1
|
Pinyon JL, von Jonquieres G, Crawford EN, Abed AA, Power JM, Klugmann M, Browne CJ, Housley DM, Wise AK, Fallon JB, Shepherd RK, Lin JY, McMahon C, McAlpine D, Birman CS, Lai W, Enke YL, Carter PM, Patrick JF, Gay RD, Marie C, Scherman D, Lovell NH, Housley GD. Gene Electrotransfer via Conductivity-Clamped Electric Field Focusing Pivots Sensori-Motor DNA Therapeutics: "A Spoonful of Sugar Helps the Medicine Go Down". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401392. [PMID: 38874431 PMCID: PMC11321635 DOI: 10.1002/advs.202401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Viral vectors and lipofection-based gene therapies have dispersion-dependent transduction/transfection profiles that thwart precise targeting. The study describes the development of focused close-field gene electrotransfer (GET) technology, refining spatial control of gene expression. Integration of fluidics for precise delivery of "naked" plasmid deoxyribonucleic acid (DNA) in sucrose carrier within the focused electric field enables negative biasing of near-field conductivity ("conductivity-clamping"-CC), increasing the efficiency of plasma membrane molecular translocation. This enables titratable gene delivery with unprecedently low charge transfer. The clinic-ready bionics-derived CC-GET device achieved neurotrophin-encoding miniplasmid DNA delivery to the cochlea to promote auditory nerve regeneration; validated in deafened guinea pig and cat models, leading to improved central auditory tuning with bionics-based hearing. The performance of CC-GET is evaluated in the brain, an organ problematic for pulsed electric field-based plasmid DNA delivery, due to high required currents causing Joule-heating and damaging electroporation. Here CC-GET enables safe precision targeting of gene expression. In the guinea pig, reporter expression is enabled in physiologically critical brainstem regions, and in the striatum (globus pallidus region) delivery of a red-shifted channelrhodopsin and a genetically-encoded Ca2+ sensor, achieved photoactivated neuromodulation relevant to the treatment of Parkinson's Disease and other focal brain disorders.
Collapse
Affiliation(s)
- Jeremy L. Pinyon
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
- Charles Perkins CentreSchool of Medical SciencesFaculty of Medicine and HealthUniversity of SydneySydneyNSW2006Australia
| | - Georg von Jonquieres
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Edward N. Crawford
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Amr Al Abed
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - John M. Power
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Matthias Klugmann
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Cherylea J. Browne
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
- Medical SciencesSchool of ScienceWestern Sydney UniversitySydneyNSW2560Australia
| | - David M. Housley
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Andrew K. Wise
- Bionics Institute384–388 Albert StreetEast MelbourneVIC3002Australia
- Medical BionicsDepartment of OtolaryngologyUniversity of MelbourneMelbourneVIC3002Australia
| | - James B. Fallon
- Bionics Institute384–388 Albert StreetEast MelbourneVIC3002Australia
- Medical BionicsDepartment of OtolaryngologyUniversity of MelbourneMelbourneVIC3002Australia
| | - Robert K. Shepherd
- Bionics Institute384–388 Albert StreetEast MelbourneVIC3002Australia
- Medical BionicsDepartment of OtolaryngologyUniversity of MelbourneMelbourneVIC3002Australia
| | - John Y. Lin
- Tasmanian School of MedicineUniversity of TasmaniaHobartTAS7001Australia
| | - Catherine McMahon
- Faculty of Medicine and Health SciencesThe Hearing HubMacquarie UniversitySydney2109Australia
| | - David McAlpine
- Faculty of Medicine and Health SciencesThe Hearing HubMacquarie UniversitySydney2109Australia
| | - Catherine S. Birman
- Faculty of Medicine and Health SciencesThe Hearing HubMacquarie UniversitySydney2109Australia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSW2006Australia
- Department of OtolaryngologyRoyal Prince Alfred HospitalCamperdownNSW2050Australia
- NextSenseRoyal Institute of Deaf and Blind ChildrenGladesvilleNSW2111Australia
| | - Waikong Lai
- NextSenseRoyal Institute of Deaf and Blind ChildrenGladesvilleNSW2111Australia
| | - Ya Lang Enke
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - Paul M. Carter
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - James F. Patrick
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - Robert D. Gay
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - Corinne Marie
- CNRS, Inserm, UTCBSUniversité Paris CitéParisF‐75006France
- Chimie ParisTechUniversité PSLParis75005France
| | - Daniel Scherman
- CNRS, Inserm, UTCBSUniversité Paris CitéParisF‐75006France
