1
|
Davis RL, Grotjahn S, Koenig B, Buck DJ, Weaver JD. Novel fluorinated cannabinoid analogs modulate cytokine expression in human C20 microglial cells. Pharmacol Rep 2025; 77:295-301. [PMID: 39612133 DOI: 10.1007/s43440-024-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Phytochemicals derived from the plant Cannabis sativa hold promise in terms of medicinal value. Cannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) are arguably the best characterized and known to possess wide-ranging therapeutic benefits. The mechanism of action for these therapeutic effects remains to be fully elucidated, however, the anti-inflammatory actions are of particular interest. Maximizing therapeutic effects while limiting adverse effects is crucial in pharmaceutical development. Fluorination of natural products often yields molecules with enhanced biological properties and provides opportunities for intellectual property protection not available to the natural product. METHODS Herein, we describe four novel cannabinoids (a deoxy trifluoroCBN analog (F3CBN), the racemic cis-deoxy-trifluoro-THC (F3THC), and truncated pyridine analogs of an intermediate in route to the THC and CBN, SG126 and SG154. Importantly, we provide the initial assessment of the biologic activity of these molecules, by investigating the in vitro effects on metabolic activity (via 3-[4,5-dimethylthiazol-2-yl]-2,5,-diphenyltetrazolium bromide, MTT assay) and cytokine expression (via enzyme linked immunosorbent assay, ELISA) in human C20 microglial cells. RESULTS The cannabinoids examined had minimal to no effect on metabolic activity up to 10 µM. Notably, F3CBN and F3THC potentiated interleukin-1 β (IL-1β)-induced expression of interferon-γ inducible protein 10 (CXCL10) and IL-6 expression whereas, SG126 and SG154 were inhibitory. CONCLUSIONS These findings are foundational for new lines of investigation into the therapeutic potential of four novel fluorinated cannabinoids.
Collapse
Affiliation(s)
- Randall L Davis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 W. 17th Street, Tulsa, OK, 74107, USA.
| | - Sascha Grotjahn
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard Koenig
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Daniel J Buck
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 W. 17th Street, Tulsa, OK, 74107, USA
| | - Jimmie D Weaver
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Wu G, Li B, Wei X, Chen Y, Zhao Y, Peng Y, Su J, Hu Z, Zhuo L, Tian Y, Wang Z, Peng X. Design, synthesis and biological evaluation of N-salicyloyl tryptamine derivatives as multifunctional neuroprotectants for the treatment of ischemic stroke. Eur J Med Chem 2024; 278:116795. [PMID: 39216381 DOI: 10.1016/j.ejmech.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke (IS) is a disease of high death and disability worldwide with few medications in clinical treatment. Neuroinflammation and oxidative stress are considered as crucial factors in the progression of IS. In our previous studies, N-salicyloyl tryptamine derivative (NST) L7 exhibited promising anti-inflammatory properties and is considered a potential clinical therapy for IS but had limited antioxidant capacity. Here, we have designed, synthesized, and biologically evaluated 30 novel NSTs for their neuroprotective effects against cerebral ischemia-reperfusion (CI/R) injury. To identify a multifunctional neuroprotectant with enhanced antioxidant and anti-inflammatory capacity, as well as an effective therapeutic agent for CI/R damage. Among them, M11 exhibited synergistic highly anti-oxidant, anti-inflammatory, anti-ferroptosis, and anti-apoptosis effects and surpassed the parent compound L7. Further studies demonstrated that the synergistic and efficient neuroprotective role of M11 was mainly achieved by activating Nrf2 and stimulating its downstream target HO-1/GCLC/NQO1/GPX4. In addition, M11 possessed good blood-brain barrier permeability. Moreover, M11 effectively reduced cerebral infarct volume and improved neurological deficits in MCAO/R mice. Its hydrochloride form, M11·HCl, exhibited better pharmacokinetic properties, high safety, and a significant reduction in infarct volume, which is comparable to Edaravone. In conclusion, our findings suggested that M11 capable of activating Nrf2, could represent a promising candidate agent for IS.
Collapse
Affiliation(s)
- Genping Wu
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Li
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiuzhen Wei
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaxin Chen
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuting Zhao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jianhui Su
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Tian
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Xue Peng
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Wang J, Du L, Zhang T, Chu Y, Wang Y, Wang Y, Ji X, Kang Y, Cui R, Zhang G, Liu J, Shi G. Edaravone Dexborneol ameliorates the cognitive deficits of APP/PS1 mice by inhibiting TLR4/MAPK signaling pathway via upregulating TREM2. Neuropharmacology 2024; 255:110006. [PMID: 38763325 DOI: 10.1016/j.neuropharm.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aβ deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China; Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longyuan Du
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junyan Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
Hou BY, Wu MH, Hsu HY, Lin YC, Yang DI. Polysaccharides from Basella alba Protect Post-Mitotic Neurons against Cell Cycle Re-Entry and Apoptosis Induced by the Amyloid-Beta Peptide by Blocking Sonic Hedgehog Expression. Int J Mol Sci 2024; 25:7316. [PMID: 39000427 PMCID: PMC11242684 DOI: 10.3390/ijms25137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The amyloid-beta peptide (Aβ) is the neurotoxic component in senile plaques of Alzheimer's disease (AD) brains. Previously we have reported that Aβ toxicity is mediated by the induction of sonic hedgehog (SHH) to trigger cell cycle re-entry (CCR) and apoptosis in post-mitotic neurons. Basella alba is a vegetable whose polysaccharides carry immunomodulatory and anti-cancer actions, but their protective effects against neurodegeneration have never been reported. Herein, we tested whether polysaccharides derived from Basella alba (PPV-6) may inhibit Aβ toxicity and explored its underlying mechanisms. In differentiated rat cortical neurons, Aβ25-35 reduced cell viability, damaged neuronal structure, and compromised mitochondrial bioenergetic functions, all of which were recovered by PPV-6. Immunocytochemistry and western blotting revealed that Aβ25-35-mediated induction of cell cycle markers including cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) in differentiated neurons was all suppressed by PPV-6, along with mitigation of caspase-3 cleavage. Further studies revealed that PPV-6 inhibited Aβ25-35 induction of SHH; indeed, PPV-6 was capable of suppressing neuronal CCR and apoptosis triggered by the exogenous N-terminal fragment of sonic hedgehog (SHH-N). Our findings demonstrated that, in the fully differentiated neurons, PPV-6 exerts protective actions against Aβ neurotoxicity via the downregulation of SHH to suppress neuronal CCR and apoptosis.
