1
|
Cacoub E, Lefebvre NB, Milunov D, Sarkar M, Saha S. Quantifying hope: an EU perspective of rare disease therapeutic space and market dynamics. Front Public Health 2025; 13:1520467. [PMID: 39963479 PMCID: PMC11830808 DOI: 10.3389/fpubh.2025.1520467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Rare diseases, affecting millions globally, pose a significant healthcare burden despite impacting a small population. While approximately 70% of all rare diseases are genetic and often begin in childhood, diagnosis remains slow and only 5% have approved treatments. The UN emphasizes improved access to primary care (diagnostic and potentially therapeutic) for these patients and their families. Next-generation sequencing (NGS) offers hope for earlier and more accurate diagnoses, potentially leading to preventative measures and targeted therapies. In here, we explore the therapeutic landscape for rare diseases, analyzing drugs in development and those already approved by the European Medicines Agency (EMA). We differentiate between orphan drugs with market exclusivity and repurposed existing drugs, both crucial for patients. By analyzing market size, segmentation, and publicly available data, this comprehensive study aims to pave the way for improved understanding of the treatment landscape and a wider knowledge accessibility for rare disease patients.
Collapse
|
2
|
Torella L, Santana-Gonzalez N, Zabaleta N, Gonzalez Aseguinolaza G. Gene editing in liver diseases. FEBS Lett 2024; 598:2348-2371. [PMID: 39079936 DOI: 10.1002/1873-3468.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 10/16/2024]
Abstract
The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Santana-Gonzalez
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Gloria Gonzalez Aseguinolaza
- DNA & RNA Medicine Division, Gene Therapy for Rare Diseases Department, Center for Applied Medical Research (CIMA), University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
| |
Collapse
|
3
|
Riaz S, Sethna S, Duncan T, Naeem MA, Redmond TM, Riazuddin S, Riazuddin S, Carvalho LS, Ahmed ZM. Dual AAV-based PCDH15 gene therapy achieves sustained rescue of visual function in a mouse model of Usher syndrome 1F. Mol Ther 2023; 31:3490-3501. [PMID: 37864333 PMCID: PMC10727994 DOI: 10.1016/j.ymthe.2023.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.
Collapse
Affiliation(s)
- Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad A Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical Research, University of Health Sciences, Lahore 54500, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia; Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, Nedlands, WA 6009, Australia
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Zin EA, Ozturk BE, Dalkara D, Byrne LC. Developing New Vectors for Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041291. [PMID: 36987583 PMCID: PMC10691475 DOI: 10.1101/cshperspect.a041291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.
Collapse
Affiliation(s)
- Emilia A Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Bilge E Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
5
|
Pagovich OE, Stiles KM, Camilleri AE, Russo AR, Nag S, Crystal RG. Gene therapy in a murine model of chronic eosinophilic leukemia-not otherwise specified (CEL-NOS). Leukemia 2022; 36:525-531. [PMID: 34545183 DOI: 10.1038/s41375-021-01400-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Chronic eosinophilic leukemia-not otherwise specified (CEL-NOS) is a rare, aggressive, fatal disease characterized by blood eosinophilia and dysfunction of organs infiltrated with eosinophils. Clinically, the disease manifests with weight loss, cough, weakness, diarrhea, and multi-organ dysfunction that is unresponsive to therapy. We developed a one-time gene therapy for CEL-NOS using an adeno-associated virus (AAV) expressing an anti-eosinophil monoclonal antibody (AAVrh.10mAnti-Eos) to provide sustained suppression of eosinophil numbers in blood, thus reducing eosinophil tissue invasion and organ dysfunction. A novel CEL-NOS model was developed in NOD-scid IL2rγnull (NSG) mice by administration of AAV expressing the cytokine IL5 (AAVrh.10mIL5), resulting in marked peripheral and tissue eosinophilia of the heart, lung, liver, and spleen, and eventually death. Mice were administered AAVrh.10mAnti-Eos (1011 genome copies) 4 wk after administration of AAVrh.10mIL5 and evaluated for anti-eosinophil antibody expression, blood eosinophil counts, organ eosinophil invasion, and survival. AAVrh.10mAnti-Eos expressed persistent levels of the anti-eosinophil antibody for >24 wk. Strikingly, CEL-NOS treated mice had markedly lower blood eosinophil levels and reduced mortality when compared with control treated mice. These results suggest that a single treatment with AAVrh.10mAnti-Eos has the potential to provide substantial therapeutic benefit to patients with CEL-NOS, a fatal malignant disorder.
