primidone, clonazepam, and ethosuximide were studied in vitro on purified CA, isozyme I (CA I) and CA, and isozyme II (CA II) activity and in vivo on epileptic erythrocyte CA I and CA II activity. (3) Results: In vitro results showed that all antiepileptic drugs reduced purified CA II activity according to dose–response relationships and slightly inhibited CA I activity. In vivo results showed that the chronic administration of antiseizure drugs induced a progressive reduction in erythrocyte CA II activity in all the groups studied. This study shows that CA II inhibition can be induced both in vitro and in vivo by major antiepileptic agents as it might be one of the effective mechanisms of these anticonvulsant drugs. (4) Conclusions: The decrease in CA II activity in epileptic patients after antiseizure treatment suggests the involvement of CA II in the pathogenesis of epilepsy.
Collapse
|
20
|
Bai YF, Zeng C, Jia M, Xiao B. Molecular mechanisms of topiramate and its clinical value in epilepsy. Seizure 2022; 98:51-56. [DOI: 10.1016/j.seizure.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022] Open
|
21
|
Aggul AG, Uzun N, Kuzu M, Taslimi P, Gulcin I. Some phenolic natural compounds as carbonic anhydrase inhibitors: An in vitro and in silico study. Arch Pharm (Weinheim) 2022; 355:e2100476. [DOI: 10.1002/ardp.202100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naim Uzun
- Department of Biochemistry Agri Ibrahim Cecen University Agri Turkey
| | - Muslum Kuzu
- Department of Nutrition and Dietetics Karabuk University Karabuk Turkey
| | - Parham Taslimi
- Department of Biotechnology Bartin University Bartin Turkey
| | - Ilhami Gulcin
- Department of Chemistry Ataturk University Erzurum Turkey
| |
Collapse
|
22
|
Chiaramonte N, Angeli A, Sgambellone S, Bonardi A, Nocentini A, Bartolucci G, Braconi L, Dei S, Lucarini L, Teodori E, Gratteri P, Wünsch B, Supuran CT, Romanelli MN. 2-(2-Hydroxyethyl)piperazine derivatives as potent human carbonic anhydrase inhibitors: Synthesis, enzyme inhibition, computational studies and antiglaucoma activity. Eur J Med Chem 2022; 228:114026. [PMID: 34920169 DOI: 10.1016/j.ejmech.2021.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
Targeting Carbonic Anhydrases (CAs) represents a strategy to treat several diseases, from glaucoma to cancer. To widen the structure-activity relationships (SARs) of our series of piperazines endowed with potent human carbonic anhydrase (hCA) inhibition, a new series of chiral piperazines carrying a (2-hydroxyethyl) group was prepared. The Zn-binding function, the 4-sulfamoylbenzoyl moiety, was connected to one piperazine N-atom, while the other nitrogen was decorated with alkyl substituents. In analogy to the approach used for the synthesis of the previously reported series, the preparation of the new compounds started with (R)- and (S)-aspartic acid. A partial racemization occurred during the synthesis. In order to overcome this problem, other chemical strategies were investigated. The inhibitory activity of the new polar derivatives against four hCAs isoforms I, II, IV and IX using a stopped flow CO2 hydrase assay was determined. Some compounds showed potency in the nanomolar range and a preference for inhibiting hCA IX.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Angeli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Sgambellone
- University of Florence, Department NEUROFARBA, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50100, Florence, Italy
| | - Alessandro Bonardi
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Alessio Nocentini
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Lucarini
- University of Florence, Department NEUROFARBA, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50100, Florence, Italy
| | - Elisabetta Teodori
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Paola Gratteri
- University of Florence, Department NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019, Sesto Fiorentino, Italy
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms University Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Claudiu T Supuran
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
23
|
Fuentes-Aguilar A, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Báez JL, Puerta A, Fernandes MX, Padrón JM, Petreni A, Nocentini A, Supuran CT, López Ó, Fernández-Bolaños JG. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 37:168-177. [PMID: 34894971 PMCID: PMC8667885 DOI: 10.1080/14756366.2021.1998026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Andrea Petreni
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
24
|
Synthesis of and molecular docking studies of azomethine- tethered sulfonamides as carbonic anhydrase II & 15-lipoxygenase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules 2021; 26:molecules26216380. [PMID: 34770789 PMCID: PMC8588504 DOI: 10.3390/molecules26216380] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrases (CAs) are a group of ubiquitously expressed metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. Thus, they are involved in those physiological and pathological processes in which cellular pH buffering plays a relevant role. The inhibition of CAs has pharmacologic applications for several diseases. In addition to the well-known employment of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, it has recently been demonstrated that CAIs could be considered as valid therapeutic agents against obesity, cancer, kidney dysfunction, migraine, Alzheimer's disease and epilepsy. Epilepsy is a chronic brain disorder that dramatically affects people of all ages. It is characterized by spontaneous recurrent seizures that are related to a rapid change in ionic composition, including an increase in intracellular potassium concentration and pH shifts. It has been reported that CAs II, VII and XIV are implicated in epilepsy. In this context, selective CAIs towards the mentioned isoforms (CAs II, VII and XIV) have been proposed and actually exploited as anticonvulsants agents in the treatment of epilepsy. Here, we describe the research achievements published on CAIs, focusing on those clinically used as anticonvulsants. In particular, we examine the new CAIs currently under development that might represent novel therapeutic options for the treatment of epilepsy.
