1
|
Kyriacou NM, Gross AS, McLachlan AJ. Green Tea Catechins as Perpetrators of Drug Pharmacokinetic Interactions. Clin Pharmacol Ther 2025. [PMID: 39748104 DOI: 10.1002/cpt.3547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Green tea (Camellia sinensis) is a commonly consumed beverage or dietary supplement. As a natural product with a myriad of proposed health benefits, patients are likely to consume green tea while taking their medications unaware of its potential to interact with drugs and influence drug efficacy and safety. Catechins are the abundant polyphenolic compounds in green tea (e.g., (-)-epigallocatechin-3-gallate), which are reported to influence determinants of drug pharmacokinetics, such as drug solubility and the activity of drug transporters and drug metabolizing enzymes. This review summarized the results of clinical studies investigating the influence of green tea catechins on the pharmacokinetics of clinically used medications. The majority of analyses (72%) reported significant decreases (by 18-99%) in systemic drug exposure with green tea consumption (atorvastatin, celiprolol, digoxin, fexofenadine, folic acid, lisinopril, nadolol, nintedanib, raloxifene, and rosuvastatin). One analysis (6%) reported a 50% increase in drug systemic exposure (sildenafil) and for 22% of analyses drug pharmacokinetics were not affected by green tea consumption (fluvastatin, pseudoephedrine, simvastatin, and tamoxifen). For most drugs reporting an interaction, green tea catechins were proposed to decrease intestinal drug absorption by inhibiting OATP uptake (particularly OATP1A2), enhancing P-gp efflux activity or reducing drug solubility. Case reports have associated changes in drug pharmacokinetics with green tea consumption to changes in drug efficacy or safety (e.g., nadolol and erlotinib). These findings prompt the need for further research in relating evidence from existing literature to predict additional clinically important green tea-drug interactions and to provide appropriate recommendations for patients and clinicians.
Collapse
Affiliation(s)
- Nicki M Kyriacou
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Annette S Gross
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Zuo D, Lv L, Ren H, Sun H. Effects of polyphenols extracted from Keemun black tea on CYP450s activity and molecular mechanisms. Food Sci Nutr 2024; 12:7306-7315. [PMID: 39479673 PMCID: PMC11521629 DOI: 10.1002/fsn3.4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 11/02/2024] Open
Abstract
Keemun black tea (KBT) is a luxurious traditional tea in China that has been commonly consumed because of its superior aroma and special taste. However, the risks remain unknown when KBT is used concomitantly with other drugs or food products. Therefore, we aimed to explore the effect of the tea polyphenols from KBT on the protein and mRNA levels of CYP450 and related mechanisms. The extraction of tea polyphenols from KBT and the content and component analysis of polyphenols were performed. A total of 24 female C57BL/6J mice were given tea polyphenols (0, 75, 150, 300 mg/kg) for 7 days, respectively. Liver tissues were collected 2 h after the last administration. The expression of Cyp3a11, Cyp1a2, Cyp2e1, Cyp2c37, and PXR mRNA was detected by real-time PCR, and the expression of Cyp3a11, Cyp1a2, Cyp2e1, Cyp2c37, and PXR protein was detected by Western blotting. A transient co-transfection reporter gene assay on HepG2 cells was also used to verify the role of PXR in regulating CYP3A4 expression. Our results showed that tea polyphenols from KBT significantly induced the expression of CYP 3A11 and PXR in general, inhibited the expression of Cyp1a2 and Cyp2e1 in general, and significantly inhibited the mRNA expression of Cyp2c37 but induced its protein expression. The reporter gene-transfected cells demonstrated that tea polyphenols could enhance the PXR-mediated transactivation of the CYP3A4 promoter via rifampicin-induction. Meanwhile, tea polyphenols could significantly accelerate CYP3A11/3A4 expression by activating the PXR-CYP3A4 pathway. In conclusion, KBT polyphenols could significantly affect the expression of various subtypes of the Cyp450 enzyme in mice livers via the PXR-CYP450 pathway, suggesting that metabolism-based interactions can occur when they are used in combination with medicines.
Collapse
Affiliation(s)
- Dan Zuo
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenGuangdongChina
- Vocational and Technical College of AnshunAnshunGuizhouChina
| | - Le Lv
- School of Applied BiologyShenzhen Institute of TechnologyShenzhenGuangdongChina
| | - Hong Ren
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenGuangdongChina
| | - Haiyan Sun
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenGuangdongChina
| |
Collapse
|
3
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
4
|
Oyanna VO, Bechtold BJ, Lynch KD, Ridge Call M, Graf TN, Oberlies NH, Clarke JD. Green Tea Catechins Decrease Solubility of Raloxifene In Vitro and Its Systemic Exposure in Mice. Pharm Res 2024; 41:557-566. [PMID: 38302834 PMCID: PMC10939713 DOI: 10.1007/s11095-024-03662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.
Collapse
Affiliation(s)
- Victoria O Oyanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Baron J Bechtold
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - M Ridge Call
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA.
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, USA.
| |
Collapse
|
5
|
Alrajeh K, Roman YM. The frequency of rs2231142 in ABCG2 among Asian subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics 2023; 24:15-26. [PMID: 36651271 PMCID: PMC9979151 DOI: 10.2217/pgs-2022-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023] Open
Abstract
Statins are widely used medications for the primary and secondary prevention of cardiovascular diseases. Statin-induced musculoskeletal symptoms are the primary adverse drug events contributing to poor adherence to lipid-lowering therapy. Rosuvastatin is characterized by interindividual differences in systemic exposure among different patient population subgroups. The missense variant Q141K within ABCG2, highly prevalent in some Asian subgroups, results in decreased transporter efflux function and increased exposure to rosuvastatin. We aim to highlight the implications of ABCG2 genotype in prescribing rosuvastatin and the ramifications of interpopulation differences in Q141K frequencies in the starting dose of rosuvastatin in major Asian subgroups, using the most recent genetic-based guidelines. The high frequency of Q141K in Filipinos could warrant a lower starting rosuvastatin dose versus non-Filipinos. The Q141K genotype frequencies in Asian subgroups suggest significant interpopulation differences, reinforcing the need to move beyond race-based to genotype-based rosuvastatin dosing.