- Fondation Maladies Rares96 rue DidotParis75014France
| | - Nigel H. Lovell
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Gary D. Housley
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| |
Collapse
|
2
|
Berry-Kilgour C, Wise L, King J, Oey I. Application of pulsed electric field technology to skin engineering. Front Bioeng Biotechnol 2024; 12:1386725. [PMID: 38689761 PMCID: PMC11058833 DOI: 10.3389/fbioe.2024.1386725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Tissue engineering encompasses a range of techniques that direct the growth of cells into a living tissue construct for regenerative medicine applications, disease models, drug discovery, and safety testing. These techniques have been implemented to alleviate the clinical burdens of impaired healing of skin, bone, and other tissues. Construct development requires the integration of tissue-specific cells and/or an extracellular matrix-mimicking biomaterial for structural support. Production of such constructs is generally expensive and environmentally costly, thus eco-sustainable approaches should be explored. Pulsed electric field (PEF) technology is a nonthermal physical processing method commonly used in food production and biomedical applications. In this review, the key principles of PEF and the application of PEF technology for skin engineering will be discussed, with an emphasis on how PEF can be applied to skin cells to modify their behaviour, and to biomaterials to assist in their isolation or sterilisation, or to modify their physical properties. The findings indicate that the success of PEF in tissue engineering will be reliant on systematic evaluation of key parameters, such as electric field strength, and their impact on different skin cell and biomaterial types. Linking tangible input parameters to biological responses critical to healing will assist with the development of PEF as a sustainable tool for skin repair and other tissue engineering applications.
Collapse
Affiliation(s)
- C. Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - L. Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J. King
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - I. Oey
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
3
|
Jibing C, Weiping L, Yuwei Y, Bingzheng F, Zhiran X. Exosomal microRNA-Based therapies for skin diseases. Regen Ther 2024; 25:101-112. [PMID: 38178928 PMCID: PMC10765304 DOI: 10.1016/j.reth.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Based on engineered cell/exosome technology and various skin-related animal models, exosomal microRNA (miRNA)-based therapies derived from natural exosomes have shown good therapeutic effects on nine skin diseases, including full-thickness skin defects, diabetic ulcers, skin burns, hypertrophic scars, psoriasis, systemic sclerosis, atopic dermatitis, skin aging, and hair loss. Comparative experimental research showed that the therapeutic effect of miRNA-overexpressing exosomes was better than that of their natural exosomes. Using a dual-luciferase reporter assay, the targets of all therapeutic miRNAs in skin cells have been screened and confirmed. For these nine types of skin diseases, a total of 11 animal models and 21 exosomal miRNA-based therapies have been developed. This review provides a detailed description of the animal models, miRNA therapies, disease evaluation indicators, and treatment results of exosomal miRNA therapies, with the aim of providing a reference and guidance for future clinical trials. There is currently no literature on the merits or drawbacks of miRNA therapies compared with standard treatments.
Collapse
Affiliation(s)
| | | | | | - Feng Bingzheng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xu Zhiran
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Chen J, Wu F, Hou E, Zeng J, Li F, Gao H. Exosomal microRNA Therapy for Non-Small-Cell Lung Cancer. Technol Cancer Res Treat 2023; 22:15330338231210731. [PMID: 37936417 PMCID: PMC10631355 DOI: 10.1177/15330338231210731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
With the progress of molecular diagnosis research on non-small cell lung cancer (NSCLC) cells, four identified categories of microRNAs have been found to be related to disease diagnosis, diagnosis of treatment resistance, prediction of prognosis, and drugs for treatment. To date, nine target mRNA/signal pathways have been confirmed for microRNA drug therapy both in vitro and in vivo. When microRNA drugs enter blood vessels, they target the tumor site and play a similar role to that of targeted drugs. However, whether they will produce serious off-target effects remains unknown, and further clinical research is needed. This review provides the first summary of microRNA therapy for NSCLC.