Collapse
Affiliation(s)
- Bo-Yu Hou
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (B.-Y.H.); (M.-H.W.)
| | - Ming-Hsuan Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (B.-Y.H.); (M.-H.W.)
| | - Hui-Yu Hsu
- Mynature Biotech Inc., Yilan 260021, Taiwan;
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (B.-Y.H.); (M.-H.W.)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
5
|
Duan Z, Yang L, Xu D, Qi Z, Jia W, Wu C. Scutellarin Attenuates Microglia Activation in LPS-Induced BV-2 Microglia via miRNA-7036a/MAPT/PRKCG/ERK Axis. Adv Biol (Weinh) 2024; 8:e2400123. [PMID: 38684459 DOI: 10.1002/adbi.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Scutellarin is an herbal agent which can exert anti-neuroinflammatory effects in activated microglia. However, it remains uncertain if it can inhibit microglia-mediated neuroinflammation by regulating miRNAs. This study sought to elucidate the upstream regulatory mechanisms by endogenous microRNAs and its target gene in activated microglia in lipopolysaccharide (LPS)-induced BV-2 microglia. Results show that scutellarin suppressed the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) significantly in LPS-stimulated BV-2 microglia. As with the results of miRNAs function classification in vitro, the expression levels of mir-7036a-5p are upregulated in LPS-activated BV-2 microglia, but are downregulated by scutellarin. Rescue experiments indicated that mir-7036a-5p is a pro-inflammatory factor in activated BV-2 microglia. mir-7036a-5p agomir promoted the expression of phosphorylated tau proteins (p-tau), protein kinase C gamma type (PRKCG), extracellular regulated protein kinases (ERK1/2), but the is reversed by mir-7036a-5p antagomir in vitro. It is shown here that mir-7036a-5p is involved in microglia-mediated inflammation in LPS-induced BV-2 microglia. More important is the novel finding that scutellarin mitigated microglia inflammation by down-regulating the mir-7036a-5p/MAPT/PRKCG/ERK signaling pathway.
Collapse
Affiliation(s)
- Zhaoda Duan
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| | - Dongyao Xu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| | - Zhi Qi
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, P. R. China
| | - Wenji Jia
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, P. R. China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P. R. China
| |
Collapse
|
6
|
Moțățăianu A, Andone S, Stoian A, Bălașa R, Huțanu A, Sărmășan E. A Potential Role of Interleukin-5 in the Pathogenesis and Progression of Amyotrophic Lateral Sclerosis: A New Molecular Perspective. Int J Mol Sci 2024; 25:3782. [PMID: 38612591 PMCID: PMC11011909 DOI: 10.3390/ijms25073782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cumulative data suggest that neuroinflammation plays a prominent role in amyotrophic lateral sclerosis (ALS) pathogenesis. The purpose of this work was to assess if patients with ALS present a specific peripheral cytokine profile and if it correlates with neurological disability assessed by ALSFRS-R, the rate of disease progression, and the pattern of disease progression (horizontal spreading [HSP] versus vertical spreading [VSP]). We determined the levels of 15 cytokines in the blood of 59 patients with ALS and 40 controls. We identified a positive correlation between levels of pro-inflammatory cytokines (interleukin [IL]-17F, IL-33, IL-31) and the age of ALS patients, as well as a positive correlation between IL-12p/70 and survival from ALS onset and ALS diagnosis. Additionally, there was a positive correlation between the ALSFRS-R score in the upper limb and respiratory domain and IL-5 levels. In our ALS cohort, the spreading pattern was 42% horizontal and 58% vertical, with patients with VSP showing a faster rate of ALS progression. Furthermore, we identified a negative correlation between IL-5 levels and the rate of disease progression, as well as a positive correlation between IL-5 and HSP of ALS. To the best of our knowledge, this is the first study reporting a "protective" role of IL-5 in ALS.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Stoian
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emanuela Sărmășan
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania; (A.M.); (S.A.); (A.S.); (R.B.); (E.S.)
| |
Collapse
|
7
|
Lopes FB, Fernandes JPS, Uliassi E. Tackling Neuroinflammation in Cognitive Disorders with Single-targeted and Multi-targeted Histamine H3 Receptor Modulators. Curr Top Med Chem 2024; 24:2421-2430. [PMID: 39185652 DOI: 10.2174/0115680266322294240816051818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Neuroinflammation is a process involved in a variety of central nervous system (CNS) diseases and is being increasingly recognized as a key mediator of cognitive impairments. Neuroinflammatory responses including glial activation, increased production of proinflammatory cytokines, and aberrant neuronal signaling, contribute to cognitive dysfunctions. Histamine is a key peripheral inflammatory mediator, but plays an important role in neuroinflammatory processes as well. The unique localization of histamine H3 receptor (H3R) in the CNS along with the modulation of the release of other neurotransmitters via its action on heteroreceptors on non-histaminergic neurons have led to the development of several H3R ligands for various brain diseases. H3R antagonists/ inverse agonists have revealed potential to treat diverse neuroinflammatory CNS disorders, including neurodegenerative diseases, attention-deficit hyperactivity syndrome and schizophrenia. In this mini review, we provide a brief overview on the crucial involvement of the histaminergic transmission in the neuroinflammatory processes underlying these cognitive disorders, with a special focus on H3R involvement. The anti-neuroinflammatory potential of single-targeted and multi-targeted H3R antagonists/inverse agonists for the treatment of these conditions is discussed here.
Collapse
Affiliation(s)
- Flávia Barrio Lopes
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau 210, Diadema, SP 09913-030, Brazil
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
8
|
Wang Y, Zou J, Wang Y, Wang J, Ji X, Zhang T, Chu Y, Cui R, Zhang G, Shi G, Wu Y, Kang Y. Hydralazine inhibits neuroinflammation and oxidative stress in APP/PS1 mice via TLR4/NF-κB and Nrf2 pathways. Neuropharmacology 2023; 240:109706. [PMID: 37661037 DOI: 10.1016/j.neuropharm.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a common chronic progressive neurodegenerative disorder, and curative treatment has not been developed. The objective of this study was to investigate the potential effects of hydralazine (Hyd, a hypertension treatment drug) on the development process of AD and its mechanisms. We treated 6-month-old male APP/PS1 mice with Hyd for 5 weeks, measured changes in behavior and pathological status, and analyzed differences in gene expression by RNA sequencing. The results demonstrated that Hyd improved cognitive deficits and decreased amyloid beta protein deposition in the cortex and hippocampus, while RNA sequencing analysis suggested that the regulation of neuroinflammation and energy metabolism might play pivotal roles for Hyd's beneficial effects. Therefore, we further investigated inflammatory response, redox state, and mitochondrial function, as well as the expression of toll-like receptor 4 (TLR4)/nuclear factor Kappa B (NF-κB)-dependent neuroinflammation gene and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene in AD mice. The results showed that Hyd reduced the damage of neuroinflammation and oxidative stress, improved mitochondrial dysfunction, downregulated pro-inflammation gene expression, and upregulated antioxidant gene expression. The results in lipopolysaccharide (LPS)-induced BV2 cell model demonstrated that Hyd suppressed pro-inflammatory response via TLR4/NF-κB signaling pathway. In addition, by silencing the Nrf2 gene expression, it was found that Hyd can reduce LPS-induced reactive oxygen species production by activating the Nrf2 signaling pathway. Therefore, administration of Hyd in the early stage of AD might be beneficial in delaying the pathological development of AD via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiayang Zou
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, China.