Collapse
Affiliation(s)
- Odelya E Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anna E Camilleri
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anthony R Russo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Saparja Nag
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Camilleri AE, Nag S, Russo AR, Stiles KM, Crystal RG, Pagovich OE. Gene therapy for a murine model of eosinophilic esophagitis. Allergy 2021; 76:2740-2752. [PMID: 33748982 DOI: 10.1111/all.14822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Eosinophils are specialized granulocytic effector cells that store and release highly active mediators used in immune defense. Eosinophils are also implicated in the pathogenesis of allergic disorders, including eosinophilic esophagitis (EoE), a chronic disorder characterized by infiltration of eosinophils into the esophagus and release of mediators that damage tissue, resulting in gastrointestinal morbidity, food impaction, and dysphagia. Treatment with elimination diets and/or topical corticosteroid therapy slow disease progression, but are complicated by adverse effects, limited compliance, and loss of response to therapy. We hypothesized that a single administration of an adeno-associated virus (AAV) coding for an anti-eosinophil monoclonal antibody that induces eosinophil clearance (anti-Siglec-F) would treat on a persistent basis a murine model of EoE. METHODS A mouse model of peanut-induced EoE that mimics the human disease was established by sensitization and challenge with peanut extract. After challenge, these mice exhibited an EoE phenotype demonstrated by elevated levels of blood eosinophils, infiltration of eosinophils in the esophagus with associated esophageal remodeling and food impaction. RESULTS The mice were treated with a single intravenous administration (1011 genome copies) of AAVrh.10mAnti-Eos, a serotype rh.10 AAV vector coding for an anti-Siglec-F monoclonal antibody. Vector administration resulted in persistent, high levels of anti-Siglec-F antibody expression. Administration of AAVrh.10mAnti-Eos to the mouse model of EoE reduced blood (P < 0.02) and esophageal eosinophil numbers (P < 0.002) protected from esophageal tissue remodeling and minimized food impaction. CONCLUSION These results suggest that a single treatment with AAVrh.10mAnti-Eos has the potential to provide persistent therapeutic benefit to patients with EoE.
Collapse
Affiliation(s)
- Anna E. Camilleri
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Saparja Nag
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Anthony R. Russo
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Katie M. Stiles
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Ronald G. Crystal
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| | - Odelya E. Pagovich
- Department of Genetic Medicine Weill Cornell Medical College New York NY USA
| |
Collapse
|
7
|
Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep 2021; 3:100300. [PMID: 34159305 PMCID: PMC8203845 DOI: 10.1016/j.jhepr.2021.100300] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.
Collapse
Key Words
- AAT, α1-antitrypsin
- AAV, adeno-associated virus
- AHP, acute hepatic porphyrias
- AIP, acute intermittent porphyria
- ALAS1, aminolevulic synthase 1
- APCs, antigen-presenting cells
- ASGCT, American Society of Gene and Cell Therapy
- ASGPR, asialoglycoprotein receptor
- ASOs, antisense oligonucleotides
- Ad, adenovirus
- CBS, cystathionine β-synthase
- CN, Crigel-Najjar
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9, CRISPR associated protein 9
- DSBs, double-strand breaks
- ERT, enzyme replacement therapy
- FH, familial hypercholesterolemia
- FSP27, fat-specific protein 27
- GO, glycolate oxidase
- GSD1a, glycogen storage disorder 1a
- GT, gene therapy
- GUSB, β-glucuronidase
- GalNAc, N-acetyl-D-galactosamine
- HDAd, helper-dependent adenovirus
- HDR, homology-directed repair
- HT, hereditary tyrosinemia
- HemA/B, haemophilia A/B
- IDS, iduronate 2-sulfatase
- IDUA, α-L-iduronidase
- IMLD, inherited metabolic liver diseases
- ITR, inverted terminal repetition
- LDH, lactate dehydrogenase
- LDLR, low-density lipoprotein receptor
- LNP, Lipid nanoparticles
- LTR, long terminal repeat
- LV, lentivirus
- MMA, methylmalonic acidemia
- MPR, metabolic pathway reprograming
- MPS type I, MPSI
- MPS type VII, MPSVII
- MPS, mucopolysaccharidosis
- NASH, non-alcoholic steatohepatitis
- NHEJ, non-homologous end joining
- NHPs, non-human primates
- Non-viral vectors