Collapse
|
26
|
Shaldam M, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Supuran CT, Eldehna WM. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. Int J Mol Sci 2021; 22:11119. [PMID: 34681794 PMCID: PMC8541628 DOI: 10.3390/ijms222011119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as a zinc anchoring group (QBS 13a-c); thereafter, the sulphonamide group was switched to ortho- and meta-positions to afford regioisomers 9a-d and 11a-g. Moreover, a linker elongation approach was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the described QBS have been synthesized and investigated for their CA inhibitory action against hCA I, II, IX and XII. In general, para-sulphonamide derivatives 13a-c displayed the best inhibitory activity against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII (KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7). In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory action of the target QBS.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, Italian National Research Council (CNR)CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
27
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Kuzu B, Tan M, Gülçin İ, Menges N. A novel class for carbonic anhydrases inhibitors and evaluation of their non-zinc binding. Arch Pharm (Weinheim) 2021; 354:e2100188. [PMID: 34096646 DOI: 10.1002/ardp.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
In this study, 23 different imidazole derivatives were synthesized, and the inhibitory properties of these derivatives against carbonic anhydrase I and II isoenzymes were investigated for the first time. The inhibition concentrations of the imidazole derivatives were found to be in the range of 2.89-115.5 nM. Docking studies examined the binding properties of the imidazole derivatives, and the structure-activity relationship is discussed. Theoretical calculations showed that the binding mode of the imidazole ring was non-zinc binding.
Collapse
Affiliation(s)
- Burak Kuzu
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - Meltem Tan
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Nurettin Menges
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
29
|
Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021; 135:1233-1249. [PMID: 34013961 DOI: 10.1042/cs20210040] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) was clinically exploited for decades, as most modern diuretics were obtained considering as lead molecule acetazolamide, the prototypical CA inhibitor (CAI). The discovery and characterization of multiple human CA (hCA) isoforms, 15 of which being known today, led to new applications of their inhibitors. They include widely clinically used antiglaucoma, antiepileptic and antiobesity agents, antitumor drugs in clinical development, as well as drugs for the management of acute mountain sickness and idiopathic intracranial hypertension (IIH). Emerging roles of several CA isoforms in areas not generally connected to these enzymes were recently documented, such as in neuropathic pain, cerebral ischemia, rheumatoid arthritis, oxidative stress and Alzheimer's disease. Proof-of-concept studies thus emerged by using isoform-selective inhibitors, which may lead to new clinical applications in such areas. Relevant preclinical models are available for these pathologies due to the availability of isoform-selective CAIs for all human isoforms, belonging to novel classes of compounds, such as coumarins, sulfocoumarins, dithiocarbamates, benzoxaboroles, apart the classical sulfonamide inhibitors. The inhibition of CAs from pathogenic bacteria, fungi, protozoans or nematodes started recently to be considered for obtaining anti-infectives with a new mechanism of action.
Collapse
|
30
|
Bulli I, Dettori I, Coppi E, Cherchi F, Venturini M, Di Cesare Mannelli L, Ghelardini C, Nocentini A, Supuran CT, Pugliese AM, Pedata F. Role of Carbonic Anhydrase in Cerebral Ischemia and Carbonic Anhydrase Inhibitors as Putative Protective Agents. Int J Mol Sci 2021; 22:5029. [PMID: 34068564 PMCID: PMC8126098 DOI: 10.3390/ijms22095029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.