Collapse
Affiliation(s)
- Jibing Chen
- Jinan University, Guangzhou, Guangdong, China
- Fuda Cancer Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fasheng Wu
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jianying Zeng
- Jinan University, Guangzhou, Guangdong, China
- Fuda Cancer Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
| | - Fujun Li
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Ruzgys P, Barauskaitė N, Novickij V, Novickij J, Šatkauskas S. The Evidence of the Bystander Effect after Bleomycin Electrotransfer and Irreversible Electroporation. Molecules 2021; 26:molecules26196001. [PMID: 34641546 PMCID: PMC8512684 DOI: 10.3390/molecules26196001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
One of current applications of electroporation is electrochemotherapy and electroablation for local cancer treatment. Both of these electroporation modalities share some similarities with radiation therapy, one of which could be the bystander effect. In this study, we aimed to investigate the role of the bystander effect following these electroporation-based treatments. During direct CHO-K1 cell treatment, cells were electroporated using one 100 µs duration square wave electric pulse at 1400 V/cm (for bleomycin electrotransfer) or 2800 V/cm (for irreversible electroporation). To evaluate the bystander effect, the medium was taken from directly treated cells after 24 h incubation and applied on unaffected cells. Six days after the treatment, cell viability and colony sizes were evaluated using the cell colony formation assay. The results showed that the bystander effect after bleomycin electrotransfer had a strong negative impact on cell viability and cell colony size, which decreased to 2.8% and 23.1%, respectively. On the contrary, irreversible electroporation induced a strong positive bystander effect on cell viability, which increased to 149.3%. In conclusion, the results presented may serve as a platform for further analysis of the bystander effect after electroporation-based therapies and may ultimately lead to refined application of these therapies in clinics.
Collapse
Affiliation(s)
- Paulius Ruzgys
- Biophysical Research Group, Vytautas Magnus University, Vileikos st. 844404, LT-44001 Kaunas, Lithuania; (P.R.); (N.B.)
| | - Neringa Barauskaitė
- Biophysical Research Group, Vytautas Magnus University, Vileikos st. 844404, LT-44001 Kaunas, Lithuania; (P.R.); (N.B.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 4103227, LT-10224 Vilnius, Lithuania; (V.N.); (J.N.)
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 4103227, LT-10224 Vilnius, Lithuania; (V.N.); (J.N.)
| | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Vileikos st. 844404, LT-44001 Kaunas, Lithuania; (P.R.); (N.B.)
- Correspondence:
| |
Collapse
|
6
|
Tesse A, André FM, Ragot T. Aluminum particles generated during millisecond electric pulse application enhance adenovirus-mediated gene transfer in L929 cells. Sci Rep 2021; 11:17725. [PMID: 34489497 PMCID: PMC8421418 DOI: 10.1038/s41598-021-96781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Gene electrotransfer is an attractive method of non-viral gene delivery. However, the mechanism of DNA penetration across the plasma membrane is widely discussed. To explore this process for even larger structures, like viruses, we applied various combinations of short/long and high/low-amplitude electric pulses to L929 cells, mixed with a human adenovirus vector expressing GFP. We observed a transgene expression increase, both in the number of GFP-converted cells and GFP levels, when we added a low-voltage/millisecond-pulse treatment to the adenovirus/cell mixture. This increase, reflecting enhanced virus penetration, was proportional to the applied electric field amplitude and pulse number, but was not associated with membrane permeabilization, nor to direct cell modifications. We demonstrated that this effect is mainly due to adenovirus particle interactions with aggregated aluminum particles released from energized electrodes. Indeed, after centrifugation of the pulsed viral suspension and later on addition to cells, the activity was found mainly associated with the aluminum aggregates concentrated in the lower fraction and was proportional to generated quantities. Overall, this work focused on the use of electrotransfer to facilitate the adenovirus entry into cell, demonstrating that modifications of the penetrating agent can be more important than modifications of the target cell for transfer efficacy.
Collapse
Affiliation(s)
- Angela Tesse
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000, Nantes, France
| | - Franck M André
- CNRS, Institut Gustave Roussy, Université Paris-Saclay, Aspects métaboliques et systémiques de l'oncogenèse pour de nouvelles approches thérapeutiques, UMR 9018, 114 rue Edouard Vaillant, F-94805, Villejuif, France
| | - Thierry Ragot
- CNRS, Institut Gustave Roussy, Université Paris-Saclay, Aspects métaboliques et systémiques de l'oncogenèse pour de nouvelles approches thérapeutiques, UMR 9018, 114 rue Edouard Vaillant, F-94805, Villejuif, France.
| |
Collapse
|
7
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
8
|
Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, Gazdhar A, Purmessur D. Non-viral Gene Delivery Methods for Bone and Joints. Front Bioeng Biotechnol 2020; 8:598466. [PMID: 33330428 PMCID: PMC7711090 DOI: 10.3389/fbioe.2020.598466] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirley Tang
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Devina Purmessur
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Investigation of Plasmid DNA Delivery and Cell Viability Dynamics for Optimal Cell Electrotransfection In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electroporation is an effective method for delivering plasmid DNA molecules into cells. The efficiency of gene electrotransfer depends on several factors. To achieve high transfection efficiency while maintaining cell viability is a tedious task in electroporation. Here, we present a combined study in which the dynamics of both evaluation types of transfection efficiency and the cell viability were evaluated in dependence of plasmid concentration as well as at the different number of high voltage (HV) electric pulses. The results of this study reveal a quantitative sigmoidal (R2 > 0.95) dependence of the transfection efficiency and cell viability on the distance between the cell membrane and the nearest plasmid. We propose this distance value as a new, more accurate output parameter that could be used in further optimization studies as a predictor and a measure of electrotransfection efficiency.