- OLT, orthotopic liver transplantation
- OTC, ornithine transcarbamylase
- PA, propionic acidemia
- PB, piggyBac
- PCSK9, proprotein convertase subtilisin/kexin type 9
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PFIC3, progressive familial cholestasis type 3
- PH1, Primary hyperoxaluria type 1
- PKU, phenylketonuria
- RV, retrovirus
- S/MAR, scaffold matrix attachment regions
- SB, Sleeping Beauty
- SRT, substrate reduction therapy
- STK25, serine/threonine protein kinase 25
- TALEN, transcription activator-like effector nucleases
- TTR, transthyretin
- UCD, urea cycle disorders
- VLDLR, very-low-density lipoprotein receptor
- WD, Wilson’s disease
- ZFN, zinc finger nucleases
- apoB/E, apolipoprotein B/E
- dCas9, dead Cas9
- efficacy
- gene addition
- gene editing
- gene silencing
- hepatocytes
- immune response
- lncRNA, long non-coding RNA
- miRNAs, microRNAs
- siRNA, small-interfering RNA
- toxicity
- viral vectors
Collapse
Affiliation(s)
- Sheila Maestro
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | | | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Rafael Aldabe
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| |
Collapse
|
8
|
Wei Z, Liu X, Li T, Li X, Zhou Q, Wu J, Zhang C. Transduction of mouse retina by insect cell packaged recombinant adeno-associated viruses and their mutants via intravitreal injection. Future Virol 2021. [DOI: 10.2217/fvl-2020-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Adeno-associated virus (AAV) is the most preferred gene therapy vector. The purpose of our research is to compare the infection tropism and gene expression efficiency of vitreous injection of recombinant AAVs (rAAVs) and their capsid mutants in mouse retina. Materials & methods: We packaged wild-type rAAV2/2,6,8,9 and their capsid mutants carrying EGFP expression cassette using insect cells. The gene expression profiles of rAAVs and their mutants in mouse retina were evaluated by optical imaging of retinal tissue flat mount and cryosections. Results & conclusion: The results showed that rAAV2 and rAAV2-Y444F mainly targeted retinal ganglion cell; rAAV8, rAAV8-Y733F, rAAV9 and mutants had obvious EGFP expression in retinal pigment epithelium cells. Compared with the wild-type rAAVs, capsid mutants have an improved transduction efficiency in mouse retina cells.
Collapse
Affiliation(s)
- Zheng Wei
- Suzhou Institute of Biomedical Engineering & Technology, Chinese Academy of Sciences, Suzhou, China
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaomei Liu
- Suzhou Institute of Biomedical Engineering & Technology, Chinese Academy of Sciences, Suzhou, China
| | - Taiming Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaofang Li
- Suzhou Institute of Biomedical Engineering & Technology, Chinese Academy of Sciences, Suzhou, China
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qungang Zhou
- Department of Blood Collection, Suzhou Red Cross Blood Center, Suzhou, China
| | - Jianxiang Wu
- Department of Blood Collection, Suzhou Red Cross Blood Center, Suzhou, China
| | - Chun Zhang
- Suzhou Institute of Biomedical Engineering & Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
9
|
Rodríguez-Márquez E, Meumann N, Büning H. Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opin Biol Ther 2020; 21:749-766. [PMID: 33331201 DOI: 10.1080/14712598.2021.1865303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Gene therapy clinical trials with adeno-associated virus (AAV) vectors report impressive clinical efficacy data. Nevertheless, challenges have become apparent, such as the need for high vector doses and the induction of anti-AAV immune responses that cause the loss of vector-transduced hepatocytes. This fostered research focusing on development of next-generation AAV vectors capable of dealing with these hurdles.Areas Covered: While both the viral vector genome and the capsid are subjects to engineering, this review focuses on the latter. Specifically, we summarize the principles of capsid engineering strategies, and describe developments and applications of engineered capsid variants for liver-directed gene therapy.Expert Opinion: Capsid engineering is a promising strategy to significantly improve efficacy of the AAV vector system in clinical application. Reduction in vector dose will further improve vector safety, lower the risk of host immune responses and the cost of manufacturing. Capsid engineering is also expected to result in AAV vectors applicable to patients with preexisting immunity toward natural AAV serotypes.
