1
|
Nobari H, Samadian L, Saedmocheshi S, Prieto-González P, MacDonald C. Overview of mechanisms related to citrulline malate supplementation and different methods of high-intensity interval training on sports performance: A narrative review. Heliyon 2025; 11:e42649. [PMID: 40040998 PMCID: PMC11876876 DOI: 10.1016/j.heliyon.2025.e42649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Regular exercise is a practical non-pharmacological approach to maintaining physical and mental health through rehabilitation and prevention of chronic diseases due to its cardiovascular, cardiorespiratory, neurological, and neuromuscular benefits. Despite awareness of the benefits of exercise, a "lack of time" has proven to be the most common impediment to regular activity. Thus, a time-efficient and potentially enjoyable training modality with growing popularity is high-intensity interval training (HIIT). HIIT incorporates intermittent bouts of work and recovery intervals performed at an intensity close to maximal oxygen consumption (VO2max). HIIT is considered to have equivalent or superior benefits compared to moderate-intensity continuous training (MICT). This narrative review focuses on the mechanisms of Citrulline Malate (CM) supplementation and various modes of HIIT on exercise performance. CM serves as a nitric-oxide enhancer leading to improved aerobic and anaerobic exercise performance by increasing muscle adenosine triphosphate (ATP) production, vasodilation, and blood flow to the active musculature and boosting work capacity. This article reviews the mechanisms related to CM supplementation and different modes of HIIT on exercise performance. Even though a single, acute 8 g dose of CM has been recommended, its mechanism of action remains to be seen due to the synergistic impact of both components (citrulline and malate). Moreover, the limited evidence for the standard level of supplement use and source of purchase results in athletes' self-prescription of supplements. Therefore, to reduce the risk of accidental doping or toxicity, further studies should continue to investigate the optimal dose, timing, mechanism of action, as well as reliable sources of purchase for CM consumption.
Collapse
Affiliation(s)
- Hadi Nobari
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Laya Samadian
- Department of Public Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, 66177-15175 Sanandaj, Kurdistan, Iran
| | - Pablo Prieto-González
- Sport Sciences and Diagnostics Research Group, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Christopher MacDonald
- Conway Medical Center College of Health and Human Performance, Coastal Carolina University, USA
| |
Collapse
|
2
|
Nuzzo JL. Muscle Strength Preservation During Repeated Sets of Fatiguing Resistance Exercise: A Secondary Analysis. J Strength Cond Res 2024; 38:1149-1156. [PMID: 38781472 DOI: 10.1519/jsc.0000000000004794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Nuzzo, JL. Muscle strength preservation during repeated sets of fatiguing resistance exercise: A secondary analysis. J Strength Cond Res 38(6): 1149-1156, 2024-During sustained or repeated maximal voluntary efforts, muscle fatigue (acute strength loss) is not linear. After a large initial decrease, muscle strength plateaus at approximately 40% of baseline. This plateau, which likely reflects muscle strength preservation, has been observed in sustained maximal isometric and repeated maximal isokinetic contractions. Whether this pattern of fatigue occurs with traditional resistance exercise repetitions with free weights and weight stack machines has not been overviewed. Here, the aim was to determine whether the number of repetitions completed across 4 or more consecutive repetitions-to-failure tests exhibits the same nonlinear pattern of muscle fatigue. A secondary analysis was applied to data extracted as part of a recent meta-analysis on repetitions-to-failure tests. Studies were eligible if they reported mean number of repetitions completed in 4-6 consecutive repetitions-to-failure tests at a given relative load. Twenty-nine studies were included. Overall, the results show that the number of repetitions completed in consecutive repetitions-to-failure tests at a given load generally decreases curvilinearly. The numbers of repetitions completed in sets 2, 3, 4, 5, and 6 were equal to approximately 70, 55, 50, 45, and 45% of the number of repetitions completed in set 1, respectively. Longer interset rest intervals typically attenuated repetition loss, but the curvilinear pattern remained. From the results, a chart was created to predict the number of repetitions across 6 sets of resistance exercise taken to failure based on the number of repetitions completed in set 1. The chart is a general guide and educational tool. It should be used cautiously. More data from a variety of exercises, relative loads, and interset rest intervals are needed for more precise estimates of number of repetitions completed during repeated sets of fatiguing resistance exercise.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
3
|
Faria VS, Egan B. Effects of 3 days of citrulline malate supplementation on short-duration repeated sprint running performance in male team sport athletes. Eur J Sport Sci 2024; 24:758-765. [PMID: 38874989 PMCID: PMC11235799 DOI: 10.1002/ejsc.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 06/15/2024]
Abstract
Citrulline malate (CM) is purported to be an ergogenic aid during various types of exercise performance. However, the effects of CM on repeated sprint performance (RSP) are under-explored. In a placebo-controlled, double-blind, counterbalanced cross-over design, male university-level team sport athletes (n = 13) performed two familiarization trials, after which CM or placebo (PLA) (8 × 1 g tablets each day) were taken on the 2 days prior to, and with breakfast on the morning of, each main experimental trial. The main experimental trials employed a RSP protocol consisting of 10 repetitions of 40 m maximal shuttle run test (MST) with a 30 s interval between the start of each sprint. Sprint times and heart rate were recorded throughout the MST, and blood lactate concentrations were measured before, immediately after, and 5 min after completing the MST. CM resulted in better RSP compared to PLA, as indicated by a lower sprint performance decrement (Sdec: CM, 4.68% ± 1.82% vs. PLA, 6.10% ± 1.83%; p = 0.03; ES = 0.77), which was possibly influenced by the fastest sprint time being faster in CM (CM, 8.16 ± 0.34 s vs. PLA, 8.29 ± 0.39 s; p = 0.011; ES = 0.34). There were no differences between CM and PLA in average sprint time (p = 0.54), slowest sprint time (p = 0.48), blood lactate concentrations (p = 0.73) or heart rate (p = 0.18), nor was there a condition × time interaction effect across the 10 sprints (p = 0.166). Three days of CM supplementation (8 g daily) attenuated the sprint performance decrement during short-duration high-intensity exercise in the form of running RSP in male university-level team sport athletes.
Collapse
Affiliation(s)
- Vinicius S. Faria
- School of Health and Human PerformanceDublin City UniversityDublinIreland
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Florida Institute of Human and Machine CognitionPensacolaFloridaUSA
| |
Collapse
|
4
|
Viribay A, Alcantara JMA, López I, Mielgo-Ayuso J, Castañeda-Babarro A. Impact of a short-term nitrate and citrulline co-supplementation on sport performance in elite rowers: a randomized, double-blind, placebo-controlled crossover trial. Eur J Appl Physiol 2024; 124:1911-1923. [PMID: 38340156 PMCID: PMC11129974 DOI: 10.1007/s00421-024-05415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Citrulline (CIT) and beetroot extract (BR) have separately shown benefits in rowing performance-related outcomes. However, effects of combined supplementation remain to be elucidated. The main purpose of this research was to study the effects of 1 week of daily co-supplementation of 3.5 g BR (500 mg NO3-) plus 6 g CIT on aerobic performance, maximal strength, and high-intensity power and peak stroke in elite male rowers compared to a placebo and to a BR supplementation. METHODS 20 elite rowers participated in this randomized, double-blind, placebo-controlled crossover trial completing 1 week of supplementation in each group of study: Placebo group (PLAG); BR group (BRG); and BR + CIT group (BR-CITG). 3 main physical tests were performed: aerobic performance, Wingate test and CMJ jump, and metabolic biomarkers and physiological outcomes were collected. RESULTS The Wingate all-out test showed no between-condition differences in peak power, mean power, relative power, or fatigue index (P > 0.05), but clearance of lactate was better in BR-CITG (P < 0.05). In the performance test, peak power differed only between PLAG and BR-CITG (P = 0.036), while VO2peak and maximum heart rate remained similar. CMJ jumping test results showed no between-condition differences, and blood samples were consistent (P > 0.200). CONCLUSION Supplementation with 3.5 g of BR extract plus 6 g of CIT for 7 days improved lactate clearance after Wingate test and peak power in a performance test. No further improvements were found, suggesting longer period of supplementation might be needed to show greater benefits.