Collapse
Affiliation(s)
- Khalifa Alrajeh
- Department of Pharmacotherapy & Outcome Science, Virginia Commonwealth University School of Pharmacy, 410 N 12 Street, Richmond, VA 23298, USA
- Department of Pharmacy Practice, King Faisal University College of Clinical Pharmacy, P.O. Box 400, Hofuf, Eastern Province, 31982, Saudi Arabia
| | - Youssef M. Roman
- Department of Pharmacotherapy & Outcome Science, Virginia Commonwealth University School of Pharmacy, 410 N 12 Street, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Phytotherapeuthics Affecting the IL-1/IL-17/G-CSF Axis: A Complementary Treatment Option for Hidradenitis Suppurativa? Int J Mol Sci 2022; 23:ijms23169057. [PMID: 36012322 PMCID: PMC9408811 DOI: 10.3390/ijms23169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hidradenitis suppurativa (HS; also designated as acne inversa) is a chronic inflammatory disease characterized by painful skin lesions that occur in the axillary, inguinal, gluteal and perianal areas of the body. These lesions contain recurring deep-seated, inflamed nodules and pus-discharging abscesses and fistulas. Affecting about 1% of the population, this common disease has gained appropriate clinical attention in the last years. Associated with numerous comorbidities including metabolic syndrome, HS is considered a systemic disease that severely impairs the quality of life and shortens life expectancy. Therapeutic options for HS are limited, comprising long-term antibiotic treatment, the surgical removal of affected skin areas, and neutralization of TNF-α, the only approved systemic treatment. Novel treatment options are needed to close the therapeutic gap. HS pathogenesis is increasingly better understood. In fact, neutrophilic granulocytes (neutrophils) seem to be decisive for the development of the purulent destructive skin inflammation in HS. Recent findings suggest a key role of the immune mediators IL-1β, IL-17A and G-CSF in the migration into and activation of neutrophils in the skin. Although phytomedical drugs display potent immunoregulatory properties and have been suggested as complementary therapy in several chronic disorders, their application in HS has not been considered so far. In this review, we describe the IL-1/IL-17/G-CSF axis and evaluate it as potential target for an integrated phytomedical treatment of HS.
Collapse
|
8
|
Lange KW, Lange KM, Nakamura Y. Green tea, epigallocatechin gallate and the prevention of Alzheimer’s disease: Clinical evidence. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Crit Rev Food Sci Nutr 2022; 63:10560-10584. [PMID: 35647742 DOI: 10.1080/10408398.2022.2081128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
10
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effects of Soy Isoflavones and Green Tea Extract on Simvastatin Pharmacokinetics and Influence of the SLCO1B1 521T > C Polymorphism. Front Nutr 2022; 9:868126. [PMID: 35685887 PMCID: PMC9171976 DOI: 10.3389/fnut.2022.868126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Green tea and soy products are extensively consumed by many people and they may influence the activity of drug metabolizing enzymes and drug transporters to result in drug interactions. This study was performed to evaluate the effect of green tea and soy isoflavone extracts on the pharmacokinetics of simvastatin in healthy subjects and to clarify the role of polymorphisms in the SLCO1B1 drug transporter in this effect. METHODS This was an open-label, three-phase randomized crossover pharmacokinetic study. A single dose of simvastatin 20 mg was taken on three occasions (without herbs, with green tea, and with soy isoflavones) by healthy male Chinese subjects. The green tea and soy isoflavone extracts were given at a dose containing EGCG 800 mg once daily or soy isoflavones about 80 mg once daily for 14 days before simvastatin dosing with at least 4-weeks washout period between phases. RESULTS All the 18 subjects completed the study. Intake of soy isoflavones was associated with reduced systemic exposure to simvastatin acid [geometric mean (% coefficient of variation) AUC0-24h from 16.1 (44.2) h⋅μg/L to 12.1 (54.6) h⋅μg/L, P < 0.05) but not the lactone. Further analysis showed that the interaction between simvastatin and the soy isoflavones only resulted in a significant reduction of AUC in subjects with the SLCO1B1 521TT genotype and not in those with the 521C variant allele. There was no overall effect of the green tea extract on simvastatin pharmacokinetics but the group with the SLCO1B1 521TT genotype showed reduced AUC values for simvastatin acid. CONCLUSION This study showed repeated administration of soy isoflavones reduced the systemic bioavailability of simvastatin in healthy volunteers that was dependent on the SLCO1B1 genotype which suggested that soy isoflavones-simvastatin interaction is impacted by genotype-related function of this liver uptake transporter.
Collapse
Affiliation(s)
- Weiwei Zeng
- The Second People’s Hospital of Longgang District, Shenzhen, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
11
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effect of Green Tea Extract and Soy Isoflavones on the Pharmacokinetics of Rosuvastatin in Healthy Volunteers. Front Nutr 2022; 9:850318. [PMID: 35399656 PMCID: PMC8987933 DOI: 10.3389/fnut.2022.850318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIM Green tea and soy products are extensively consumed in daily life. Research has shown that green tea catechins and soy isoflavones may influence the activity of drug metabolizing enzymes and drug transporters. We examined whether regular consumption of green tea extract or soy isoflavones affected the pharmacokinetics of a single dose of rosuvastatin in healthy subjects and whether any interactions were influenced by the polymorphism in the drug transporter ABCG2. STUDY DESIGN This was an open-label, three-phase randomized crossover study with single doses of rosuvastatin. METHODS Healthy Chinese male subjects were given a single dose of rosuvastatin 10 mg on 3 occasions: 1. without herbs; 2. with green tea extract; 3. with soy isoflavone extract. The green tea and soy isoflavone extract were given at a dose containing EGCG 800 mg once daily or soy isoflavones-80 mg once daily for 14 days before statin dosing and at the same time as the statin dosing with at least 4-weeks washout period between phases. RESULTS Twenty healthy male subjects completed the study and the intake of green tea extract significantly reduced the systemic exposure to rosuvastatin by about 20% reducing AUC0-24h from [geometric mean (% coefficient of variation)] 108.7 (28.9) h·μg/L to 74.1 (35.3) h·μg/L and Cmax from 13.1 (32.2) μg/L to 7.9 (38.3) μg/L (P < 0.001 for both), without affecting the elimination half-life. The ABCG2 421C>A polymorphism had a significant effect on rosuvastatin exposure but no impact on the interaction with green tea. Soy isoflavones had no significant effect on rosuvastatin pharmacokinetics. CONCLUSION This study showed that repeated administration of green tea extract significantly reduced the systemic exposure of rosuvastatin in healthy volunteers. These effects might be predicted to either reduce or increase the lipid-lowering effect of rosuvastatin depending on the mechanism of the effect.
