1
|
Buechler HM, Sumi M, Madhuranthakam IM, Donegan C, DiGiorgio F, Acosta AA, Uribe S, Rahman MA, Sorbello A, Fischer BD, Keck TM. The CB1 negative allosteric modulator PSNCBAM-1 reduces ethanol self-administration via a nonspecific hypophagic effect. Pharmacol Biochem Behav 2024; 240:173776. [PMID: 38679080 PMCID: PMC11373428 DOI: 10.1016/j.pbb.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.
Collapse
Affiliation(s)
| | - Mousumi Sumi
- Rowan University, Glassboro, NJ 08028, United States
| | | | | | | | | | - Sarah Uribe
- Rowan University, Glassboro, NJ 08028, United States
| | | | | | - Bradford D Fischer
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Thomas M Keck
- Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
2
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gryczka K, Kurant D, Szambelan M, Malinowski B, Falkowski M, Zabrzyński J, Słupski M. The Use of Cannabidiol in Metabolic Syndrome-An Opportunity to Improve the Patient's Health or Much Ado about Nothing? J Clin Med 2023; 12:4620. [PMID: 37510734 PMCID: PMC10380672 DOI: 10.3390/jcm12144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
3
|
Rivas-Santisteban R, Lillo J, Raïch I, Muñoz A, Lillo A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, Franco R. The cannabinoid CB 1 receptor interacts with the angiotensin AT 2 receptor. Overexpression of AT 2-CB 1 receptor heteromers in the striatum of 6-hydroxydopamine hemilesioned rats. Exp Neurol 2023; 362:114319. [PMID: 36632949 DOI: 10.1016/j.expneurol.2023.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
It is of particular interest the potential of cannabinoid and angiotensin receptors as targets in the therapy of Parkinson's disease (PD). While endocannabinoids are neuromodulators that act through the CB1 and CB2 cannabinoid receptors, the renin angiotensin-system is relevant for regulation of the correct functioning of several brain circuits. Resonance energy transfer assays in a heterologous system showed that the CB1 receptor (CB1R) can directly interact with the angiotensin AT2 receptor (AT2R). Coactivation of the two receptors results in increased Gi-signaling. The AT2-CB1 receptor heteromer imprint consists of a blockade of AT2R-mediated signaling by rimonabant, a CB1R antagonist. Interestingly, the heteromer imprint, discovered in the heterologous system, was also found in primary striatal neurons thus demonstrating the expression of the heteromer in these cells. In situ proximity ligation assays confirmed the occurrence of AT2-CB1 receptor heteromers in striatal neurons. In addition, increased expression of the AT2-CB1 receptor heteromeric complexes was detected in the striatum of a rodent PD model consisting of rats hemilesioned using 6-hydroxydopamine. Expression of the heteromer was upregulated in the striatum of lesioned animals and, also, of lesioned animals that upon levodopa treatment became dyskinetic. In contrast, there was no upregulation in the striatum of lesioned rats that did not become dyskinetic upon chronic levodopa treatment. The results suggest that therapeutic developments focused on the CB1R should consider that this receptor can interact with the AT2R, which in the CNS is involved in mechanisms related to addictive behaviors and to neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Ana Muñoz
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Ana I Rodríguez-Pérez
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Labandeira-García
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Neurosciences Institute, University of Barcelona (NeuroUB), Facultad de Psicología Campus de Mundet Paseo de la Vall d'Hebron, 171 08035 Barcelona, Spain.
| | - Rafael Franco
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Gharbi KA, Bonomo YA, Hallinan CM. Evidence from Human Studies for Utilising Cannabinoids for the Treatment of Substance-Use Disorders: A Scoping Review with a Systematic Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4087. [PMID: 36901098 PMCID: PMC10001982 DOI: 10.3390/ijerph20054087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Substance-use disorders are pervasive, comorbid with a plethora of disease and possess limited treatment options. Medicinal cannabinoids have been proposed as a novel potential treatment based on preclinical/animal trials. The objective of this study was to examine the efficacy and safety of potential therapeutics targeting the endocannabinoid system in the treatment of substance-use disorders. We performed a scoping review using a systematic approach of systematic reviews, narrative reviews, and randomised control trials that utilised cannabinoids as treatment for substance-use disorders. For this scoping review we used the PRISMA guidelines, a framework for systematic reviews and meta-analyses, to inform our methodology. We conducted a manual search of Medline, Embase, and Scopus databases in July 2022. Of the 253 results returned by the databases, 25 studies including reviews were identified as relevant, from which 29 randomised controlled trials were derived and analysed via a primary study decomposition. This review captured a small volume of highly heterogenous primary literature investing the therapeutic effect of cannabinoids for substance-use disorders. The most promising findings appeared to be for cannabis-use disorder. Cannabidiol appeared to be the cannabinoid showing the most promise for the treatment of multiple-substance-use disorders.