Collapse
Affiliation(s)
- Aitor Viribay
- Glut4Science, Physiology, Nutrition and Sport, 01004, Vitoria-Gasteiz, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, 24071, Leon, Spain
| | - Juan M A Alcantara
- Department of Health Sciences, Institute for Sustainability and Food Chain Innovation, Public University of Navarre, Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Iker López
- Kirolene, San Ignacio Auzunea Etxetaldea 5, 48200, Durango, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001, Burgos, Spain.
| | - Arkaitz Castañeda-Babarro
- Health, Physical Activity, and Sports Science Laboratory, Department of Physical Activity and Sports, Faculty of Education and Sport, University of Deusto, 48007, Bizkaia, Spain
| |
Collapse
|
5
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
6
|
Harnden CS, Agu J, Gascoyne T. Effects of citrulline on endurance performance in young healthy adults: a systematic review and meta-analysis. J Int Soc Sports Nutr 2023; 20:2209056. [PMID: 37155582 PMCID: PMC10167868 DOI: 10.1080/15502783.2023.2209056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Citrulline is a popular dietary supplement, primarily thought to exert ergogenic effects on exercise performance through the enhancement of nitric oxide (NO) synthesis and ammonia buffering. However, recent findings surrounding citrulline's effect on endurance performance have been inconsistent. A systematic review and meta-analysis of the relevant literature have yet to be undertaken. AIM To determine if acute ingestion of citrulline has an ergogenic effect on endurance performance in young healthy adults. METHODS A systematic search of three databases was undertaken to find peer-reviewed randomized controlled trials (RCTs) published in English investigating the effects of citrulline supplementation on endurance performance in young healthy adults. Two independent investigators completed a three-phased screening procedure against pre-determined eligibility criteria. Included studies evaluated loading or bolus dosage regimes of citrulline in participants aged 18 or over that were at least recreationally active. Outcome measures focused on time-to-completion (TTC) or time-to-exhaustion (TTE) in continuous submaximal intensity exercise. Cochrane's Risk of Bias 2 (RoB 2) tool was used to assess the risk of bias in individual studies. Meta-analysis was conducted using a fixed-effects model to pool the weighted estimate of standardized mean differences (SMD) across studies. A chi-squared test assessed heterogeneity between studies. This review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Nine studies (n = 158 participants) met the eligibility criteria; five reported TTE outcomes (I2 = 0%, χ2 = 0.37, df = 4, P = 0.99) and four reported TTC outcomes (I2 = 0%, χ2 = 0.46, df = 3, P = 0.93), both with a low between-study heterogeneity. The results of the meta-analyses showed no significant difference in the endurance performance measures, TTE (pooled SMD = 0.03 [-0.27, 0.33]) and TTC (pooled SMD = -0.07 [-0.50, 0.15]), after acute ingestion of citrulline supplementation or a control in young healthy adults. DISCUSSION The current evidence suggests no significant benefit of citrulline supplementation for endurance performance. However, the small evidence base requires further research to fully evaluate this topic. Recommendations include a focus on female populations; higher continuous doses of citrulline over seven days; and TTC outcome measures over longer distances to simulate competition.
Collapse
Affiliation(s)
- Callum S Harnden
- University of Nottingham, Department of Sports and Exercise Medicine, Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Joseph Agu
- University of Nottingham, Department of Sports and Exercise Medicine, Faculty of Medicine and Health Sciences, Nottingham, UK
| | - Tom Gascoyne
- University of Nottingham, Department of Sports and Exercise Medicine, Faculty of Medicine and Health Sciences, Nottingham, UK
| |
Collapse
|
7
|
Gonzalez AM, Yang Y, Mangine GT, Pinzone AG, Ghigiarelli JJ, Sell KM. Acute Effect of L-Citrulline Supplementation on Resistance Exercise Performance and Muscle Oxygenation in Recreationally Resistance Trained Men and Women. J Funct Morphol Kinesiol 2023; 8:88. [PMID: 37489301 PMCID: PMC10366749 DOI: 10.3390/jfmk8030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
L-citrulline serves as a nitric oxide precursor with the potential to increase blood flow and improve resistance exercise performance, yet more research is needed to examine its ergogenic potential. To examine the effect of L-citrulline supplementation on resistance exercise performance, muscle oxygenation, and the subjective perception of effort, energy, focus, fatigue, and muscle pump, eighteen resistance-trained men (n = 11) and women (n = 7) (21.4 ± 1.8 years; 172.3 ± 7.5 cm; 76.9 ± 10.8 kg) were randomly assigned for supplementation with 8 g of L-citrulline (CIT) or a placebo (PL) in a cross-over fashion one hour prior to testing. Participants completed an isometric mid-thigh pull test (IMTP), a ballistic bench press protocol [two sets of two repetitions at 75% 1-repetition maximum (1 RM) with maximum ballistic intent], and a strength-endurance bench press protocol [five repetition-maximum sets at 75% 1RM]. Barbell velocity and power were measured via a linear position transducer during the ballistic protocol, while the repetitions completed, volume load and muscle oxygenation were quantified during the strength-endurance protocol. Subjective measures were assessed at the baseline and immediately pre- and post-exercise. Repeated measures of the analysis of variance and Bayesian equivalents revealed no significant interactions, providing evidence favoring the null hypothesis (BF10 < 1) for IMTP (PL 497.5 ± 133.6 vs. CIT 492.5 ± 129.4 N), barbell velocity, and power, and repetitions completed (PL 36.7 ± 7.2 vs. CIT 36.9 ± 8.1 repetitions). There were also no significant interactions for muscle oxygenation parameters or subjective measures except perceived fatigue. Women reported greater fatigue across all time points compared to men (~1.88 au, p = 0.045, BF10 = 0.2). The results indicate that a single 8 g dose of L-citrulline did not enhance isometric force production, muscle endurance, or muscle oxygenation parameters during the protocol implemented in this study.
Collapse
Affiliation(s)
- Adam M Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| | - Yang Yang
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| | - Gerald T Mangine
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Anthony G Pinzone
- Program in Exercise Science and Exercise Physiology, Kent State University, Kent, OH 44242, USA
| | - Jamie J Ghigiarelli
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| | - Katie M Sell
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY 11549, USA
| |
Collapse
|
8
|
Park HY, Kim SW, Seo J, Jung YP, Kim H, Kim AJ, Kim S, Lim K. Dietary Arginine and Citrulline Supplements for Cardiovascular Health and Athletic Performance: A Narrative Review. Nutrients 2023; 15:1268. [PMID: 36904267 PMCID: PMC10005484 DOI: 10.3390/nu15051268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisoo Seo
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Yanghoon P. Jung
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Hyunji Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Ah-Jin Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Sonwoo Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023; 15:nu15030660. [PMID: 36771366 PMCID: PMC9921013 DOI: 10.3390/nu15030660] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.
Collapse
|
10
|
Meimoun L, Pecchi É, Vilmen C, Bendahan D, Giannesini B. Effect of citrulline malate supplementation on muscle function and bioenergetics during short-term repeated bouts of fatiguing exercise. J Sports Sci 2022; 40:1981-1990. [PMID: 36251983 DOI: 10.1080/02640414.2022.2123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 10/24/2022]
Abstract
Citrulline malate (CM) has been shown to improve muscle performance in healthy participants during a single exercise session. Yet, within the framework of exercises repeated at close time interval, the consequences of CM ingestion on mechanical performance are controversial and the bioenergetics side remains undocumented. The aim of this double-blind placebo-controlled study was to evaluate in vivo the effect of short-term (7 doses in 48 h) oral administration of CM upon gastrocnemius muscle function and bioenergetics using non-invasive multimodal NMR techniques in healthy rats. The experimental protocol consisted of two 6-min bouts of fatiguing exercise spaced by an 8-min recovery period. CM treatment did not affect the basal bioenergetics status and increased the half-fatigue time during the first exercise bout. With exercise repetition, it prevented PCr cost alteration and decreased both the glycolytic ATP production and the contractile ATP cost in working muscle, but these changes were not associated to any improvement in mechanical performance. In addition, CM did not influence the replenishment of high-energy phosphorylated compounds during the post-exercise recovery periods. Therefore, short-term CM administration enhances muscle bioenergetics throughout fatiguing bouts of exercise repeated at close time interval but this enhancement does not benefit to mechanical performance.