Collapse
Affiliation(s)
- Weiwei Zeng
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
12
|
Li S, Zheng M, Yang X, Zhang J, Xu J, Yu J. Effect of nonylphenol on the colonic mucosa in rats and intervention with zinc-selenium green tea ( Camellia sinensis). Toxicol Res (Camb) 2021; 11:122-133. [PMID: 35237417 PMCID: PMC8882797 DOI: 10.1093/toxres/tfab119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/23/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
To investigate the effect of nonylphenol (NP) exposure on the colonic mucosa in rats, and the protective effects of Guizhou zinc-selenium tea (Zn-Se tea) on the damage induced by NP, sixty Sprague-Dawley rats were randomly divided into 6 groups (n = 10 in each group): control group (corn oil), and rats gavaged with NP at the doses of 0.4 mg/kg/d (Low NP group), 4 mg/kg/d (Medium NP group), 40 mg/kg/d (High NP group), and 40 mg/kg NP combined with green tea group at the doses of 0.2 g/ml (NP + GT group) and 0.2 g/ml Zn-Se tea group (NP + ZST group). NP at 40 mg/kg/d was administered to the tea groups for 3 months, followed by NP + green tea and NP + Zn-Se tea for 4 months, and the rest of the groups were gavaged for 7 months. With the increase of NP concentration, NP accumulation in colon gradually increased (P < 0.05), colonic villi shortened, tight junctions between cells widened, intestinal integrity was impaired, and goblet cells, intraepithelial lymphocytes and mast cells were significantly lower in NP high-dose group than in control group (P < 0.05). Meanwhile, the protein expression of Caspase-1, IL-1β and Pro-IL-1β in NP high-dose group was significantly higher than that in control group (P < 0.05). Zn-Se tea increased the number of goblet cells in colon and decreased the accumulation of NP in colon (P < 0.05); Zn-Se tea and common green tea decreased the expression of Caspase-1 and Pro-IL-1β protein (P < 0.05). NP exposure can destroy intestinal morphology, reduce the number of intestinal immune cells, reduce intestinal immunity and increase the release of inflammatory factors; Guizhou Zn-Se tea has a certain protective effect on colon damage caused by NP.
Collapse
Affiliation(s)
| | | | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Jianling Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xu
- Correspondence address. School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China. Tel: +86851-28642732; Fax: 0851-28642444; E-mail: or . Correspondence may also be addressed to Tel: +86851-28642732; Fax: 0851-28642444; E-mail:
| | - Jie Yu
- Correspondence address. School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China. Tel: +86851-28642732; Fax: 0851-28642444; E-mail: or . Correspondence may also be addressed to Tel: +86851-28642732; Fax: 0851-28642444; E-mail:
| |
Collapse
|
13
|
Olafuyi O, Parekh N, Wright J, Koenig J. Inter-ethnic differences in pharmacokinetics-is there more that unites than divides? Pharmacol Res Perspect 2021; 9:e00890. [PMID: 34725944 PMCID: PMC8561230 DOI: 10.1002/prp2.890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Inter-ethnic variability in pharmacokinetics (PK) has been attributed to several factors ranging from genetic to environmental. It is not clear how current teaching in higher education (HE) reflects what published literature suggests on this subject. This study aims to gain insights into current knowledge about inter-ethnic differences in PK based on reports from published literature and current teaching practices in HE. A systematic literature search was conducted on PubMed and Scopus to identify suitable literature to be reviewed. Insights into inter-ethnic differences in PK teaching among educators in HE and industry were determined using a questionnaire. Thirty-one percent of the studies reviewed reported inter-ethnic differences in PK, of these, 37% of authors suggested genetic polymorphism as possible explanation for the inter-ethnic differences observed. Other factors authors proposed included diet and weight differences between ethnicities. Most respondents (80%) who taught inter-ethnic difference in PK attributed inter-ethnic differences to genetic polymorphism. While genetic polymorphism is one source of variability in PK, the teaching of genetic polymorphism is better associated with interindividual variabilities rather than inter-ethnic differences in PK as there are no genes with PK implications specific to any one ethnic group. Nongenetic factors such as diet, weight, and environmental factors, should be highlighted as potential sources of interindividual variation in the PK of drugs.
