1
|
Szyk P, Czarczynska-Goslinska B, Ziegler-Borowska M, Larrosa I, Goslinski T. Sorafenib-Drug Delivery Strategies in Primary Liver Cancer. J Funct Biomater 2025; 16:148. [PMID: 40278256 DOI: 10.3390/jfb16040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Current primary liver cancer therapies, including sorafenib and transarterial chemoembolization, face significant limitations due to chemoresistance caused by impaired drug uptake, altered metabolism, and other genetic modulations. These challenges contribute to relapse rates of 50-80% within five years. The need for improved treatment strategies (adjuvant therapy, unsatisfactory enhanced permeability and retention (EPR) effect) has driven research into advanced drug delivery systems, including targeted nanoparticles, biomaterials, and combinatory approaches. Therefore, this review evaluates recent advancements in primary liver cancer pharmacotherapy, focusing on the potential of drug delivery systems for sorafenib and its derivatives. Approaches such as leveraging Kupffer cells for tumor migration or utilizing smaller NPs for inter-/intracellular delivery, address EPR limitations. Biomaterials and targeted therapies focusing on targeting have demonstrated effectiveness in increasing tumor-specific delivery, but clinical evidence remains limited. Combination therapies have emerged as an interesting solution to overcoming chemoresistance or to broadening therapeutic functionality. Biomimetic delivery systems, employing blood cells or exosomes, provide methods for targeting tumors, preventing metastasis, and strengthening immune responses. However, significant differences between preclinical models and human physiology remain a barrier to translating these findings into clinical success. Future research must focus on the development of adjuvant therapy and refining drug delivery systems to overcome the limitations of tumor heterogeneity and low drug accumulation.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester M13 9PL, UK
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Wan S, Zhou X, Xie F, Zhou F, Zhang L. Ketogenic diet and cancer: multidimensional exploration and research. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1010-1024. [PMID: 39821829 DOI: 10.1007/s11427-023-2637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 01/19/2025]
Abstract
The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.
Collapse
Affiliation(s)
- Shiyun Wan
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Li J, Chen H, Bai L, Tang H. Utilizing liquid-liquid biopolymer regulators to predict the prognosis and drug sensitivity of hepatocellular carcinoma. Biol Direct 2025; 20:2. [PMID: 39762905 PMCID: PMC11705666 DOI: 10.1186/s13062-025-00592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC). METHODS This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses. A prognostic nomogram for HCC patients was developed using LPRS and other clinicopathological factors. We utilized SurvSHAP to identify key genes within the LPRS influencing HCC prognosis. To validate our findings, we collected 49 HCC cases along with adjacent tissue samples and confirmed the correlation between DCAF13 expression and HCC progression through qRT-PCR analysis and in vitro experiments. RESULTS LPRS was established with 8 LLPS-related genes (TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, MAPT, and SAC3D1). Further research indicated that a high LPRS is closely associated with vascular invasion, histological grade (G3-G4), and TNM stage (III-IV) in HCC, concurrently establishing LPRS as an independent risk factor for prognosis. A nomogram that integrates LPRS with TNM staging and patient age markedly improves the predictive accuracy of survival outcomes for HCC patients. Our findings suggest that increased DCAF13 expression in HCC plays a crucial role in cancer progression and angiogenesis. Navitoclax has emerged as a promising treatment for HCC patients with high LPRS levels, offering a novel therapeutic direction by targeting LLPS. CONCLUSION We have formulated a novel LPRS model that is capable of accurately predicting the clinical prognosis and drug sensitivity of HCC. DCAF13 might play a pivotal role in malignant progression mediated by LLPS.
Collapse
Affiliation(s)
- Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Dong F, He K, Zhang S, Song K, Jiang L, Hu LP, Li Q, Zhang XL, Zhang N, Li BT, Zhu LL, Li J, Feng M, Gao Y, Chen J, Hu X, Wang J, Jiang C, Wang C, Zhu HH, Da LT, Ji J, Zhang ZG, Bao Z, Jiang SH. SSRI antidepressant citalopram reverses the Warburg effect to inhibit hepatocellular carcinoma by directly targeting GLUT1. Cell Rep 2024; 43:114818. [PMID: 39388353 DOI: 10.1016/j.celrep.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have shown promise in cancer therapy, particularly for hepatocellular carcinoma (HCC), but their molecular targets and mechanisms remain unclear. Here, we show that SSRIs exhibit significant anti-HCC effects independent of their classical target, the serotonin reuptake transporter (SERT). Using global inverse gene expression profiling, drug affinity responsive target stability assays, and in silico molecular docking, we demonstrate that citalopram targets glucose transporter 1 (GLUT1), resulting in reduced glycolytic flux. A mutant GLUT1 variant at the citalopram binding site (E380) diminishes the drug's inhibitory effects on the Warburg effect and tumor growth. In preclinical models, citalopram dampens the growth of GLUT1high liver tumors and displays a synergistic effect with anti-PD-1 therapy. Retrospective analysis reveals that SSRI use correlates with a lower risk of metastasis among patients with HCC. Our study describes a role for SSRIs in cancer metabolism, establishing a rationale for their repurposing as potential anti-cancer drugs for HCC.
Collapse
Affiliation(s)
- Fangyuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Kang He
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luju Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqi Zhang
- Center for Primary Health Care Research, Lund University, Region Skåne, Sweden
| | - Bo-Tai Li
- Shanghai Immune Therapy Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Li Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingxuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunchen Gao
- Shanghai United International School Qingpu Campus, Shanghai 201799, China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xiaona Hu
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jiaofeng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Chongyi Jiang
- Department of General Surgery, Hepato-Biliary-Pancreatic Center, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University, Region Skåne, Sweden; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhijun Bao
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Guo X, Zheng B, Wang J, Zhao T, Zheng Y. Exploring the mechanism of action of Chinese medicine in regulating liver fibrosis based on the alteration of glucose metabolic pathways. Phytother Res 2024; 38:4865-4876. [PMID: 36433866 DOI: 10.1002/ptr.7667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022]
Abstract
In recent years, metabolic reprogramming in liver fibrosis has become a research hotspot in the field of liver fibrosis at home and abroad. Liver fibrosis is a pathological change caused by chronic liver injury from a variety of causes. Liver fibrosis is a common pathological feature of many chronic liver diseases such as chronic hepatitis B, non-alcoholic steatohepatitis, and autoimmune hepatitis, as well as the pathogenesis of the disease. The development of chronic liver disease into cirrhosis must go through the pathological process of liver fibrosis, in which hepatic stellate cells (HSC) play an important role. Following liver injury, HSC are activated and transdifferentiated into scar-forming myofibroblasts, which drive the trauma healing response and which rely on the deposition of collagen-rich extracellular matrix to maintain tissue integrity. This reaction will continue without strict control, which will lead to excessive accumulation of matrix and liver fibrosis. The mechanisms and clinical studies of liver fibrosis have been the focus of research in liver diseases. In recent years, several studies have revealed the mechanism of HSC metabolic reprogramming and the impact of this process on liver fibrosis, in which glucose metabolic reprogramming plays an important role in the activation of HSC, and it mainly meets the energy demand of HSC activation by upregulating glycolysis. Glycolysis is the process by which one molecule of glucose is broken down into two molecules of pyruvate and produces energy and lactate under anaerobic conditions. Various factors have been found to be involved in regulating the glycolytic process of HSC, including glucose transport, intracellular processing of glucose, exosome secretion, and lactate production, etc. Inhibition of the glycolytic process of HSC can be an effective strategy against liver fibrosis. Currently, the combined action of multiple targets and links of Chinese medicine such as turmeric, comfrey, rhubarb and scutellaria baicalensis against the mechanism of liver fibrosis can effectively improve or even reverse liver fibrosis. This paper summarizes that turmeric extract curcumin, comfrey extract comfreyin, rhubarb, Subtle yang yu yin granules, Scutellaria baicalensis extract oroxylin A and cardamom extract cardamomin affect liver fibrosis by regulating gluconeogenic reprogramming. Therefore, studying the mechanism of action of TCM in regulating liver fibrosis through reprogramming of glucose metabolism is promising to explore new methods and approaches for Chinese Medicine modernization research.
Collapse
Affiliation(s)
- Xinhua Guo
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Zheng
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
6
|
Wang H, Xu M, Zhang T, Pan J, Li C, Pan B, Zhou L, Huang Y, Gao C, He M, Xue Y, Ji X, Zhang X, Wang N, Zhou H, Wang Q, Li JZ. PYCR1 promotes liver cancer cell growth and metastasis by regulating IRS1 expression through lactylation modification. Clin Transl Med 2024; 14:e70045. [PMID: 39422696 PMCID: PMC11488319 DOI: 10.1002/ctm2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Liver cancer (LC) is among the deadliest cancers worldwide, with existing treatments showing limited efficacy. This study aimed to elucidate the role and underlying mechanisms of pyrroline-5-carboxylate reductase 1 (PYCR1) as a potential therapeutic target in LC. METHODS Immunohistochemistry and Western blot were used to analyse the expression of PYCR1 in LC cells and tissues. EdU assays, colony-forming assays, scratch wound healing assays, Transwell assays, nude mouse xenograft models and nude mouse lung metastasis models were used to detect the growth and metastasis abilities of LC cells. Transcriptome sequencing was used to search for downstream target genes regulated by PYCR1, and metabolomics was used to identify the downstream metabolites regulated by PYCR1. ChIP assays were used to analyse the enrichment of H3K18 lactylation in the IRS1 promoter region. RESULTS We found that the expression of PYCR1 was significantly increased in HCC and that this high expression was associated with poor prognosis in HCC patients. Knockout or inhibition of PYCR1 inhibited HCC cell proliferation, migration and invasion both in vivo and in vitro. In addition, we revealed that knocking out or inhibiting PYCR1 could inhibit glycolysis in HCC cells and reduce H3K18 lactylation of the IRS1 histone, thereby inhibiting IRS1 expression. CONCLUSIONS Our findings identify PYCR1 as a pivotal regulator of LC progression that influences tumour cell metabolism and gene expression. By demonstrating the potential of targeting PYCR1 to inhibit LC cell proliferation and metastasis, this study identified PYCR1 as a promising therapeutic target for LC. HIGHLIGHTS Pyrroline-5-carboxylate reductase 1 (PYCR1) promotes the proliferation and metastasis of liver cancer (LC) cells. The expression of PYCR1 in LC is regulated by DNA methylation. Knocking down or inhibiting PYCR1 inhibits glycolysis as well as the PI3K/AKT/mTOR and MAPK/ERK pathways in LC cells. PYCR1 regulates the transcriptional activity of IRS1 by affecting H3K18 lactylation in its promoter region.