Collapse
Affiliation(s)
- Esther Rodríguez-Márquez
- Universidad Autónoma De Madrid, Madrid, Spain.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF, Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
10
|
A comparison of AAV-vector production methods for gene therapy and preclinical assessment. Sci Rep 2020; 10:21532. [PMID: 33299011 PMCID: PMC7726153 DOI: 10.1038/s41598-020-78521-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Adeno Associated Virus (AAV)-mediated gene expression in the brain is widely applied in the preclinical setting to investigate the therapeutic potential of specific molecular targets, characterize various cellular functions, and model central nervous system (CNS) diseases. In therapeutic applications in the clinical setting, gene therapy offers several advantages over traditional pharmacological based therapies, including the ability to directly manipulate disease mechanisms, selectively target disease-afflicted regions, and achieve long-term therapeutic protein expression in the absence of repeated administration of pharmacological agents. Next to the gold-standard iodixanol-based AAV vector production, we recently published a protocol for AAV production based on chloroform-precipitation, which allows for fast in-house production of small quantities of AAV vector without the need for specialized equipment. To validate our recent protocol, we present here a direct side-by-side comparison between vectors produced with either method in a series of in vitro and in vivo assays with a focus on transgene expression, cell loss, and neuroinflammatory responses in the brain. We do not find differences in transduction efficiency nor in any other parameter in our in vivo and in vitro panel of assessment. These results suggest that our novel protocol enables most standardly equipped laboratories to produce small batches of high quality and high titer AAV vectors for their experimental needs.
Collapse
|
11
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Zhang B, Zhang Y, Li R, Li J, Lu X, Zhang Y. Oncolytic adenovirus Ad11 enhances the chemotherapy effect of cisplatin on osteosarcoma cells by inhibiting autophagy. Am J Transl Res 2020; 12:105-117. [PMID: 32051740 PMCID: PMC7013210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Targeted oncolytic adenoviruses can selectively replicate in cancer cells; combined with traditional chemotherapy drugs, this approach is expected to become an important treatment method for overcoming the current bottleneck of osteosarcoma treatment. Here, we investigate the effect of oncolytic adenovirus Ad11 combined with cisplatin on autophagy in osteosarcoma cells. Immunohistochemistry was used to detect CD46 expression in patients with osteosarcoma. A cytotoxicity assay was employed to detect the killing effect of Ad11, cisplatin and their combination on osteosarcoma cells under different time scenarios. Expression of autophagy proteins Beclin1, ATG3, and LC3A/B under treatment of osteosarcoma cells with Ad11, cisplatin and their combination under different time scenarios was detected by immunofluorescence and western blotting. We found that the oncolytic adenovirus Ad11 synergizes with cisplatin to kill osteosarcoma cells and that the synergistic effect was greatest when cells were first treated with Ad11. This synergy is due to oncolytic adenovirus Ad11-mediated inhibition of autophagy, which enhanced the sensitivity of cells to chemotherapy. In conclusion, this study provides evidence that the oncolytic adenovirus Ad11 can enhance the effect of chemotherapy by inhibiting autophagy. The findings provide a cytological basis for the treatment of osteosarcoma with oncolytic adenovirus combined with cisplatin.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Yan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Rongzhen Li
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, The People’s Republic of China
| | - Jiazhen Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Xinchang Lu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, The People’s Republic of China
| |
Collapse
|
13
|
Chen VP, Gao Y, Geng L, Steele M, Jenks N, Peng KW, Brimijoin S. Systemic Safety of a Recombinant AAV8 Vector for Human Cocaine Hydrolase Gene Therapy: A Good Laboratory Practice Preclinical Study in Mice. Hum Gene Ther 2020; 31:70-79. [PMID: 31650869 PMCID: PMC6985763 DOI: 10.1089/hum.2019.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cocaine addiction continues to impose major burdens on affected individuals and broader society but is highly resistant to medical treatment or psychotherapy. This study was undertaken with the goal of Food and Drug Administration (FDA) permission for a first-in-human clinical trial of a gene therapy for treatment-seeking cocaine users to become and remain abstinent. The approach was based on intravenous administration of AAV8-hCocH, an adeno-associated viral vector encoding a modified plasma enzyme that metabolizes cocaine into harmless by-products. To assess systemic safety, we conducted "Good Laboratory Practice" (GLP) studies in cocaine-experienced and cocaine-naive mice at doses of 5E12 and 5E13 vector genomes/kg. Results showed total lack of viral vector-related adverse effects in all tests performed. Instead, mice given one injection of AAV8-hCocH and regular daily injections of cocaine had far less tissue pathology than cocaine-injected mice with no vector treatment. Biodistribution analysis showed the vector located almost exclusively in the liver. These results indicate that a liver-directed AAV8-hCocH gene transfer at reasonable dosage is safe, well tolerated, and effective. Thus, gene transfer therapy emerges as a radically new approach to treat compulsive cocaine abuse. In fact, based on these positive findings, the FDA recently accepted our latest request for investigational new drug application (IND 18579).