Collapse
Affiliation(s)
- Olusola Olafuyi
- Division of Physiology, Pharmacology and NeurosciencesSchool of Life SciencesUniversity of NottinghamNottinghamUK
| | - Nikita Parekh
- Department of Pharmacology and TherapeuticsKing’s College LondonLondonUK
| | - Jacob Wright
- Centre for Bioscience EducationKing’s College LondonLondonUK
| | - Jennifer Koenig
- Division of Medical Sciences & Graduate Entry MedicineSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
14
|
Truong VL, Jun M, Jeong WS. Phytochemical and Over-The-Counter Drug Interactions: Involvement of Phase I and II Drug-Metabolizing Enzymes and Phase III Transporters. J Med Food 2021; 24:786-805. [PMID: 34382862 DOI: 10.1089/jmf.2021.k.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Consumption of plant-derived natural products and over-the-counter (OTC) drugs is increasing on a global scale, and studies of phytochemical-OTC drug interactions are becoming more significant. The intake of dietary plants and herbs rich in phytochemicals may affect drug-metabolizing enzymes (DMEs) and transporters. These effects may lead to alterations in pharmacokinetics and pharmacodynamics of OTC drugs when concomitantly administered. Some phytochemical-drug interactions benefit patients through enhanced efficacy, but many interactions cause adverse effects. This review discusses possible mechanisms of phytochemical-OTC drug interactions mediated by phase I and II DMEs and phase III transporters. In addition, current information is summarized for interactions between phytochemicals derived from fruits, vegetables, and herbs and OTC drugs, and counseling is provided on appropriate and safe use of OTC drugs.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Mira Jun
- Brain Busan 21 Plus Program, Department of Food Science and Nutrition, Graduate School, Center for Silver-Targeted Biomaterials, Dong-A University, Busan, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
15
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114:11-24. [PMID: 34054222 PMCID: PMC8146271 DOI: 10.1016/j.tifs.2021.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Background The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of (−)-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19. Scope and approach Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated. Key findings and conclusions EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Keyi Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wangjun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
16
|
Modulatory influences of antiviral bioactive compounds on cell viability, mRNA and protein expression of cytochrome P450 3A4 and P-glycoprotein in HepG2 and HEK293 cells. Bioorg Chem 2020; 107:104573. [PMID: 33387731 DOI: 10.1016/j.bioorg.2020.104573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (ABCB1) influence drug plasma, and eventually decreases the drugs' therapeutic effects. The effects of Plant-derived compounds (PCs) on drug-metabolising proteins are largely unknown. This study investigated the cytotoxicity, cell viability profiles and regulatory influences of four PCs (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) on the mRNA and protein expressions of CYP3A4 and ABCB1 in HepG2 and HEK293 cells. After treatment with the PCs (0-400 µM) for 24 h, 80% (IC20) and 50% (IC50) cell viability were determined. The PCs were not toxic to HepG2 (ATP levels increased at IC20, insignificant change in LDH (lactate dehydrogenase) with the exception of LUT, and ABCB1 protein expressions decreased. The PCs decreased CYP3A4 at IC20 (except LUT), EGCG and K7G at IC20 decreased mRNA expression. For HEK293 cells, no significant change in ATP, except for EGCG IC20 and K7G IC50 which decreased and increased, respectively. LDH decreased at IC20, but LUT IC50 significant increase LDH. ABCB1 protein expression increased at both IC20 and IC50, but LUT and EGA at IC50 decreased mRNA expression. The PCs at IC20, and IC50 of LUT, K7G and of EGCG may enhance drug bioavailability.
Collapse
|
17
|
Fliszár-Nyúl E, Mohos V, Csepregi R, Mladěnka P, Poór M. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates. Biomed Pharmacother 2020; 131:110732. [PMID: 32942157 DOI: 10.1016/j.biopha.2020.110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polyphenolic compounds (including flavonoids, chalcones, phenolic acids, and furanocoumarins) represent a common part of our diet, but are also the active ingredients of several dietary supplements and/or medications. These compounds undergo extensive metabolism by human biotransformation enzymes and the microbial flora of the colon. CYP2D6 enzyme metabolizes approximately 25% of the drugs, some of which has narrow therapeutic window. Therefore, its inhibition can lead to the development of pharmacokinetic interactions and the disruption of drug therapy. In this study, the inhibitory effects of 17 plant-derived compounds and 19 colonic flavonoid metabolites on CYP2D6 were examined, employing two assays with different test substrates. The O-demethylation of dextromethorphan was tested employing CypExpress 2D6 kit coupled to HPLC analysis; while the O-demethylation of another CYP2D6 specific substrate (AMMC) was investigated in a plate reader assay with BioVision Fluorometric CYP2D6 kit. Interestingly, some compounds (e.g., bergamottin) inhibited both dextromethorphan and AMMC demethylation; however, certain substances proved to be inhibitors only in one of the assays applied. Our results demonstrate that some polyphenols and colonic metabolites are inhibitors of CYP2D6-catalyzed reactions. Nevertheless, the inhibitory effects showed strong substrate dependence.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
18
|
Beverage-Drug Interaction: Effects of Green Tea Beverage Consumption on Atorvastatin Metabolism and Membrane Transporters in the Small Intestine and Liver of Rats. MEMBRANES 2020; 10:membranes10090233. [PMID: 32937767 PMCID: PMC7559440 DOI: 10.3390/membranes10090233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Green tea (GT) beverages are popular worldwide and may prevent the development of many chronic diseases including cardiovascular disease and cancer. To investigate whether the consumption of a GT beverage causes drug interactions, the effects of GT beverage consumption on atorvastatin metabolism and membrane transporters were evaluated. Male rats were fed a chow diet with tap water or the GT beverage for 3 weeks. Then, the rats were given a single oral dose (10 mg/kg body weight (BW)) of atorvastatin (ATV), and blood was collected at various time points within 6 h. The results show that GT consumption increased the plasma concentrations (AUC0–6h) of ATV (+85%) and 2-OH ATV (+93.3%). GT also increased the 2-OH ATV (+40.9%) and 4-OH ATV (+131.6%) contents in the liver. Decreased cytochrome P450 (CYP) 3A enzyme activity, with no change in P-glycoprotein expression in the intestine, was observed in rats treated with GT. Additionally, GT increased hepatic CYP3A-mediated ATV metabolism and decreased organic anion transporting polypeptides (OATP) 2 membrane protein expression. There was no significant difference in the membrane protein expression of OATP2B1 and P-glycoprotein in the intestine and liver after the GT treatment. The results show that GT consumption may lower hepatic OATP2 and, thus, limit hepatic drug uptake and increase plasma exposure to ATV and 2-OH ATV.