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R. Differential Gene Expression in Activated Microglia Treated with Adenosine A 2A Receptor Antagonists Highlights Olfactory Receptor 56 and T-Cell Activation GTPase-Activating Protein 1 as Potential Biomarkers of the Polarization of Activated Microglia. Cells 2023; 12:2213. [PMID: 37759436 PMCID: PMC10526142 DOI: 10.3390/cells12182213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Microglial activation often accompanies the plastic changes occurring in the brain of patients with neurodegenerative diseases. A2A and A3 adenosine receptors have been proposed as therapeutic targets to combat neurodegeneration. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with SCH 58261, a selective A2A receptor antagonist, and with both SCH 58261 and 2-Cl-IB-MECA, a selective A3 receptor agonist. None of the treatments led to any clear microglial phenotype when gene expression for classical biomarkers of microglial polarization was assessed. However, many of the downregulated genes were directly or indirectly related to immune system-related events. Searching for genes whose expression was both significantly and synergistically affected when treated with the two adenosine receptor ligands, the AC122413.1 and Olfr56 were selected among those that were, respectively, upregulated and downregulated. We therefore propose that the products of these genes, olfactory receptor 56 and T-cell activation GTPase-activating protein 1, deserve attention as potential biomarkers of phenotypes that occur upon microglial activation.
Collapse
Affiliation(s)
- Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain; (A.L.); (J.L.); (I.R.); (G.N.)
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain; (A.L.); (J.L.); (I.R.); (G.N.)
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain; (A.L.); (J.L.); (I.R.); (G.N.)
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain; (A.L.); (J.L.); (I.R.); (G.N.)
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Institute of Neurosciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
11
|
Cheataini F, Ballout N, Al Sagheer T. The effect of neuroinflammation on the cerebral metabolism at baseline and after neural stimulation in neurodegenerative diseases. J Neurosci Res 2023. [PMID: 37186320 DOI: 10.1002/jnr.25198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Neuroinflammation is a reaction of nervous tissue to an attack caused by an infection, a toxin, or a neurodegenerative disease. It involves brain metabolism adaptation in order to meet the increased energy needs of glial cell activation, but the nature of these adaptations is still unknown. Increasing interest concerning neuroinflammation leads to the identification of its role in neurodegenerative diseases. Few reports studied the effect of metabolic alteration on neuroinflammation. Metabolic damage initiates a pro-inflammatory response by microglial activation. Moreover, the exact neuroinflammation effect on cerebral cell metabolism remains unknown. In this study, we reviewed systematically the neuroinflammation effect in animal models' brains. All articles showing the relationship of neuroinflammation with brain metabolism, or with neuronal stimulation in neurodegenerative diseases were considered. Moreover, this review examines also the mitochondrial damage effect in neurodegeneration diseases. Then, different biosensors are classified regarding their importance in the determination of metabolite change. Finally, some therapeutic drugs inhibiting neuroinflammation are cited. Neuroinflammation increases lymphocyte infiltration and cytokines' overproduction, altering cellular energy homeostasis. This review demonstrates the importance of neuroinflammation as a mediator of disease progression. Further, the spread of depolarization effects pro-inflammatory genes expression and microglial activation, which contribute to the degeneration of neurons, paving the road to better management and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Cheataini
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Nissrine Ballout
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Tareq Al Sagheer
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| |
Collapse
|
12
|
Morrison VE, Bix GJ. The meal Maketh the Microglia: Why studying microglial phagocytosis is critical to stroke research. Neurochem Int 2023; 164:105488. [PMID: 36707032 DOI: 10.1016/j.neuint.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Vivianne E Morrison
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States
| | - Gregory J Bix
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States.
| |
Collapse
|
13
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
14
|
Liu H, Zang C, Shang J, Zhang Z, Wang L, Yang H, Sheng C, Yuan F, Ju C, Li F, Yu Y, Yao X, Bao X, Zhang D. <em>Gardenia jasminoides</em> J. Ellis extract GJ-4 attenuates hyperlipidemic vascular dementia in rats via regulating PPAR-γ-mediated microglial polarization. Food Nutr Res 2022; 66:8101. [PMID: 35950104 PMCID: PMC9338452 DOI: 10.29219/fnr.v66.8101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background GJ-4 is extracted from Gardenia jasminoides J. Ellis (Fructus Gardenia) with crocin composition and has been demonstrated to improve memory deficits in several dementia models in our previous studies. Objective This study aimed to evaluate the effects of GJ-4 on hyperlipidemic vascular dementia (VD) and explore the underlying mechanisms. Design In the current study, we employed a chronic hyperlipidemic VD rat model by permanent bilateral common carotid arteries occlusion (2-VO) based on high-fat diet (HFD), which is an ideal model to mimic the clinical pathogenesis of human VD. Results Our results showed that GJ-4 could significantly reduce serum lipids level and improve cerebral blood flow in hyperlipidemic VD rats. Additionally, treatment with GJ-4 remarkedly ameliorated memory impairment and alleviated neuronal injury. Mechanistic investigation revealed that the neuroprotective effects of GJ-4 might be attributed to the inhibition of microglia-mediated neuro-inflammation via regulating the M1/M2 polarization. Our data further illustrated that GJ-4 could regulate the phenotype of microglia through activating the peroxisome proliferator-activated receptor-γ (PPAR-γ) and subsequently inhibited nuclear factor-κB (NF-κB) nuclear translocation and increased CCAAT/enhancer-binding protein β (C/EBPβ) expression. Conclusion Our results implied that GJ-4 might be a promising drug to improve VD through the regulation of microglial M1/M2 polarization and the subsequent inhibition of neuro-inflammation.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of TCM & Natural Products College of Pharmacy, Jinan University, Guangzhou, China
| | - Xinsheng Yao
- Institute of TCM & Natural Products College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiuqi Bao and Dan Zhang, State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 China ;
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiuqi Bao and Dan Zhang, State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 China ;
| |
Collapse
|
15
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Uliassi E, de Oliveira AS, de Camargo Nascente L, Romeiro LAS, Bolognesi ML. Cashew Nut Shell Liquid (CNSL) as a Source of Drugs for Alzheimer's Disease. Molecules 2021; 26:5441. [PMID: 34576912 PMCID: PMC8466601 DOI: 10.3390/molecules26185441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| |
Collapse
|
17
|
Rabaneda-Lombarte N, Serratosa J, Bové J, Vila M, Saura J, Solà C. The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of Parkinson's disease. J Neuroinflammation 2021; 18:88. [PMID: 33823877 PMCID: PMC8025338 DOI: 10.1186/s12974-021-02132-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Background It is suggested that neuroinflammation, in which activated microglial cells play a relevant role, contributes to the development of Parkinson’s disease (PD). Consequently, the modulation of microglial activation is a potential therapeutic target to be taken into account to act against the dopaminergic neurodegeneration occurring in this neurological disorder. Several soluble and membrane-associated inhibitory mechanisms contribute to maintaining microglial cells in a quiescent/surveillant phenotype in physiological conditions. However, the presence of activated microglial cells in the brain in PD patients suggests that these mechanisms have been somehow overloaded. We focused our interest on one of the membrane-associated mechanisms, the CD200-CD200R1 ligand-receptor pair. Methods The acute MPTP experimental mouse model of PD was used to study the temporal pattern of mRNA expression of CD200 and CD200R1 in the context of MPTP-induced dopaminergic neurodegeneration and neuroinflammation. Dopaminergic damage was assessed by tyrosine hydroxylase (TH) immunoreactivity, and neuroinflammation was evaluated by the mRNA expression of inflammatory markers and IBA1 and GFAP immunohistochemistry. The effect of the modulation of the CD200-CD200R1 system on MPTP-induced damage was determined by using a CD200R1 agonist or CD200 KO mice. Results MPTP administration resulted in a progressive decrease in TH-positive fibres in the striatum and TH-positive neurons in the substantia nigra pars compacta, which were accompanied by transient astrogliosis, microgliosis and expression of pro- and anti-inflammatory markers. CD200 mRNA levels rapidly decreased in the ventral midbrain after MPTP treatment, while a transient decrease of CD200R1 mRNA expression was repeatedly observed in this brain area at earlier and later phases. By contrast, a transient increase in CD200R1 expression was observed in striatum. The administration of a CD200R1 agonist resulted in the inhibition of MPTP-induced dopaminergic neurodegeneration, while microglial cells showed signs of earlier activation in CD200-deficient mice. Conclusions Collectively, these findings provide evidence for a correlation between CD200-CD200R1 alterations, glial activation and neuronal loss. CD200R1 stimulation reduces MPTP-induced loss of dopaminergic neurons, and CD200 deficiency results in earlier microglial activation, suggesting that the potentiation of CD200R1 signalling is a possible approach to controlling neuroinflammation and neuronal death in PD.