Collapse
|
11
|
The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review. BEVERAGES 2022. [DOI: 10.3390/beverages8030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consumption of amino acids L-arginine (L-Arg) and L-citrulline (L-Cit) are purported to increase nitric oxide (NO) production and improve physical performance. Clinical trials have shown relatively more favorable outcomes than not after supplementing with L-Cit and combined L-Arg and L-Cit. However, in most studies, other active ingredients such as malate were included in the supplement. Therefore, the aim of this study was to determine the efficacy of consuming standalone L-Arg, L-Cit, and their combination (in the form of powder or beverage) on blood NO level and physical performance markers. A systematic review was undertaken following PRISMA 2020 guidelines (PROSPERO: CRD42021287530). Four electronic databases (PubMed, Ebscohost, Science Direct, and Google scholar) were used. An acute dose of 0.075 g/kg of L-Arg or 6 g L-Arg had no significant increase in NO biomarkers and physical performance markers (p > 0.05). Consumption of 2.4 to 6 g/day of L-Cit over 7 to 16 days significantly increased NO level and physical performance markers (p < 0.05). Combined L-Arg and L-Cit supplementation significantly increased circulating NO, improved performance, and reduced feelings of exertion (p < 0.05). Standalone L-Cit and combined L-Arg with L-Cit consumed over several days effectively increases circulating NO and improves physical performance and feelings of exertion in recreationally active and well-trained athletes.
Collapse
|
12
|
|
13
|
Gonzalez AM, Pinzone AG, Lipes SE, Mangine GT, Townsend JR, Allerton TD, Sell KM, Ghigiarelli JJ. Effect of watermelon supplementation on exercise performance, muscle oxygenation, and vessel diameter in resistance-trained men. Eur J Appl Physiol 2022; 122:1627-1638. [DOI: 10.1007/s00421-022-04940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
|
14
|
Stratton MT, Siedler MR, Harty PS, Rodriguez C, Boykin JR, Green JJ, Keith DS, White SJ, DeHaven B, Williams AD, Tinsley GM. The influence of caffeinated and non-caffeinated multi-ingredient pre-workout supplements on resistance exercise performance and subjective outcomes. J Int Soc Sports Nutr 2022; 19:126-149. [PMID: 35599920 PMCID: PMC9116396 DOI: 10.1080/15502783.2022.2060048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background There is substantial consumer and practitioner interest in an emerging supplement class known as multi-ingredient pre-workout supplements (MIPS), largely due to their prevalence in resistance training communities as well as research findings demonstrating the ergogenic impact of caffeine on muscular performance. However, limited research has examined the potential efficacy of non-caffeinated MIPS, despite their growing popularity among those who are caffeine-sensitive or who train later in the day. Methods Twenty-four resistance-trained college-aged males (n = 12) and females (n = 12) completed three visits in which they ingested either a caffeinated MIPS (C), an otherwise identical non-caffeinated MIPS (NC), or placebo in a double-blind, counterbalanced, crossover fashion. Squat isometric peak force (PFiso), rate of force development (RFD), and isokinetic performance were assessed. Upper and lower body maximal muscular strength and endurance were evaluated using the bench press and leg press, respectively. Visual analog scales for energy, focus, and fatigue were completed five times throughout the testing protocol. The effects of supplementation and biological sex on all variables were examined using linear mixed effects models. Results Significantly greater PFiso was observed in both C (b: 0.36 transformed units [0.09, 0.62]) and NC (b: 0.32 transformed units [95% CI: 0.05, 0.58]) conditions, relative to placebo. Early RFD (RFD50) may have been higher with supplementation, particularly in females, with no effects for late RFD (RFD200) or peak RFD. In addition, increases in subjective energy after supplement ingestion were noted for C, but not NC. No effects of supplementation on traditional resistance exercise performance or isokinetic squat performance were observed, other than a lower leg press one-repetition maximum for males in the NC condition. Conclusions These data indicate that acute ingestion of either a caffeinated or non-caffeinated pre-workout formulation improved maximal force production during an isometric squat test but did not provide additional benefit to leg press, bench press, or isokinetic squat performance over placebo, within the context of a laboratory environment. The consumption of a caffeinated, but not non-caffeinated, MIPS increased subjective ratings of energy over placebo when assessed as part of a testing battery.
Collapse
Affiliation(s)
- Matthew T. Stratton
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Madelin R. Siedler
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Patrick S. Harty
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Christian Rodriguez
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jake R. Boykin
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jacob J. Green
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Dale S. Keith
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Sarah J. White
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Brielle DeHaven
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Abegale D. Williams
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Grant M. Tinsley
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Caballero-García A, Pascual-Fernández J, Noriega-González DC, Bello HJ, Pons-Biescas A, Roche E, Córdova-Martínez A. L-Citrulline Supplementation and Exercise in the Management of Sarcopenia. Nutrients 2021; 13:nu13093133. [PMID: 34579009 PMCID: PMC8465698 DOI: 10.3390/nu13093133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcopenia is a process associated to aging. Persistent inflammation and oxidative stress in muscle favour muscle wasting and decreased ability to perform physical activity. Controlled exercise can optimize blood flux and moderate the production of reactive oxygen species. Therefore, supplements that can work as a vasodilators and control oxidative stress, might be beneficial for active elders. In this context, we have tested citrulline supplementation in a group of 44 participants aged from 60–73 years that followed a physical activity program adapted to their age and capacities. Volunteers were divided in two groups: placebo (n = 22) and citrullline supplemented (n = 22). Different physical tests and blood extractions were performed at the beginning and at the end of intervention (six weeks). Strength and endurance showed a tendency to increase in the citrulline supplemented group, with no significant differences respect to placebo. However, walking speed in the citrulline supplemented group improved significantly compared to placebo. Markers of muscle damage as well as circulating levels of testosterone, cortisol and vitamin D showed no significant changes, but a tendency to improve at the end of intervention in the supplemented group compared to placebo. Additional studies are necessary to confirm the effect of citrulline supplementation in sarcopenia delay.
Collapse
Affiliation(s)
- Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| | | | - David César Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain;
| | - Hugo J. Bello
- Department of Mathematics, School of Forestry, Agricultural and Bioenergy Engineering, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| | - Antoni Pons-Biescas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Spain;
| | - Enrique Roche
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), 03010 Alicante, Spain
- Correspondence: (E.R.); (A.C.-M.)
| | - Alfredo Córdova-Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Health Sciences Faculty, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain
- Correspondence: (E.R.); (A.C.-M.)
| |
Collapse
|
16
|
Acute and Chronic Citrulline Malate Supplementation on Muscle Contractile Properties and Fatigue Rate of the Quadriceps. Int J Sport Nutr Exerc Metab 2021; 31:490-496. [PMID: 34470906 DOI: 10.1123/ijsnem.2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
This study compared the acute and chronic impact of citrulline malate (CM) supplementation on muscle contractile properties and fatigue rate of the quadriceps. Eighteen recreationally trained males consumed both a placebo (PL) and CM treatment for two separate dosing periods. The first experimental testing session for each dosing period was considered the baseline day, the second session the acute day, and the third session the chronic day, which followed seven consecutive days of supplementation. All testing sessions included exercising on a cycle ergometer at 50%-60% of their max power output for 30 min followed by performing the Thorstensson test on an isokinetic dynamometer. A two-way (Supplement × Time) analysis of variance with repeated measures resulted in no significant interactions (p > .05) (PL: baseline day, acute day, chronic day vs. CM: baseline day, acute day, chronic day) for peak power (in watts) (469 ± 81, 490 ± 97, 502 ± 99 vs. 464 ± 85, 480 ± 103, 501 ± 81); peak torque (in newton meters) (150 ± 26, 157 ± 32, 161 ± 31 vs. 149 ± 27, 156 ± 33, 161 ± 26); fatigue rate (in percentage) (57 ± 9, 57 ± 10, 58 ± 9 vs. 57 ± 10, 56 ± 9, 58 ± 9); and heart rate (in beats per minute) (156 ± 17, 146 ± 13, 146 ± 9 vs. 155 ± 11, 146 ± 11, 146 ± 9). The results of this study suggest that neither acute nor chronic supplementation of CM had an effect on recovery or fatigue rate of the quadriceps.