Collapse
Affiliation(s)
- Irene Bulli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Elisabetta Coppi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Alessio Nocentini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Claudiu T. Supuran
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Anna Maria Pugliese
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Felicita Pedata
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| |
Collapse
|
31
|
Kugler M, Nekvinda J, Holub J, El Anwar S, Das V, Šícha V, Pospíšilová K, Fábry M, Král V, Brynda J, Kašička V, Hajdúch M, Řezáčová P, Grüner B. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. Chembiochem 2021; 22:2741-2761. [PMID: 33939874 DOI: 10.1002/cbic.202100121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Indexed: 11/12/2022]
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| |
Collapse
|
32
|
Abstract
Coumarins constitute a relatively new class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), possessing a unique inhibition mechanism, acting as "prodrug inhibitors." They undergo the hydrolysis of the lactone ring mediated by the esterase activity of CA. The formed 2-hydroxy-cinnamic acids thereafter bind within a very particular part of the enzyme active site, at its entrance, where a high variability of amino acid residues among the different mammalian CA isoforms is present, and where other inhibitors classes were not seen bound earlier. This explains why coumarins are among the most isoform-selective CA inhibitors known to date among the many chemotypes endowed with such biological activity. As coumarins are widespread secondary metabolites in some bacteria, plants, fungi, and ascidians, many such compounds from various natural sources have been investigated for their CA inhibitory properties and for possible biomedical applications, mainly as anticancer agents targeting hypoxic tumours.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
33
|
Mishra CB, Kumari S, Angeli A, Bua S, Mongre RK, Tiwari M, Supuran CT. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J Med Chem 2021; 64:3100-3114. [PMID: 33721499 DOI: 10.1021/acs.jmedchem.0c01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| |
Collapse
|
34
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
35
|
Shaldam M, Eldehna WM, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Abdel-Aziz HA, Supuran CT. Development of novel benzofuran-based SLC-0111 analogs as selective cancer-associated carbonic anhydrase isoform IX inhibitors. Eur J Med Chem 2021; 216:113283. [PMID: 33667848 DOI: 10.1016/j.ejmech.2021.113283] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
In the present study, we describe the design of different series of benzofuran-based derivatives as potential carbonic anhydrase inhibitors (CAIs). The adopted design is based on bioisosteric replacement for the p-fluorophenyl SLC-0111 tail with the lipophilic 2-methylbenzofuran or 5-bromobenzofuran tails to furnish the 2-methylbenzofuran (MBF) sulfonamides (MBFS; 9, 11 and 13) and 5-bromobenzofuran (BBF) sulfonamides (BBFS; 27a-b, 28a-b and 29a-c), respectively. Thereafter, the urea spacer was either elongated to furnish MBFS (17 and 19), and BBFS (30) series, or replaced by a carbamate one to afford MBFS (15). All the designed compounds were synthesized and evaluated for their inhibitory activities against four human (h) CA isoforms: hCA I, II, IX and XII. MBFS (11b and 17) and BBFS (28b, 29a and 30) efficiently inhibited the tumor-related CA IX isoform in the single-digit nanomolar range (KIs = 8.4, 7.6, 5.5, 7.1 and 1.8 nM, respectively). In particular, MBFS 11b and BBFS 28b exhibited good selectivity toward hCA IX isoform over the main off-target hCA II isoform (S.I. = 26.4 and 58.9, respectively). As a consequence, 11b and 28b were examined for their anticancer and pro-apoptotic activities toward MDA-MB-231 and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
36
|
Brichet J, Arancibia R, Berrino E, Supuran CT. Bioorganometallic derivatives of 4-hydrazino-benzenesulphonamide as carbonic anhydrase inhibitors: synthesis, characterisation and biological evaluation. J Enzyme Inhib Med Chem 2020; 35:622-628. [PMID: 32037900 PMCID: PMC7034112 DOI: 10.1080/14756366.2020.1724995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023] Open
Abstract
A series of bio-organometallic-hydrazones of the general formula [{(η5-C5H4)-C(R)=N-N(H)-C6H4-4-SO2NH2}]MLn(MLn = Re(CO)3, Mn(CO)3, FeCp; R=H, CH3) were prepared by reaction of formyl/acetyl organometallic precursors with 4-hydrazino-benzenesulphonamide. All compounds were characterized by conventional spectroscopic techniques (infra-red, 1H and 13C NMR, mass spectrometry and elemental analysis). Biological evaluation as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors agents was carried out using four human/h) isoforms, hCA I, II, IX and XII. The cytosolic isoforms hCA I and II were effectively inhibited by almost all derivatives with inhibition constants of 1.7-22.4 nM. Similar effects were observed for the tumour-associated transmembrane isoform hCA XII (KIs of 1.9-24.4 nM). hCA IX was less sensitive to inhibition with these compounds. The presence of bio-organometallic or metallo-carbonyl moieties in the molecules of these CAIs makes them amenable for interesting pharmacologic applications, for example for compounds with CO donating properties.