Collapse
Affiliation(s)
- Kayvan Ali Gharbi
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yvonne Ann Bonomo
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- St Vincent’s Health—Department of Addiction Medicine, Fitzroy, VIC 3065, Australia
| | - Christine Mary Hallinan
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Health & Biomedical Research Information Technology Unit (HaBIC R2), Department of General Practice, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Garai S, Schaffer PC, Laprairie RB, Janero DR, Pertwee RG, Straiker A, Thakur GA. Design, synthesis, and pharmacological profiling of cannabinoid 1 receptor allosteric modulators: Preclinical efficacy of C2-group GAT211 congeners for reducing intraocular pressure. Bioorg Med Chem 2021; 50:116421. [PMID: 34634617 DOI: 10.1016/j.bmc.2021.116421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Allosteric modulators of cannabinoid 1 receptor (CB1R) show translational promise over orthosteric ligands due to their potential to elicit therapeutic benefit without cannabimimetic side effects. The prototypic 2-phenylindole CB1R allosteric modulator, GAT211 (1), demonstrates preclinical efficacy in various disease models. The limited systematic structure-activity relationship (SAR) data at the C2 position of the indole ring within GAT211 invites the opportunity for further modifications to improve GAT211's pharmacological profile while serving to amplify and variegate this library of therapeutically attractive agents. These considerations prompted this focused SAR study in which we substituted the GAT211 C2-phenyl ring with heteroaromatic substituents. The synthesized GAT211 analogs were then evaluated in vitro as CB1R allosteric modulators in cAMP and β-arrestin2 assays with CP55,940 as the orthosteric ligand. Furan and thiophene rings (15c-f and 15m) were the best-tolerated substituents at the C2 position of GAT211 for engagement with human CB1R (hCB1R). The SAR around the novel ligands reported allowed direct experimental characterization of the interaction profile of that pharmacophore with its binding domain in functional, human CB1R, thus offering guidance for accessing subsequent-generation hCB1R allosteric modulators as potential therapeutics. The most potent analog, 15d, markedly promoted orthosteric ligand binding to hCB1R. Pharmacological profiling in the GTPγS and mouse vas deferens assays demonstrated that 15d behaves as a CB1R agonist-positive allosteric modulator (ago-PAM), as confirmed electrophysiologically in autoptic neurons. In vivo, 15d was efficacious as a topical agent that significantly reduced intraocular pressure (IOP) in the ocular normotensive murine model of glaucoma. Since elevated IOP is a decisive risk factor for glaucoma and attendant vision loss, our data support the proposition that the 2-phenylindole class of CB1R ago-PAMs has therapeutic potential for glaucoma and other diseases where potentiation of CB1R signaling may be therapeutic.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, SK S7N2Z4, Canada
| | - David R Janero
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | - Alex Straiker
- Program in Neuroscience, Indiana University, Bloomington, Indiana Gill Center for Biomolecular Science, Bloomington, IN 47405, United States
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
6
|
Garai S, Leo LM, Szczesniak AM, Hurst DP, Schaffer PC, Zagzoog A, Black T, Deschamps JR, Miess E, Schulz S, Janero DR, Straiker A, Pertwee RG, Abood ME, Kelly MEM, Reggio PH, Laprairie RB, Thakur GA. Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. J Med Chem 2021; 64:8104-8126. [PMID: 33826336 DOI: 10.1021/acs.jmedchem.1c00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We apply the magic methyl effect to improve the potency/efficacy of GAT211, the prototypic 2-phenylindole-based cannabinoid type-1 receptor (CB1R) agonist-positive allosteric modulator (ago-PAM). Introducing a methyl group at the α-position of nitro group generated two diastereomers, the greater potency and efficacy of erythro, (±)-9 vs threo, (±)-10 constitutes the first demonstration of diastereoselective CB1R-allosteric modulator interaction. Of the (±)-9 enantiomers, (-)-(S,R)-13 evidenced improved potency over GAT211 as a CB1R ago-PAM, whereas (+)-(R,S)-14 was a CB1R allosteric agonist biased toward G protein- vs β-arrestin1/2-dependent signaling. (-)-(S,R)-13 and (+)-(R,S)-14 were devoid of undesirable side effects (triad test), and (+)-(R,S)-14 reduced intraocular pressure with an unprecedentedly long duration of action in a murine glaucoma model. (-)-(S,R)-13 docked into both a CB1R extracellular PAM and intracellular allosteric-agonist site(s), whereas (+)-(R,S)-14 preferentially engaged only the latter. Exploiting G-protein biased CB1R-allosteric modulation can offer safer therapeutic candidates for glaucoma and, potentially, other diseases.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Anna-Maria Szczesniak
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dow P Hurst
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
| | - Jeffrey R Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, District of Columbia 20375, United States
| | - Elke Miess
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - Stefan Schulz
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alex Straiker
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th St, Bloomington, Indiana 47405, United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Melanie E M Kelly
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Patricia H Reggio
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
8
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
9
|
Garai S, Kulkarni PM, Schaffer PC, Leo LM, Brandt AL, Zagzoog A, Black T, Lin X, Hurst DP, Janero DR, Abood ME, Zimmowitch A, Straiker A, Pertwee RG, Kelly M, Szczesniak AM, Denovan-Wright EM, Mackie K, Hohmann AG, Reggio PH, Laprairie RB, Thakur GA. Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. J Med Chem 2020; 63:542-568. [PMID: 31756109 DOI: 10.1021/acs.jmedchem.9b01142] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, β-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Pushkar M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Asher L Brandt