Collapse
|
17
|
Gough LA, Sparks SA, McNaughton LR, Higgins MF, Newbury JW, Trexler E, Faghy MA, Bridge CA. A critical review of citrulline malate supplementation and exercise performance. Eur J Appl Physiol 2021; 121:3283-3295. [PMID: 34417881 PMCID: PMC8571142 DOI: 10.1007/s00421-021-04774-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test–retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.
Collapse
Affiliation(s)
- Lewis A Gough
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK.
| | - S Andy Sparks
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | | | - Josh W Newbury
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK
| | | | - Mark A Faghy
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - Craig A Bridge
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| |
Collapse
|
18
|
Aguiar AF, Casonatto J. Effects of Citrulline Malate Supplementation on Muscle Strength in Resistance-Trained Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Diet Suppl 2021; 19:772-790. [PMID: 34176406 DOI: 10.1080/19390211.2021.1939473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although the ergogenic mechanisms of supplementation with citrulline malate are well known, unclear findings regarding variables of muscle strength have been recorded. Such misleading findings in the literature illustrate the need for well-conducted meta-analysis research to elucidate the possible ergogenic impact, which could have major practical consequences for athletes and recreational practitioners seeking to optimize gains in muscle strength. The objective of this systematic review was to summarize the existing literature that evaluated the effects of citrulline malate supplementation on muscle strength outcomes from resistance exercise in resistance-trained individuals. A systematic electronic search in Medline and Scientific Electronic Library Online (SciELO) was completed in August 2020 identifying randomized controlled trials investigating the effect of citrulline malate supplementation on muscle strength in resistance-trained adults. A subsequent meta-analysis was performed. The meta-analysis involved four studies and 138 assessments (69 in citrulline-malate and 69 in placebo groups). We did not observe an overall effect favoring citrulline-malate supplementation (SMD95% = 0.13 [-0.21; 0.46]). Considering the lower (SMD95% = 0.06 [-0.47; 0.60]) and upper (SMD95% = 0.17 [-0.26; 0.60]) limbs, a non-significant overall effect was identified. The mean effects were similar for "limbs" (upper vs lower) [p = 0.763]. Accordingly, our findings suggest that citrulline malate supplementation does not improve muscle strength in healthy and resistance-trained individuals (PROSPERO registration number: CRD42020159338).
Collapse
Affiliation(s)
- Andreo F Aguiar
- Research Laboratory in Muscular System and Physical Exercise, University of Northern Paraná, Londrina, Brazil
| | - Juliano Casonatto
- Research Group in Physiology and Physical Activity, University of Northern Paraná, Londrina, Brazil
| |
Collapse
|
19
|
Acute Effect of Citrulline Malate on Repetition Performance During Strength Training: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2021; 31:350-358. [PMID: 34010809 DOI: 10.1123/ijsnem.2020-0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 01/31/2021] [Indexed: 11/18/2022]
Abstract
Citrulline malate (CitMal) is a dietary supplement that is suggested to enhance strength training performance. However, there is conflicting evidence on this matter. Thus, the purpose of this meta-analysis was to determine whether supplementing with CitMal prior to strength training could increase the total number of repetitions performed before reaching voluntary muscular failure. A systematic search was conducted wherein the inclusion criteria were double-blind, placebo-controlled studies in healthy participants that examined the effect of CitMal on repetitions to failure during upper body and lower body resistance exercises. The Hedges's g standardized mean differences (SMD) between the placebo and CitMal trials were calculated and used in a random effect model. Two separate subanalyses were performed for upper body and lower body exercises. Eight studies, including 137 participants who consisted of strength-trained men (n = 101) and women (n = 26) in addition to untrained men (n = 9), fulfilled the inclusion criteria. Across the studies, 14 single-joint and multijoint exercises were performed with an average of 51 ± 23 total repetitions during 5 ± 3 sets per exercise at ∼70% of one-repetition maximum. Supplementing with 6-8 g of CitMal 40-60 min before exercise increased repetitions by 3 ± 5 (6.4 ± 7.9%) compared with placebo (p = .022) with a small SMD (0.196). The subanalysis for the lower body resulted in a tendency for an effect of the supplement (8.1 ± 8.4%, SMD: 0.27, p = .051) with no significant effect for the upper body (5.7 ± 8.4%, SMD: 0.16, p = .131). The current analysis observed a small ergogenic effect of CitMal compared with placebo. Acute CitMal supplementation may, therefore, delay fatigue and enhance muscle endurance during high-intensity strength training.
Collapse
|
20
|
L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073293] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Arginine (Arg) has been widely used due to its functional properties as a substrate for nitric oxide (NO) generation. However, L-citrulline (CIT), whose main natural source is watermelon, is a non-essential amino acid but which has important health potential. This review provides a comprehensive approach to different studies of the endogenous synthesis of CIT, metabolism, pharmacokinetics, and pharmacodynamics as well as its ergogenic effect in exercise performance. The novel aspect of this paper focuses on the different effects of CIT, citrulline malate and CIT from natural sources such as watermelon on several topics, including cardiovascular diseases, diabetes, erectile dysfunction, cancer, and exercise performance. CIT from watermelon could be a natural food-sourced substitute for pharmacological products and therefore the consumption of this fruit is promoted.
Collapse
|
21
|
Rhim HC, Kim SJ, Park J, Jang KM. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:553-561. [PMID: 33308806 PMCID: PMC7749242 DOI: 10.1016/j.jshs.2020.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/04/2019] [Accepted: 12/30/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Citrulline is one of the non-essential amino acids that is thought to improve exercise performance and reduce post-exercise muscle soreness. We conducted a systematic review and meta-analysis to determine the effect of citrulline supplements on the post-exercise rating of perceived exertion (RPE), muscle soreness, and blood lactate levels. METHODS A random effects model was used to calculate the effect sizes due to the high variability in the study design and study populations of the articles included. A systematic search of PubMed, Web of Science, and ClinicalTrials.gov was performed. Eligibility for study inclusion was limited to studies that were randomized controlled trials involving healthy individuals and that investigated the acute effect of citrulline supplements on RPE, muscle soreness, and blood lactate levels. The supplementation time frame was limited to 2 h before exercise. The types and number of participants, types of exercise tests performed, supplementation protocols for L-citrulline or citrulline malate, and primary (RPE and muscle soreness) and secondary (blood lactate level) study outcomes were extracted from the identified studies. RESULTS The analysis included 13 eligible articles including a total of 206 participants. The most frequent dosage used in the studies was 8 g of citrulline malate. Citrulline supplementation significantly reduced RPE (n = 7, p = 0.03) and muscle soreness 24-h and 48-h after post-exercise (n = 7, p = 0.04; n = 6, p = 0.25, respectively). However, citrulline supplementation did not significantly reduce muscle soreness 72-h post-exercise (n = 4, p = 0.62) or lower blood lactate levels (n = 8, p = 0.17). CONCLUSION Citrulline supplements significantly reduced post-exercise RPE and muscle soreness without affecting blood lactate levels.
Collapse
Affiliation(s)
- Hye Chang Rhim
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Sung Jong Kim
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Jewel Park
- College of Medicine, Korea University, Seoul 02842, Republic of Korea
| | - Ki-Mo Jang
- College of Medicine, Korea University, Seoul 02842, Republic of Korea; Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
[The effect of supplementation with L-arginine and L-citrulline on physical performance: a systematic review]. NUTR HOSP 2020; 36:1389-1402. [PMID: 31682459 DOI: 10.20960/nh.02478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: the amino acids L-arginine (L-arg) and L-citrulline (L-citr) have been used in sports nutrition, and it is believed that they have an effect on physical performance. However, current information is varied and inconclusive. Objective: to review and analyze the scientific evidence in the last ten years, which reflects a connection between the effect of L-arg and L-citr supplementation and physical performance. Material and method: this study is a systematic review of articles previously published, following the PRISMA model. Those articles published between 2008 and 2018 that connected the effect of L-arg and L-citr supplementation with physical performance were analyzed. The electronic search was performed on Web of Science, Scopus, Sport Discus, PubMed, and Medline. All articles using a supplementation protocol with these amino acids, separately or in groups, were selected. Results: a total of 38 articles were found, which were stratified according to the established protocol: a) supplementation with L-arg (n = 19); b) supplementation with L-arg and L-citr (n = 1); and c) supplementation with L-citr (n = 18), whether of short or prolonged duration. Conclusion: there is evidence that L-citr works better as ergogenic than L-arg does on physical performance, since L-citr showed a positive effect on the rate of perceived exertion and muscular pain, in addition to a decrease in lactate concentrations and time in maximum tests. However, there is not enough evidence to establish a beneficial L-citr dosage for physical performance.