Collapse
|
10
|
Yang J, Gao L, Liu M, Sui X, Zhu Y, Wen C, Zhang L. Advanced Biotechnology for Cell Cryopreservation. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12209-019-00227-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCell cryopreservation has evolved as an important technology required for supporting various cell-based applications, such as stem cell therapy, tissue engineering, and assisted reproduction. Recent times have witnessed an increase in the clinical demand of these applications, requiring urgent improvements in cell cryopreservation. However, cryopreservation technology suffers from the issues of low cryopreservation efficiency and cryoprotectant (CPA) toxicity. Application of advanced biotechnology tools can significantly improve post-thaw cell survival and reduce or even eliminate the use of organic solvent CPAs, thus promoting the development of cryopreservation. Herein, based on the different cryopreservation mechanisms available, we provide an overview of the applications and achievements of various biotechnology tools used in cell cryopreservation, including trehalose delivery, hydrogel-based cell encapsulation technique, droplet-based cell printing, and nanowarming, and also discuss the associated challenges and perspectives for future development.
Collapse
|
11
|
Ruzgys P, Jakutavičiūtė M, Šatkauskienė I, Čepurnienė K, Šatkauskas S. Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro. Sci Rep 2019; 9:1436. [PMID: 30723286 PMCID: PMC6363740 DOI: 10.1038/s41598-018-38287-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/21/2018] [Indexed: 12/02/2022] Open
Abstract
In this study we evaluated the influence of medium conductivity to propidium iodide (PI) and bleomycin (BLM) electroporation mediated transfer to cells. Inverse dependency between the extracellular conductivity and the efficiency of the transfer had been found. Using 1 high voltage (HV) pulse, the total molecule transfer efficiency decreased 4.67 times when external medium conductivity increased from 0.1 to 0.9 S/m. Similar results had been found using 2 HV and 3 HV pulses. The percentage of cells killed by BLM electroporation mediated transfer had also decreased with the conductivity increase, from 79% killed cells in 0.1 S/m conductivity medium to 28% killed cells in 0.9 S/m conductivity medium. We hypothesize that the effect of external medium conductivity on electroporation mediated transfer is triggered by cell deformation during electric field application. In high conductivity external medium cell assumes oblate shape, which causes a change of voltage distribution on the cell membrane, leading to lower electric field induced transmembrane potential. On the contrary, low conductivity external medium leads to prolate cell shape and increased transmembrane potential at the electrode facing cell poles.
Collapse
Affiliation(s)
- Paulius Ruzgys
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Milda Jakutavičiūtė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Ingrida Šatkauskienė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Karolina Čepurnienė
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Vytautas Magnus University, Faculty of Natural Sciences, Vileikos 8, Kaunas, Lithuania.
| |
Collapse
|
12
|
Abstract
Electroporation has been an established tool for DNA delivery into prokaryotic and eukaryotic cells, thus facilitating basic research studies and improving medical treatments. Here we describe its use for introduction of phage genomic DNA into Escherichia coli cells, including preparation of electrocompetent cells, electric pulse optimization and recovery of electrotransformed cells. The technique can also be adapted for other bacterial species.
Collapse
|
13
|
Calcein Release from Cells In Vitro via Reversible and Irreversible Electroporation. J Membr Biol 2017; 251:119-130. [DOI: 10.1007/s00232-017-0005-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023]
|
14
|
Chicaybam L, Barcelos C, Peixoto B, Carneiro M, Limia CG, Redondo P, Lira C, Paraguassú-Braga F, Vasconcelos ZFMD, Barros L, Bonamino MH. An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells. Front Bioeng Biotechnol 2017; 4:99. [PMID: 28168187 PMCID: PMC5253374 DOI: 10.3389/fbioe.2016.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Genetic modification of cell lines and primary cells is an expensive and cumbersome approach, often involving the use of viral vectors. Electroporation using square-wave generating devices, like Lonza's Nucleofector, is a widely used option, but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work, we show that our in-house developed buffers, termed Chicabuffers, can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device, we electroporated 14 different cell lines and also primary cells, like mesenchymal stem cells and cord blood CD34+, providing optimized protocols for each of them. Moreover, when combined with sleeping beauty-based transposon system, long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells, facilitating the widespread adoption of this technology.