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Tallan Black
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada
| | - Xiaoyan Lin
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Dow P Hurst
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Anaelle Zimmowitch
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Alex Straiker
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen AB25 2ZD , Scotland, U.K
| | - Melanie Kelly
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Anna-Maria Szczesniak
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Eileen M Denovan-Wright
- Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ken Mackie
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Andrea G Hohmann
- Program in Neuroscience, Psychological and Brain Sciences, and Gill Center for Biomolecular Science , Indiana University , Bloomington , Indiana 47405 , United States
| | - Patricia H Reggio
- Center for Drug Discovery , University of North Carolina Greensboro , Greensboro , North Carolina 27402 , United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition , University of Saskatchewan , 104 Clinic Pl , Saskatoon , SK S7N2Z4 , Canada.,Department of Pharmacology, Faculty of Medicine , Dalhousie University , 5850 College St , Halifax , NS , B3H4R2 , Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
10
|
Locci A, Pinna G. Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry 2019; 85:1036-1045. [PMID: 30955840 DOI: 10.1016/j.biopsych.2019.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The endocannabinoid and neurosteroid systems regulate emotions and stress responses. Activation of peroxisome proliferator-activated receptor (PPAR)-α by the endocannabinoid congener N-palmitoylethanolamine (PEA) regulates pathophysiological systems (e.g., inflammation, oxidative stress) and induces peripheral biosynthesis of allopregnanolone, a gamma-aminobutyric acidergic neurosteroid implicated in mood disorders. However, effects of PPAR-α on emotional behavior are poorly understood. METHODS We studied the impact of PPAR-α activation on emotional behavior in a mouse model of posttraumatic stress disorder. Neurosteroid levels before and after PEA treatment were measured by gas chromatography-mass spectrometry in relevant brain regions of socially isolated versus group-housed mice exposed to the contextual fear conditioning test, elevated plus maze test, forced swim test, and tail suspension test. Neurosteroidogenic enzyme levels were quantified in hippocampus by Western blot. RESULTS PEA administered in a model of conditioned contextual fear reconsolidation blockade facilitated fear extinction and fear extinction retention and induced marked antidepressive- and anxiolytic-like effects in socially isolated mice with reduced brain allopregnanolone levels. These effects were mimicked by the PPAR-α synthetic agonists, fenofibrate and GW7647, and were prevented by PPAR-α deletion, PPAR-α antagonists, and neurosteroid-enzyme inhibitors. Behavioral improvements correlated with PEA-induced upregulation of PPAR-α, neurosteroidogenic enzyme expression, and normalization of corticolimbic allopregnanolone levels. CONCLUSIONS This evidence supports a previously unknown role for PPAR-α in behavior regulation and suggests new strategies for the treatment of neuropsychopathologies characterized by deficient neurosteroidogenesis, including posttraumatic stress disorder and major depressive disorder.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Ma H, Zhang G, Mou C, Fu X, Chen Y. Peripheral CB1 Receptor Neutral Antagonist, AM6545, Ameliorates Hypometabolic Obesity and Improves Adipokine Secretion in Monosodium Glutamate Induced Obese Mice. Front Pharmacol 2018; 9:156. [PMID: 29615900 PMCID: PMC5869198 DOI: 10.3389/fphar.2018.00156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Effect of peripheral cannabinoid receptor 1 (CB1R) blockade by AM6545 in the monosodium glutamate (MSG)-induced hypometabolic and hypothalamic obesity was observed, and the impact on intraperitoneal adipose tissue and adipokines was investigated. The MSG mice is characterized by excessive abdominal obesity, and combined with dyslipidemia and insulin resistance. 3-Week AM6545 treatment dose-dependently decreased the body weight, intraperitoneal fat mass, and rectified the accompanied dyslipidemia include elevated serum triglyceride, total cholesterol, free fatty acids, and lowered LDLc level. Glucose intolerance and hyperinsulinemia were also alleviated. But AM6545 didn’t affect the food-intake consistently through the experiment. In line with the reduction on fat mass, the size of adipocyte was reduced markedly. Most interestingly, AM6545 showed significant improvement on levels of circulating adipokines including lowering leptin, asprosin and TNFα, and increasing HMW adiponectin. Correspondingly, dysregulated gene expression of lipogenesis, lipolysis, and adipokines in the adipose tissue were nearly recovered to normal level after AM6545 treatment. Additionally, western blot analysis revealed that AM6545 corrected the elevated CB1R and PPARγ protein expression, while increased the key energy uncoupling protein UCP1 expression in adipose tissue. Taken together, the current study indicates that AM6545 induced a comprehensive metabolic improvement in the MSG mice including counteracting the hypometabolic and hypothalamic obesity, and improving the accompanied dyslipidemia and insulin resistance. One key underlying mechanism is related to ameliorate on the metabolic deregulation of adipose tissue, the synthesis and secretion of adipokines were thus rectified, and finally the catabolism was increased and the anabolism was reduced in intraperitoneal adipose tissue. Findings from this study will provide the valuable information about peripheral CB1R antagonist in managing hypometabolic obesity.