Collapse
Affiliation(s)
- Haoyu Wang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Mu Xu
- Department of Laboratory MedicineNanjing First HospitalNanjing Medical UniversityNanjingJiangsuChina
| | - Tong Zhang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Jinkun Pan
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Chaopu Li
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Bei Pan
- Department of Laboratory MedicineNanjing First HospitalNanjing Medical UniversityNanjingJiangsuChina
| | - Linpeng Zhou
- School of Basic Medicine and Clinical PharmacyNanjing First HospitalChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yun Huang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Chenzi Gao
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Mengping He
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Yao Xue
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Xuetao Ji
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Ning Wang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Hongwen Zhou
- Department of EndocrinologyThe First affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Qian Wang
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
- Department of EndocrinologyThe affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityNorthern Jiangsu Institute of Clinical MedicineHuaianJiangsuChina
- Tianjian Laboratory of Advanced Biomedical SciencesInstitute of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
7
|
Bashir MA, Abdalla M, Shao CS, Wang H, Bondzie-Quaye P, Almahi WA, Swallah MS, Huang Q. Dual inhibitory potential of ganoderic acid A on GLUT1/3: computational and in vitro insights into targeting glucose metabolism in human lung cancer. RSC Adv 2024; 14:28569-28584. [PMID: 39247503 PMCID: PMC11378701 DOI: 10.1039/d4ra04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Human glucose transporters (GLUTs) facilitate the uptake of hexoses into cells. In cancer, the increased proliferation necessitates higher expression of GLUTs, with particular emphasis on GLUT1 and GLUT3. Thus, inhibiting GLUTs holds promise as an anticancer therapy by starving these cells of fuel. Ganoderic acid A (GAA), a triterpene found in Ganoderma lucidum, has anticancer and antidiabetic properties. Recent studies show that GAA reduces glucose uptake in cancer cells, which indicates that GAA may affect GLUT1/GLUT3 by inhibiting glucose uptake. Therefore, this study aimed to inspect whether GAA could target GLUT1/GLUT3 and play an inhibitory role in changing their endofacial and exofacial conformations. To this end, AlphaFold2 was employed to model the endofacial and exofacial conformations of GLUT3 and GLUT1, respectively. Molecular docking, molecular dynamics simulation, cell viability, cellular thermal shift assays (CETSA), glucose uptake, qPCR, and western blotting were harnessed. In comparison to the endofacial (cytochalasin B) and exofacial (phloretin) GLUT1/3 inhibitors, the computational findings unveiled GAA's capacity to bind and stabilize GLUT1/3 in their two conformational states, with a preference for binding the endofacial conformation. A low, non-cytotoxic dose of GAA thermally stabilized both transporters and inhibited glucose uptake in human lung cancer cells, similar to cytochalasin B and phloretin. In conclusion, this study has unearthed novel functionalities of GAA, suggesting its potential utility in cancer therapy by targeting glucose metabolism.
Collapse
Affiliation(s)
- Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
- Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University P.O. Box 382 Omdurman Sudan
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University Jinan Shandong 250022 China
- Shandong Provincial Clinical Research Center for Children's Health and Disease Jinan Shandong 250022 China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
8
|
Rajabloo Y, Latifi H, Akhlaghipour I, Taghehchian N, Moghbeli M. MicroRNA-409: Molecular functions and clinical applications in cancer. Biochem Biophys Rep 2024; 38:101728. [PMID: 38737729 PMCID: PMC11087923 DOI: 10.1016/j.bbrep.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Late diagnosis is one of the main reasons for high mortality rates in cancer patients. Therefore, investigating the molecular mechanisms involved in tumor progression can improve the cancer diagnosis in the early stages of the tumor progression. MicroRNAs (miRNAs) have important roles in regulation of cell growth, proliferation, metabolism, and migration. Since, deregulation of miR-409 has been reported in a wide range of cancers, in the present review, we investigated the molecular mechanisms of miR-409 during tumor progression and invasion. It has been shown that miR-409 functions as a tumor suppressor in different tumor types. MiR-409 can reduce tumor cell proliferation, growth, and migration by regulation of signaling pathways, cellular metabolism, transcription factors, and cellular adhesion. This review can be an effective step in introducing miR-409 as a non-invasive marker in cancer patients.
Collapse
Affiliation(s)
- Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Yang HA, Han TH, Haam K, Lee KS, Kim J, Han TS, Lee MS, Ban HS. Prodigiosin regulates cancer metabolism through interaction with GLUT1. Nat Prod Res 2024:1-8. [PMID: 38913075 DOI: 10.1080/14786419.2024.2367241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
In contrast to normal cells, cancer cells predominantly utilise glycolysis for ATP generation under aerobic conditions, facilitating proliferation and metastasis. Targeting glycolysis is effective for cancer treatment. Prodigiosin (PDG) is a natural compound with various bioactivities, including anticancer effects. However, the precise action mechanisms and molecular targets of PDG, which has demonstrated efficacy in regulating glucose metabolism in cancer cells, remain elusive. Here, we aimed to investigate the anti-cancer activity of PDG and mechanism in cancer metabolism. PDG regulated cancer metabolism by suppressing intracellular ATP production rate and levels. It inhibited glycolysis and mitochondrial oxidative phosphorylation, impeding ATP production dependent on both glycolysis and mitochondrial respiration. Moreover, it inhibited cellular glucose uptake by directly interacting with glucose transporter 1 without affecting its mRNA or protein levels in HCT116 cells. We provide insights into the anti-cancer effects of PDG mediated via cancer metabolism regulation, suggesting its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Hyun-A Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Hee Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung-Soo Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jinsu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Wan B, Cheng M, He T, Zhang L. UCHL5 promotes hepatocellular carcinoma progression by promoting glycolysis through activating Wnt/β-catenin pathway. BMC Cancer 2024; 24:618. [PMID: 38773433 PMCID: PMC11110341 DOI: 10.1186/s12885-023-11317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/18/2023] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is highly malignant with a dismal prognosis, although the available therapies are insufficient. No efficient ubiquitinase has been identified as a therapeutic target for HCC despite the complicating role that of proteins ubiquitination plays in the malignant development of HCC. METHODS The expression of ubiquitin carboxyl terminal hydrolase L5 (UCHL5) in HCC tumor tissue and adjacent normal tissue was determined using the cancer genome atlas (TCGA) database and was validated using real-time quantitative polymerase chain reaction (RT-qRCR), Western blot and immunohistochemistry (IHC), and the relation of UCHL5 with patient clinical prognosis was explored. The expression of UCHL5 was knocked down and validated, and the effect of UCHL5 on the biological course of HCC was explored using cellular assays. To clarify the molecular mechanism of action of UCHL5 affecting HCC, expression studies of Adenosine triphosphate adenosine triphosphate (ATP), extracellular acidification (ECAR), and glycolysis-related enzymes were performed. The effects of UCHL5 on β-catenin ubiquitination and Wnt signaling pathways were explored in depth and validated using cellular functionalities. Validation was also performed in vivo. RESULTS In the course of this investigation, we discovered that UCHL5 was strongly expressed in HCC at both cellular and tissue levels. The prognosis of patients with high UCHL5 expression is considerably worse than that of those with low UCHL5 expression. UCHL5 has been shown to increase the degree of glycolysis in HCC cells with the impact of stimulating the proliferation and metastasis of HCC cells in both in vivo and in vitro. UCHL5 downregulates its degree of ubiquitination by binding to β-catenin, which activates the Wnt/β-catenin pathway and accelerates HCC cell glycolysis. Thereby promoting the growth of the HCC. CONCLUSIONS In summary, we have demonstrated for the first time that UCHL5 is a target of HCC and promotes the progression of hepatocellular carcinoma by promoting glycolysis through the activation of the Wnt/β-catenin pathway. UCHL5 may thus serve as a novel prognostic marker and therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Baishun Wan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, Henan Province, 450008, China
| | - Ming Cheng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, Henan Province, 450008, China
| | - Tao He
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, Henan Province, 450008, China
| | - Ling Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou, Henan Province, 450008, China.
| |
Collapse
|
11
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Liu Z, Cao X, Ma Z, Xu L, Wang L, Li J, Xiao M, Jiang X. Enhanced Sampling Molecular Dynamics Simulations Reveal Transport Mechanism of Glycoconjugate Drugs through GLUT1. Int J Mol Sci 2024; 25:5486. [PMID: 38791523 PMCID: PMC11122603 DOI: 10.3390/ijms25105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.