Collapse
Affiliation(s)
- Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Fundação Instituto Oswaldo Cruz, Vice-presidência de Pesquisa e Laboratórios de Referência, Rio de Janeiro, Brazil
| | - Camila Barcelos
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Barbara Peixoto
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Mayra Carneiro
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Cintia Gomez Limia
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Patrícia Redondo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Carla Lira
- Banco de Cordão Umbilical e Placentário, Instituto Nacional de Cancer (INCA), Rio de Janeiro, Brazil; Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Flávio Paraguassú-Braga
- Banco de Cordão Umbilical e Placentário, Instituto Nacional de Cancer (INCA) , Rio de Janeiro , Brazil
| | | | - Luciana Barros
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Martin Hernán Bonamino
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Fundação Instituto Oswaldo Cruz, Vice-presidência de Pesquisa e Laboratórios de Referência, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Sci Rep 2016; 6:31392. [PMID: 27507603 PMCID: PMC4979028 DOI: 10.1038/srep31392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022] Open
Abstract
This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes are used to trap and position living cells onto the center electrodes based on negative dielectrophoresis (nDEP). The center electrodes are used for in-situ cell electroporation, and also used to measure cell impedance for monitoring cellular dynamics in real time. Controllably selective electroporation and electrical measurement on the cells in array are realized. We present an evidence of selective electroporation through use of fluorescent dyes. Subsequently we use in-situ and real-time impedance measurement to monitor the process, which demonstrates the dynamic behavior of the cell electroporation. Finally, we show the use of this device to perform successful transfection onto individual HeLa cells with vector DNA encoding a green fluorescent.
Collapse
|
16
|
Tamošiūnas M, Kadikis R, Saknite I, Baltušnikas J, Kilikevičius A, Lihachev A, Petrovska R, Jakovels D, Šatkauskas S. Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:45003. [PMID: 27129126 DOI: 10.1117/1.jbo.21.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
We highlight the options available for noninvasive optical diagnostics of reporter gene expression in mouse tibialis cranialis muscle. An in vivo multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) expression, providing information on location and duration of EGFP expression and allowing quantification of EGFP expression levels. For EGFP coding plasmid (pEGFP-Nuc Vector, 10 μg/50 ml 10 μg/50 ml ) transfection, we used electroporation or ultrasound enhanced microbubble cavitation [sonoporation (SP)]. The transcutaneous EGFP fluorescence in live mice was monitored over a period of one year using the described parameters: area of EGFP positive fibers, integral intensity, and mean intensity of EGFP fluorescence. The most efficient transfection of EGFP coding plasmid was achieved, when one high voltage and four low voltage electric pulses were applied. This protocol resulted in the highest short-term and long-term EGFP expression. Other electric pulse protocols as well as SP resulted in lower fluorescence intensities of EGFP in the transfected area. We conclude that noninvasive multispectral imaging technique combined with fluorescence spectroscopy point measurements is a suitable method to estimate the dynamics and efficiency of reporter gene transfection in vivo.
Collapse
Affiliation(s)
- Mindaugas Tamošiūnas
- Vytautas Magnus University, Biophysical Research Group, Faculty of Natural Sciences, Vileikos 8, Kaunas LT-44404, LithuaniabVytautas Magnus University, Department of Biochemistry, Faculty of Natural Sciences, Vileikos 8, Kaunas LT-44404, Lithuania
| | - Roberts Kadikis
- Institute of Electronics and Computer Science, 14 Dzerbenes Street, Riga LV-1006, Latvia
| | - Inga Saknite
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 19 Rainis Boulevard, Riga LV-1586, Latvia
| | - Juozas Baltušnikas
- Lithuanian Sports University, Institute of Sports Sciences and Innovation, Sporto 6, LT-44221 Kaunas, Lithuania
| | - Audrius Kilikevičius
- Lithuanian Sports University, Institute of Sports Sciences and Innovation, Sporto 6, LT-44221 Kaunas, Lithuania
| | - Alexey Lihachev
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 19 Rainis Boulevard, Riga LV-1586, Latvia
| | - Ramona Petrovska
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga LV-1067, Latvia
| | - Dainis Jakovels
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 19 Rainis Boulevard, Riga LV-1586, Latvia
| | - Saulius Šatkauskas
- Vytautas Magnus University, Biophysical Research Group, Faculty of Natural Sciences, Vileikos 8, Kaunas LT-44404, Lithuania
| |
Collapse
|
17
|