Collapse
Affiliation(s)
- Haiming Ma
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guina Zhang
- Linyi City 120 Emergency Command Center, Linyi, China
| | | | - Xiujuan Fu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Yadan Chen
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Saleh N, Hucke O, Kramer G, Schmidt E, Montel F, Lipinski R, Ferger B, Clark T, Hildebrand PW, Tautermann CS. Multiple Binding Sites Contribute to the Mechanism of Mixed Agonistic and Positive Allosteric Modulators of the Cannabinoid CB1 Receptor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noureldin Saleh
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health; Institute of Medical Physics and Biophysics; Charitéplatz 1 10117 Berlin Germany
| | - Oliver Hucke
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Gert Kramer
- Department for CNS research; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Esther Schmidt
- Department for Drug Discovery Sciences; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Florian Montel
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Radoslaw Lipinski
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Boris Ferger
- Department for CNS research; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstraße 25 91052 Erlangen Germany
| | - Peter W. Hildebrand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health; Institute of Medical Physics and Biophysics; Charitéplatz 1 10117 Berlin Germany
- Universität Leipzig; Institute of Medical Physics and Biophysics; Härtelstraße 16-18 04107 Leipzig Germany
| | - Christofer S. Tautermann
- Department for Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co KG; Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| |
Collapse
|
13
|
Saleh N, Hucke O, Kramer G, Schmidt E, Montel F, Lipinski R, Ferger B, Clark T, Hildebrand PW, Tautermann CS. Multiple Binding Sites Contribute to the Mechanism of Mixed Agonistic and Positive Allosteric Modulators of the Cannabinoid CB1 Receptor. Angew Chem Int Ed Engl 2018; 57:2580-2585. [PMID: 29314474 DOI: 10.1002/anie.201708764] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/23/2017] [Indexed: 12/27/2022]
Abstract
The cannabinoid CB1 receptor (CB1R) is an abundant metabotropic G-protein-coupled receptor that has been difficult to address therapeutically because of CNS side effects exerted by orthosteric drug candidates. Recent efforts have focused on developing allosteric modulators that target CB1R. Compounds from the recently discovered class of mixed agonistic and positive allosteric modulators (Ago-PAMs) based on 2-phenylindoles have shown promising functional and binding properties as CB1R ligands. Here, we identify binding modes of both the CP 55,940 agonist and GAT228, a 2-phenylindole allosteric modulator, by using our metadynamics simulation protocol, and quantify their affinity and cooperativity by atomistic simulations. We demonstrate the involvement of multiple adjunct binding sites in the Ago-PAM characteristics of the 2-phenylindole modulators and explain their ability to compete with orthosteric agonists at higher concentrations. We validate these results experimentally by showing the contribution of multiple sites on the allosteric binding of ZCZ011, another homologous member of the class, together with the orthosteric agonist.
Collapse
Affiliation(s)
- Noureldin Saleh
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Oliver Hucke
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Gert Kramer
- Department for CNS research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Esther Schmidt
- Department for Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Florian Montel
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Radoslaw Lipinski
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Boris Ferger
- Department for CNS research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Timothy Clark
- Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Peter W Hildebrand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany.,Universität Leipzig, Institute of Medical Physics and Biophysics, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Christofer S Tautermann
- Department for Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
14
|
Takahashi H, Araki K, Makino K, Tabata H, Nakayama H, Zaitsu K, Oshitari T, Natsugari H. Synthesis of 3-Aroylindoles as Intermediates of Cannabimimetics and Elucidation of Their Physicochemical Properties. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Bertini S, Chicca A, Gado F, Arena C, Nieri D, Digiacomo M, Saccomanni G, Zhao P, Abood ME, Macchia M, Gertsch J, Manera C. Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Bioorg Med Chem 2017; 25:6427-6434. [PMID: 29079014 DOI: 10.1016/j.bmc.2017.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/31/2023]
Abstract
In this work, we explored the molecular framework of the known CB1R allosteric modulator PSNCBAM-1 with the aim to generate new bioactive analogs and to deepen the structure-activity relationships of this type of compounds. In particular, the introduction of a NH group between the pyridine ring and the phenyl nucleus generated the amino-phenyl-urea derivative SN15b that behaved as a positive allosteric modulator (PAM), increasing the CB1R binding affinity of the orthosteric ligand CP55,940. The functional activity was evaluated using serum response element (SRE) assay, which assesses the CB1R-dependent activation of the MAPK/ERK signaling pathway. SN15b and the biphenyl-urea analog SC4a significantly inhibited the response produced by CP55,940 in the low µM range, thus behaving as negative allosteric modulators (NAMs). The new derivatives presented here provide further insights about the modulation of CB1R binding and functional activity by allosteric ligands.