Collapse
Affiliation(s)
- Zhuo Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xueting Cao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Zhenyu Ma
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Limei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Hao B, Dong H, Xiong R, Song C, Xu C, Li N, Geng Q. Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med 2024; 171:108183. [PMID: 38422959 DOI: 10.1016/j.compbiomed.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/20/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As one of the common subtypes of non-small lung cancer, lung squamous cell carcinoma (LUSC) patients with advanced stage have few choices of treatment strategies. Therefore, it is urgent to discover genes that are associated with the survival and efficacy of immunotherapies. METHOD Differential gene expression analyses were conducted using TCGA LUSC bulk-sequencing and single-cell RNA-sequencing data. Prognostic genes were identified from the TCGA LUSC cohort. Protein expression validation and survival analyses were performed. Experiments were conducted to explore the underlying mechanisms. In addition, the correlation between gene expression and pathological response to adjuvant immunochemotherapy was also investigated. RESULTS After a series of bioinformatic analyses, solute carrier family 2 member 1(SLC2A1), encoding glucose transporter-1 (GLUT1), was found to be differentially expressed between tumor and normal tissues. GLUT1 was subsequently identified as an independent prognostic factor for LUSC. GSEA analysis revealed the glycolysis metabolism pathway of KEGG enriched in SLC2A1high tumor tissues. LASSO analyses revealed that tumor tissues with high expression of SLC2A1 were associated with high levels of protein lactylation. We found that SLC2A1 was preferentially expressed by SPP1+ macrophages in the tumor microenvironment, and the expression of SLC2A1 was associated with the abundance of SPP1+ macrophages. Immunofluorescence demonstrated GLUT1 and HIF1α colocalization in tumor-infiltrating macrophages. In vitro experiments showed HIF-1α-induced macrophage polarization under hypoxia, and GLUT1 inhibition blocked this polarization. In addition, SLC2A1 was negatively associated with the common immune checkpoint molecules, such as programmed cell death 1(PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-lymphocyte associated protein 4 (CTLA4) and lymphocyte activating 3 (LAG3), while showed a positive association with CD44. Finally, we observed that there was a significant correlation between pre-adjuvant-treatment GLUT1 expression and the pathological response. CONCLUSION SLC2A1 expression was differentially upregulated in tumor tissues, and elevated GLUT1 expression was associated with worse survival and poor pathological response to adjuvant immunochemotherapy. Upregulation of GLUT1 promoted macrophage polarization into the M2 phenotype. The findings will contribute to guiding the treatment selection for LUSC patients and providing personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Huixing Dong
- Department of Pulmonary and Critical Care Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
14
|
Jin Y, Jiang A, Sun L, Lu Y. Long noncoding RNA TMPO-AS1 accelerates glycolysis by regulating the miR-1270/PKM2 axis in colorectal cancer. BMC Cancer 2024; 24:238. [PMID: 38383342 PMCID: PMC10880273 DOI: 10.1186/s12885-024-11964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Long noncoding RNA thymopoietin-antisense RNA 1 (TMPO-AS1) is recognized as a participant in cancer progression. Nevertheless, its biological function in colorectal cancer remains obscure and needs further elucidation. METHODS AND RESULTS First, we discovered enriched TMPO-AS1 in the tumor tissues that were related to poor prognosis. TMPO-AS1 knockdown enhanced SW480 cell apoptosis but inhibited invasion, proliferation, migration, and glucose metabolism. Further, MiR-1270 is directly bound with TMPO-AS1. MiR-1270 mimics were confirmed to inhibit cell proliferation, invasion, and glucose metabolism in our study. Mechanistically, miR-1270 directly is bound with the 3' untranslated regions (3'UTR) of PKM2 to downregulate PKM2. MiR-1270 inhibitors reversed the TMPO-AS1 knockdown's effect on suppressing the tumor cell proliferation, invasion, and glycolysis, while the knockdown of PKM2 further inverted the function of miR-1270 inhibitors on the TMPO-AS1 knockdown. CONCLUSIONS This study illustrated that TMPO-AS1 advanced the development and the glycolysis of colorectal cancer by modulating the miR-1270/PKM2 axis, which provided a new insight into the colorectal cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yingmin Jin
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str, Harbin, 150001, People's Republic of China.
| | - Aimin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str, Harbin, 150001, People's Republic of China
| | - Liying Sun
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str, Harbin, 150001, People's Republic of China
| | - Yue Lu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str, Harbin, 150001, People's Republic of China
| |
Collapse
|
15
|
Geng H, Chen L, Lv S, Li M, Huang X, Li M, Liu C, Liu C. Photochemically Controlled Release of the Glucose Transporter 1 Inhibitor for Glucose Deprivation Responses and Cancer Suppression Research. J Proteome Res 2024; 23:653-662. [PMID: 38170682 DOI: 10.1021/acs.jproteome.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.
Collapse
Affiliation(s)
- Hongen Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - ShuWen Lv
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoping Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Man Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
16
|
Shi Y, Feng Y, Qiu P, Zhao K, Li X, Deng Z, Wang J. Identifying the programmed cell death index of hepatocellular carcinoma for prognosis and therapy response improvement by machine learning: a bioinformatics analysis and experimental validation. Front Immunol 2023; 14:1298290. [PMID: 38170006 PMCID: PMC10759150 DOI: 10.3389/fimmu.2023.1298290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Background Despite advancements in hepatocellular carcinoma (HCC) treatments, the prognosis for patients remains suboptimal. Cumulative evidence suggests that programmed cell death (PCD) exerts crucial functions in HCC. PCD-related genes are potential predictors for prognosis and therapeutic responses. Methods A systematic analysis of 14 PCD modes was conducted to determine the correlation between PCD and HCC. A novel machine learning-based integrative framework was utilized to construct the PCD Index (PCDI) for prognosis and therapeutic response prediction. A comprehensive analysis of PCDI genes was performed, leveraging data including single-cell sequencing and proteomics. GBA was selected, and its functions were investigated in HCC cell lines by in vitro experiments. Results Two PCD clusters with different clinical and biological characteristics were identified in HCC. With the computational framework, the PCDI was constructed, demonstrating superior prognostic predictive efficacy and surpassing previously published prognostic models. An efficient clinical nomogram based on PCDI and clinicopathological factors was then developed. PCDI was intimately associated with immunological attributes, and PCDI could efficaciously predict immunotherapy response. Additionally, the PCDI could predict the chemotherapy sensitivity of HCC patients. A multilevel panorama of PCDI genes confirmed its stability and credibility. Finally, the knockdown of GBA could suppress both the proliferative and invasive capacities of HCC cells. Conclusion This study systematically elucidated the association between PCD and HCC. A robust PCDI was constructed for prognosis and therapy response prediction, which would facilitate clinical management and personalized therapy for HCC.
Collapse
Affiliation(s)
- Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Zhang C, Liu Z, Wang F, Zhang B, Zhang X, Guo P, Li T, Tai S, Zhang C. Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion. Drug Deliv 2023; 30:2162160. [PMID: 36579634 PMCID: PMC9809347 DOI: 10.1080/10717544.2022.2162160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor leading cancer-associated high mortality worldwide. Unfortunately, the most commonly used drug therapeutics not only lack of target ability and efficiency, but also exhibit severe systemic toxicity to normal tissues. Thus, effective and targeted nanodrug of HCC therapy is emerging as a more important issue. Here, we design and develop the novel nanomicelles, namely Mannose-polyethylene glycol 600-Nitroimidazole (Man-NIT). This micelle compound with high purity comprise two parts, which can self-assemble into nanoscale micelle. The outer shell is selected mannose as hydrophilic moiety, while the inner core is nitroimidazole as hydrophobic moiety. In the cell experiment, Man-NIT was more cellular uptake by HCCLM3 cells due to the mannose modification. Mannose as a kind of glucose transporter 1 (GLUT1) substrate, can specifically recognize and bind to over-expressed GLUT1 on carcinoma cytomembrane. The nitroimidazole moiety of Man-NIT was reduced by the over-expressed nitroreductase with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as the cofactor, resulting in transient deletion of NADPH and glutathione (GSH). The increase of reactive oxygen species (ROS) in HCCLM3 cells disturbed the balance of redox, and finally caused the death of tumor cells. Additional in vivo experiment was conducted using twenty-four male BALB/c nude mice to build the tumor model. The results showed that nanomicelles were accumulated in the liver of mice. The tumor size and pathological features were obviously improved after nanomicelles treatment. It indicates that namomicelles have a tumor inhibition effect, especially Man-NIT, which may be a potential nanodrug of chemotherapeutics for HCC therapy.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zehui Liu
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Bin Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xirui Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Peiwen Guo
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China,CONTACT Sheng Tai
| | - Changmei Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China,Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China,Changmei Zhang Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| |
Collapse
|
18
|
Li D, Lin X, Li J, Liu X, Zhang F, Tang W, Zhang S, Dong L, Xue R. Eleven metabolism‑related genes composed of Stard5 predict prognosis and contribute to EMT phenotype in HCC. Cancer Cell Int 2023; 23:277. [PMID: 37978523 PMCID: PMC10656919 DOI: 10.1186/s12935-023-03097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with a high mortality and poor survival rate. Abnormal tumor metabolism is considered a hallmark of HCC and is a potential therapeutic target. This study aimed to identify metabolism-related biomarkers to evaluate the prognosis of patients with HCC. METHOD The Cancer Genome Atlas (TCGA) database was used to explore differential metabolic pathways based on high and low epithelial-mesenchymal transition (EMT) groupings. Genes in differential metabolic pathways were obtained for HCC metabolism-related molecular subtype analysis. Differentially expressed genes (DEGs) from the three subtypes were subjected to Lasso Cox regression analysis to construct prognostic risk models. Stard5 expression in HCC patients was detected by western blot and immunohistochemistry (IHC), and the role of Stard5 in the metastasis of HCC was investigated by cytological experiments. RESULTS Unsupervised clustering analysis based on metabolism-related genes revealed three subtypes in HCC with differential prognosis. A risk prognostic model was constructed based on 11 genes (STARD5, FTCD, SCN4A, ADH4, CFHR3, CYP2C9, CCL14, GADD45G, SOX11, SCIN, and SLC2A1) obtained by LASSO Cox regression analysis of the three subtypes of DEGs. We validated that the model had a good predictive power. In addition, we found that the high-risk group had a poor prognosis, higher proportion of Tregs, and responded poorly to chemotherapy. We also found that Stard5 expression was markedly decreased in HCC tissues, which was associated with poor prognosis and EMT. Knockdown of Stard5 contributed to the invasion and migration of HCC cells. Overexpression of Stard5 inhibited EMT in HCC cells. CONCLUSION We developed a new model based on 11 metabolism-related genes, which predicted the prognosis and response to chemotherapy or immunotherapy for HCC. Notably, we demonstrated for the first time that Stard5 acted as a tumor suppressor by inhibiting metastasis in HCC.