Collapse
|
23
|
Gonzalez AM, Church DD, Townsend JR, Bagheri R. Emerging Nutritional Supplements for Strength and Hypertrophy: An Update of the Current Literature. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Rogers JM, Gills J, Gray M. Acute effects of Nitrosigine® and citrulline malate on vasodilation in young adults. J Int Soc Sports Nutr 2020; 17:12. [PMID: 32093766 PMCID: PMC7041093 DOI: 10.1186/s12970-020-00343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/14/2020] [Indexed: 01/22/2023] Open
Abstract
Background Athletes are increasingly exploring ways to enhance their physical performance. Increasing blood flow to the working tissues through endothelium-dependent vasodilation is one factor athletes use to realize these results. Sports supplements such as pre-workouts tout this benefit; however, many have not been tested under laboratory conditions to examine the effects of commonly used supplements on vasodilation. Two popular supplements are Nitrosigine® and citrulline malate (CM). Thus, the purpose of this experiment was to determine the effects of Nitrosigine and CM on vasodilation using ultrasound and flow mediated dilation (FMD). Methods Healthy, normotensive, and physically active male (n = 16) and female (n = 8) young adults participated in the present investigation. We utilized a randomized, double-blind, within-subjects design where participants reported for three trials, each preceded by a 7-day washout period. Baseline FMD measurement was obtained for each visit, followed by consumption of one clinical dose CM (8 g), Nitrosigine (1.5 g), or dextrose placebo (8 g). Following a 60-min digestion period, FMD was repeated. Supplementation order was randomized controlling for potential order effects. Results Repeated measures ANOVA yielded a significant supplement (3) x time (2) effect (p < .001), such that Nitrosigine and CM yielded a greater improvement in FMD response than placebo. After supplementation, Nitrosigine and CM increased FMD by 31 and 34%, respectively, compared to a decrease of 2% during the placebo trial. After allometric scaling of the FMD values, supplement x time effect remained significant (p = .001) and changes were similar to non-scaled results. Nitrosigine (23%) and CM (25%) generated significantly greater allometric scaled FMD values when compared to the placebo trial (0.60%). Discussion Both Nitrisigine and CM increased endothelial-dependent vasodilation as measured by a change in FMD. Increased vasodilation leads to an increase in skeletal muscle blood flow resulting in potential improvements in exercise performance.
Collapse
Affiliation(s)
- Jeffrey M Rogers
- Exercise Science Research Center, University of Arkansas, 1 University of Arkansas, HPER 321-E, Fayetteville, AR, 72701, USA
| | - Joshua Gills
- Exercise Science Research Center, University of Arkansas, 1 University of Arkansas, HPER 321-E, Fayetteville, AR, 72701, USA
| | - Michelle Gray
- Exercise Science Research Center, University of Arkansas, 1 University of Arkansas, HPER 321-E, Fayetteville, AR, 72701, USA.
| |
Collapse
|
25
|
Gills JL, Glenn JM, Gray M, Romer B, Lu H. Acute citrulline-malate supplementation is ineffective during aerobic cycling and subsequent anaerobic performance in recreationally active males. Eur J Sport Sci 2020; 21:77-83. [PMID: 31994989 DOI: 10.1080/17461391.2020.1722757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Citrulline-malate (CM) purportedly increases exercise performance through increased nitric oxide production. The effects of CM on muscular strength performance are well-documented; however, the benefits of CM on aerobic and anaerobic biking performance are not well researched. Therefore, the present investigation examined the acute CM supplementation effects on aerobic and anaerobic cycling performance in recreationally active males. Methods: 28 recreationally active males (20.9 ± 2.8 years) completed randomized, double-blind, crossover trials consuming CM (12g dextrose + 8g CM) or a placebo (12g dextrose). Participants performed an aerobic cycling protocol (time-to-exhaustion [TTE]), followed by a subsequent 30-second Wingate cycling test, 60-minutes after supplement consumption. Results: Dependent t-tests showed no significant differences (p > 0.05) for TTE (PLA: 315.4 s ± 137.7 s; CM: 314.1 s ± 107.1 s) and Total Work Completed (TWC) (PLA: 74.7 ± 34.1 kilojoules (kJ); CM: 74.1 ± 26.4 kJ) during the aerobic cycling protocol. Dependent t-tests also showed no significant differences (p > 0.05) for mean watts (PLA: 586.1 ± 87.7 Watts (W); CM: 588.0 ± 93.0 W), peak watts (PLA: 773.0 ± 136.7 W; CM: 786.7 ± 133.0 W), and fatigue index (PLA: 12.9 ± 6.4 FI; CM: 14.3 ± 7.2 FI) during the Wingate protocol. Repeated-measures ANOVA results indicated a significant effect between each 5 s interval (p < 0.001), but no differences were observed between trials (p > 0.05). Conclusion: Acute CM supplementation in recreationally active males provides no ergogenic benefit in aerobic cycling performance followed by an anaerobic cycling test.
Collapse
Affiliation(s)
- Joshua L Gills
- Exercise Science Research Center, University of Arkansas, Fayetteville, AR, USA
| | | | - Michelle Gray
- Exercise Science Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Braden Romer
- Department of Health, Human Performance, and Recreation, High Point University, High Point, NC, USA
| | - Hocheng Lu
- Department of Health, Human Performance, and Recreation, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
26
|
Gonzalez AM, Trexler ET. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J Strength Cond Res 2020; 34:1480-1495. [DOI: 10.1519/jsc.0000000000003426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Yang HH, Li XL, Zhang WG, Figueroa A, Chen LH, Qin LQ. Effect of oral L-citrulline on brachial and aortic blood pressure defined by resting status: evidence from randomized controlled trials. Nutr Metab (Lond) 2019; 16:89. [PMID: 31889969 PMCID: PMC6933755 DOI: 10.1186/s12986-019-0415-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Experimental evidence indicates that oral L-citrulline (L-Cit) may reduce resting blood pressure (BP) as well as BP responses to exercise and cold exposure (non-resting). However, results from human intervention trials are inconsistent. This study aims to summarize the clinical evidence regarding the effects of L-Cit supplementation on brachial systolic blood pressure (SBP), brachial diastolic blood pressure (DBP), in addition to aortic SBP and aortic DBP at rest and non-resting conditions. Methods Multiple databases including PubMed, Embase, Cochrane library, Web of Science, and Clinical Trials were searched systematically. Randomized controlled trials of human participants were quantitatively meta-analyzed. Results Fourteen trials contained in eight studies were available for quantitative syntheses for brachial BP. Results showed that L-Cit supplementation significantly reduced both brachial SBP (− 4.490 mmHg, 95% CI: − 7.332 to − 1.648, P = 0.002) and brachial DBP (− 3.629 mmHg, 95% CI: − 5.825 to − 1.434, P = 0.001). Nine of the trials were meta-analyzed for aortic BP which showed that L-Cit intervention significantly reduced aortic SBP (− 6.763 mmHg, 95% CI: − 10.991 to − 2.534, P = 0.002), but not aortic DBP (− 3.396 mmHg, 95% CI: − 7.418 to 0.627, P = 0.098). The observed reducing effects of L-Cit appeared stronger for non-resting than for resting brachial SBP (P for difference = 0.044). Conclusion L-Cit supplementation significantly decreased non-resting brachial and aortic SBP. Brachial DBP was significantly lowered by L-Cit regardless of resting status. Given the relatively small number of available trials in the stratified analyses and the potential limitations of these trials, the present findings should be interpreted cautiously and need to be confirmed in future well-designed trials with a larger sample size.