Collapse
|
19
|
Sharma A, Vaghasiya K, Ray E, Gupta P, Gupta UD, Singh AK, Verma RK. Targeted Pulmonary Delivery of the Green Tea Polyphenol Epigallocatechin Gallate Controls the Growth of Mycobacterium tuberculosis by Enhancing the Autophagy and Suppressing Bacterial Burden. ACS Biomater Sci Eng 2020; 6:4126-4140. [PMID: 33463343 DOI: 10.1021/acsbiomaterials.0c00823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growing rates of tuberculosis (TB) superbugs are alarming, which has hampered the progress made to-date to control this infectious disease, and new drug candidates are few. Epigallocatechin gallate (EGCG), a major polyphenolic compound from green tea extract, shows powerful efficacy against TB bacteria in in vitro studies. However, the therapeutic efficacy of the molecule is limited due to poor pharmacokinetics and low bioavailability following oral administration. Aiming to improve the treatment outcomes of EGCG therapy, we investigated whether encapsulation and pulmonary delivery of the molecule would allow the direct targeting of the site of infection without compromising the activity. Microencapsulation of EGCG was realized by scalable spray-freeze-drying (SFD) technology, forming free-flowing micrometer-sized microspheres (epigallocatechin-3-gallate-loaded trehalose microspheres, EGCG-t-MS) of trehalose sugar. These porous microspheres exhibited appropriate aerodynamic parameters and high encapsulation efficiencies. In vitro studies demonstrated that EGCG-t-MS exhibited dose- and time-dependent killing of TB bacteria inside mouse macrophages by cellular mechanisms of lysosome acidification and autophagy induction. In a preclinical study on TB-infected Balb/c mice model (4 weeks of infection), we demonstrate that the microencapsulated EGCG, administered 5 days/week for 6 weeks by pulmonary delivery, showed exceptional efficacy compared to oral treatment of free drug. This treatment approach exhibited therapeutic outcomes by resolution of inflammation in the infected lungs and significant reduction (P < 0.05) in bacterial burden (up to ∼2.54 Log10 CFU) compared to untreated control and orally treated mice groups. No pathological granulomas, lesions, and inflammation were observed in the histopathological investigation, compared to untreated controls. The encouraging results of the study may pave the avenues for future use of EGCG in TB therapeutics by targeted pulmonary delivery and lead to its translational success.
Collapse
Affiliation(s)
- Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Umesh Datta Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Amit Kumar Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| |
Collapse
|
20
|
Yao HT, Li CC, Chang CH. Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats. Nutrients 2019; 11:nu11081862. [PMID: 31405142 PMCID: PMC6723635 DOI: 10.3390/nu11081862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/13/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. To investigate the effects of dietary EGCG on oxidative stress and the metabolism and toxicity of acetaminophen in the liver, rats were fed diets with (0.54%) or without EGCG supplementation for four weeks and were then injected intraperitoneally with acetaminophen (1 g/kg). The results showed that EGCG lowered hepatic oxidative stress and cytochrome P450 (CYP) 1A2, 2E1, and 3A, and UDP-glucurosyltransferase activities prior to acetaminophen injection. After acetaminophen challenge, the elevations in plasma alanine aminotransferase activity and histological changes in the liver were ameliorated by EGCG treatment. EGCG reduced acetaminophen-induced apoptosis by lowering the Bax/Bcl2 ratio in the liver. EGCG mildly increased autophagy by increasing the LC3B II/I ratio. Lower hepatic acetaminophen–glutathione and acetaminophen–protein adducts contents were observed after EGCG treatment. EGCG increased glutathione peroxidase and NAD(P)H quinone 1 oxidoreductase activities and reduced organic anion-transporting polypeptides 1a1 expression in the liver after acetaminophen treatment. Our results indicate that EGCG may reduce oxidative stress and lower the metabolism and toxicity of acetaminophen. The reductions in CYP-mediated acetaminophen bioactivation and uptake transporter, as well as enhanced antioxidant enzyme activity, may limit the accumulation of toxic products in the liver and thus lower hepatotoxicity.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan.
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, 110 Sec.1, Jianguo North Road, Taichung 40201, Taiwan
| | - Chen-Hui Chang
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan
| |
Collapse
|
21
|
The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins–In Silico Analysis. J Pharm Sci 2018; 107:2957-2964. [DOI: 10.1016/j.xphs.2018.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
|
22
|
Tian DD, Kellogg JJ, Okut N, Oberlies NH, Cech NB, Shen DD, McCune JS, Paine MF. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea ( Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation. Drug Metab Dispos 2018; 46:552-560. [PMID: 29467215 PMCID: PMC5890833 DOI: 10.1124/dmd.117.079491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 11/22/2022] Open
Abstract
Green tea (Camellia sinensis) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 μg/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC50 values (105 and 59 μM, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 μM, respectively). Using the clinical intestinal UGT substrate raloxifene, the Ki values were ∼1.0 and 2.0 μM, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Joshua J Kellogg
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Neşe Okut
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Danny D Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
23
|
Wan MLY, Ling KH, El-Nezami H, Wang MF. Influence of functional food components on gut health. Crit Rev Food Sci Nutr 2018; 59:1927-1936. [DOI: 10.1080/10408398.2018.1433629] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Murphy L. Y. Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - K. H. Ling
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - M. F. Wang
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
24
|
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Willatts P, Engel KH, Marchelli R, Pöting A, Poulsen M, Schlatter J, Gelbmann W, Van Loveren H. Safety of cranberry extract powder as a novel food ingredient pursuant to Regulation (EC) No 258/97. EFSA J 2017; 15:e04777. [PMID: 32625483 PMCID: PMC7010106 DOI: 10.2903/j.efsa.2017.4777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on 'cranberry extract powder' as a novel food (NF) submitted pursuant to Regulation (EC) No 258/97 of the European Parliament and of the Council. The NF contains about 55-60% proanthocyanidins (PACs). The Panel considers that the information provided on the composition, the specifications, batch-to-batch variability and stability of the NF is sufficient and does not raise safety concerns. Cranberry extract powder is produced from cranberry juice concentrate through an ethanolic extraction using an adsorptive resin column to retain the phenolic components. The Panel considers that the production process is sufficiently described and does not raise concerns about the safety of the novel food. The NF is intended to be added to beverages and yogurts to provide 80 mg PACs per serving. The target population is the adult general population. The mean and 95th percentile estimates for the all-user intakes from all proposed food-uses are 68 and 192 mg/day, respectively, for female adults, and 74 mg/day and 219 mg/day, respectively, for male adults. Taking into account the composition of the novel food and the intended use levels, the Panel considers that the consumption of the NF is not nutritionally disadvantageous. While no animal toxicological studies have been conducted on the NF, a number of human clinical studies have been conducted with cranberry products. Considering the composition, manufacturing process, intake, history of consumption of the source and human data, the Panel considers that the data provided do not give reasons for safety concerns. The Panel concludes that the cranberry extract powder is safe as a food ingredient at the proposed uses and use levels.