Collapse
Affiliation(s)
- Dongping Li
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiale Li
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyi Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Kokeza J, Strikic A, Ogorevc M, Kelam N, Vukoja M, Dilber I, Zekic Tomas S. The Effect of GLUT1 and HIF-1α Expressions on Glucose Uptake and Patient Survival in Non-Small-Cell Lung Carcinoma. Int J Mol Sci 2023; 24:10575. [PMID: 37445752 DOI: 10.3390/ijms241310575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the second-most-common cancer while being the leading cause of cancer deaths worldwide. It has been found that glucose transporter 1 (GLUT1) and hypoxia-inducible factor 1α (HIF-1α) are overexpressed in various malignancies and that they correlate with the maximum standard uptake values (SUVmax) on 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) and poor prognosis. In this study, we aim to evaluate the relationship between the SUVmax, GLUT1, and HIF-1α expression with primary tumor size, histological type, lymph node metastases, and patient survival. Of the 48 patients with non-small-cell lung cancer, those with squamous cell carcinomas (SCCs) had significantly higher GLUT1 and HIF-1α immunohistochemical expressions in comparison to adenocarcinomas (ACs), while there was no statistically significant difference in FDG accumulation between them. No significant correlation was noted between either GLUT1 or HIF-1α protein expression and FDG uptake and overall survival. However, an analysis of tumor transcriptomics showed a significant difference in overall survival depending on mRNA expression; patients with SCC and high HIF-1α levels survived longer compared to those with low HIF-1α levels, while patients with AC and low GLUT1 levels had a higher average survival time than those with high GLUT1 levels. Further studies are needed to determine the prognostic value of the expression of these factors depending on the histologic type.
Collapse
Affiliation(s)
- Josipa Kokeza
- Department of Pulmonology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Ante Strikic
- Department of Oncology and Radiotherapy, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Ivo Dilber
- Department of Oncology and Nuclear Medicine, General Hospital Zadar, Ul. Bože Peričića 5, 23000 Zadar, Croatia
| | - Sandra Zekic Tomas
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
- Department of Pathology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
20
|
Wang Q, Yu W, Wang T, Huang C. Circular RNA circDLG1 contributes to HCC progression by regulating the miR-141-3p/WTAP axis. Funct Integr Genomics 2023; 23:179. [PMID: 37227531 PMCID: PMC10213070 DOI: 10.1007/s10142-023-01096-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
This study aims to explore novel and reliable biomarkers for predicting hepatocellular carcinoma (HCC) prognosis. Circular RNAs (circRNAs) were determined by analysis of human circRNA arrays and quantitative reverse transcription polymerase reactions. To test for an interaction between circDLG1, we used luciferase reporter assays, RNA immunoprecipitation, and fluorescence in situ hybridization assays that were employed to test the interaction between circDLG1, miR-141-3p, and WTAP. q-RT-PCR and western blot were used to evaluate the target regulation of miR-141-3p and WTAP. shRNA-mediated knockdown of circDLG1, proliferation, migration, and invasion experiment of metastasis were used to evaluate the function of circDLG. CircDLG1 rather than lining DLG1 was upregulated in HCC tissues, from HCC patients as well as HCC cell lines compared to normal controls. circDLG1 high expression in HCC patients was correlated with shorter overall survival. Knockdown of circDLG1 and miR-141-3p mimic could inhibit the tumorigenesis of HCC cells in vivo and in vitro. Importantly, we demonstrated that circDLG1 could act as a sponge of miR-141-3p to regulate the expression of WTAP, and further suppress the tumorigenesis of HCC cells. Our study reveals that circDLG1 can serve as a novel potential circulating biomarker for the detection of HCC. circDLG1 participates in the progression of HCC cells by sponging miR-141-3p with WTAP, providing new insight into the treatment of HCC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Wei Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Changshan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
21
|
Meng L, Liu F, Du C, Zhu J, Xiong Q, Li J, Sun W. Glucosamine-Modified Reduction-Responsive Polymeric Micelles for Liver Cancer Therapy. Molecules 2023; 28:molecules28093824. [PMID: 37175234 PMCID: PMC10180462 DOI: 10.3390/molecules28093824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, glucose transporter-1 (GLUT-1) and glutathione (GSH) over-expression in liver cancer was utilized to design a reduction-responsive and active targeting drug delivery system AG-PEG-SS-PCL (APSP) for the delivery of sorafenib (SF). The SF-APSP micelles were prepared using the thin film hydration method and characterized by various techniques. In vitro release experiments showed that the cumulative release of SF-APSP micelles in the simulated tumor microenvironment (pH 7.4 with GSH) reached 94.76 ± 1.78% at 48 h, while it was only 20.32 ± 1.67% in the normal physiological environment (pH 7.4 without GSH). The in vitro study revealed that glucosamine (AG) enhanced the antitumor effects of SF, and SF-APSP micelles inhibited proliferation by targeting HepG2 cells and suppressing cyclin D1 expression. The in vivo antitumor efficacy study further confirmed that the SF-APSP micelles had excellent antitumor effects and better tolerance against nude mouse with HepG2 cells than other treatment groups. All in all, these results indicated that SF-APSP micelles could be a promising drug delivery system for anti-hepatoma treatment.
Collapse
Affiliation(s)
- Lei Meng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Fangshu Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Chenchen Du
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jiaying Zhu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Qian Xiong
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jing Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
22
|
Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, Tang X, Fei J, Yang G, Tian J, Zeng X. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy 2023; 19:1221-1238. [PMID: 36048765 PMCID: PMC10012924 DOI: 10.1080/15548627.2022.2119353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022] Open
Abstract
Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Shuming Tang
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyan Shi
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunzhi Lin
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of pathology(Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qinghua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Baoru Ou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dongyu Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuyang Miao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Guangdong Innovative Chinese Medicine and Natural Medicine Engineering Technology Research Center, Research Institute of Tsinghua University, Shenzhen, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043710. [PMID: 36835122 PMCID: PMC9964410 DOI: 10.3390/ijms24043710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma is today the sixth leading cause of cancer-related death worldwide, despite the decreased incidence of chronic hepatitis infections. This is due to the increased diffusion of metabolic diseases such as the metabolic syndrome, diabetes, obesity, and nonalcoholic steatohepatitis (NASH). The current protein kinase inhibitor therapies in HCC are very aggressive and not curative. From this perspective, a shift in strategy toward metabolic therapies may represent a promising option. Here, we review current knowledge on metabolic dysregulation in HCC and therapeutic approaches targeting metabolic pathways. We also propose a multi-target metabolic approach as a possible new option in HCC pharmacology.
Collapse
|
24
|
Peng Q, Hao L, Guo Y, Zhang Z, Ji J, Xue Y, Liu Y, Li C, Lu J, Shi X. Dihydroartemisinin inhibited the Warburg effect through YAP1/SLC2A1 pathway in hepatocellular carcinoma. J Nat Med 2023; 77:28-40. [PMID: 36068393 DOI: 10.1007/s11418-022-01641-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) was the third most common cause of cancer death. But it has only limited therapeutic options, aggressive nature, and very low overall survival. Dihydroartemisinin (DHA), an anti-malarial drug approved by the Food and Drug Administration (FDA), inhibited cell growth in HCC. The Warburg effect was one of the ten new hallmarks of cancer. Solute carrier family 2 member 1 (SLC2A1) was a crucial carrier for glucose to enter target cells in the Warburg effect. Yes-associated transcriptional regulator 1 (YAP1), an effector molecule of the hippo pathway, played a crucial role in promoting the development of HCC. This study sought to determine the role of DHA in the SLC2A1 mediated Warburg effect in HCC. In this study, DHA inhibited the Warburg effect and SLC2A1 in HepG2215 cells and mice with liver tumors in situ. Meanwhile, DHA inhibited YAP1 expression by inhibiting YAP1 promoter binding protein GA binding protein transcription factor subunit beta 1 (GABPB1) and cAMP responsive element binding protein 1 (CREB1). Further, YAP1 knockdown/knockout reduced the Warburg effect and SLC2A1 expression by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors. Taken together, our data indicated that YAP1 knockdown/knockout reduced the SLC2A1 mediated Warburg effect by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors induced by DEN/TCPOBOP. DHA, as a potential YAP1 inhibitor, suppressed the SLC2A1 mediated Warburg effect in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, China.