Sungailaitė S, Ruzgys P, Šatkauskienė I, Čepurnienė K, Šatkauskas S. The dependence of efficiency of transmembrane molecular transfer using electroporation on medium viscosity. J Gene Med 2016; 17:80-6. [PMID: 25761762 DOI: 10.1002/jgm.2825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In the present study, we aimed to evaluate the efficiency of drug and gene electrotransfer into cells in vitro depending on medium viscosity. METHODS Experiments were performed using Chinese hamster ovary cells. Efficiency of molecular electrotransfer depending of medium viscosity was evaluated using two different electroporation conditions: a high-voltage (HV) pulse and a combination of a high-voltage pulse and a low-voltage pulse (HV + LV). To evaluate the efficiency of molecular electrotransfer, anticancer drug bleomycin and two different plasmids coding for green fluorescent protein and luciferase were used. RESULTS We found that a slight increase in medium viscosity from 1.3-1.4 mPa·s significantly decreased the transfection efficiency, both in terms of transfected cells and total protein production, which was abolished completely with an increase in medium viscosity to 6.1 mPa·s. Notably, at this medium viscosity, electrotransfer of the small anticancer drug was still efficient. Using HV and HV + LV pulse combinations, we showed that a decrease of DNA electrotransfer, especially at lower medium viscosities, can be compensated for by the LV pulse to some extent. On the other hand, the addition of the LV pulse after the HV pulse did not have any positive effect on the efficiency of bleomycin electrotransfer. CONCLUSIONS These findings demonstrate that transfection is very susceptible to medium viscosity and highlights the importance of the electrophoretic component in experiments when a considerable transfection level is needed.
Collapse
Affiliation(s)
- Sandra Sungailaitė
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania.,Emergency Department, Southampton General Hospital, University Hospital Southampton Foundation Trust (UHS), Southampton, UK
| | - Paulius Ruzgys
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Ingrida Šatkauskienė
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Karolina Čepurnienė
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
18
|
Garner AL, Neculaes VB, Deminsky M, Dylov DV, Joo C, Loghin ER, Yazdanfar S, Conway KR. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers. Biochem Biophys Rep 2015; 5:168-174. [PMID: 28955820 PMCID: PMC5598230 DOI: 10.1016/j.bbrep.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/01/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems. Femtosecond lasers can transfect a single cell through optoporation. Multiple cells are transfected with much lower power densities at 1550 nm. Calculations show that temperature gradients contribute to the mechanism. These mechanisms resemble those also involved in microwave biological interactions.
Collapse
Affiliation(s)
- Allen L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - V Bogdan Neculaes
- GE Global Research Center, 1 Research Circle, Niskayuna, NY 12309, USA
| | - Maxim Deminsky
- Kintech LTD, Kurchatov sq. 1, 123182 Moscow, Russia.,NRC "Kurchatov Institute", Kurchatov sq. 1, 123182 Moscow, Russia
| | - Dmitry V Dylov
- GE Global Research Center, 1 Research Circle, Niskayuna, NY 12309, USA
| | - Chulmin Joo
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Evelina R Loghin
- GE Global Research Center, 1 Research Circle, Niskayuna, NY 12309, USA
| | - Siavash Yazdanfar
- GE Global Research Center, 1 Research Circle, Niskayuna, NY 12309, USA
| | - Kenneth R Conway
- GE Global Research Center, 1 Research Circle, Niskayuna, NY 12309, USA
| |
Collapse
|
19
|
Gibot L, Rols MP. Gene transfer by pulsed electric field is highly promising in cutaneous wound healing. Expert Opin Biol Ther 2015; 16:67-77. [DOI: 10.1517/14712598.2016.1098615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Szczurkowska J, dal Maschio M, Cwetsch AW, Ghezzi D, Bony G, Alabastri A, Zaccaria RP, di Fabrizio E, Ratto GM, Cancedda L. Increased performance in genetic manipulation by modeling the dielectric properties of the rodent brain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:1615-8. [PMID: 24110012 DOI: 10.1109/embc.2013.6609825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic approaches to control DNA expression in different brain areas have provided an excellent system to characterize gene function in health and disease of animal models. With respect to others, in utero electroporation of exogenous DNA into progenitor cells committed to specific brain areas is the optimal solution in terms of simplicity and velocity. Indeed, this method entails one quick and easy surgical procedure aimed at DNA injection in the embryonic brain followed by brief exposure to a strong electric field by a bipolar electrode. Nevertheless, the technique is still lacking the necessary control and reliability in addressing the field. Moving from a theoretical model that accounts for the morphology and the dielectric properties of the embryonic brain, we developed here a set of novel and reliable experimental configurations based on the use of three electrodes for electroporation in mouse. Indeed, by means of a full 3D model of the embryonic brain and the surrounding environment, we showed that the distribution of the electric field can be finely tuned in order to target specific brain regions at a desired temporal window by proper placement of the three electrodes. In the light of this theoretical background, we manufactured a three-electrode device and performed model-guided experimental sessions. The result was an increased spatial control, extended time frames and unprecedented reliability of the genetic manipulation, with respect to the current state of the art. In particular, the outcomes of this method applied into the mouse model are reported here for the first time.