Collapse
Affiliation(s)
- Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Chiara Arena
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Daniela Nieri
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | |
Collapse
|
16
|
Shi Y, Duan YH, Ji YY, Wang ZL, Wu YR, Gunosewoyo H, Xie XY, Chen JZ, Yang F, Li J, Tang J, Xie X, Yu LF. Amidoalkylindoles as Potent and Selective Cannabinoid Type 2 Receptor Agonists with in Vivo Efficacy in a Mouse Model of Multiple Sclerosis. J Med Chem 2017; 60:7067-7083. [PMID: 28726401 DOI: 10.1021/acs.jmedchem.7b00724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Selective CB2 agonists represent an attractive therapeutic strategy for the treatment of a variety of diseases without psychiatric side effects mediated by the CB1 receptor. We carried out a rational optimization of a black market designer drug SDB-001 that led to the identification of potent and selective CB2 agonists. A 7-methoxy or 7-methylthio substitution at the 3-amidoalkylindoles resulted in potent CB2 antagonists (27 or 28, IC50 = 16-28 nM). Replacement of the amidoalkyls from 3-position to the 2-position of the indole ring dramatically increased the agonist selectivity on the CB2 over CB1 receptor. Particularly, compound 57 displayed a potent agonist activity on the CB2 receptor (EC50 = 114-142 nM) without observable agonist or antagonist activity on the CB1 receptor. Furthermore, 57 significantly alleviated the clinical symptoms and protected the murine central nervous system from immune damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Ying Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yan-Hui Duan
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Yue-Yang Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Zhi-Long Wang
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Yan-Ran Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Hendra Gunosewoyo
- School of Pharmacy, Faculty of Health Sciences, Curtin University , Bentley, Perth, WA 6102, Australia
| | - Xiao-Yu Xie
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jing Li
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University , 1239 Siping Road, Shanghai 200092, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
17
|
Laprairie RB, Kulkarni PM, Deschamps JR, Kelly MEM, Janero DR, Cascio MG, Stevenson LA, Pertwee RG, Kenakin TP, Denovan-Wright EM, Thakur GA. Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chem Neurosci 2017; 8:1188-1203. [PMID: 28103441 DOI: 10.1021/acschemneuro.6b00310] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most widely expressed metabotropic G protein-coupled receptors in brain, and its participation in various (patho)physiological processes has made CB1R activation a viable therapeutic modality. Adverse psychotropic effects limit the clinical utility of CB1R orthosteric agonists and have promoted the search for CB1R positive allosteric modulators (PAMs) with the promise of improved drug-like pharmacology and enhanced safety over typical CB1R agonists. In this study, we describe the synthesis and in vitro and ex vivo pharmacology of the novel allosteric CB1R modulator GAT211 (racemic) and its resolved enantiomers, GAT228 (R) and GAT229 (S). GAT211 engages CB1R allosteric site(s), enhances the binding of the orthosteric full agonist [3H]CP55,490, and reduces the binding of the orthosteric antagonist/inverse agonist [3H]SR141716A. GAT211 displayed both PAM and agonist activity in HEK293A and Neuro2a cells expressing human recombinant CB1R (hCB1R) and in mouse-brain membranes rich in native CB1R. GAT211 also exhibited a strong PAM effect in isolated vas deferens endogenously expressing CB1R. Each resolved and crystallized GAT211 enantiomer showed a markedly distinctive pharmacology as a CB1R allosteric modulator. In all biological systems examined, GAT211's allosteric agonist activity resided with the R-(+)-enantiomer (GAT228), whereas its PAM activity resided with the S-(-)-enantiomer (GAT229), which lacked intrinsic activity. These results constitute the first demonstration of enantiomer-selective CB1R positive allosteric modulation and set a precedent whereby enantiomeric resolution can decisively define the molecular pharmacology of a CB1R allosteric ligand.
Collapse
Affiliation(s)
| | - Pushkar M. Kulkarni
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeffrey R. Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | | | - David R. Janero
- Center
for Drug Discovery; Department of Pharmaceutical Sciences, School
of Pharmacy, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs; Northeastern University, Boston, Massachusetts 02115, United States
| | - Maria G. Cascio
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Lesley A. Stevenson
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Roger G. Pertwee
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Terrence P. Kenakin
- Department
of Pharmacology, University of North Carolina School of Medicine, Chapel
Hill, North Carolina 27599, United States
| | | | - Ganesh A. Thakur
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Mallipeddi S, Janero DR, Zvonok N, Makriyannis A. Functional selectivity at G-protein coupled receptors: Advancing cannabinoid receptors as drug targets. Biochem Pharmacol 2017; 128:1-11. [PMID: 27890725 PMCID: PMC5470118 DOI: 10.1016/j.bcp.2016.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
The phenomenon of functional selectivity, whereby a ligand preferentially directs the information output of a G-protein coupled receptor (GPCR) along (a) particular effector pathway(s) and away from others, has redefined traditional GPCR signaling paradigms to provide a new approach to structure-based drug design. The two principal cannabinoid receptors (CBRs) 1 and 2 belong to the class-A GPCR subfamily and are considered tenable therapeutic targets for several indications. Yet conventional orthosteric ligands (agonists, antagonists/inverse agonists) for these receptors have had very limited clinical utility due to their propensity to incite on-target adverse events. Chemically distinct classes of cannabinergic ligands exhibit signaling bias at CBRs towards individual subsets of signal transduction pathways. In this review, we discuss the known signaling pathways regulated by CBRs and examine the current evidence for functional selectivity at CBRs in response to endogenous and exogenous cannabinergic ligands as biased agonists. We further discuss the receptor and ligand structural features allowing for selective activation of CBR-dependent functional responses. The design and development of biased ligands may offer a pathway to therapeutic success for novel CBR-targeted drugs.