| |
Collapse
|
25
|
Zhou L, Zhao Y, Pan LC, Wang J, Shi XJ, Du GS, He Q. Sirolimus increases the anti-cancer effect of Huai Er by regulating hypoxia inducible factor-1α-mediated glycolysis in hepatocellular carcinoma. World J Gastroenterol 2022; 28:4600-4619. [PMID: 36157928 PMCID: PMC9476881 DOI: 10.3748/wjg.v28.i32.4600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glycolysis caused by hypoxia-induced abnormal activation of hypoxia inducible factor-1α (HIF-1α) in the immune microenvironment promotes the progression of hepatocellular carcinoma (HCC), leading to enhanced drug resistance in cancer cells. Therefore, altering the immunosuppressive microenvironment by imp-roving the hypoxic state is a new goal in improving cancer treatment. AIM To analyse the role of HIF-1α, which is closely related to tumour proliferation, invasion, metastasis, and angiogenesis, in the proliferation and invasion of liver cancer, and to explore the HIF-1α pathway-mediated anti-cancer mechanism of sirolimus (SRL) combined with Huai Er. METHODS Previous studies on HCC tissues identified the importance of HIF-1α, glucose transporter 1 (GLUT1), and lactate dehydrogenase A (LDHA) expression. In this study, HepG2 and Huh7 cell lines were treated, under hypoxic and normoxic conditions, with a combination of SRL and Huai Er. The effects on proliferation, invasion, cell cycle, and apoptosis were analysed. Proteomics and genomics techniques were used to analyze the HIF-1α-related signalling pathway during SRL combined with Huai Er treatment and its inhibition of the proliferation of HCC cells. RESULTS High levels of HIF-1α, LDHA, and GLUT-1 were found in poorly differentiated HCC, with lower patient survival rates. Hypoxia promoted the proliferation of HepG2 and Huh7 cells and weakened the apoptosis and cell cycle blocking effects of the SRL/Huai Er treatment. This was achieved by activation of HIF-1α and glycolysis in HCC, leading to the upregulation of LDHA, GLUT-1, Akt/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and Forkhead box P3 and downregulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and p27. The hypoxia-induced activation of HIF-1α showed the greatest attenuation in the SRL/Huai Er (S50 + H8) group compared to the drug treatments alone (P < 0.001). The S50 + H8 treatment significantly downregulated the expression of mTOR and HIF-1α, and significantly reduced the expression of VEGF mRNA. Meanwhile, the combined blocking of mTOR and HIF-1α enhanced the downregulation of Akt/mTOR, HIF-1α, LDHA, and GLUT-1 mRNA and resulted in the downregulation of PTEN, p27, and VEGF mRNA (P < 0.001). CONCLUSION SRL increases the anti-cancer effect of Huai Er, which reduces the promotion of hypoxia-induced HIF-1α on the Warburg effect by inhibition of the PI3K/Akt/mTOR-HIF-1α and HIF-1α-PTEN signalling pathways in HCC.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Yang Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Li-Chao Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Xian-Jie Shi
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Guo-Sheng Du
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
26
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
27
|
Differential response of hepatocellular carcinoma glycolytic metabolism and oxidative stress markers after exposure to human amniotic membrane proteins. Mol Biol Rep 2022; 49:7731-7741. [PMID: 35716291 DOI: 10.1007/s11033-022-07598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human Amniotic Membrane (hAM) has been studied as a potential therapeutic option in cancer, namely in hepatocellular carcinoma. Previously, our research group evaluated the effect of human Amniotic Membrane Protein Extracts (hAMPE) in cancer therapy, demonstrating that hAMPE inhibit the metabolic activity of human hepatocellular carcinoma cell lines: Hep3B2.1-7, HepG2 and Huh7. Therefore, and considering the close relationship between metabolic activity and oxidative stress, the aim of this study was to evaluate the effect of hAMPE treatment in glucose metabolism and its role in oxidative stress of hepatocellular carcinoma. METHODS AND RESULTS Glucose uptake and lactate production was assessed by 1 H-NMR, and the expression of several mediators of the glycolytic pathway was evaluated by Western blot or fluorescence. Total antioxidant capacity (TAC) and biomarkers of oxidative stress effects in proteins were detected. Our results showed that hAMPE treatment increased glucose consumption on Hep3B2.1-7, HepG2, and Huh7 through the increase of GLUT1 in Hep3B2.1-7 and Huh7, and GLUT3 in HepG2 cells. It was observed an increased expression of 6-phosphofrutokinase (PFK-1L) in all cell lines though glucose was not converted to lactate on HepG2 and Huh7 cells, suggesting that hAMPE treatment may counteract the Warburg effect observed in carcinogenesis. In Hep3B2.1-7, hAMPE treatment induced an increase in expression of lactate dehydrogenase (LDH) and monocarboxylate transporter isoform 4 (MCT4). We further detected that hAMPE enhances the TAC of culture media after 2 and 8 h. This was followed by a degree of protection against proteins nitration and carbonylation. CONCLUSIONS Overall, this work highlights the potential usefulness of hAMPE as anticancer therapy through the modulation of the glycolytic and oxidative profile in human hepatocellular carcinoma.
Collapse
|
28
|
Bie F, Zhang G, Yan X, Ma X, Zhan S, Qiu Y, Cao J, Ma Y, Ma M. β-Boswellic Acid Suppresses Breast Precancerous Lesions via GLUT1 Targeting-Mediated Glycolysis Inhibition and AMPK Pathway Activation. Front Oncol 2022; 12:896904. [PMID: 35712503 PMCID: PMC9194511 DOI: 10.3389/fonc.2022.896904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinoma is a multistep progressive disease. Precancerous prevention seems to be crucial. β-Boswellic acid (β-BA), the main component of the folk medicine Boswellia serrata (B. serrata), has been reported to be effective in various diseases including tumors. In this work, we demonstrated that β-BA could inhibit breast precancerous lesions in rat disease models. Consistently, β-BA could suppress proliferation and induce apoptosis on MCF-10AT without significantly influencing MCF-10A. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that β-BA may interfere with the metabolic pathway. Metabolism-related assays showed that β-BA suppressed glycolysis and reduced ATP production, which then activated the AMPK pathway and inhibited the mTOR pathway to limit MCF-10AT proliferation. Further molecular docking analysis suggested that GLUT1 might be the target of β-BA. Forced expression of GLUT1 could rescue the glycolysis suppression and survival limitation induced by β-BA on MCF-10AT. Taken together, β-BA could relieve precancerous lesions in vivo and in vitro through GLUT1 targeting-induced glycolysis suppression and AMPK/mTOR pathway alterations. Here, we offered a molecular basis for β-BA to be developed as a promising drug candidate for the prevention of breast precancerous lesions.
Collapse
Affiliation(s)
- Fengjie Bie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinyi Ma
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Sha Zhan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yebei Qiu
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingyu Cao
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Lan Y, Jin C, Kumar P, Yu X, Lenahan C, Sheng J. Ketogenic Diets and Hepatocellular Carcinoma. Front Oncol 2022; 12:879205. [PMID: 35600387 PMCID: PMC9115558 DOI: 10.3389/fonc.2022.879205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The ketogenic diet (KD) is a low-carbohydrate, high-fat diet regarded as a potential intervention for cancers owing to its effects on tumor metabolism and behavior. Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, and its management is worth investigating because of the high fatality rate. Additionally, as the liver is the glucose and lipid metabolism center where ketone bodies are produced, the application of KD to combat HCC is promising. Prior studies have reported that KD could reduce the energy supply and affect the proliferation and differentiation of cancer cells by lowering the blood glucose and insulin levels. Furthermore, KD can increase the expression of hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in hepatocytes and regulate lipid metabolism to inhibit the progression of HCC. In addition, β-hydroxybutyrate can induce histone hyperacetylation and reduce the expression of inflammatory factors to alleviate damage to hepatocytes. However, there are few relevant studies at present, and the specific effects and safety of KD on HCC warrant further research. Optimizing the composition of KD and combining it with other therapies to enhance its anti-cancer effects warrant further exploration.
Collapse
Affiliation(s)
- Yan Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaonan Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Pavitra Kumar
- Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Xia Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Chen J, Wang H, Zhou L, Liu Z, Chen H, Tan X. A necroptosis-related gene signature for predicting prognosis, immune landscape, and drug sensitivity in hepatocellular carcinoma. Cancer Med 2022; 11:5079-5096. [PMID: 35560794 PMCID: PMC9761093 DOI: 10.1002/cam4.4812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a growing threat to global health. Necroptosis is a newly discovered form of cell necrosis that plays a vital role in cancer development. Thus, we conducted this study to identify a predictive signature of HCC based on necroptosis-related genes. METHODS The tumor samples in the liver hepatocellular carcinoma (LIHC) cohort from The Cancer Genome Atlas (TCGA) database were subtyped using the consensus clustering algorithm. Univariate Cox regression and LASSO-Cox analysis were performed to identify a gene signature from genes differentially expressed between tumor clusters. Then, we integrated the TNM stage and the prognostic model to build a nomogram. The gene signature and the nomogram were externally validated in the GSE14520 cohort from the Gene Expression Omnibus (GEO) and the LIRP-JP cohort from the International Cancer Genome Consortium (ICGC). Evaluations of predictive performance evaluations were conducted using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, principal component analyses, concordance indices, and decision curve analyses. The tumor microenvironment was estimated using eight published methods. Finally, we forecasted the sensitivity of HCC patients to immunotherapy and chemotherapy based on this gene signature. RESULTS We identified two necroptosis-related clusters and a 10-gene signature (MTMR2, CDCA8, S100A9, ANXA10, G6PD, SLC1A5, SLC2A1, SPP1, PLOD2, and MMP1). The gene signature and the nomogram had good predictive ability in the TCGA, ICGC, and GEO cohorts. The risk score was positively associated with the levels of necroptosis and immune cell infiltrations (especially of immunosuppressive cells). The high-risk group could benefit more from immunotherapy and some chemotherapeutics than the low-risk group. CONCLUSION The necroptosis-related gene signature provides a new method for the risk stratification and treatment optimization of HCC. The nomogram can further improve predictive accuracy.