Collapse
|
21
|
Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:277-89. [PMID: 25939984 DOI: 10.1007/s00249-015-1025-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
A short review of biophysical mechanisms for electrotransfer of bioactive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.
Collapse
Affiliation(s)
- Mindaugas S Venslauskas
- Biophysical Research Group, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania,
| | | |
Collapse
|
22
|
Song KM, Choi MJ, Kwon MH, Ghatak K, Park SH, Ryu DS, Ryu JK, Suh JK. Optimizing in vivo gene transfer into mouse corpus cavernosum by use of surface electroporation. Korean J Urol 2015; 56:197-204. [PMID: 25763123 PMCID: PMC4355430 DOI: 10.4111/kju.2015.56.3.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Purpose Electroporation is known to enhance the efficiency of gene transfer through a transient increase in cell membrane permeability. The aim of this study was to determine the optimal conditions for in vivo electroporation-mediated gene delivery into mouse corpus cavernosum. Materials and Methods Diabetes was induced in C57BL/6 mice by intraperitoneal injections of streptozotocin. After intracavernous injection of pCMV-Luc (100 µg/40 µL), different electroporation settings (5-50 V, 8-16 pulses with a duration of 40-100 ms) were applied to the penis to establish the optimal conditions for electroporation. Gene expression was evaluated by luciferase assay. We also assessed the undesired consequences of electroporation by visual inspection and hematoxylin-eosin staining of penile tissue. Results Electroporation profoundly induced gene expression in the corpus cavernosum tissue of normal mice in a voltage-dependent manner. We observed electrical burn scars in the penis of normal mice who received electroporation with eight 40-ms pulses at a voltage of 50 V and sixteen 40-ms pulses, eight 100-ms pulses, and sixteen 100-ms pulses at a voltage of 30 V. No detectable burn scars were noted in normal mice stimulated with eight 40-ms pulses at a voltage of 30 V. Electroporation also significantly induced gene expression in diabetic mice stimulated with 40-ms pulse at a voltage of 30 V without injury to the penis. Conclusions We have established the optimal electroporation conditions for maximizing gene transfer into the corpus cavernosum of mice while avoiding damage to the erectile tissue. The electroporation-mediated gene delivery technique will be a valuable tool for gene therapy in the field of erectile dysfunction.
Collapse
Affiliation(s)
- Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Min Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Soo-Hwan Park
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Dong-Soo Ryu
- Department of Urology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
23
|
Pasquet L, Bellard E, Golzio M, Rols MP, Teissie J. A double-pulse approach for electrotransfection. J Membr Biol 2014; 247:1253-8. [PMID: 25135167 DOI: 10.1007/s00232-014-9720-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
Abstract
Gene transfer and expression can be obtained by delivering calibrated electric pulses on cells in the presence of plasmids coding for the activity of interest. The electric treatment affects the plasma membrane and induces the formation of a transient complex between nucleic acids and the plasma membrane. It results in a delivery of the plasmid in the cytoplasm. Expression is only obtained if the plasmid is translocated inside the nucleus. This is a key limit in the process. We previously showed that delivery of a high-field short-duration electric pulse was inducing a structural alteration of the nuclear envelope. This study investigates if the double-pulse approach (first pulse to transfer the plasmid to the cytoplasm, and second pulse to induce the structural alteration of the envelope) was a way to enhance the protein expression using the green fluorescent protein as a reporter. We observed that not only the double-pulse approach induced the transfection of a lower number of cells but moreover, these transfected cells were less fluorescent than the cells treated only with the first pulse.
Collapse
Affiliation(s)
- L Pasquet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, BP64182, 205 route de Narbonne, 31077, Toulouse, France
| | | | | | | | | |
Collapse
|
24
|
Zou M, De Koninck P, Neve RL, Friedrich RW. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications. Front Neural Circuits 2014; 8:41. [PMID: 24834028 PMCID: PMC4018551 DOI: 10.3389/fncir.2014.00041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/04/2014] [Indexed: 01/16/2023] Open
Abstract
The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications.