Collapse
Affiliation(s)
- Srikrishnan Mallipeddi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - David R Janero
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - Nikolai Zvonok
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States; Center for Drug Discovery, Northeastern University, Boston, MA 02115, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
19
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
20
|
Janero DR, Korde A, Makriyannis A. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains. Methods Enzymol 2017; 593:217-235. [DOI: 10.1016/bs.mie.2017.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
21
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
22
|
Laprairie RB, Kulkarni AR, Kulkarni PM, Hurst DP, Lynch D, Reggio PH, Janero DR, Pertwee RG, Stevenson LA, Kelly MEM, Denovan-Wright EM, Thakur GA. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chem Neurosci 2016; 7:776-98. [PMID: 27046127 DOI: 10.1021/acschemneuro.6b00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse agonism associated with Org27569 and PSNCBAM-1. Computational docking studies implicate C7.38(382) as a key feature of GAT100 ligand-binding motif. These data help inform the engineering of newer-generation, druggable CB1R allosteric modulators and demonstrate the utility of GAT100 as a covalent probe for mapping structure-function correlates characteristic of the druggable CB1R allosteric space.
Collapse
Affiliation(s)
| | | | | | - Dow P. Hurst
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Diane Lynch
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Patricia H. Reggio
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | | | - Roger G. Pertwee
- School of
Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, Scotland
| | - Lesley A. Stevenson
- School of
Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, Scotland
| | | | | | | |
Collapse
|
23
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
24
|
Kulkarni PM, Kulkarni AR, Korde A, Tichkule RB, Laprairie RB, Denovan-Wright EM, Zhou H, Janero DR, Zvonok N, Makriyannis A, Cascio MG, Pertwee RG, Thakur GA. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). J Med Chem 2015; 59:44-60. [PMID: 26529344 PMCID: PMC4716578 DOI: 10.1021/acs.jmedchem.5b01303] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Undesirable side effects associated
with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R),
a tractable target for treating several pathologies affecting humans,
have greatly limited their translational potential. Recent discovery
of CB1R negative allosteric modulators (NAMs) has renewed interest
in CB1R by offering a potentially safer therapeutic avenue. To elucidate
the CB1R allosteric binding motif and thereby facilitate rational
drug discovery, we report the synthesis and biochemical characterization
of first covalent ligands designed to bind irreversibly to the CB1R
allosteric site. Either an electrophilic or a photoactivatable group
was introduced at key positions of two classical CB1R NAMs: Org27569
(1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays,
did not exhibit inverse agonism, and behaved as a robust positive
allosteric modulator of binding of orthosteric agonist CP55,940. This
novel covalent probe can serve as a useful tool for characterizing
CB1R allosteric ligand-binding motifs.
Collapse
Affiliation(s)
| | | | | | | | - Robert B Laprairie
- Department of Pharmacology, Dalhousie University , Halifax NS Canada B3H 4R2
| | | | | | | | | | | | - Maria G Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | | |
Collapse
|
25
|
Mahmoud MM, Olszewska T, Liu H, Shore DM, Hurst DP, Reggio PH, Lu D, Kendall DA. (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs. Mol Pharmacol 2015; 87:197-206. [PMID: 25411367 PMCID: PMC4293445 DOI: 10.1124/mol.114.095471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023] Open
Abstract
Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.