Collapse
Affiliation(s)
- Jeremie Brichet
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arancibia
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Emanuela Berrino
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
37
|
Al-Jaidi BA, Deb PK, Telfah ST, Dakkah AN, Bataineh YA, Khames Aga QAA, Al-dhoun MA, Ahmad Al-Subeihi AA, Odetallah HM, Bardaweel SK, Mailavaram R, Venugopala KN, Nair AB. Synthesis and evaluation of 2,4,5-trisubstitutedthiazoles as carbonic anhydrase-III inhibitors. J Enzyme Inhib Med Chem 2020; 35:1483-1490. [PMID: 32635773 PMCID: PMC7470151 DOI: 10.1080/14756366.2020.1786820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
A series of 17 compounds (12-16 b) with 2,4,5-trisubstitutedthiazole scaffold having 5-aryl group, 4-carboxylic acid/ester moiety, and 2-amino/amido/ureido functional groups were synthesised, characterised, and evaluated for their carbonic anhydrase (CA)-III inhibitory activities using the size exclusion Hummel-Dreyer method (HDM) of chromatography. Compound 12a with a free amino group at the 2-position, carboxylic acid moiety at the 4-position, and a phenyl ring at the 5-position of the scaffold was found to be the most potent CA-III inhibitor (Ki = 0.5 μM). The presence of a carboxylic acid group at the 4-position of the scaffold was found to be crucial for the CA-III inhibitory activity. Furthermore, replacement of the free amino group with an amide and urea group resulted in a significant reduction of activity (compounds 13c and 14c, Ki = 174.1 and 186.2 μM, respectively). Thus, compound 12a (2-amino-5-phenylthiazole-4-carboxylic acid) can be considered as the lead molecule for further modification and development of more potent CA-III inhibitors.
Collapse
Affiliation(s)
- Bilal A. Al-Jaidi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Soha Taher Telfah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Abdel Naser Dakkah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | | | - Mohammad A. Al-dhoun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | | | - Haifa’a Marouf Odetallah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | | | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
38
|
Qaiser S, Mubarak MS, Ashraf S, Saleem M, Ul-Haq Z, Safdar M, Rauf A, Abu-Izneid T, Qadri MI, Maalik A. Benzilydene and thiourea derivatives as new classes of carbonic anhydrase inhibitors: an in vitro and molecular docking study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02661-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
40
|
An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT 1A and Dopamine Pathway Activation as Potential Therapies. Biol Psychiatry 2020; 88:698-709. [PMID: 32507391 PMCID: PMC7554174 DOI: 10.1016/j.biopsych.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.
Collapse
|
41
|
Ur Rehman N, al-Rashida M, Tokhi A, Ahmed Z, Subhan F, Abbas M, Arshid MA, Rauf K. Analgesic and Antiallodynic Effects of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide in a Murine Model of Pain. Drug Des Devel Ther 2020; 14:4511-4518. [PMID: 33149549 PMCID: PMC7602919 DOI: 10.2147/dddt.s269777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Physical, chemical, thermal injuries along with infectious diseases lead to acute pain with associated inflammation, being the primary cause of hospital visits. Moreover, neuropathic pain associated with diabetes is a serious chronic disease leading to high morbidity and poor quality of life. OBJECTIVE Earlier multiple sulphonamides have been reported to have an antinociceptive and antiallodynic profile. 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS), a synthetic sulfonamide with reported carbonic anhydrase inhibitory activity, was investigated for its potential effects in mice model of acute and diabetic neuropathic pain. METHODS AND RESULTS 4-FBS was given orally (p.o.) one hour before the test and then mice were screened for antinociceptive activity by using the tail immersion test, which showed significant antinociceptive effect at both 20 and 40 mg/kg doses. To explore the possible mechanisms, thermal analgesia of 4-FBS was reversed by the 5HT3 antagonist ondansetron 1mg/kg intraperitoneally (i.p.) and by the µ receptor antagonist naloxone (1 mg/kg i.p.), implying possible involvement of serotonergic and opioidergic pathways in the analgesic effect of 4-FBS. Diabetes was induced in mice by a single dose of streptozotocin (STZ) 200 mg/kg i.p. After two weeks, animals first became hyperalgesic and progressively allodynic in the fourth week, which was evaluated through behavioral parameters like thermal and mechanical tests. 4-FBS at 20 and 40 mg/kg p.o. significantly reversed diabetes-induced hyperalgesia and allodynia at 30, 60, 90, and 120 minutes. CONCLUSION These findings are significant and promising while further studies are warranted to explore the exact molecular mechanism and the potential of 4-FBS in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | | | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
42
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
43
|