Collapse
|
25
|
Eleazu C, Eleazu K, Kalu W. Management of Benign Prostatic Hyperplasia: Could Dietary Polyphenols Be an Alternative to Existing Therapies? Front Pharmacol 2017; 8:234. [PMID: 28503148 PMCID: PMC5408066 DOI: 10.3389/fphar.2017.00234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023] Open
Abstract
The incidence of benign prostatic hyperplasia (BPH) is gradually on the increase. While conventional drugs such as the α1-adrenergic receptor antagonists and 5α-reductase inhibitors have been found to be useful in the treatment of BPH, the adverse side effects associated with their usage, have led to increased search for alternative means of managing this disease. Furthermore, although surgery has also been suggested to be a sure method, the cost and risks associated with it excludes it as a routine treatment. Dietary polyphenols have gained public interest in recent times due to their roles in the prevention of various diseases that implicate free radicals/reactive oxygen species. However, their roles in the management of BPH have not been explored. Hence, this review on their prospects in the management of BPH and their mechanisms of action. Literature search was carried out in several electronic data bases such as PubMed, Google Scholar, Medline, Agora, and Hinari from1970 to 2017 to identify the current status of knowledge on this concept. The findings from these data bases suggest that while dietary polyphenols may not replace the need for the existing therapies in the management of BPH, they hold promise in BPH management which could be explored by researchers working in this field.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Chemistry/Biochemistry, Federal University Ndufu-Alike, IkwoAbakaliki, Nigeria
| | - Kate Eleazu
- Department of Biochemistry, Ebonyi State UniversityAbakaliki, Nigeria
| | - Winner Kalu
- Department of Biochemistry, Michael Okpara University of AgricultureUmudike, Nigeria
| |
Collapse
|
26
|
Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats. J Food Drug Anal 2017; 26:432-438. [PMID: 29389585 PMCID: PMC9332636 DOI: 10.1016/j.jfda.2017.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO)] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg) and 400 LO (400 mg/kg) and its major component, citral (240 mg/kg), on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(P)H:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5′-diphospho (UDP) glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen.
Collapse
|
27
|
Shatnawi A, Shafer A, Ahmed H, Elbarbry F. Complementary and Alternative Medicine Use in Hypertension. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2017:255-287. [DOI: 10.4018/978-1-5225-2092-4.ch015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Thirty six percent of people in USA and Canada regularly use complementary and alternative medicine (CAM) for the prevention and treatment of different diseases, including hypertension. Generally, majority of the hypertensive patients do not disclose the use of such remedies, and also health care providers do not usually ask their hypertensive patients if they use CAM. The widespread consumption of CAM in hypertension requires clear understanding of their underlying mechanism of action, efficacy and safety. This chapter will provide a comprehensive list of CAM commonly used by Americans for the prevention and treatment of hypertension as well as their postulated mechanism of action. Modulation of drug metabolizing enzymes and their safety will also be covered along with the clinical consequences, i.e. drug-herb or herb-disease interactions. patients and healthcare providers should also be careful with using CAM therapies, because not only is there minimal evidence that several CAM products work to treat hypertension, but their safety hasn't been well-established.
Collapse
|
28
|
Li W, Lu Y, Huang D, Han X, Yang X. Effects of stachyose on absorption and transportation of tea catechins in mice: possible role of Phase II metabolic enzymes and efflux transporters inhibition by stachyose. Food Nutr Res 2016; 60:32783. [PMID: 27782875 PMCID: PMC5081032 DOI: 10.3402/fnr.v60.32783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Background Nutritional and absorption-promoting properties of stachyose combined with tea catechins (TC) have been revealed. However, the mechanism involved in non-digestible oligosaccharides-mediated enhancement of flavonoid absorption has largely remained elusive. Methods This study was designed to investigate the molecular mechanism of stachyose in enhancing absorption and transportation of TC in mice. Mice were orally pre-treated with stachyose (50, 250, and 500 mg/kg·bw) for 0–8 weeks, and 1 h before sacrifice, mice were treated with TC (250 mg/kg·bw). Results Gas chromatography-mass spectrometry analysis showed that serum concentrations of epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate were dose- and time-dependently elevated with stachyose pre-treatment in mice. Furthermore, pre-treatment with stachyose in mice reduced intestinal sulfotransferase and uridine diphosphate-glucuronosyltransferase levels by 3.3–43.2% and 23.9–30.4%, relative to control mice, respectively. Moreover, intestinal P-glycoprotein and multidrug resistance-associated protein-1 contents were decreased in mice by pre-administration of stachyose in dose- and time-dependent manner. Conclusions This is the first time to demonstrate that suppression of Phase II metabolic enzymes and efflux transporters of TC in the intestine can play a major role in increasing absorption of TC by stachyose feeding.
Collapse
Affiliation(s)
- Wenfeng Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Di Huang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiao Han
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China;
| |
Collapse
|
29
|
Lněničková K, Procházková E, Skálová L, Matoušková P, Bártíková H, Souček P, Szotáková B. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells. Molecules 2016; 21:molecules21091186. [PMID: 27617982 PMCID: PMC6272958 DOI: 10.3390/molecules21091186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 01/14/2023] Open
Abstract
The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes’ activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well.