Collapse
Affiliation(s)
- Neus Rabaneda-Lombarte
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Bové
- Vall d'Hebrón Research Institute-CIBERNED, Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebrón Research Institute-CIBERNED, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
18
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Lipid-core nanocapsules containing simvastatin improve the cognitive impairment induced by obesity and hypercholesterolemia in adult rats. Eur J Pharm Sci 2020; 151:105397. [DOI: 10.1016/j.ejps.2020.105397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
|
20
|
Kabir MT, Uddin MS, Mamun AA, Jeandet P, Aleya L, Mansouri RA, Ashraf GM, Mathew B, Bin-Jumah MN, Abdel-Daim MM. Combination Drug Therapy for the Management of Alzheimer's Disease. Int J Mol Sci 2020; 21:E3272. [PMID: 32380758 PMCID: PMC7246721 DOI: 10.3390/ijms21093272] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Even though the number of AD patients is rapidly growing, there is no effective treatment for this neurodegenerative disorder. At present, implementation of effective treatment approaches for AD is vital to meet clinical needs. In AD research, priorities concern the development of disease-modifying therapeutic agents to be used in the early phases of AD and the optimization of the symptomatic treatments predominantly dedicated to the more advanced AD stages. Until now, available therapeutic agents for AD treatment only provide symptomatic treatment. Since AD pathogenesis is multifactorial, use of a multimodal therapeutic intervention addressing several molecular targets of AD-related pathological processes seems to be the most practical approach to modify the course of AD progression. It has been demonstrated through numerous studies, that the clinical efficacy of combination therapy (CT) is higher than that of monotherapy. In case of AD, CT is more effective, mostly when started early, at slowing the rate of cognitive impairment. In this review, we have covered the major studies regarding CT to combat AD pathogenesis. Moreover, we have also highlighted the safety, tolerability, and efficacy of CT in the treatment of AD.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, 51687 Reims CEDEX 2, France;
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, India;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
21
|
Bukhvalova SY, Maleev AA, Gracheva YA, Voitovich YV, Ignatov SK, Svirshchevskaya EV, Fedorov AY. Gold-catalyzed cyclization in the synthesis of antimitotic 2,3-dihydrobenzo[b]oxepine derivatives of colchicine. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2689-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ruan C, Sun L, Kroshilina A, Beckers L, De Jager P, Bradshaw EM, Hasson SA, Yang G, Elyaman W. A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system. Brain Behav Immun 2020; 83:180-191. [PMID: 31604143 DOI: 10.1016/j.bbi.2019.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS). The exact role of microglia in CNS disorders is not clear due to lack of tools to discriminate between microglia and infiltrating myeloid cells. Here, we present a novel reporter mouse model targeting a microglia-specific marker, TMEM119, for studying microglia in health and disease. By placing a reporter cassette (GSG-3xFlag-P2A-tdTomato) between the coding sequence of exon 2 and 3'UTR of the Tmem119 gene using CRISPR/Cas9 technology, we generated a Tmem119-tdTomato knock-in mouse strain. Gene expression assay showed no difference of endogenous Tmem119 in the CNS of Tmem119tdTomato/+ relative to wild-type mice. The cells expressing tdTomato were recognized by immunofluorescence staining using commercially available anti-TMEM119 antibodies. Additionally, immunofluorescence and flow cytometry techniques revealed that tdTomato+ cells are detected throughout the CNS, but not in peripheral tissues of Tmem119tdTomato/+ mice. Aging does not influence TMEM119 expression as tdTomato+ cells were detectable in the CNS of older mice (300 and 540 days old). Further immunofluorescence characterization shows that tdTomato+ cells colocalize with Iba1+ cells in the brain, but not with neurons, astrocytes or oligodendrocytes. Moreover, flow cytometry analysis of brain tissues of adult mice demonstrates that the majority of microglia CD45loCD11b+ cells (96.3%) are tdTomato-positive; and a minority of infiltrating CD45hiCD11b+ myeloid cells (5.3%) are also tdTomato-positive, which we further characterized and found that tdTomato expression is in part of choroid plexus macrophages but not in meningeal and perivascular macrophages. Functionally, using an acute injury model, we measured time-lapse activation of tdTomato-labeled microglia by transcranial two-photon microscopy in live Tmem119tdTomato/+ mice. Taken together, the Tmem119-tdTomato reporter mouse model is a valuable tool to specifically study the role of microglia in health and disease.