Collapse
Affiliation(s)
- Junliang Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Huaitao Wang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Lei Zhou
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhihao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Hui Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaodong Tan
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
31
|
Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Nat Commun 2022; 13:2632. [PMID: 35552392 PMCID: PMC9098912 DOI: 10.1038/s41467-022-30326-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Human glucose transporters (GLUTs) are responsible for cellular uptake of hexoses. Elevated expression of GLUTs, particularly GLUT1 and GLUT3, is required to fuel the hyperproliferation of cancer cells, making GLUT inhibitors potential anticancer therapeutics. Meanwhile, GLUT inhibitor-conjugated insulin is being explored to mitigate the hypoglycemia side effect of insulin therapy in type 1 diabetes. Reasoning that exofacial inhibitors of GLUT1/3 may be favored for therapeutic applications, we report here the engineering of a GLUT3 variant, designated GLUT3exo, that can be probed for screening and validating exofacial inhibitors. We identify an exofacial GLUT3 inhibitor SA47 and elucidate its mode of action by a 2.3 Å resolution crystal structure of SA47-bound GLUT3. Our studies serve as a framework for the discovery of GLUTs exofacial inhibitors for therapeutic development. Human glucose transporters (GLUTs), particularly GLUT1 and GLUT3, are potential anticancer therapy targets. Here, Nan Wang et al. use an engineered GLUT 3 variant to identify an exofacial GLUT3 inhibitor, SA47, and elucidate the drug’s inhibitory mechanism.
Collapse
|
32
|
Xu Y, Chai B, Wang X, Wu Z, Gu Z, Liu X, Zhao Y, Chen T, Ma Z, Sun Q. miRNA-199a-5p/SLC2A1 axis regulates glucose metabolism in non-small cell lung cancer. J Cancer 2022; 13:2352-2361. [PMID: 35517408 PMCID: PMC9066207 DOI: 10.7150/jca.67990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/06/2022] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is acknowledged as a common cancer with high morbidity and mortality. MicroRNAs (miRNAs), kind of non-coding single-stranded RNA molecules, can be used in cancer clinical treatments. In this research, miR-199a-5p was seen lowly expressed in NSCLC sera samples. miR-199a-5p suppressed the cell proliferation, migration and arrested cell cycle in NSCLC cell lines. The results showed that SLC2A1 (glucose transporter 1, GLUT1) was a direct target of miR-199a-5p. Downregulation of SLC2A1 could not only inhibit cell proliferation, migration and cell cycle, but also promote cell apoptosis. The data suggests that miR-199a-5p can inhibit glucose metabolism in NSCLC by targeting SLC2A1.This study proves that miR-199a-5p / SLC2A1 can play an essential role in the development of NSCLC by targeting SLC2A1. It puts forward a new approach for clinical treatments of NSCLC.
Collapse
Affiliation(s)
- Yikun Xu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China
| | - Zhitao Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China.,Shanghai New Tobacco Product Research Institute, Shanghai, 201315, China
| | - Yiqi Zhao
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China
| | - Tangbing Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 200444, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.,Thoracic Cancer institute, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
33
|
Karamali N, Ebrahimnezhad S, Khaleghi Moghadam R, Daneshfar N, Rezaiemanesh A. HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci 2022; 301:120620. [PMID: 35533759 DOI: 10.1016/j.lfs.2022.120620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
In tumor cells, the endoplasmic reticulum (ER) plays an essential role in maintaining cellular proteostasis by stimulating unfolded protein response (UPR) underlying stress conditions. ER-associated degradation (ERAD) is a critical pathway of the UPR to protect cells from ER stress-induced apoptosis and the elimination of unfolded or misfolded proteins by the ubiquitin-proteasome system (UPS). 3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) as an E3 ubiquitin ligase plays an essential role in the ubiquitination and dislocation of misfolded protein in ERAD. In addition, HRD1 can target other normal folded proteins. In various types of cancer, the expression of HRD1 is dysregulated, and it targets different molecules to develop cancer hallmarks or suppress the progression of the disease. Recent investigations have defined the role of HRD1 in drug resistance in types of cancer. This review focuses on the molecular mechanisms of HRD1 and its roles in cancer pathogenesis and discusses the worthiness of targeting HRD1 as a novel therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Samaneh Ebrahimnezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Xu J, Li X, Zhang P, Luo J, Mou E, Liu S. miR-143-5p suppresses breast cancer progression by targeting the HIF-1α-related GLUT1 pathway. Oncol Lett 2022; 23:147. [PMID: 35350590 PMCID: PMC8941519 DOI: 10.3892/ol.2022.13268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a commonly identified life-threatening type of cancer and a major cause of death among women worldwide. Several microRNAs (miRs), including miR-143-5p, have been reported to be vital for regulating hallmarks of cancer; however, the effect of miR-143-5p on BC requires further exploration. The present study performed bioinformatics analysis on GSE42072 and GSE41922 datasets from the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database to identify miR-143-5p expression patterns. Furthermore, miR-143-5p expression was detected in BC cell lines and tissues via reverse transcription-quantitative PCR. Post-transfection with miR-143-5p mimics, Cell Counting Kit-8, colony formation and Transwell assays were performed to explore the effects of miR-143-5p on BC cell proliferation, colony formation, and migration. The association of miR-143-5p with the hypoxia-inducible factor-1α (HIF-1α)-associated glucose transporter 1 (GLUT1) pathway was explored via western blotting, immunofluorescence and dual-luciferase reporter assay. The present study detected high expression of miR-143-5p in BC tissue of the GSE42072 and serum of the GSE41922 datasets by GEO chip analysis. Additionally, the expression levels of miR-143-5p were decreased in BC tissues compared with those in adjacent healthy tissues, and low miR-143-5p expression was associated with a poorer prognosis and shorter survival time in patients with BC. In vitro, miR-143-5p expression levels were decreased in BC cells, and transfection with miR-143-5p mimics suppressed BC cell proliferation, colony formation, migration. Furthermore, miR-143-5p targeted the HIF-1α-related GLUT1 pathway, and inhibited HIF-1α and GLUT1 expression. Additionally, HIF-1α agonists reversed the miR-143-5p-induced inhibition during tumorigenesis. In conclusion, miR-143-5p exhibited low expression in BC tissues, and suppressed BC cell proliferation, colony formation, migration. Moreover, the antitumor effects of miR-143-5p targeted the HIF-1α-related GLUT1 pathway.