Collapse
Affiliation(s)
- Mariam M Mahmoud
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Teresa Olszewska
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Hui Liu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Derek M Shore
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Dow P Hurst
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Patricia H Reggio
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Dai Lu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Debra A Kendall
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| |
Collapse
|
26
|
Bisogno T, Mahadevan A, Coccurello R, Chang JW, Allarà M, Chen Y, Giacovazzo G, Lichtman A, Cravatt B, Moles A, Di Marzo V. A novel fluorophosphonate inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol with potential anti-obesity effects. Br J Pharmacol 2014; 169:784-93. [PMID: 23072382 DOI: 10.1111/bph.12013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The development of potent and selective inhibitors of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) via DAG lipases (DAGL) α and β is just starting to be considered as a novel and promising source of pharmaceuticals for the treatment of disorders that might benefit from a reduction in endocannabinoid tone, such as hyperphagia in obese subjects. EXPERIMENTAL APPROACH Three new fluorophosphonate compounds O-7458, O-7459 and O-7460 were synthesized and characterized in various enzymatic assays. The effects of O-7460 on high-fat diet intake were tested in mice. KEY RESULTS Of the new compounds, O-7460 exhibited the highest potency (IC₅₀ = 690 nM) against the human recombinant DAGLα, and selectivity (IC₅₀ > 10 μM) towards COS-7 cell and human monoacylglycerol lipase (MAGL), and rat brain fatty acid amide hydrolase. Competitive activity-based protein profiling confirmed that O-7460 inhibits mouse brain MAGL only at concentrations ≥ 10 μM, and showed that this compound has only one major 'off-target', that is, the serine hydrolase KIAA1363. O-7460 did not exhibit measurable affinity for human recombinant CB₁ or CB₂ cannabinoid receptors (Ki > 10 μM). In mouse neuroblastoma N18TG2 cells stimulated with ionomycin, O-7460 (10 μM) reduced 2-AG levels. When administered to mice, O-7460 dose-dependently (0-12 mg·kg⁻¹, i.p.) inhibited the intake of a high-fat diet over a 14 h observation period, and, subsequently, slightly but significantly reduced body weight. CONCLUSIONS AND IMPLICATIONS O-7460 might be considered a useful pharmacological tool to investigate further the role played by 2-AG both in vitro and in vivo under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Janero DR. Medications development for substance-use disorders: contextual influences (dis)incentivizing pharmaceutical-industry positioning. Expert Opin Drug Discov 2014; 9:1265-79. [PMID: 25162124 DOI: 10.1517/17460441.2014.951631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The significant contribution of substance-use disorders (SUDs) to the global-disease burden and associated unmet medical needs has not engendered a commensurate level of pharma-industry research and development (R&D) for novel SUD therapeutics invention. Analysis of contextual factors shaping this position suggests potential routes toward incentivizing R&D commitment for that purpose. AREAS COVERED This article considers multiple primary factors that have consorted to disincentivize pharma industry's operating in the SUD space: ill-understood pathology; variegated treatments and patient profiles; involved clinical trials; and - with particular reference to SUDs-negative cultural/business stigmas and shallow commercial precedent. Industry incentivization for SUD drug innovation requires progress on several fronts, including: translational experimental data and systems; personalized, holistic SUD treatment approaches; interactions among pharma, nonindustry constituencies, and the medical profession with vested interests in countering negative stereotypes and expanding SUD treatment options; and public-private alliances focused on improving SUD pharmacotherapy. EXPERT OPINION Given the well-entrenched business stance whereby the prospect of future profits in major markets largely determines drug-company R&D investment trajectory, strategic initiatives offering substantial reductions in the risks and opportunity (i.e., time and money) costs associated with SUD drug discovery are likely to be the most potent drivers for encouraging mainstream industry positioning in this therapeutic area. Such initiatives could originate from front-loaded R&D operational and back-loaded patent, regulatory, marketing and health-care policy reforms. These may be too involved and protracted for the turbulent pharmaceutical industry to entertain amid its recent retrenchment from psychiatric/CNS diseases and intense pressures to increase productivity and shareholder value.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
28
|
Cristino L, Palomba L, Di Marzo V. New horizons on the role of cannabinoid CB1 receptors in palatable food intake, obesity and related dysmetabolism. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S26-30. [PMID: 27152162 DOI: 10.1038/ijosup.2014.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Excessive consumption of high-energy, palatable food contributes to obesity, which results in the metabolic syndrome, heart disease, type-2 diabetes and death. Current knowledge on the function of the hypothalamus as the brain 'feeding centre' recognizes this region as the main regulator of body weight in the central nervous system. Because of their intrinsically fast and adaptive activities, feeding-controlling neural circuitries are endowed with synaptic plasticity modulated by neurotransmitters and hormones that act at different hierarchical levels of integration. In the hypothalamus, among the chemical mediators involved in this integration, endocannabinoids (eCBs) are ideal candidates for the fast (that is, non-genomic), stress-related fine-tuning of neuronal functions. In this article, we overview the role of the eCB system (ECS) in the control of energy intake, and particularly in the consumption of high-energy, palatable food, and discuss how such a role is affected in the brain by changes in the levels of feeding-regulated hormones, such as the adipose tissue-derived anorexigenic mediator leptin, as well as by high-fat diets. The understanding of the molecular mechanisms underlying the neuronal control of feeding behaviours by eCBs offers many potential opportunities for novel therapeutic approaches against obesity. Highlights of the latest advances in the development of strategies that minimize central ECS overactivity in 'western diet'-driven obesity are discussed.