Collapse
Affiliation(s)
- Chunsheng Ruan
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Linlin Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Alexandra Kroshilina
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Lien Beckers
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Elizabeth M Bradshaw
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Samuel A Hasson
- Pfizer Inc., Cambridge, MA, USA; Amgen Research, Cambridge, MA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Wassim Elyaman
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
24
|
Alvariño R, Alonso E, Abbasov ME, Chaheine CM, Conner ML, Romo D, Alfonso A, Botana LM. Gracilin A Derivatives Target Early Events in Alzheimer's Disease: in Vitro Effects on Neuroinflammation and Oxidative Stress. ACS Chem Neurosci 2019; 10:4102-4111. [PMID: 31387354 PMCID: PMC7654966 DOI: 10.1021/acschemneuro.9b00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The search for compounds capable of targeting early pathological changes of Alzheimer̀s disease (AD), such as oxidative stress and neuroinflammation, is an important challenge. Gracilin A derivatives were recently synthesized, using a pharmacophore-directed retrosynthesis (PDR) strategy, and found to possess potent neuroprotective effects. In this work, the previously described derivatives 1-7 which demonstrated mitochondrial-mediated, antioxidant effects were chosen for further study. The ability of compounds to modulate the expression of antioxidant genes (CAT, GPx, SODs, and Nrf2) was determined in SH-SY5Y cells, and the simplified derivatives 2 and 3 were found to be the most effective. The anti-neuroinflammatory properties of all derivatives were assessed in BV2 microglial cells activated with lipopolysaccharide (LPS). Several derivatives decreased the release of cytokines (Il-1β, IL-6, GM-CSF, and TNF-α) and other damaging molecules (ROS, NO) and also regulated the translocation of Nrf2 and NFκB, and reduced p38 activation. These protective effects were confirmed in a trans-well coculture with BV2 and SH-SY5Y cells and several derivatives increased SH-SY5Y survival. This present work demonstrates the neuroprotective properties of gracilin A derivatives, making them promising candidate drugs for AD. Particularly, derivatives 2 and 3 showed the greatest potential as lead compounds for further development.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Eva Alonso
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
- Fundacion Instituto de Investigacion Sanitario Santiago de Compostela (FIDIS), Hospital Universitario Lucus Augusti, Lugo 27003, Spain
| | - Mikail E. Abbasov
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, United States
| | - Christian M. Chaheine
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, United States
| | - Michael L. Conner
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, United States
| | - Amparo Alfonso
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| |
Collapse
|
25
|
Caraci F, Merlo S, Drago F, Caruso G, Parenti C, Sortino MA. Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation. Front Pharmacol 2019; 10:1024. [PMID: 31572196 PMCID: PMC6751320 DOI: 10.3389/fphar.2019.01024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Different types of pain can evolve toward a chronic condition characterized by hyperalgesia and allodynia, with an abnormal response to normal or even innocuous stimuli, respectively. A key role in endogenous analgesia is recognized to descending noradrenergic pathways that originate from the locus coeruleus and project to the dorsal horn of the spinal cord. Impairment of this system is associated with pain chronicization. More recently, activation of glial cells, in particular microglia, toward a pro-inflammatory state has also been implicated in the transition from acute to chronic pain. Both α2- and β2-adrenergic receptors are expressed in microglia, and their activation leads to acquisition of an anti-inflammatory phenotype. This review analyses in more detail the interconnection between descending noradrenergic system and neuroinflammation, focusing on drugs that, by rescuing the noradrenergic control, exert also an anti-inflammatory effect, ultimately leading to analgesia. More specifically, the potential efficacy in the treatment of neuropathic pain of different drugs will be analyzed. On one side, drugs acting as inhibitors of the reuptake of serotonin and noradrenaline, such as duloxetine and venlafaxine, and on the other, tapentadol, inhibitor of the reuptake of noradrenaline, and agonist of the µ-opioid receptor.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Montanari S, Mahmoud AM, Pruccoli L, Rabbito A, Naldi M, Petralla S, Moraleda I, Bartolini M, Monti B, Iriepa I, Belluti F, Gobbi S, Di Marzo V, Bisi A, Tarozzi A, Ligresti A, Rampa A. Discovery of novel benzofuran-based compounds with neuroprotective and immunomodulatory properties for Alzheimer's disease treatment. Eur J Med Chem 2019; 178:243-258. [DOI: 10.1016/j.ejmech.2019.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023]
|
27
|
Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. J Neuroimmunol 2019; 332:37-48. [DOI: 10.1016/j.jneuroim.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
|
28
|
Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019; 126:815-840. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aβ) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Department of Psychiatry, University of South Denmark, Odense, Denmark.
| | - Daniela Berg
- Department of Neurology, UKHS, Christian-Albrechts-Universität, Campus Kiel, Kiel, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fubo Cheng
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Dresel
- Department of Neurology, Center for Movement Disorders, Neuroimaging Center Mainz, Clinical Neurophysiology, Forschungszentrum Translationale Neurowissenschaften (FTN), Rhein-Main-Neuronetz, Mainz, Germany
| | | | - Rejko Krüger
- Clinical and Experimental Neuroscience, LCSB (Luxembourg Centre for Systems, Biomedicine), University of Luxembourg, Esch-sur-Alzette and Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,National Center for Excellence in Research, Parkinson's disease (NCER-PD), Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, Berlin, Germany
| | - Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Sabrina Strobel
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | | | - Jürgen Winkler
- Department Kopfkliniken, Molekulare Neurologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Friederike Zunke
- Department of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Vaz AR, Pinto S, Ezequiel C, Cunha C, Carvalho LA, Moreira R, Brites D. Phenotypic Effects of Wild-Type and Mutant SOD1 Expression in N9 Murine Microglia at Steady State, Inflammatory and Immunomodulatory Conditions. Front Cell Neurosci 2019; 13:109. [PMID: 31024256 PMCID: PMC6465643 DOI: 10.3389/fncel.2019.00109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of mutated superoxide dismutase 1 (mSOD1) in amyotrophic lateral sclerosis (ALS) involves injury to motor neurons (MNs), activation of glial cells and immune unbalance. However, neuroinflammation, besides its detrimental effects, also plays beneficial roles in ALS pathophysiology. Therefore, the targeting of microglia to modulate the release of inflammatory neurotoxic mediators and their exosomal dissemination, while strengthening cell neuroprotective properties, has gained growing interest. We used the N9 microglia cell line to identify phenotype diversity upon the overexpression of wild-type (WT; hSOD1WT) and mutated G93A (hSOD1G93A) protein. To investigate how each transduced cell respond to an inflammatory stimulus, N9 microglia were treated with lipopolysaccharide (LPS). Glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS), known to exert neuroprotective properties, were tested for their immunoregulatory properties. Reduced Fizz1, IL-10 and TLR4 mRNAs were observed in both transduced cells. However, in contrast with hSOD1WT-induced decreased of inflammatory markers, microglia transduced with hSOD1G93A showed upregulation of pro-inflammatory (TNF-α/IL-1β/HMGB1/S100B/iNOS) and membrane receptors (MFG-E8/RAGE). Importantly, their derived exosomes were enriched in HMGB1 and SOD1. When inflammatory-associated miRNAs were evaluated, increased miR-146a in cells with overexpressed hSOD1WT was not recapitulated in their exosomes, whereas hSOD1G93A triggered elevated exosomal miR-155/miR-146a, but no changes in cells. LPS stimulus increased M1/M2 associated markers in the naïve microglia, including MFG-E8, miR-155 and miR-146a, whose expression was decreased in both hSOD1WT and hSOD1G93A cells treated with LPS. Treatment with GUDCA or VS led to a decrease of TNF-α, IL-1β, HMGB1, S100B and miR-155 in hSOD1G93A microglia. Only GUDCA was able to increase cellular IL-10, RAGE and TLR4, together with miR-21, while decreased exosomal miR-155 cargo. Conversely, VS reduced MMP-2/MMP-9 activation, as well as upregulated MFG-E8 and miR-146a, while producing miR-21 shuttling into exosomes. The current study supports the powerful role of overexpressed hSOD1WT in attenuating M1/M2 activation, and that of hSOD1G93A in switching microglia from the steady state into a reactive phenotype with low responsiveness to stimuli. This work further reveals GUDCA and VS as promising modulators of microglia immune response by eliciting common and compound-specific molecular mechanisms that may promote neuroregeneration.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Sara Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Catarina Ezequiel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Luís A. Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
30
|
Aldana BI. Microglia-Specific Metabolic Changes in Neurodegeneration. J Mol Biol 2019; 431:1830-1842. [PMID: 30878483 DOI: 10.1016/j.jmb.2019.03.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The high energetic demand of the brain deems this organ rather sensitive to changes in energy supply. Therefore, even minor alterations in energy metabolism may underlie detrimental disturbances in brain function, contributing to the generation and progression of neurodegenerative diseases. Considerable evidence supports the key role of deficits in cerebral energy metabolism, particularly hypometabolism of glucose and mitochondrial dysfunction, in the pathophysiology of brain disorders. Major breakthroughs in the field of bioenergetics and neurodegeneration have been achieved through the use of in vitro and in vivo models of disease as well as sophisticated neuroimaging techniques in patients, yet these have been mainly focused on neuron and astrocyte function. Remarkably, the subcellular metabolic mechanisms linked to neurodegeneration that operate in other crucial brain cell types such as microglia have remain obscured, although they are beginning to be unraveled. Microglia, the brain-resident immune sentinels, perform a diverse range of functions that require a high-energy expenditure, namely, their role in brain development, maintenance of the neural environment, response to injury and infection, and activation of repair programs. Interestingly, another key mechanism underlying several neurodegenerative diseases is neuroinflammation, which can be associated with chronic microglia activation. Considering that many brain disorders are accompanied by changes in brain energy metabolism and sustained inflammation, and that energy metabolism has a strong influence on the inflammatory responses of microglia, the emerging significance of microglial energy metabolism in neurodegeneration is highlighted in this review.