Collapse
Affiliation(s)
- Jia Xu
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xi Li
- Department of Plastic Surgery, Chengdu First People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Purong Zhang
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jie Luo
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Exian Mou
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shiwei Liu
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
35
|
Glycosylated paclitaxel mixed nanomicelles: Increasing drug brain accumulation and enhancing its in vitro antitumoral activity in glioblastoma cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Tan Q, Duan L, Huang Q, Chen W, Yang Z, Chen J, Jin Y. Interleukin -1β Promotes Lung Adenocarcinoma Growth and Invasion Through Promoting Glycolysis via p38 Pathway. J Inflamm Res 2021; 14:6491-6509. [PMID: 34880649 PMCID: PMC8648110 DOI: 10.2147/jir.s319433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background There is a close relationship among inflammation, glycolysis, and tumors. The IL-1 family includes important inflammatory cytokines, among which IL-1β has been widely studied. In this study, we focused on the effect of IL-1β on glycolysis of lung adenocarcinoma (LUAD) cells in vivo and in vitro and explored its possible mechanisms. Methods A bioinformatic database and quantitative real-time PCR were used to analyze the expression of glycolysis-related enzyme genes and their correlations with IL1β in human LUAD samples. The human LUAD cell line A549 and Lewis lung carcinoma LLC cell line were stimulated with IL-1β. In vitro treatment effects, including glycolysis level, migration, and invasion were evaluated with a glucose assay kit, lactate assay kit, Western blotting, wound healing, and the transwell method. We established a mouse model of subcutaneous tumors using LLC cells pretreated with IL-1β and analyzed in vivo treatment effects through positron-emission tomography-computed tomography and staining. Virtual screening and molecular dynamic simulation were used to screen potential inhibitors of IL-1β. Results Our results showed that IL1β was positively correlated with the expression of glycolysis-related enzyme genes in LUAD. Glycolysis, migration, and invasion significantly increased in A549 and LLC stimulated with IL-1β. In vivo, IL-1β increased growth, mean standard uptake value, and pulmonary tumor metastasis, which were inhibited by the glycolysis inhibitor 2-deoxy-D-glucose and p38-pathway inhibitors. Small molecular compound ZINC14610053 was suggested being a potential inhibitor of IL-1β. Conclusion IL-1β promotes glycolysis of LUAD cells through p38 signaling, further enhancing tumor-cell migration and invasion. These results show that IL-1β links inflammation to glycolysis in LUAD, and targeting IL-1β and the glycolysis pathway may be a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| |
Collapse
|
37
|
Zheng X, Gou Y, Jiang Z, Yang A, Yang Z, Qin S. Icaritin-Induced FAM99A Affects GLUT1-Mediated Glycolysis via Regulating the JAK2/STAT3 Pathway in Hepatocellular Carcinoma. Front Oncol 2021; 11:740557. [PMID: 34765550 PMCID: PMC8576446 DOI: 10.3389/fonc.2021.740557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Icaritin is a potential treatment option for hepatocellular carcinoma (HCC) based on the results of its phase 2 stage trial. Glucose transporter 1 (GLUT1), a critical gene in regulating glycolysis, has been recognized as a promising target in HCC treatment. Previous studies have reported that FAM99A, a new long noncoding (lncRNA), is associated with HCC metastasis. It has also been demonstrated that the JAK2/STAT3 pathway is related to HCC and is the target of icaritin treatment. However, whether FAM99A participates in icaritin treatment and regulates GLUT1-mediated glycolysis via the JAK2/STAT3 pathway in HCC cells remains to be explored. Our study aimed to clarify the mechanisms underlying glycolysis and understand the regulating effects of the FAM99A and JAK2/STAT3 pathway in HCC cells in icaritin treatment. Molecular mechanism studies were conducted to verify whether FAM99A could bind to the JAK2/STAT3 pathway and to identify the regulatory mechanisms in the HCC cells. It was revealed that icaritin inhibited proliferation, GLUT1 level, and the glycolysis of the HCC cells. FAM99A in HCC cells was upregulated after a high concentration treatment of icaritin. FAM99A inhibited GLUT1 by blocking the JAK2/STAT3 pathway. Mechanically, FAM99A interacted with EIF4B to inhibit gp130 and gp80 translation, which then interacted with miR-299-5p to upregulate SOCS3, causing the JAK2 pathway to inhibit STAT3 phosphorylation, so that JAK2/STAT3 was blocked in HCC cells. Overall, our study proved that icaritin-induced FAM99A can inhibit HCC cell viability and GLUT1-mediated glycolysis via blocking the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Xia Zheng
- Nanjing University of Chinese Medicine, Nanjing, China.,Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yudong Gou
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Jiang
- Nanjing University of Chinese Medicine, Nanjing, China.,Oncology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aizhen Yang
- Laboratory Department, Nanjing Jinling Hospital, Nanjing, China
| | - Zhihui Yang
- Pathology Department, Nanjing Jinling Hospital, Nanjing, China
| | - Shukui Qin
- Nanjing University of Chinese Medicine, Nanjing, China.,Oncology Department, Nanjing Jinling Hospital, Nanjing, China
| |
Collapse
|
38
|
N-myc Downstream-Regulated Gene 2 (NDRG2) Function as a Positive Regulator of Apoptosis: A New Insight into NDRG2 as a Tumor Suppressor. Cells 2021; 10:cells10102649. [PMID: 34685629 PMCID: PMC8534062 DOI: 10.3390/cells10102649] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene that increases tumor sensitivity to anticancer drugs, slows tumor progression, and inhibits metastasis. NDRG2 is suppressed in various aggressive tumor positions, whereas NDRG2 expression is associated with patient prognosis, such as an improved survival rate. In this review, we summarize the tumor suppressor mechanism of NDRG2 and provide information on the function of NDRG2 concerning the susceptibility of cells to apoptosis. NDRG2 increases the susceptibility to apoptosis in various physiological environments of cells, such as development, hypoxia, nutrient deprivation, and cancer drug treatment. Although the molecular and cell biological mechanisms of NDRG2 have not been fully elucidated, we provide information on the mechanisms of NDRG2 in relation to apoptosis in various environments. This review can assist the design of research regarding NDRG2 function and suggests the potential of NDRG2 as a molecular target for cancer patients.
Collapse
|
39
|
Du J, Gu J, Deng J, Kong L, Guo Y, Jin C, Bao Y, Fu D, Li J. The Expression and Survival Significance of Glucose Transporter-1 in Pancreatic Cancer: Meta-Analysis, Bioinformatics Analysis and Retrospective Study. Cancer Invest 2021; 39:741-755. [PMID: 34229540 DOI: 10.1080/07357907.2021.1950755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
To explore the expression profile and prognostic relevance of GLUT-1 in pancreatic cancer, a meta-analysis, bioinformatics analysis based on Gene Expression Omnibus (GEO), Oncomine dataset and The Cancer Genome Atlas (TCGA) database, and immunohistochemistry in tumor and normal tissue from 88 pancreatic ductal adenocarcinoma (PDAC) patients were performed. GLUT-1 was significantly overexpressed in pancreatic cancer but it could not be a significant biomarker for prognosis. TNM stage and pathological grade could be biomarker of poor prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jiali Du
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Jichun Gu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Junyuan Deng
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Lei Kong
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Yujie Guo
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Yun Bao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| | - Ji Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, The People's Republic of China
| |
Collapse
|
40
|
Jiang W, Luo X, Wei L, Yuan S, Cai J, Jiang X, Hu Y. The Sustainability of Energy Conversion Inhibition for Tumor Ferroptosis Therapy and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102695. [PMID: 34350694 DOI: 10.1002/smll.202102695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The hyperactive energy metabolism mostly contributes the tumor cells growth and proliferation. Herein, the intelligent nanoparticles (P-B-D NPs) obtained by loading BAY-876 and doxorubicin (Dox)-Duplex into nanoparticles composed of disulfide bond (SS) containing polymer are reported, which provide an efficient resistance of tumor cells energy metabolism and tumor growth to conquer malignant tumor. In response to the reducing microenvironment of tumor tissue, the SS bond can be disintegrated by intracellular glutathione to block the synthesis of lipid repair enzyme-glutathione peroxidase 4 for ferroptosis therapy. More importantly, the released BAY-876 can inhibit the functionality of glucose transporter 1, restricting the glucose uptake of tumor cells to a low energy metabolism status. Meanwhile, Dox-Duplex can interact with ATP to reduce intracellular ATP content and release Dox to kill tumor cells. Collectively, this work offers a new idea for restricting tumor cells energy metabolism to inhibit their proliferation.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Xingyu Luo
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Shanmei Yuan
- Nantong Vocational University, Nantong, 226019, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| |
Collapse
|
41
|
Cheng X, Xu Y, Zhang Y, Jia C, Wei B, Hu T, Tang R, Li C. Glucose-Targeted Hydroxyapatite/Indocyanine Green Hybrid Nanoparticles for Collaborative Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37665-37679. [PMID: 34342216 DOI: 10.1021/acsami.1c09852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoscale hydroxyapatite (nHA) is considered as a promising drug carrier or therapeutic agent against malignant tumors. But the strong agglomeration tendency and lack of active groups seriously hamper their usage in vivo. To address these issues, we fabricated an organic-inorganic hybrid nanosystem composed of poly(acrylic acid) (PAA), nHA, and indocyanine green (ICG), and further modified with glucose to give a targeting nanosystem (GA@HAP/ICG-NPs). These hybrid nanoparticles (∼90 nm) showed excellent storage and physiological stability assisted by PAA and had a sustained drug release in an acidic tumor environment. In vitro cell experiments confirmed that glucose-attached particles significantly promoted cellular uptake and increased intracellular ICG and Ca2+ concentrations by glucose transporter 1 (GLUT1)-mediated endocytosis. Subsequently, the excessive Ca2+ induced cell or organelle damage and ICG triggered photothermal and photodynamic effects (PTT/PDT) under laser irradiation, resulting in enhanced cell toxicity and apoptosis. In vivo tests revealed that the hybrid nanosystem possessed good hemocompatibility and biosafety, facilitating in vivo circulation and usage. NIR imaging further showed that tumor tissues had more drug accumulation, resulting in the highest tumor growth inhibition (87.89%). Overall, the glucose-targeted hybrid nanosystem was an effective platform for collaborative therapy and expected to be further used in clinical trials.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Yong Zhang
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Chaochao Jia
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Bing Wei
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Ting Hu
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246133, P. R. China
| |
Collapse
|
42
|
Lee YT, Tran BV, Wang JJ, Liang IY, You S, Zhu Y, Agopian VG, Tseng HR, Yang JD. The Role of Extracellular Vesicles in Disease Progression and Detection of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3076. [PMID: 34203086 PMCID: PMC8233859 DOI: 10.3390/cancers13123076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and one of the leading causes of cancer-related death worldwide. Despite the improvements in surveillance and treatment, the prognosis of HCC remains poor. Extracellular vesicles (EVs) are a heterogeneous group of phospholipid bilayer-enclosed particles circulating in the bloodstream and mediating intercellular communication. Emerging studies have shown that EVs play a crucial role in regulating the proliferation, immune escape, and metastasis of HCC. In addition, because EVs are present in the circulation at relatively early stages of disease, they are getting attention as an attractive biomarker for HCC detection. Over the past decade, dedicated efforts have been made to isolate EVs more efficiently and make them useful tools in different clinical settings. In this review article, we provide an overview of the EVs isolation methods and highlight the role of EVs as mediators in the pathogenesis and progression of HCC. Lastly, we summarize the potential applications of EVs in early-stage HCC detection.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Benjamin V. Tran
- Department of Surgery, University of California, Los Angeles, CA 90095, USA; (B.V.T.); (V.G.A.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90048, USA
| | - Jasmine J. Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Icy Y. Liang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Vatche G. Agopian
- Department of Surgery, University of California, Los Angeles, CA 90095, USA; (B.V.T.); (V.G.A.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90048, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; (Y.-T.L.); (I.Y.L.); (Y.Z.); (H.-R.T.)