Collapse
Affiliation(s)
- Vicky Ping Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mike Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nathan Jenks
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Khoja S, Nitzahn M, Truong B, Lambert J, Willis B, Allegri G, Rüfenacht V, Häberle J, Lipshutz GS. A constitutive knockout of murine carbamoyl phosphate synthetase 1 results in death with marked hyperglutaminemia and hyperammonemia. J Inherit Metab Dis 2019; 42:1044-1053. [PMID: 30835861 PMCID: PMC6728231 DOI: 10.1002/jimd.12048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022]
Abstract
The enzyme carbamoyl phosphate synthetase 1 (CPS1; EC 6.3.4.16) forms carbamoyl phosphate from bicarbonate, ammonia, and adenosine triphosphate (ATP) and is activated allosterically by N-acetylglutamate. The neonatal presentation of bi-allelic mutations of CPS1 results in hyperammonemia with reduced citrulline and is reported as the most challenging nitrogen metabolism disorder to treat. As therapeutic interventions are limited, patients often develop neurological injury or die from hyperammonemia. Survivors remain vulnerable to nitrogen overload, being at risk for repetitive neurological injury. With transgenic technology, our lab developed a constitutive Cps1 mutant mouse and reports its characterization herein. Within 24 hours of birth, all Cps1 -/- mice developed hyperammonemia and expired. No CPS1 protein by Western blot or immunostaining was detected in livers nor was Cps1 mRNA present. CPS1 enzymatic activity was markedly decreased in knockout livers and reduced in Cps1+/- mice. Plasma analysis found markedly reduced citrulline and arginine and markedly increased glutamine and alanine, both intermolecular carriers of nitrogen, along with elevated ammonia, taurine, and lysine. Derangements in multiple other amino acids were also detected. While hepatic amino acids also demonstrated markedly reduced citrulline, arginine, while decreased, was not statistically significant; alanine and lysine were markedly increased while glutamine was trending towards significance. In conclusion we have determined that this constitutive neonatal mouse model of CPS1 deficiency replicates the neonatal human phenotype and demonstrates the key biochemical features of the disorder. These mice will be integral for addressing the challenges of developing new therapeutic approaches for this, at present, poorly treated disorder.
Collapse
Affiliation(s)
- Suhail Khoja
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Matthew Nitzahn
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brian Truong
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jenna Lambert
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, California
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Gerald S Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
15
|
The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020032. [PMID: 30717399 PMCID: PMC6406794 DOI: 10.3390/brainsci9020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Viral vector-mediated gene therapy has grown by leaps and bounds over the past several years. Although the reasons for this progress are varied, a deeper understanding of the basic biology of the viruses, the identification of new and improved versions of viral vectors, and simply the vast experience gained by extensive testing in both animal models of disease and in clinical trials, have been key factors. Several studies have investigated the efficacy of adeno-associated viral (AAV) vectors in the mouse model of fragile X syndrome where AAVs have been used to express fragile X mental retardation protein (FMRP), which is missing or highly reduced in the disorder. These studies have demonstrated a range of efficacies in different tests from full correction, to partial rescue, to no effect. Here we provide a backdrop of recent advances in AAV gene therapy as applied to central nervous system disorders, outline the salient features of the fragile X studies, and discuss several key issues for moving forward. Collectively, the findings to date from the mouse studies on fragile X syndrome, and data from clinical trials testing AAVs in other neurological conditions, indicate that AAV-mediated gene therapy could be a viable strategy for treating fragile X syndrome.
Collapse
|
16
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
17
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|