Lucarini L, Durante M, Sgambellone S, Lanzi C, Bigagli E, Akgul O, Masini E, Supuran CT, Carta F. Effects of New NSAID-CAI Hybrid Compounds in Inflammation and Lung Fibrosis. Biomolecules 2020; 10:biom10091307. [PMID: 32927723 PMCID: PMC7564963 DOI: 10.3390/biom10091307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is a severe lung disease with progressive worsening of dyspnea, characterized by chronic inflammation and remodeling of lung parenchyma. Carbonic anhydrases are a family of zinc-metallo-enzymes that catalyze the reversible interconversion of carbon-dioxide and water to bicarbonate and protons. Carbonic Anhydrase Inhibitor (CAI) exhibited anti-inflammatory effects in animals with permanent-middle-cerebral artery occlusion, arthritis and neuropathic pain. The pharmacological profile of a new class of hybrid compounds constituted by a CAI connected to a Nonsteroidal-Anti-Inflammatory Drug (NSAID) was studied in the modulation of inflammation and fibrosis. In-vitro tests were performed to assess their effects on cyclo-oxygenase enzyme (COX)-1 and COX-2, namely inhibition of platelet aggregation and thromboxane B2 production in the human-platelet-rich plasma, and reduction of Prostaglandin-E2 production in lipopolysaccharide-treated-RAW-264.7 macrophage cell line. The activity of compound 3, one of the most active, was studied in a model of bleomycin-induced lung fibrosis in C57BL/6 mice. The hybrid compounds showed a higher potency in inhibiting PGE2 production, but not in modifying the platelet aggregation and the TXB2 production in comparison to the reference molecules, indicating an increased activity in COX-2 inhibition. In the in-vivo murine model, the compound 3 was more effective in decreasing inflammation, lung stiffness and oxidative stress in comparison to the reference drugs given alone or in association. In conclusion, these CAI-NSAID hybrid compounds are promising new anti-inflammatory drugs for the treatment of lung chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +39-055-2758299
| | - Mariaconcetta Durante
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Cecilia Lanzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Ozlem Akgul
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ege University Bornova, 35100 Izmir, Turkey;
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Pharmaceutical Science Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (F.C.)
| | - Fabrizio Carta
- Department of NEUROFARBA, Pharmaceutical Science Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (F.C.)
| |
Collapse
|
44
|
Grove RA, Madhavan D, Boone CHT, Braga CP, Papackova Z, Kyllo H, Samson K, Simeone K, Simeone T, Helikar T, Hanson CK, Adamec J. Aberrant energy metabolism and redox balance in seizure onset zones of epileptic patients. J Proteomics 2020; 223:103812. [PMID: 32418907 PMCID: PMC10588813 DOI: 10.1016/j.jprot.2020.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Epilepsy is a disorder that affects around 1% of the population. Approximately one third of patients do not respond to anti-convulsant drugs treatment. To understand the underlying biological processes involved in drug resistant epilepsy (DRE), a combination of proteomics strategies was used to compare molecular differences and enzymatic activities in tissue implicated in seizure onset to tissue with no abnormal activity within patients. Label free quantitation identified 17 proteins with altered abundance in the seizure onset zone as compared to tissue with normal activity. Assessment of oxidative protein damage by protein carbonylation identified additional 11 proteins with potentially altered function in the seizure onset zone. Pathway analysis revealed that most of the affected proteins are involved in energy metabolism and redox balance. Further, enzymatic assays showed significantly decreased activity of transketolase indicating a disruption of the Pentose Phosphate Pathway and diversion of intermediates into purine metabolic pathway, resulting in the generation of the potentially pro-convulsant metabolites. Altogether, these findings suggest that imbalance in energy metabolism and redox balance, pathways critical to proper neuronal function, play important roles in neuronal network hyperexcitability and can be used as a primary target for potential therapeutic strategies to combat DRE. SIGNIFICANCE: Epileptic seizures are some of the most difficult to treat neurological disorders. Up to 40% of patients with epilepsy are resistant to first- and second-line anticonvulsant therapy, a condition that has been classified as refractory epilepsy. One potential therapy for this patient population is the ketogenic diet (KD), which has been proven effective against multiple refractory seizure types However, compliance with the KD is extremely difficult, and carries severe risks, including ketoacidosis, renal failure, and dangerous electrolyte imbalances. Therefore, identification of pathways disruptions or shortages can potentially uncover cellular targets for anticonvulsants, leading to a personalized treatment approach depending on a patient's individual metabolic signature.