Collapse
Affiliation(s)
- Huan-Huan Yang
- 1Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123 China
| | - Xin-Li Li
- 1Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123 China
| | | | - Arturo Figueroa
- 3Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409 USA
| | - Li-Hua Chen
- 1Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123 China
| | - Li-Qiang Qin
- 1Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123 China
| |
Collapse
|
28
|
Blohm K, Beidler J, Rosen P, Kressler J, Hong MY. Effect of acute watermelon juice supplementation on post-submaximal exercise heart rate recovery, blood lactate, blood pressure, blood glucose and muscle soreness in healthy non-athletic men and women. Int J Food Sci Nutr 2019; 71:482-489. [PMID: 31597484 DOI: 10.1080/09637486.2019.1675604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to determine the effects of a single pre-exercise dose of watermelon juice on submaximal post-exercise heart rate (HR) recovery, blood lactate (BL), blood pressure (BP), blood glucose (BG), and muscle soreness in healthy adults. In a randomised crossover design, 27 healthy non-athletic participants (13 males/14 females) consumed 355 mL of watermelon juice, Gatorade, sugar water, or water. HR and BL were significantly higher post-exercise, and both watermelon juice and sugar water increased postprandial BG. However, there were no significant differences among the supplements in HR recovery, BL, or post-exercise muscle soreness. Watermelon juice prevented increased post-exercise systolic and diastolic BP in females, but not in males. More research is warranted to examine the effect of sex on the efficacy of watermelon consumption for controlling BP.
Collapse
Affiliation(s)
- Kara Blohm
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Joshua Beidler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Phil Rosen
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Jochen Kressler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
29
|
Farney TM, Bliss MV, Hearon CM, Salazar DA. The Effect of Citrulline Malate Supplementation on Muscle Fatigue Among Healthy Participants. J Strength Cond Res 2019; 33:2464-2470. [DOI: 10.1519/jsc.0000000000002356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Trexler ET, Keith DS, Schwartz TA, Ryan ED, Stoner L, Persky AM, Smith-Ryan AE. Effects of Citrulline Malate and Beetroot Juice Supplementation on Blood Flow, Energy Metabolism, and Performance During Maximum Effort Leg Extension Exercise. J Strength Cond Res 2019; 33:2321-2329. [DOI: 10.1519/jsc.0000000000003286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Trexler ET, Keith DS, Lucero AA, Stoner L, Schwartz TA, Persky AM, Ryan ED, Smith-Ryan AE. Effects of Citrulline Malate and Beetroot Juice Supplementation on Energy Metabolism and Blood Flow During Submaximal Resistance Exercise. J Diet Suppl 2019; 17:698-717. [DOI: 10.1080/19390211.2019.1650866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eric T. Trexler
- Human Movement Science Curriculum, Department of Allied Health Sciences, University of North Carolina, Chapel Hill, NC, USA
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Dale S. Keith
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Adam A. Lucero
- School of Sport, Exercise and Nutrition, Massey University, Wellington, NZ
| | - Lee Stoner
- Human Movement Science Curriculum, Department of Allied Health Sciences, University of North Carolina, Chapel Hill, NC, USA
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Todd A. Schwartz
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Adam M. Persky
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Eric D. Ryan
- Human Movement Science Curriculum, Department of Allied Health Sciences, University of North Carolina, Chapel Hill, NC, USA
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Abbie E. Smith-Ryan
- Human Movement Science Curriculum, Department of Allied Health Sciences, University of North Carolina, Chapel Hill, NC, USA
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Terasawa N, Nakada K. Effect of L-citrulline intake on intermittent short-time high-intensity exercise performance in male collegiate track athletes. ACTA ACUST UNITED AC 2019. [DOI: 10.7600/jpfsm.8.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenta Nakada
- Division of Regional Development Studies, Graduate School of Human and Socio-Environmental Studies, Kanazawa University
| |
Collapse
|
33
|
Iraki J, Fitschen P, Espinar S, Helms E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports (Basel) 2019; 7:E154. [PMID: 31247944 PMCID: PMC6680710 DOI: 10.3390/sports7070154] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Many nutrition practices often used by bodybuilders lack scientific support and can be detrimental to health. Recommendations during the dieting phase are provided in the scientific literature, but little attention has been devoted to bodybuilders during the off-season phase. During the off-season phase, the goal is to increase muscle mass without adding unnecessary body fat. This review evaluated the scientific literature and provides nutrition and dietary supplement recommendations for natural bodybuilders during the off-season phase. A hyper-energetic diet (~10-20%) should be consumed with a target weight gain of ~0.25-0.5% of bodyweight/week for novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the caloric surplus and weekly weight gain. Sufficient protein (1.6-2.2 g/kg/day) should be consumed with optimal amounts 0.40-0.55 g/kg per meal and distributed evenly throughout the day (3-6 meals) including within 1-2 hours pre- and post-training. Fat should be consumed in moderate amounts (0.5-1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming sufficient amounts (≥3-5 g/kg/day) to support energy demands from resistance exercise. Creatine monohydrate (3-5 g/day), caffeine (5-6 mg/kg), beta-alanine (3-5 g/day) and citrulline malate (8 g/day) might yield ergogenic effects that can be beneficial for bodybuilders.
Collapse
Affiliation(s)
- Juma Iraki
- Iraki Nutrition AS, 2008 Fjerdingby, Norway.
| | | | | | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Auckland University of Technology, Auckland 0632, New Zealand
| |
Collapse
|
34
|
Effects of dietary sports supplements on metabolite accumulation, vasodilation and cellular swelling in relation to muscle hypertrophy: A focus on “secondary” physiological determinants. Nutrition 2019; 60:241-251. [DOI: 10.1016/j.nut.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/29/2018] [Accepted: 10/07/2018] [Indexed: 01/10/2023]
|
35
|
Trexler ET, Persky AM, Ryan ED, Schwartz TA, Stoner L, Smith-Ryan AE. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med 2019; 49:707-718. [DOI: 10.1007/s40279-019-01091-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Valenzuela PL, Morales JS, Emanuele E, Pareja-Galeano H, Lucia A. Supplements with purported effects on muscle mass and strength. Eur J Nutr 2019; 58:2983-3008. [PMID: 30604177 DOI: 10.1007/s00394-018-1882-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Several supplements are purported to promote muscle hypertrophy and strength gains in healthy subjects, or to prevent muscle wasting in atrophying situations (e.g., ageing or disuse periods). However, their effectiveness remains unclear. METHODS This review summarizes the available evidence on the beneficial impacts of several popular supplements on muscle mass or strength. RESULTS Among the supplements tested, nitrate and caffeine returned sufficient evidence supporting their acute beneficial effects on muscle strength, whereas the long-term consumption of creatine, protein and polyunsaturated fatty acids seems to consistently increase or preserve muscle mass and strength (evidence level A). On the other hand, mixed or unclear evidence was found for several popular supplements including branched-chain amino acids, adenosine triphosphate, citrulline, β-Hydroxy-β-methylbutyrate, minerals, most vitamins, phosphatidic acid or arginine (evidence level B), weak or scarce evidence was found for conjugated linoleic acid, glutamine, resveratrol, tribulus terrestris or ursolic acid (evidence level C), and no evidence was found for other supplements such as ornithine or α-ketoglutarate (evidence D). Of note, although most supplements appear to be safe when consumed at typical doses, some adverse events have been reported for some of them (e.g., caffeine, vitamins, α-ketoglutarate, tribulus terrestris, arginine) after large intakes, and there is insufficient evidence to determine the safety of many frequently used supplements (e.g., ornithine, conjugated linoleic acid, ursolic acid). CONCLUSION In summary, despite their popularity, there is little evidence supporting the use of most supplements, and some of them have been even proven ineffective or potentially associated with adverse effects.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain.,Physiology Unit. Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain
| | | | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain. .,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain.,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain
| |
Collapse
|
37
|