Collapse
Affiliation(s)
- Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
31
|
Choi J, Kim J, Min DY, Jung E, Lim Y, Shin SY, Lee YH. Inhibition of TNFα-induced interleukin-6 gene expression by barley (Hordeum vulgare) ethanol extract in BV-2 microglia. Genes Genomics 2019; 41:557-566. [PMID: 30796706 DOI: 10.1007/s13258-018-00781-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Inflammation in the central nervous system is closely associated with pathological neurodegenerative diseases as well as psychiatric disorders. Prolonged activation of microglia can produce many inflammatory mediators, which may result in pathological neurotoxic side effects. Interleukin (IL)-6 serves as a hallmark of the injured brain. OBJECTIVE Whole grains are known to contain many bioactive components. However, little information is available about anti-neuroinflammatory effects of grains in the CNS. This study aims to investigate the effect of Hordeum vulgare ethanol extract (HVE) on the suppression of IL-6 expression in BV2 microglia. METHODS Inhibitory effects of HVE on IL-6 expression were analyzed by immunoblot anaysis, immunofluoresce microscopic analysis, reverse transcription-polymerase chain reaction, and luciferase promoter reporter assay. RESULTS HVE inhibited TNFα-induced phosphorylation of IKKα/β, IκB, and p65/RelA NF-κB. TNFα-induced IL-6 mRNA expression and promoter activity were reduced by HVE. Point mutation of NF-κB-binding site within the IL-6 gene promoter abolished TNFα-induced reporter activity, whereas exogenous expression of p65 NF-κB enhanced IL-6 promoter activity. CONCLUSION NF-κB-binding site within the IL-6 promoter region is a HVE target element involved in the inhibition of TNFα-induced IL-6 gene transcription. HVE inhibits TNFα-induced IL-6 expression via suppression of NF-κB signaling in BV2 microglial cells.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Juhwan Kim
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Yeong Min
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
- Cancer and Metabolism Institute, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
32
|
De Simone A, La Pietra V, Betari N, Petragnani N, Conte M, Daniele S, Pietrobono D, Martini C, Petralla S, Casadei R, Davani L, Frabetti F, Russomanno P, Novellino E, Montanari S, Tumiatti V, Ballerini P, Sarno F, Nebbioso A, Altucci L, Monti B, Andrisano V, Milelli A. Discovery of the First-in-Class GSK-3β/HDAC Dual Inhibitor as Disease-Modifying Agent To Combat Alzheimer's Disease. ACS Med Chem Lett 2019; 10:469-474. [PMID: 30996781 DOI: 10.1021/acsmedchemlett.8b00507] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Several evidence pointed out the role of epigenetics in Alzheimer's disease (AD) revealing strictly relationships between epigenetic and "classical" AD targets. Based on the reported connection among histone deacetylases (HDACs) and glycogen synthase kinase 3β (GSK-3β), herein we present the discovery and the biochemical characterization of the first-in-class hit compound able to exert promising anti-AD effects by modulating the targeted proteins in the low micromolar range of concentration. Compound 11 induces an increase in histone acetylation and a reduction of tau phosphorylation. It is nontoxic and protective against H2O2 and 6-OHDA stimuli in SH-SY5Y and in CGN cell lines, respectively. Moreover, it promotes neurogenesis and displays immunomodulatory effects. Compound 11 shows no lethality in a wt-zebrafish model (<100 μM) and high water solubility.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Valeria La Pietra
- Department of Pharmacy, Federico II University of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Nibal Betari
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Nicola Petragnani
- Department of Psychological, Health and Territorial Sciences, “G.
d’Annunzio” University of Chieti-Pescara, Via dei Vestini 32, 66100 Chieti, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Deborah Pietrobono
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Raffaella Casadei
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Lara Davani
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - Pasquale Russomanno
- Department of Pharmacy, Federico II University of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Federico II University of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Serena Montanari
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Patrizia Ballerini
- Department of Psychological, Health and Territorial Sciences, “G.
d’Annunzio” University of Chieti-Pescara, Via dei Vestini 32, 66100 Chieti, Italy
| | - Federica Sarno
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
33
|
Villa A, Klein B, Janssen B, Pedragosa J, Pepe G, Zinnhardt B, Vugts DJ, Gelosa P, Sironi L, Beaino W, Damont A, Dollé F, Jego B, Winkeler A, Ory D, Solin O, Vercouillie J, Funke U, Laner-Plamberger S, Blomster LV, Christophersen P, Vegeto E, Aigner L, Jacobs A, Planas AM, Maggi A, Windhorst AD. Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Am J Cancer Res 2018; 8:5400-5418. [PMID: 30555554 PMCID: PMC6276082 DOI: 10.7150/thno.25572] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers. Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues. Results: Here we provide evidence that P2RY12 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-11 labeled tracer targeting P2RY12, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient. Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.
Collapse
|
34
|
Alvariño R, Alonso E, Lacret R, Oves-Costales D, Genilloud O, Reyes F, Alfonso A, Botana LM. Streptocyclinones A and B ameliorate Alzheimer's disease pathological processes in vitro. Neuropharmacology 2018; 141:283-295. [PMID: 30205103 DOI: 10.1016/j.neuropharm.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is a pathology characterized by the abnormal accumulation of amyloid-beta (Aβ) and hyperphosphorylated tau. Oxidative stress and neuroinflammation are also strongly related to this disease. The ability of two new glycosylated angucyclinones, streptocyclinones A and B (1 and 2), isolated from Streptomyces sp to improve AD hallmarks was evaluated. Compounds were able to protect SH-SY5Y neuroblastoma cells from H2O2-induced oxidative injury by activating the nuclear factor E2-related factor (Nrf2). Their capacity to modulate neuroinflammation was tested in lipopolysaccharide-activated BV2 microglial cells. Compounds reduced the release of pro-inflammatory factors, inhibited the activation of NFκB and mitogen activated kinases (MAPK), and induced the translocation of Nrf2 to the nucleus of microglial cells. A trans-well co-culture was established to determine the effect of microglia treated with streptocyclinones on the survival of SH-SY5Y cells. The cell viability of neuroblastoma cells increased when the compounds were added to BV2 cells. SH-SY5Y-TMHT441 cells were used to determine the effect of compounds on tau phosphorylation. Both compounds reduced tau hyperphophorylation by targeting MAPK kinases. Moreover, streptocyclinone B (2) was able to inhibit the activity of β-secretase 1 and decrease the release of reactive oxygen species in BV2 cells stimulated with Aβ. With the same co-culture trans-well system, the treatment of Aβ-stimulated microglia with compound 2 augmented the viability of SH-SY5Y-TMHT441 cells. The results presented in this work provide evidences of the multitarget activities displayed by these new Streptomyces compounds, making them good candidates for further studies in the treatment of AD.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain.