Collapse
Affiliation(s)
- Kateřina Lněničková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové CZ-50005, Czech Republic.
| | - Eliška Procházková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové CZ-50005, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové CZ-50005, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové CZ-50005, Czech Republic.
| | - Hana Bártíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové CZ-50005, Czech Republic.
| | - Pavel Souček
- Toxicogenomics Unit, Centre of Toxicology and Health Safety, National Institute of Public Health, Prague CZ-10042, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové CZ-50005, Czech Republic.
| |
Collapse
|
30
|
Yang W, Zhang Q, Yang Y, Xu J, Fan A, Yang CS, Li N, Lu Y, Chen J, Zhao D, Aa J, Chen X. Epigallocatechin-3-gallate decreases the transport and metabolism of simvastatin in rats. Xenobiotica 2016; 47:86-92. [DOI: 10.3109/00498254.2016.1159747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Lopez TE, Pham HM, Barbour J, Tran P, Van Nguyen B, Hogan SP, Homo RL, Coskun V, Schriner SE, Jafari M. The impact of green tea polyphenols on development and reproduction in Drosophila melanogaster. J Funct Foods 2016; 20:556-566. [PMID: 26693252 DOI: 10.1016/j.jff.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although, green tea has numerous health benefits, adverse effects with excessive consumption have been reported. Using Drosophila melanogaster, a decrease in male fertility with green tea was evidenced. Here, the extent of green tea toxicity on development and reproduction was investigated. Drosophila melanogaster embryos and larvae were exposed to various doses of green tea polyphenols (GTP). Larvae exposed to 10 mg/mL GTP were slower to develop, emerged smaller, and exhibited a dramatic decline in the number of emerged offspring. GTP protected flies against desiccation but sensitized them to starvation and heat stress. Female offspring exhibited a decline in reproductive output and decreased survival while males were unaffected. GTP had a negative impact on reproductive organs in both males and females (e.g., atrophic testes in males, absence of mature eggs in females). Collectively, the data show that high doses of GTP adversely affect development and reproduction of Drosophila melanogaster.
Collapse
Affiliation(s)
- Terry E Lopez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Hoang M Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Julia Barbour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Phillip Tran
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Benjamin Van Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Sean P Hogan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Richelle L Homo
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Volkan Coskun
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Samuel E Schriner
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
32
|
Effects of supplementation with green tea catechins on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2015; 31:1061-71. [DOI: 10.1016/j.nut.2015.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/29/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023]
|
33
|
Interactions between CYP3A4 and Dietary Polyphenols. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:854015. [PMID: 26180597 PMCID: PMC4477257 DOI: 10.1155/2015/854015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
The human cytochrome P450 enzymes (P450s) catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols.
Collapse
|
34
|
Boušová I, Matoušková P, Bártíková H, Szotáková B, Hanušová V, Tománková V, Anzenbacherová E, Lišková B, Anzenbacher P, Skálová L. Influence of diet supplementation with green tea extract on drug-metabolizing enzymes in a mouse model of monosodium glutamate-induced obesity. Eur J Nutr 2015; 55:361-71. [PMID: 25663641 DOI: 10.1007/s00394-015-0856-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/31/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Consumption of dietary supplements with green tea extract (GTE) is popular for weight management, but it may be accompanied by various side effects, including interactions with drugs. The aim of the present in vivo study was to evaluate the effect of defined GTE (Polyphenon 60) in three dosage schemes on insulin, leptin and drug-metabolizing enzymes in obese mice. METHODS Experimental obesity was induced by repeated s.c. application of monosodium glutamate to newborn mice. Green tea extract was administered in three dosage schemes in chow diet. The plasmatic levels of insulin and leptin were assayed using enzyme-linked immunosorbent assay. Enzyme activities and mRNA expressions of drug-metabolizing enzymes (totally 13) were analyzed in liver and small intestine using spectrophotometric and HPLC assays and RT-PCR, respectively. RESULTS GTE-treatment decreased insulin and leptin levels. Eleven enzymes were significantly affected by GTE-treatment. Long-term administration of 0.01% GTE caused increase in the activity and mRNA level of cytochrome P450 3A4 (CYP3A4) ortholog in the liver as well as in the small intestine. Interestingly, short-term overdose by GTE (0.1%) had more pronounced effects on enzyme activities and mRNA expressions than long-term overdose. CONCLUSIONS GTE-mediated induction of CYP3A4 ortholog, the main drug-metabolizing enzyme, could result in decreased efficacy of simultaneously or subsequently administered drug in obese individuals.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Hana Bártíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 38, Hradec Králové, Czech Republic
| | - Veronika Tománková
- Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Barbora Lišková
- Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
35
|
Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Zalikowski J, Chen Y, Kim K, Ambrose HJ. Rosuvastatin pharmacokinetics and pharmacogenetics in Caucasian and Asian subjects residing in the United States. Eur J Clin Pharmacol 2015; 71:329-40. [PMID: 25630984 DOI: 10.1007/s00228-014-1800-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Systemic exposure to rosuvastatin in Asian subjects living in Japan or Singapore is approximately twice that observed in Caucasian subjects in Western countries or in Singapore. This study was conducted to determine whether pharmacokinetic differences exist among the most populous Asian subgroups and Caucasian subjects in the USA. METHOD Rosuvastatin pharmacokinetics was studied in Chinese, Filipino, Asian-Indian, Korean, Vietnamese, Japanese and Caucasian subjects residing in California. Plasma concentrations of rosuvastatin and metabolites after a single 20-mg dose were determined by mass spectrometric detection. The influence of polymorphisms in SLCO1B1 (T521>C [Val174Ala] and A388>G [Asn130Asp]) and in ABCG2 (C421>A [Gln141Lys]) on exposure to rosuvastatin was also assessed. RESULTS The average rosuvastatin area under the curve from time zero to time of last quantifiable concentration was between 64 and 84 % higher, and maximum drug concentration was between 70 and 98 % higher in East Asian subgroups compared with Caucasians. Data for Asian-Indians was intermediate to these two ethnic groups at 26 and 29 %, respectively. Similar increases in exposure to N-desmethyl rosuvastatin and rosuvastatin lactone were observed. Rosuvastatin exposure was higher in subjects carrying the SLCO1B1 521C allele compared with that in non-carriers of this allele. Similarly, exposure was higher in subjects carrying the ABCG2 421A allele compared with that in non-carriers. CONCLUSION Plasma exposure to rosuvastatin and its metabolites was significantly higher in Asian populations residing in the USA compared with Caucasian subjects living in the same environment. This study suggests that polymorphisms in the SLCO1B1 and ABCG2 genes contribute to the variability in rosuvastatin exposure.