Collapse
Affiliation(s)
- Ming Zou
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland ; University of Basel Basel, Switzerland
| | - Paul De Koninck
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland ; Institut Universitaire en Santé Mentale de Québec Québec, QC, Canada ; Département de Biochimie, Microbiologie et Bio-informatique, Université Laval Québec, QC, Canada
| | - Rachael L Neve
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland ; University of Basel Basel, Switzerland
| |
Collapse
|
25
|
Wang CH, Lee YH, Kuo HT, Liang WF, Li WJ, Lee GB. Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection. LAB ON A CHIP 2014; 14:592-601. [PMID: 24322338 DOI: 10.1039/c3lc51102b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gene transfection is an important technology for various biological applications. The exogenous DNA is commonly delivered into cells by using a strong electrical field to form transient pores in cellular membranes. However, the high voltage required in this electroporation process may cause cell damage. In this study, a dielectrophoretically-assisted electroporation was developed by using light-activated virtual microelectrodes in a new microfluidic platform. The DNA electrotransfection used a low applied voltage and an alternating current to enable electroporation and transfection. Single or triple fluorescence-carrying plasmids were effectively transfected into various types of mammalian cells, and the fluorescent proteins were successfully expressed in live transfected cells. Moreover, the multi-triangle optical pattern that was projected onto a photoconductive layer to generate localized non-uniform virtual electric fields was found to have high transfection efficiency. The developed dielectrophoretically-assisted electroporation platform may provide a simpler system for gene transfection and could be widely applied in many biotechnological fields.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | | | | | | | | | | |
Collapse
|
26
|
Luo Y, Liu J, Wang Y, Su J, Wu Y, Hu G, Gao M, Quan F, Zhang Y. PhiC31 integrase-mediated genomic integration and stable gene expression in the mouse mammary gland after gene electrotransfer. J Gene Med 2013; 15:356-65. [PMID: 24288809 DOI: 10.1002/jgm.2723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PhiC31 integrase is capable of conferring long-term transgene expression in various transfected tissues in vivo. In the present study, we investigated the activity of phiC31 integrase in mouse mammary glands. METHODS The normal mouse mammary epithelial cell line HC11 was transfected with FuGENE® HD Transfection Reagent (Roche Diagnostics, Shanghai, China). Transfection of the mouse mammary gland in vivo was performed by electrotransfer. Transgene expression was detected by western blotting and an enzyme-linked immunosorbent assay. Genomic integration and integration at mpsL1 was confirmed by a nested polymerase chain reaction. RESULTS An optimal electrotransfer protocol for the lactating mouse mammary gland was attained through investigation of different voltages and pulse durations. PhiC31 integrase mediated site-specific transgene integration in HC11 cells and the mouse mammary gland. In addition, the site-specific integration occurred efficiently at the ‘hot spot’ mpsL1. Co-delivery of PhiC31 integrase enhanced and prolonged transgene expression in the mouse mammary gland. CONCLUSIONS The results obtained in the present study show that the use of phiC31 integrase is a feasible and efficient method for high and stable transgene expression in the mouse mammary gland.
Collapse
|
27
|
Rose L, Uludağ H. Realizing the potential of gene-based molecular therapies in bone repair. J Bone Miner Res 2013; 28:2245-62. [PMID: 23553878 DOI: 10.1002/jbmr.1944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 12/17/2022]
Abstract
A better understanding of osteogenesis at genetic and biochemical levels is yielding new molecular entities that can modulate bone regeneration and potentially act as novel therapies in a clinical setting. These new entities are motivating alternative approaches for bone repair by utilizing DNA-derived expression systems, as well as RNA-based regulatory molecules controlling the fate of cells involved in osteogenesis. These sophisticated mediators of osteogenesis, however, pose unique delivery challenges that are not obvious in deployment of conventional therapeutic agents. Viral and nonviral delivery systems are actively pursued in preclinical animal models to realize the potential of the gene-based medicines. This article will summarize promising bone-inducing molecular agents on the horizon as well as provide a critical review of delivery systems employed for their administration. Special attention was paid to synthetic (nonviral) delivery systems because they are more likely to be adopted for clinical testing because of safety considerations. We present a comparative analysis of dose-response relationships, as well as pharmacokinetic and pharmacodynamic features of various approaches, with the purpose of clearly defining the current frontier in the field. We conclude with the authors' perspective on the future of gene-based therapy of bone defects, articulating promising research avenues to advance the field of clinical bone repair.
Collapse
Affiliation(s)
- Laura Rose
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
28
|
Li F, Yamaguchi K, Okada K, Matsushita K, Enatsu N, Chiba K, Yue H, Fujisawa M. Efficient Transfection of DNA into Primarily Cultured Rat Sertoli Cells by Electroporation1. Biol Reprod 2013; 88:61. [DOI: 10.1095/biolreprod.112.106260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|