| | - Rodney Lacret
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27003, Spain.
| |
Collapse
|
35
|
Sun Z, Lin Y, Li Y, Ren T, Du G, Wang J, Jin X, Yang LC. The effect of dexmedetomidine on inflammatory inhibition and microglial polarization in BV-2 cells. Neurol Res 2018; 40:838-846. [DOI: 10.1080/01616412.2018.1493849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zhiheng Sun
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Yi Lin
- Department of Anesthesiology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Tong Ren
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Guicheng Du
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Jia Wang
- Qibao Community Health Service Centre, Shanghai, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Li-Chao Yang
- Xiamen Key Laboratory of Chiral Drugs, Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
36
|
Lecca D, Janda E, Mulas G, Diana A, Martino C, Angius F, Spolitu S, Casu MA, Simbula G, Boi L, Batetta B, Spiga S, Carta AR. Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson's disease models. Br J Pharmacol 2018; 175:3298-3314. [PMID: 29570770 DOI: 10.1111/bph.14214] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-β and up-regulated TNF-α and IL-1β immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.
Collapse
Affiliation(s)
- Daniela Lecca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Concetta Martino
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Spolitu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Gabriella Simbula
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Batetta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
37
|
Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer's disease. Biomed Pharmacother 2018; 106:553-565. [PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia.
| | - Christine Kettle
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia
| | - David W Morton
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia
| |
Collapse
|
38
|
Qin S, Yang C, Huang W, Du S, Mai H, Xiao J, Lü T. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/NF-κB signaling pathways in LPS-activated BV-2 microglia. Pharmacol Res 2018; 133:218-235. [DOI: 10.1016/j.phrs.2018.01.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
|
39
|
Cougnoux A, Drummond RA, Collar AL, Iben JR, Salman A, Westgarth H, Wassif CA, Cawley NX, Farhat NY, Ozato K, Lionakis MS, Porter FD. Microglia activation in Niemann-Pick disease, type C1 is amendable to therapeutic intervention. Hum Mol Genet 2018; 27:2076-2089. [PMID: 29617956 PMCID: PMC5985727 DOI: 10.1093/hmg/ddy112] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a neurodegenerative disorder with limited treatment options. NPC1 is associated with neuroinflammation; however, attempts to therapeutically target neuroinflammation in NPC1 have had mixed success. We show here that NPC1 neuroinflammation is characterized by an atypical microglia activation phenotype. Specifically, Npc1-/- microglia demonstrated altered morphology, reduced levels of lineage markers and a shift toward glycolytic metabolism. Treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a drug currently being studied in a phase 2b/3 clinical trial, reversed all microglia-associated defects in Npc1-/- animals. In addition, impairing microglia mediated neuroinflammation by genetic deletion of IRF8 led to decreased symptoms and increased lifespan. We identified CD22 as a marker of dysregulated microglia in Npc1 mutant mice and subsequently demonstrated that elevated cerebrospinal fluid levels of CD22 in NPC1 patients responds to HPβCD administration. Collectively, these data provide the first in-depth analysis of microglia function in NPC1 and suggest possible new therapeutic approaches.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20879, USA
| | - Amanda L Collar
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20879, USA
| | - James R Iben
- Molecular Genomics Core, National Institutes of Health, Bethesda, MD 20879, USA
| | - Alexander Salman
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Harrison Westgarth
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Niamh X Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Keiko Ozato
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20879, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20879, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| |
Collapse
|
40
|
He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, Zhao Y, Mao Z. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 2018; 217:315-328. [PMID: 29196462 PMCID: PMC5748971 DOI: 10.1083/jcb.201701049] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/30/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023] Open
Abstract
Inflammation and autophagy are two critical cellular processes. The relationship between these two processes is complex and includes the suppression of inflammation by autophagy. However, the signaling mechanisms that relieve this autophagy-mediated inhibition of inflammation to permit a beneficial inflammatory response remain unknown. We find that LPS triggers p38α mitogen-activated protein kinase (MAPK)-dependent phosphorylation of ULK1 in microglial cells. This phosphorylation inhibited ULK1 kinase activity, preventing it from binding to the downstream effector ATG13, and reduced autophagy in microglia. Consistently, p38α MAPK activity is required for LPS-induced morphological changes and the production of IL-1β by primary microglia in vitro and in the brain, which correlates with the p38α MAPK-dependent inhibition of autophagy. Furthermore, inhibition of ULK1 alone was sufficient to promote an inflammatory response in the absence of any overt inflammatory stimulation. Thus, our study reveals a molecular mechanism that enables the initial TLR4-triggered signaling pathway to inhibit autophagy and optimize inflammatory responses, providing new understanding into the mechanistic basis of the neuroinflammatory process.
Collapse
Affiliation(s)
- Yingli He
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Hua She
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Ting Zhang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, China
| | - Haidong Xu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Lihong Cheng
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Manuel Yepes
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Yingren Zhao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixu Mao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
41
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
42
|
Shchegravina ES, Maleev AA, Ignatov SK, Gracheva IA, Stein A, Schmalz HG, Gavryushin AE, Zubareva AA, Svirshchevskaya EV, Fedorov AY. Synthesis and biological evaluation of novel non-racemic indole-containing allocolchicinoids. Eur J Med Chem 2017; 141:51-60. [DOI: 10.1016/j.ejmech.2017.09.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
|
43
|
Wang S, Wang F, Yang H, Li R, Guo H, Hu L. Diosgenin glucoside provides neuroprotection by regulating microglial M1 polarization. Int Immunopharmacol 2017. [DOI: 10.1016/j.intimp.2017.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Zhao C, Hou W, Lei H, Huang L, Wang S, Cui D, Xing C, Wang X, Peng Y. Potassium 2-(l-hydroxypentyl)-benzoate attenuates neuroinflammatory responses and upregulates heme oxygenase-1 in systemic lipopolysaccharide-induced inflammation in mice. Acta Pharm Sin B 2017; 7:470-478. [PMID: 28752032 PMCID: PMC5518660 DOI: 10.1016/j.apsb.2017.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
A neuroinflammatory response is commonly involved in the progression of many neurodegenerative diseases. Potassium 2-(1-hydroxypentyl)-benzoate (PHPB), a novel neuroprotective compound, has shown promising effects in the treatment of ischemic stroke and Alzheimer׳s disease (AD). In the present study, the anti-inflammatory effects of PHPB were investigated in the plasma and brain of C57BL/6 mice administered a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). Levels of iNOS and the cytokines TNFα, IL-1β and IL-10 were elevated in plasma, cerebral cortex and hippocampus after LPS injection and the number of microglia and astrocytes in cortex and hippocampus were increased. LPS also upregulated the expression of heme oxygenase-1 (HO-1) in the cortex and hippocampus. PHPB reduced the levels of iNOS and cytokines in the plasma and brain, decreased the number of microglia and astrocytes and further enhanced the upregulation of HO-1. In addition, PHPB inhibited the LPS-induced phosphorylation of ERK, P38 and JNK. These results suggest that PHPB is a potential candidate in the treatment of neurodegenerative diseases through inhibiting neuroinflammation.