Collapse
|
36
|
Zhang L, Han Y, Xu L, Liang Y, Chen X, Li J, Wan X. The effects of co-administration of butter on the absorption, metabolism and excretion of catechins in rats after oral administration of tea polyphenols. Food Funct 2015; 6:2249-56. [DOI: 10.1039/c5fo00114e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A rapid UHPLC-MS/MS method was used to quantitatively determine the catechins in the plasma, feces and bile of rats after the oral administration of tea polyphenol or its combination with butter.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- China
| | - Yuhui Han
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- China
| | - Liwei Xu
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- China
| | - Yuhong Liang
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- China
| | - Xin Chen
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- China
| | - Junsong Li
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
- Nanjing 210023
- China
- College of Pharmacy
- Nanjing University of Chinese Medicine
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- China
| |
Collapse
|
37
|
Matoušková P, Bártíková H, Boušová I, Szotáková B, Martin J, Skorkovská J, Hanušová V, Tománková V, Anzenbacherová E, Lišková B, Anzenbacher P, Skálová L. Effect of defined green tea extract in various dosage schemes on drug-metabolizing enzymes in mice in vivo. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
38
|
Effect of commercially available green and black tea beverages on drug-metabolizing enzymes and oxidative stress in Wistar rats. Food Chem Toxicol 2014; 70:120-7. [DOI: 10.1016/j.fct.2014.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/26/2014] [Accepted: 04/30/2014] [Indexed: 01/25/2023]
|
39
|
Xue J, Tan C, Zhang X, Feng B, Xia S. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4677-4684. [PMID: 24670204 DOI: 10.1021/jf405157x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenols normally have strong binding affinity with proteins, which may lead to protein precipitation. Glycosylation of protein via Maillard reaction in mild condition may inhibit the precipitation. This study prepared nanocomplexes of epigallocatechin-3-gallate (EGCG) and protein, and their stability against environmental stress was investigated. Subsequently, these findings were correlated with the interactions between EGCG and casein. Results showed that glycosylated casein displayed strong encapsulating and retaining capacity to EGCG, and no obvious aggregation or fusion appeared in the concentration range of 0.25-5.00 mg/mL during storage. The in vitro release demonstrated that casein, especially glycosylated casein, could effectively protect EGCG from degradation in alkaline pH and displayed a slow and sustained release in intestinal fluid, which may be attributed to the inhibiting effects of casein binding on the motion freedom of EGCG. Fluorescence quenching spectra demonstrated that the steric hindrance induced by dextran could inhibit the interaction between casein and EGCG. These findings demonstrated that glycosylated casein could be used as a promising and effective nanocarrier for EGCG.
Collapse
Affiliation(s)
- Jin Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | | | | | | | | |
Collapse
|
40
|
Diao Y, Zhao W, Li Y, Liao L, Wang O, Liu J, Zhao X, Yu C, Cui Z. Radiolabeling of EGCG with 125I and its biodistribution in mice. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3124-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Haratifar S, Meckling KA, Corredig M. Bioefficacy of tea catechins encapsulated in casein micelles tested on a normal mouse cell line (4D/WT) and its cancerous counterpart (D/v-src) before and after in vitro digestion. Food Funct 2014; 5:1160-6. [PMID: 24686838 DOI: 10.1039/c3fo60343a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous studies have demonstrated that tea catechins form complexes with milk proteins, especially caseins. Much less work has been conducted to understand the metabolic conversions of tea-milk complexes during gastro-duodenal digestion. The objective of this study was to determine the significance of this association on the digestibility of the milk proteins and on the bioaccessibility of the tea polyphenol epigallocatechin gallate (EGCG). An in vitro digestion model mimicking the gastric and duodenal phases of the human gastrointestinal tract was employed to follow the fate of the milk proteins during digestion and determine the bioefficacy of EGCG isolated or encapsulated with the caseins. The samples, before and after digestion, were tested using two parallel colonic epithelial cell lines, a normal line (4D/WT) and its cancerous transformed counterpart (D/v-src). EGCG caused a decrease in proliferation of cancer cells, while in normal cells, neither isolated nor encapsulated EGCG affected cell proliferation, at concentrations <0.15 mg ml(-1). At higher concentrations, both isolated and encapsulated produced similar decreases in proliferation. On the other hand, the bioefficacy on the cancer cell line showed some differences at lower concentrations. The results demonstrated that regardless of the extent of digestion of the nanoencapsulated EGCG, the bioefficacy of EGCG was not diminished, confirming that casein micelles are an appropriate delivery system for polyphenols.
Collapse
Affiliation(s)
- Sanaz Haratifar
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
42
|
Matoušková P, Bártíková H, Boušová I, Hanušová V, Szotáková B, Skálová L. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS One 2014; 9:e86033. [PMID: 24465854 PMCID: PMC3895018 DOI: 10.1371/journal.pone.0086033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of NAD(P)H:quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These reference genes will be used for mRNA and miRNA normalization in further study of green tea catechins action in obese mice.
Collapse
Affiliation(s)
- Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- * E-mail:
| | - Hana Bártíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| |
Collapse
|
43
|
Saleh IG, Ali Z, Abe N, Wilson FD, Hamada FM, Abd-Ellah MF, Walker LA, Khan IA, Ashfaq MK. Effect of green tea and its polyphenols on mouse liver. Fitoterapia 2013; 90:151-9. [DOI: 10.1016/j.fitote.2013.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
|
44
|
Tea and human health: The dark shadows. Toxicol Lett 2013; 220:82-7. [DOI: 10.1016/j.toxlet.2013.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
|
45
|
Mechanisms for epigallocatechin gallate induced inhibition of drug metabolizing enzymes in rat liver microsomes. Toxicol Lett 2012; 214:328-38. [DOI: 10.1016/j.toxlet.2012.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 01/17/2023]
|
46
|
Detampel P, Beck M, Krähenbühl S, Huwyler J. Drug interaction potential of resveratrol. Drug Metab Rev 2012; 44:253-65. [DOI: 10.3109/03602532.2012.700715] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|