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Comprehensive Transplant Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
43
|
Li AM, Lin XW, Shen JT, Li M, Zheng QH, Zhou ZY, Shi M. HRD1 attenuates the high uptake of [ 18F]FDG in hepatocellular carcinoma PET imaging. Nucl Med Biol 2021; 96-97:27-34. [PMID: 33725499 DOI: 10.1016/j.nucmedbio.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Due to individual deviations in tumor tissue uptake, the role of [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) in hepatocellular carcinoma (HCC) diagnosis is limited. β-Hydroxy β-methylglutaryl-CoA reductase degradation 1 (HRD1) plays a key role in clearing misfolded proteins. This study is aimed to investigate the role and mechanism of HRD1 in [18F]FDG uptake for the diagnosis of HCC. METHODS HRD1 expression level was detected using immunohistochemical (IHC) staining in 9 HCC patients. [18F]FDG PET/CT scans were conducted before treatment. [18F]FDG uptakes in HRD1 overexpressed and knockdown transgenic models were measured by γ-counter and microPET imaging. The GLUT1-HRD1 complex was examined by co-immunoprecipitation and IHC assays. GLUT1 expression in different cell lines, xenograft models and HCC patients was evaluated by Western blot and IHC assays. RESULTS HRD1 was highly expressed in the HCC tumors of patients with low [18F]FDG uptake, while the HRD1 expression was obviously low in the higher [18F]FDG uptake group. Both in vitro and in vivo studies found that HRD1 significantly inhibited [18F]FDG uptake in HCC Huh7 cell lines and animal models. Furthermore, the co-location and interaction of HRD1 with GLUT1 were detected, and the results also indicate that HRD1 could induce the degradation of GLUT1 in vitro and in vivo. CONCLUSION HRD1 inhibits the high uptake of [18F]FDG in HCC tumor cells by inducing degradation of GLUT1, which leads to decreased diagnostic efficiency of [18F]FDG PET imaging for HCC. ADVANCES IN KNOWLEDGE This study suggests that HRD1 inhibits the high uptake of [18F]FDG in HCC tumor by inducing degradation of GLUT1. IMPLICATIONS FOR PATIENT CARE HCC diagnosis with [18F]FDG PET should be accompanied by determination of HRD1 expression, and patients with high tumor HRD1 expression might be unsuitable for [18F]FDG PET.
Collapse
Affiliation(s)
- Ai-Mei Li
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China
| | - Xia-Wen Lin
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China
| | - Jing-Tao Shen
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zheng-Yang Zhou
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China.
| | - Ming Shi
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
44
|
Ding N, Xu S, Zheng S, Ye Q, Xu L, Ling S, Xie S, Chen W, Zhang Z, Xue M, Lin Z, Xu X, Wang L. "Sweet tooth"-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. J Mater Chem B 2021; 9:2816-2830. [PMID: 33690741 DOI: 10.1039/d0tb02787a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most cancer cells employ overexpression of glucose transports (GLUTs) to satisfy glucose demand ("Sweet Tooth") for increased aerobic glycolysis rates. GLUT1, one of the most widely expressed GLUTs in numerous cancers, was identified as a prognosis-related biomarker of gastric cancer via tissue array analysis. Herein, a "Sweet Tooth"-oriented SN38 prodrug delivery nanoplatform (Glu-SNP) was developed for targeted gastric cancer therapy. For this purpose, a SN38-derived prodrug (PLA-SN38) was synthesized by tethering 7-ethyl-10-hydroxycamptothecin (SN38) to biocompatible polylactic acid (PLA) with the appropriate degree of polymerization (n = 44). The PLA-SN38 conjugate was further assembled with glycosylated amphiphilic lipid to obtain glucosamine-decorated nanoparticles (Glu-SNP). Glu-SNP exhibited potent antitumor efficiency both in vitro and in vivo through enhanced cancer cell-specific targeting associated with the overexpression of GLUT1, which provides a promising approach for gastric cancer therapy.
Collapse
Affiliation(s)
- Ning Ding
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo X, Zheng E, Wei L, Zeng H, Qin H, Zhang X, Liao M, Chen L, Zhao L, Ruan XZ, Yang P, Chen Y. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis 2021; 12:328. [PMID: 33771982 PMCID: PMC7997878 DOI: 10.1038/s41419-021-03596-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022]
Abstract
Metabolic reprogramming is a new hallmark of cancer but it remains poorly defined in hepatocellular carcinogenesis (HCC). The fatty acid receptor CD36 is associated with both lipid and glucose metabolism in the liver. However, the role of CD36 in metabolic reprogramming in the progression of HCC still remains to be elucidated. In the present study, we found that CD36 is highly expressed in human HCC as compared with non-tumor hepatic tissue. CD36 overexpression promoted the proliferation, migration, invasion, and in vivo tumor growth of HCC cells, whereas silencing CD36 had the opposite effects. By analysis of cell metabolic phenotype, CD36 expression showed a positive association with extracellular acidification rate, a measure of glycolysis, instead of oxygen consumption rate. Further experiments verified that overexpression of CD36 resulted in increased glycolysis flux and lactic acid production. Mechanistically, CD36 induced mTOR-mediated oncogenic glycolysis via activation of Src/PI3K/AKT signaling axis. Pretreatment of HCC cells with PI3K/AKT/mTOR inhibitors largely blocked the tumor-promoting effect of CD36. Our findings suggest that CD36 exerts a stimulatory effect on HCC growth and metastasis, through mediating aerobic glycolysis by the Src/PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Enze Zheng
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Li Wei
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Han Zeng
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Qin
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoyu Zhang
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Meng Liao
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Lin Chen
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Lei Zhao
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, University College London, Royal Free Campus, London, NW3 2PF, UK
| | - Ping Yang
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yaxi Chen
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
46
|
Xia H, Huang Z, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Li Z, Yu L, Huang P, Kang P, Su Z, Xu Y, Yam JWP, Cui Y. Exosomal Non-Coding RNAs: Regulatory and Therapeutic Target of Hepatocellular Carcinoma. Front Oncol 2021; 11:653846. [PMID: 33869059 PMCID: PMC8044750 DOI: 10.3389/fonc.2021.653846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles secreted by most somatic cells, which can carry a variety of biologically active substances to participate in intercellular communication and regulate the pathophysiological process of recipient cells. Recent studies have confirmed that non-coding RNAs (ncRNAs) carried by tumor cell/non-tumor cell-derived exosomes have the function of regulating the cancerous derivation of target cells and remodeling the tumor microenvironment (TME). In addition, due to the unique low immunogenicity and high stability, exosomes can be used as natural vehicles for the delivery of therapeutic ncRNAs in vivo. This article aims to review the potential regulatory mechanism and the therapeutic value of exosomal ncRNAs in hepatocellular carcinoma (HCC), in order to provide promising targets for early diagnosis and precise therapy of HCC.
Collapse
Affiliation(s)
- Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhizhou Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. Bioessays 2021; 43:e2000205. [PMID: 33533033 DOI: 10.1002/bies.202000205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
It is not clear why cancer cells choose to disrupt their circadian clock rhythms, and whether such disruption governs a selective fitness and a survival advantage. In this review, I focus on understanding the impacts of clock gene disruption on a simpler model, such as the unicellular cyanobacterium, in order to explain how cancer cells may alter the circadian rhythm to reprogram their metabolism based on their needs and status. It appears to be that the activation of the oxidative pentose phosphate pathway (OPPP) and production of NADPH, the preferred molecule for detoxification of reactive oxygen species, is a critical process for night survival in unicellular organisms. The circadian clock acts as a gatekeeper that controls how the organism will utilize its sugar, shifting sugar influx between glycolysis and OPPP. The circadian clock can thus act as a gatekeeper between an anabolic, proliferative mode and a homeostatic, survival mode.
Collapse
Affiliation(s)
- Aliaa A Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cell Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Abstract
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Collapse
Affiliation(s)
- Parth Trivedi
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott L Friedman
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Zang X, Cheng M, Zhang X, Chen X. Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 2021; 12:6664-6681. [PMID: 34152346 DOI: 10.1039/d1fo00851j] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytochemicals as dietary constituents are being widely explored for the prevention and treatment of various diseases. Quercetin, a major constituent of various dietary products, has attracted extensive interest due to its anti-proliferative capability, reversal of multidrug resistance, autophagy promotion and tumor microenvironment modulation on different cancer types. Although quercetin has shown potent medical value, its application as an antitumor drug is limited. Problems like poor solubility, bioavailability and stability, short half-life and weak tumor-targeting biodistribution make quercetin an unreliable candidate for cancer therapy. Nanoparticle based platforms have shown a number of advantages in delivering a hydrophobic drug like quercetin to diseased tissues. Quercetin nanoparticles have demonstrated high encapsulation efficiency, stability, sustained release, prolonged circulation time, improved accumulation at tumor sites and therapeutic efficiency. Moreover, a combination of quercetin with other diagnostic or therapeutic agents in one nanocarrier has achieved enhancements in detecting or treating tumors. In this review, we have tried to summarize the pharmacological activities of quercetin with regard to tumor cells and microenvironments in vitro and in vivo. Furthermore, various nanoformulations have been highlighted for quercetin delivery for cancer treatment. These results suggest that quercetin nanoparticles may be a promising antitumor therapeutic agent.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| | | | | | | |
Collapse
|
50
|
Bose S, Zhang C, Le A. Glucose Metabolism in Cancer: The Warburg Effect and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:3-15. [PMID: 34014531 PMCID: PMC9639450 DOI: 10.1007/978-3-030-65768-0_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].
Collapse
Affiliation(s)
- Sminu Bose
- Division of Hematology and Oncology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|