Collapse
Affiliation(s)
- L Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche , Pozzuoli, Italy
| | - L Palomba
- Department of Biomolecular Sciences, University 'Carlo Bo' , Urbino, Italy
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche , Pozzuoli, Italy
| |
Collapse
|
29
|
Cristino L, Becker T, Di Marzo V. Endocannabinoids and energy homeostasis: an update. Biofactors 2014; 40:389-97. [PMID: 24752980 DOI: 10.1002/biof.1168] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 04/06/2014] [Indexed: 01/08/2023]
Abstract
The endocannabinoid system (ECS) is a widespread intercellular signaling system that plays a critical role in energy homeostasis, meant as the precise matching of caloric intake with energy expenditure which normally keeps body weight stable over time. Complex interactions between environmental and neurohormonal systems directly contribute to the balance of energy homeostasis. This review highlights established and more recent data on the brain circuits in which the ECS plays an important regulatory role, with focus on the hypothalamus, a region where numerous interacting systems regulating feeding, satiety, stress, and other motivational states coexist. Although not meant as an exhaustive review of the field, this article will discuss how endocannabinoid tone, in addition to reinforcing reward circuitries and modulating food intake and the salience of food, controls lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in the skeletal muscle and pancreas are also emerging and are briefly discussed. This review provides new perspectives into endocannabinoid control of the neurochemical causes and consequences of energy homeostasis imbalance, a knowledge that might lead to new potential treatments for obesity and related morbidities.
Collapse
Affiliation(s)
- Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | | | | |
Collapse
|
30
|
Franks LN, Ford BM, Madadi NR, Penthala NR, Crooks PA, Prather PL. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs. Eur J Pharmacol 2014; 737:140-8. [PMID: 24858620 DOI: 10.1016/j.ejphar.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022]
Abstract
Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- CHO Cells
- Chemical Phenomena
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Humans
- Indoles/chemistry
- Ligands
- Mice
- Quinuclidines/chemistry
- Quinuclidines/metabolism
- Quinuclidines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Benjamin M Ford
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Nikhil R Madadi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Paul L Prather
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
31
|
Dalet FGE, Guadalupe TFJ, María del Carmen CH, Humberto GAC, Antonio SUM. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen Res 2013; 8:2290-2302. [PMID: 25206539 PMCID: PMC4146033 DOI: 10.3969/j.issn.1673-5374.2013.24.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/25/2013] [Indexed: 02/05/2023] Open
Abstract
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.
Collapse
Affiliation(s)
- Farfán-García Eunice Dalet
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Trujillo-Ferrara José Guadalupe
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Castillo-Hernández María del Carmen
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Guerra-Araiza Christian Humberto
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Soriano-Ursúa Marvin Antonio
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| |
Collapse
|
32
|
Peripherally restricted CB1 receptor blockers. Bioorg Med Chem Lett 2013; 23:4751-60. [PMID: 23902803 DOI: 10.1016/j.bmcl.2013.06.066] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/27/2022]
Abstract
Antagonists (inverse agonists) of the cannabinoid-1 (CB1) receptor showed promise as new therapies for controlling obesity and related metabolic function/liver disease. These agents, representing diverse chemical series, shared the property of brain penetration due to the initial belief that therapeutic benefit was mainly based on brain receptor interaction. However, undesirable CNS-based side effects of the only marketed agent in this class, rimonabant, led to its removal, and termination of the development of other clinical candidates soon followed. Re-evaluation of this approach has focused on neutral or peripherally restricted (PR) antagonists. Supporting these strategies, pharmacological evidence indicates most if not all of the properties of globally acting agents may be captured by molecules with little brain presence. Methodology that can be used to eliminate BBB penetration and the means (in vitro assays, tissue distribution and receptor occupancy determinations, behavioral paradigms) to identify potential agents with little brain presence is discussed. Focus will be on the pharmacology supporting the contention that reported agents are truly peripherally restricted. Notable examples of these types of compounds are: TM38837 (structure not disclosed); AM6545 (8); JD5037 (15b); RTI-12 (19).
Collapse
|
33
|
Vasiljevik T, Franks LN, Ford BM, Douglas JT, Prather PL, Fantegrossi WE, Prisinzano TE. Design, synthesis, and biological evaluation of aminoalkylindole derivatives as cannabinoid receptor ligands with potential for treatment of alcohol abuse. J Med Chem 2013; 56:4537-50. [PMID: 23631463 DOI: 10.1021/jm400268b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Attenuation of increased endocannabinoid signaling with a CB1R neutral antagonist might offer a new therapeutic direction for treatment of alcohol abuse. We have recently reported that a monohydroxylated metabolite of the synthetic aminoalkylindole cannabinoid JHW-073 (3) exhibits neutral antagonist activity at CB1Rs and thus may serve as a promising lead for the development of novel alcohol abuse therapies. In the current study, we show that systematic modification of an aminoalkylindole scaffold identified two new compounds with dual CB1R antagonist/CB2R agonist activity. Similar to the CB1R antagonist/inverse agonist rimonabant, analogues 27 and 30 decrease oral alcohol self-administration without affecting total fluid intake and block the development of alcohol-conditioned place preference. Collectively, these initial findings suggest that design and systematic modification of aminoalkylindoles such as 3 may lead to development of novel cannabinoid ligands with dual CB1R antagonist/CB2R agonist activity with potential for use as treatments of alcohol abuse.
Collapse
Affiliation(s)
- Tamara Vasiljevik
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|