Chappell AJ, Allwood DM, Simper TN. Citrulline Malate Fails to Improve German Volume Training Performance in Healthy Young Men and Women. J Diet Suppl 2018; 17:249-260. [DOI: 10.1080/19390211.2018.1513433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew J. Chappell
- Food and Nutrition Group, Sheffield School of Business, Sheffield Hallam University, Sheffield, UK
| | - Daniel M. Allwood
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Trevor N. Simper
- Food and Nutrition Group, Sheffield School of Business, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
38
|
Gonzalez AM, Spitz RW, Ghigiarelli JJ, Sell KM, Mangine GT. Acute Effect of Citrulline Malate Supplementation on Upper-Body Resistance Exercise Performance in Recreationally Resistance-Trained Men. J Strength Cond Res 2018; 32:3088-3094. [DOI: 10.1519/jsc.0000000000002373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Schwarz NA, McKinley-Barnard SK. Acute Oral Ingestion of a Multi-ingredient Preworkout Supplement Increases Exercise Performance and Alters Postexercise Hormone Responses: A Randomized Crossover, Double-Blinded, Placebo-Controlled Trial. J Diet Suppl 2018; 17:211-226. [DOI: 10.1080/19390211.2018.1498963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Neil A. Schwarz
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, USA
| | | |
Collapse
|
40
|
Bergstrom HC, Byrd MT, Wallace BJ, Clasey JL. Examination of a Multi-ingredient Preworkout Supplement on Total Volume of Resistance Exercise and Subsequent Strength and Power Performance. J Strength Cond Res 2018; 32:1479-1490. [PMID: 29401192 DOI: 10.1519/jsc.0000000000002480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bergstrom, HC, Byrd, MT, Wallace, BJ, and Clasey, JL. Examination of a multi-ingredient preworkout supplement on total volume of resistance exercise and subsequent strength and power performance. J Strength Cond Res 32(6): 1479-1490, 2018-This study examined the acute effects of a multi-ingredient preworkout supplement on (a) total-, lower-, and upper-body volume of resistance exercise and (b) the subsequent lower-body strength (isokinetic leg extension and flexion), lower-body power (vertical jump [VJ] height), upper-body power (bench throw velocity [BTv]), and cycle ergometry performance (critical power and anaerobic work capacity). Twelve men completed baseline strength and power measures before 2 experimental visits, supplement (SUP) and placebo (PL). The experimental visits involved a fatiguing cycling protocol 30 minutes after ingestion of the SUP or PL and 15 minutes before the beginning of the resistance exercise protocol, which consisted of 4 upper-body and 4 lower-body resistance exercises performed for 4 sets to failure at 75% 1 repetition maximum. The exercise volume for the total, lower, and upper body was assessed. The VJ height and BTv were measured immediately after the resistance exercise. Postexercise isokinetic leg extension and flexion strength was measured 15 minutes after the completion of a second cycling protocol. There was a 9% increase in the total-body volume of exercise and a 14% increase in lower-body volume of exercise for the SUP compared with the PL, with no effect on exercise volume for the upper body between the SUP and PL. The increased lower-body volume for the SUP did not result in greater lower-body strength and power performance decrements after exhaustive exercise, compared with the PL. These findings suggested the potential for the SUP to increase resistance exercise volume, primarily related to an increased lower-body volume of exercise.
Collapse
Affiliation(s)
- Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - M Travis Byrd
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - Brian J Wallace
- Kinesiology and Athletic Training Department, University of Wisconsin Oshkosh, Oshkosh, Wisconsin
| | - Jody L Clasey
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
41
|
Chappell AJ, Allwood DM, Johns R, Brown S, Sultana K, Anand A, Simper T. Citrulline malate supplementation does not improve German Volume Training performance or reduce muscle soreness in moderately trained males and females. J Int Soc Sports Nutr 2018; 15:42. [PMID: 30097067 PMCID: PMC6086018 DOI: 10.1186/s12970-018-0245-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Use of supplements to aid performance is common practice amongst recreationally active individuals, including those without a sufficient evidence base. This investigation sought to assess whether acute supplementation with 8 g of citrulline malate (CM) (1.11: 1 ratio) would improve anaerobic performance. METHODS A randomised double blind placebo control trial was employed, using a counterbalanced design. We recruited recreationally active men and women to take part in an isokinetic chair protocol, based on German Volume Training (GVT) whereby participants attempted to perform 10 sets of 10 repetitions against a force representing 70% of their peak concentric force. RESULTS The number of repetitions achieved over the course of the GVT was 94.0 ± 7.9 and 90.9 ± 13.9 for placebo and CM respectively. There was no significant difference between the placebo and CM treatment for number of repetitions (P = 0.33), isometric (P = 0.60), concentric (P = 0.38), or eccentric (P = 0.65) peak force following the GVT. Total muscle soreness was significantly higher in the CM compared to the placebo treatment following the GVT protocol over 72 h (P = 0.01); although this was not accompanied by a greater workload/number of repetitions in the CM group. CONCLUSIONS We conclude that an acute dose of CM does not significantly affect anaerobic performance using an isokinetic chair in recreational active participants. Practical implications include precaution in recommending CM supplementation. Coaches and athletes should be aware of the disparity between the chemical analyses of the products reviewed in the present investigation versus the manufacturers' claims.
Collapse
Affiliation(s)
- Andrew J Chappell
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK.
| | - Daniel M Allwood
- Department of Biosciences and Chemistry, Sheffield Hallam University, Owen Building, City Campus, Sheffield, UK
| | - Rebecca Johns
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Samantha Brown
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Kiran Sultana
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Annie Anand
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| | - Trevor Simper
- Food and Nutrition group, Sheffield Business School, Sheffield Hallam University, Stoddard Building, City Campus, Sheffield, UK
| |
Collapse
|
42
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
43
|
Hwang P, Morales Marroquín FE, Gann J, Andre T, McKinley-Barnard S, Kim C, Morita M, Willoughby DS. Eight weeks of resistance training in conjunction with glutathione and L-Citrulline supplementation increases lean mass and has no adverse effects on blood clinical safety markers in resistance-trained males. J Int Soc Sports Nutr 2018; 15:30. [PMID: 29945625 PMCID: PMC6020314 DOI: 10.1186/s12970-018-0235-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Supplementation of combined glutathione (GSH) with L-citrulline in response to a single bout of resistance exercise has been shown to increase plasma nitric oxide metabolites, nitrite and nitrate and cyclic guanosine monophosphate (cGMP), which may play a role in muscle protein synthesis. As a result, in response to resistance training (RT) these responses may establish a role for GSH + L-citrulline to increase muscle mass. This study attempted to determine the effects of an 8-week RT program in conjunction with GSH (Setria®) + L-citrulline, L-citrulline-malate, or placebo supplementation on lean mass and its association with muscle strength. The secondary purpose was to assess the safety of such supplementation protocol by assessing clinical chemistry markers. METHODS In a randomized, double-blind, placebo-controlled design, 75 resistance-trained males were randomly assigned to ingest GSH + L-citrulline (GSH + CIT), L-citrulline-malate, or cellulose placebo daily while also participating in 8 weeks of RT. The full dose of each supplement was delivered in capsules that were identical in weight, size, shape, and color. Participants completed testing sessions for body composition and muscle strength before and after 4 and 8 weeks of RT and supplementation. Venous blood samples were obtained before and after 8 weeks. RESULTS Leg press was increased with RT but was not significantly different between groups (p > 0.05); however, bench press strength was not increased with RT (p > 0.05). There were no significant changes in total body mass, fat mass, or total body water during 8 weeks of RT and supplementation. Lean mass increased in both GSH + CIT when compared to PLC; however, the increase was significant only after 4 weeks. Lean mass and strength were positively correlated (p < 0.05) in GSH + CIT, but not CIT-malate or PLC. Neither RT nor supplementation had any significant effects on blood clinical chemistry variables (p > 0.05). CONCLUSION Compared to PLC, supplementation of GSH + CIT during resistance training increased lean mass after 4 weeks of RT and was positively associated with muscle strength. However, after 8 weeks of RT there were no significant differences in any of the measured variables.