Collapse
|
45
|
Subramaniam SR, Federoff HJ. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci 2017. [PMID: 28642697 PMCID: PMC5463358 DOI: 10.3389/fnagi.2017.00176] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.
Collapse
Affiliation(s)
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, Irvine, CAUnited States
| |
Collapse
|
46
|
Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol Neurobiol 2017; 55:3196-3210. [PMID: 28478506 DOI: 10.1007/s12035-017-0584-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
Abstract
Cocaine is known to activate microglia both in vitro and in vivo. High expression of microglial Toll-like receptors (TLRs) and their downstream signal transducers play critical roles in determining microglial activation status. Emerging reports have also demonstrated that cocaine can enhance the strength of TLR signaling. Detailed molecular mechanisms underlying this phenomenon, however, remain elusive. In this study, we investigated the role(s) of miR-124 in regulating microglial TLR4 signaling in the context of cocaine. Herein, we found a dose- and time-dependent upregulation of KLF4 in cocaine-exposed BV-2 cells and rat primary microglial cells (rPMs). KLF4 also identified as a novel 3'-UTR target directly regulated by miR-124. In parallel, miR-124 regulated multiple TLR4 signaling molecules including TLR4, MyD88, TRAF6, and IRAK1. Repeated doses of cocaine (20 mg/kg; i.p.) administration in mice for 7 days further validated the in vitro key findings. Also, miR-124 overexpression significantly blocked the cocaine-mediated upregulation of pro-inflammatory cytokines. In contrast, miR-124 overexpression notably increased the expression of anti-inflammatory mediators in cocaine-exposed microglial cells. Intriguingly, stereotactic administration of lentivirus-miR-124 in the striatum significantly inhibited cocaine-mediated microglial activation and locomotor hyperactivity in vivo. In summary, these findings implicate the role of miR-124 in regulating TLR4 signaling, thereby indicating a new pathway responsible for cocaine-mediated microglial activation.
Collapse
|
47
|
Matrine promotes NT3 expression in CNS cells in experimental autoimmune encephalomyelitis. Neurosci Lett 2017; 649:100-106. [PMID: 28392360 DOI: 10.1016/j.neulet.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
Abstract
Neurotrophin 3 (NT3) is a potent neurotrophic factor for promoting remyelination and recovery of neuronal function; upregulation of its expression in the central nervous system (CNS) is thus of major therapeutic importance for neurological deficits. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flavescent, has been recently reported to effectively ameliorate clinical signs in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), by secreting antiinflammatory cytokines. In the present study, our goal was to investigate whether MAT could affect NT3 expression of glial cells in the CNS, the major cell populations in the CNS foci of MS/EAE. We found that MAT markedly upregulated NT3 expression in the CNS not only by microglia/macrophages and astrocytes, but also by oligodendrocyte precursor cells, indicative of both paracrine and autocrine effects on myelinating cells. While MAT treatment reduced the numbers of iNOS+ M1, but increased Arg1+ M2 microglia/macrophage phenotypes, NT3 expression was upregulated in both phenotypes. These results indicate that MAT therapy for EAE acts, at least in part, by stimulating local production of NT3 by glial cells in the CNS, which protects neural cells from CNS inflammation-induced tissue damage.
Collapse
|
48
|
Matsye P, Zheng L, Si Y, Kim S, Luo W, Crossman DK, Bratcher PE, King PH. HuR promotes the molecular signature and phenotype of activated microglia: Implications for amyotrophic lateral sclerosis and other neurodegenerative diseases. Glia 2017; 65:945-963. [PMID: 28300326 DOI: 10.1002/glia.23137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
In neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), chronic activation of microglia contributes to disease progression. Activated microglia produce cytokines, chemokines, and other factors that normally serve to clear infection or damaged tissue either directly or through the recruitment of other immune cells. The molecular program driving this phenotype is classically linked to the transcription factor NF-κB and characterized by the upregulation of proinflammatory factors such as IL-1β, TNF-α, and IL-6. Here, we investigated the role of HuR, an RNA-binding protein that regulates gene expression through posttranscriptional pathways, on the molecular and cellular phenotypes of activated microglia. We performed RNA sequencing of HuR-silenced microglia and found significant attenuation of lipopolysaccharide-induced IL-1β and TNF-α inflammatory pathways and other factors that promote microglial migration and invasion. RNA kinetics and luciferase reporter studies suggested that the attenuation was related to altered promoter activity rather than a change in RNA stability. HuR-silenced microglia showed reduced migration, invasion, and chemotactic properties but maintained viability. MMP-12, a target exquisitely sensitive to HuR knockdown, participates in the migration/invasion phenotype. HuR is abundantly detected in the cytoplasmic compartment of activated microglia from ALS spinal cords consistent with its increased activity. Microglia from ALS-associated mutant SOD1 mice demonstrated higher migration/invasion properties which can be blocked with HuR inhibition. These findings underscore an important role for HuR in sculpting the molecular signature and phenotype of activated microglia, and as a possible therapeutic target in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Prachi Matsye
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Lei Zheng
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Soojin Kim
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David K Crossman
- Department of Genetics, University of Alabama, Birmingham, Alabama
| | - Preston E Bratcher
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, Colorado
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Department of Genetics, University of Alabama, Birmingham, Alabama.,Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Health, Denver, Colorado.,Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| |
Collapse
|
49
|
Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer's disease. Eur J Med Chem 2017; 127:250-262. [DOI: 10.1016/j.ejmech.2016.12.048] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
|
50
|
Prati F, Cavalli A, Bolognesi ML. Navigating the Chemical Space of Multitarget-Directed Ligands: From Hybrids to Fragments in Alzheimer's Disease. Molecules 2016; 21:466. [PMID: 27070562 PMCID: PMC6273289 DOI: 10.3390/molecules21040466] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 12/15/2022] Open
Abstract
Multitarget drug discovery is one of the hottest topics and most active fields in the search for new molecules against Alzheimer’s disease (AD). Over the last 20 years, many promising multitarget-directed ligands (MTDLs) have been identified and developed at a pre-clinical level. However, how to design them in a rational way remains the most fundamental challenge of medicinal chemists. This is related to the foundational question of achieving an optimized activity towards multiple targets of interest, while preserving drug-like properties. In this respect, large hybrid molecules and small fragments are poles apart. In this review article, our aim is to appraise what we have accomplished in the development of both hybrid- and fragment-like molecules directed to diverse AD targets (i.e., acetylcholinesterase, NMDA receptors, metal chelation, BACE-1 and GSK-3β). In addition, we attempt to highlight what are the persistent needs that deserve to be improved and cared for, with the ultimate goal of moving an MTDL to AD clinical studies.
Collapse
Affiliation(s)
- Federica Prati
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy.
- Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy.
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy.
| |
Collapse
|