Collapse
Affiliation(s)
- Ryan A Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Deepak Madhavan
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Cory H T Boone
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Camila Pereira Braga
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Zuzana Papackova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, CZ, Czech Republic; Czech University of Life Science Prague, Faculty of Agrobiology-Food and Natural Recourses, Department of Veterinary Science, Prague, CZ, Czech Republic
| | - Hannah Kyllo
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Kaeli Samson
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Kristina Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Timothy Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Corrine K Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America.
| |
Collapse
|
45
|
Karataş MO, Noma SAA, Gürses C, Balcıoğlu S, Ateş B, Alıcı B, Çakır Ü. Water Soluble Coumarin Quaternary Ammonium Chlorides: Synthesis and Biological Evaluation. Chem Biodivers 2020; 17:e2000258. [PMID: 32638471 DOI: 10.1002/cbdv.202000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/07/2020] [Indexed: 11/11/2022]
Abstract
In the present study, coumarin-bearing three pyridinium and three tetra-alkyl ammonium salts were synthesized. The compounds were fully characterized by 1 H- and 13 C-NMR, LC/MS and IR spectroscopic methods and elemental analyses. The cytotoxic properties of all compounds were tested against human liver cancer (HepG2), human colorectal cancer (Caco-2) and non-cancer mouse fibroblast (L-929) cell lines. Some compounds performed comparable cytotoxicity with standard drug cisplatin. Antibacterial properties of the compounds were tested against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria, but the compounds did not have any antibacterial effect against both bacteria. Enzyme inhibitory properties of all compounds were tested on the activities of human carbonic anhydrase I and II, and xanthine oxidase. All compounds inhibited both enzymes more effectively than standard drugs, acetazolamide and allopurinol, respectively. The biological evaluation results showed that ionic and water soluble coumarin derivatives are promising structures for further investigations especially on enzyme inhibition field.
Collapse
Affiliation(s)
- Mert O Karataş
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Samir A A Noma
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Canbolat Gürses
- İnönü University, Faculty of Science, Department of Molecular Biology and Genetics, 9044280, Malatya, Turkey
| | - Sevgi Balcıoğlu
- Fırat University, Department of Food Processing, 9023600, Elazığ, Turkey
| | - Burhan Ateş
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Bülent Alıcı
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Ümit Çakır
- Balıkesir University, Faculty of Science, Department of Chemistry, 9010440, Balıkesir, Turkey
| |
Collapse
|
46
|
The Expression of Carbonic Anhydrases II, IX and XII in Brain Tumors. Cancers (Basel) 2020; 12:cancers12071723. [PMID: 32610540 PMCID: PMC7408524 DOI: 10.3390/cancers12071723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that participate in the regulation of pH homeostasis in addition to many other important physiological functions. Importantly, CAs have been associated with neoplastic processes and cancer. Brain tumors represent a heterogeneous group of diseases with a frequently dismal prognosis, and new treatment options are urgently needed. In this review article, we summarize the previously published literature about CAs in brain tumors, especially on CA II and hypoxia-inducible CA IX and CA XII. We review here their role in tumorigenesis and potential value in predicting prognosis of brain tumors, including astrocytomas, oligodendrogliomas, ependymomas, medulloblastomas, meningiomas, and craniopharyngiomas. We also introduce both already completed and ongoing studies focusing on CA inhibition as a potential anti-cancer strategy.
Collapse
|
47
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|
48
|
Synthesis of N-substituted sulfonamides containing perhalopyridine moiety as bio-active candidates. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
50
|
Tomar JS, Shen J. Characterization of Carbonic Anhydrase In Vivo Using Magnetic Resonance Spectroscopy. Int J Mol Sci 2020; 21:E2442. [PMID: 32244610 PMCID: PMC7178054 DOI: 10.3390/ijms21072442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3-. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3- catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.
Collapse
Affiliation(s)
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| |
Collapse
|