Collapse
Affiliation(s)
- Paul Hwang
- Exercise and Biochemical Nutritional Lab, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Flor E Morales Marroquín
- Exercise and Biochemical Nutritional Lab, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Josh Gann
- Department of Kinesiology, University of Louisiana Monroe, Monroe, LA, USA
| | - Tom Andre
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, University, MS, USA
| | | | - Caelin Kim
- Exercise and Biochemical Nutritional Lab, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Masahiko Morita
- Function Research Group, Healthcare Products Development Center, Kyowa Hakko Bio Co., Ltd., 2, Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Darryn S Willoughby
- Exercise and Biochemical Nutritional Lab, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
44
|
Martínez-Sánchez A, Ramos-Campo DJ, Fernández-Lobato B, Rubio-Arias JA, Alacid F, Aguayo E. Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. Food Nutr Res 2017; 61:1330098. [PMID: 28659740 PMCID: PMC5475291 DOI: 10.1080/16546628.2017.1330098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/09/2017] [Indexed: 01/04/2023] Open
Abstract
Background: Watermelon is a rich natural source of l-citrulline. This non-essential amino acid increases exercise performance. Objective: Evaluate the effect of Fashion watermelon juice enriched in l-citrulline (CWJ) (3.45 g per 500 mL) in physical performance and biochemical markers after a half-marathon race. Design: A randomised, double blind, crossover design where 2 h after drinking 500 mL of CWJ or placebo (PLA, beverage without l-citrulline) amateur male runners performed two half-marathon races. Jump height, heart rate and rating of perceived exertion were evaluated before and after the races. Moreover, muscle soreness and plasma markers of muscle damage and metabolism were evaluated for 72 h after the races. Results: Muscle soreness perception was significantly lower from 24 to 72 h after the race with CWJ beverage. Immediately after the races, runners under CWJ condition showed plasma lactate and glucose concentrations significantly lower and higher lactate dehydrogenase and l-arginine concentration than runners under PLA. A maintenance of jump heights after the races under CWJ supplementation was found, decreasing significantly with PLA. Conclusion: A single Fashion watermelon juice enriched in l-citrulline dose diminished muscle soreness perception from 24 to 72 h after the race and maintained lower concentrations of plasma lactate after an exhausting exercise.
Collapse
Affiliation(s)
- Ascensión Martínez-Sánchez
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Cartagena, Spain
| | - Domingo J Ramos-Campo
- Department of Physical Activity and Sport Science, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | | | - Jacobo A Rubio-Arias
- Department of Physical Activity and Sport Science, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Fernando Alacid
- Department of Physical Activity and Sport Science, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Encarna Aguayo
- Food Quality and Health Group, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Cartagena, Spain
| |
Collapse
|
45
|
Martínez-Sánchez A, Alacid F, Rubio-Arias JA, Fernández-Lobato B, Ramos-Campo DJ, Aguayo E. Consumption of Watermelon Juice Enriched in l-Citrulline and Pomegranate Ellagitannins Enhanced Metabolism during Physical Exercise. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4395-4404. [PMID: 28513179 DOI: 10.1021/acs.jafc.7b00586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
l-Citrulline is a nonessential amino acid precursor of arginine and indirectly a precursor of nitric oxide (NO), which is a vasodilator and increases mitochondrial respiration. On the other hand, the antioxidant pomegranate ellagitannins are precursors of urolithin A, which has been associated with mitophagy and increased muscle function. To elucidate if a single dose of watermelon enrichment with these compounds could have a positive effect after high-intensity exercise (eight sets of eight repetitions of half-squat exercise), a double-blind randomized crossover in vivo study was performed in healthy male subjects (n = 19). Enrichment juices maintained basal levels of blood markers of muscle damage, such as lactate dehydrogenase and myoglobin, and showed a significant maintenance of force during the exercise and a significant decrease in the rating of perceived exertion and muscle soreness after exercise. A positive effect was observed between l-citrulline and ellagitannins, improving the ergogenic effect of watermelon juice.
Collapse
Affiliation(s)
- Ascensión Martínez-Sánchez
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT) , Campus Muralla del Mar, 30202 Cartagena, Spain
| | - Fernando Alacid
- Department of Physical Activity and Sport Science, Faculty of Sport, Catholic University of Murcia (UCAM) , Los Jerónimos Road 135, Guadalupe, Murcia, Spain
| | - Jacobo A Rubio-Arias
- Department of Physical Activity and Sport Science, Faculty of Sport, Catholic University of Murcia (UCAM) , Los Jerónimos Road 135, Guadalupe, Murcia, Spain
| | - Bárbara Fernández-Lobato
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT) , Campus Muralla del Mar, 30202 Cartagena, Spain
- Pharmacy Departament, Hospital General Universitario Santa Lucı́a , Mezquita s/n, 30202 Cartagena, Spain
| | - Domingo J Ramos-Campo
- Department of Physical Activity and Sport Science, Faculty of Sport, Catholic University of Murcia (UCAM) , Los Jerónimos Road 135, Guadalupe, Murcia, Spain
| | - Encarna Aguayo
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT) , Campus Muralla del Mar, 30202 Cartagena, Spain
| |
Collapse
|
46
|
Cunniffe B, Papageorgiou M, O'Brien B, Davies NA, Grimble GK, Cardinale M. Acute Citrulline-Malate Supplementation and High-Intensity Cycling Performance. J Strength Cond Res 2016; 30:2638-47. [DOI: 10.1519/jsc.0000000000001338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Glenn JM, Gray M, Gualano B, Roschel H. The Ergogenic Effects of Supplemental Nutritional Aids on Anaerobic Performance in Female Athletes. Strength Cond J 2016. [DOI: 10.1519/ssc.0000000000000207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Glenn JM, Gray M, Jensen A, Stone MS, Vincenzo JL. Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur J Sport Sci 2016; 16:1095-103. [DOI: 10.1080/17461391.2016.1158321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Glenn JM, Gray M, Wethington LN, Stone MS, Stewart RW, Moyen NE. Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur J Nutr 2015; 56:775-784. [DOI: 10.1007/s00394-015-1124-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
|
50
|
McKinley-Barnard S, Andre T, Morita M, Willoughby DS. Combined L-citrulline and glutathione supplementation increases the concentration of markers indicative of nitric oxide synthesis. J Int Soc Sports Nutr 2015; 12:27. [PMID: 26097441 PMCID: PMC4472409 DOI: 10.1186/s12970-015-0086-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022] Open
Abstract
Background Nitric oxide (NO) is endogenously synthesized from L-arginine and L-citrulline. Due to its effects on nitric oxide synthase (NOS), reduced glutathione (GSH) may protect against the oxidative reduction of NO. The present study determined the effectiveness of L-citrulline and/or GSH on markers indicative of NO synthesis in in vivo conditions with rodents and humans and also in an in vitro condition. Methods In phase one, human umbilical vein endothelial cells (HUVECs) were treated with either 0.3 mM L-citrulline, 1 mM GSH (Setria®) or a combination of each at 0.3 mM. In phase two, Sprague–Dawley rats (8 weeks old) were randomly assigned to 3 groups and received either purified water, L-citrulline (500 mg/kg/day), or a combination of L-citrulline (500 mg/kg/day) and GSH (50 mg/kg/day) by oral gavage for 3 days. Blood samples were collected and plasma NOx (nitrite + nitrate) assessed. In phase three, resistance-trained males were randomly assigned to orally ingest either cellulose placebo (2.52 g/day), L-citrulline (2 g/day), GSH (1 g/day), or L-citrulline (2 g/day) + GSH (200 mg/day) for 7 days, and then perform a resistance exercise session involving 3 sets of 10-RM involving the elbow flexors. Venous blood was obtained and used to assess plasma cGMP, nitrite, and NOx. Results In phase one, nitrite levels in cells treated with L-citrulline and GSH were significantly greater than control (p < 0.05). In phase two, plasma NOx with L-citrulline + GSH was significantly greater than control and L-citrulline (p < 0.05). In phase three, plasma cGMP was increased, but not significantly (p > 0.05). However, nitrite and NOx for L-citrulline + GSH were significantly greater at 30 min post-exercise when compared to placebo (p < 0.05). Conclusions Combining L-citrulline with GSH augments increases in nitrite and NOx levels during in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Sarah McKinley-Barnard
- Department of Health, Human Performance, and Recreation, Baylor University, Exercise and Biochemical Nutritional Lab, 76798 Waco, TX USA
| | - Tom Andre
- Department of Health, Human Performance, and Recreation, Baylor University, Exercise and Biochemical Nutritional Lab, 76798 Waco, TX USA
| | - Masahiko Morita
- Function Research Group, Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD., 2, Miyukigaoka, 305-0841 Tsukuba, Ibaraki Japan
| | - Darryn S Willoughby
- Department of Health, Human Performance, and Recreation, Baylor University, Exercise and Biochemical Nutritional Lab, 76798 Waco, TX USA
| |
Collapse
|