1
|
Garduño‐Tamayo NA, Almazán JL, Romo‐Rodríguez R, Valle‐García D, Meza‐Sosa KF, Pérez‐Domínguez M, Pelayo R, Pedraza‐Alva G, Pérez‐Martínez L. Klf10 Regulates the Emergence of Glial Phenotypes During Hypothalamic Development. J Neurosci Res 2025; 103:e70020. [PMID: 39924964 PMCID: PMC11808290 DOI: 10.1002/jnr.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025]
Abstract
Glial cells play a pivotal role in the Central Nervous System (CNS), constituting most brain cells. Gliogenesis, crucial in CNS development, occurs after neurogenesis. In the hypothalamus, glial progenitors first generate oligodendrocytes and later astrocytes. However, the precise molecular mechanisms governing the emergence of glial lineages in the developing hypothalamus remain incompletely understood. This study reveals the pivotal role of the transcription factor KLF10 in regulating the emergence of both astrocyte and oligodendrocyte lineages during embryonic hypothalamic development. Through transcriptomic and bioinformatic analyses, we identified novel KLF10 putative target genes, which play important roles in the differentiation of neurons, astrocytes, and oligodendrocytes. Notably, in the absence of KLF10, there is an increase in the oligodendrocyte population, while the astrocyte population decreases in the embryonic hypothalamus. Strikingly, this decline in the number of astrocytes persists into adulthood, indicating that the absence of KLF10 leads to an extended period of oligodendrocyte emergence while delaying the appearance of astrocytes. Our findings also unveil a novel signaling pathway for Klf10 gene expression regulation. We demonstrate that Klf10 is a target of CREB and that its expression is upregulated via the BDNF-p38-CREB pathway. Thus, we postulate that KLF10 is an integral part of the hypothalamic developmental program that ensures the correct timing for glial phenotypes' generation. Importantly, we propose that the Klf10-/- mouse model represents a valuable tool for investigating the impact of reduced astrocyte and microglia populations in the homeostasis of the adult hypothalamus.
Collapse
Affiliation(s)
- Norma Angelica Garduño‐Tamayo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Jorge Luis Almazán
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Rubí Romo‐Rodríguez
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de OrienteDelegación PueblaPueblaMexico
| | - David Valle‐García
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Karla F. Meza‐Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Martha Pérez‐Domínguez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Rosana Pelayo
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de OrienteDelegación PueblaPueblaMexico
| | - Gustavo Pedraza‐Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| | - Leonor Pérez‐Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMorelosMexico
| |
Collapse
|
2
|
Mikolajewicz N, Tatari N, Wei J, Savage N, Granda Farias A, Dimitrov V, Chen D, Zador Z, Dasgupta K, Aguilera-Uribe M, Xiao YX, Lee SY, Mero P, McKenna D, Venugopal C, Brown KR, Han H, Singh S, Moffat J. Functional profiling of murine glioma models highlights targetable immune evasion phenotypes. Acta Neuropathol 2024; 148:74. [PMID: 39592459 PMCID: PMC11599368 DOI: 10.1007/s00401-024-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches. Through CRISPR genome-wide co-culture killing screens with various immune cells (cytotoxic T cells, natural killer cells, and macrophages), we identified three key cancer-intrinsic evasion mechanisms: NFκB signaling, autophagy/endosome machinery, and chromatin remodeling. Additional fitness screens identified dependencies in murine gliomas that partially recapitulated those seen in human GBM (e.g., UFMylation). Our single-cell analyses showed that different glioma models exhibited distinct immune infiltration patterns and recapitulated key immune gene programs observed in human GBM, including hypoxia, interferon, and TNF signaling. Moreover, in vivo orthotopic tumor engraftment was associated with phenotypic shifts and changes in proliferative capacity, with murine tumors recapitulating the intratumoral heterogeneity observed in human GBM, exhibiting propensities for developmental- and mesenchymal-like phenotypes. Notably, we observed common transcription factors and cofactors shared with human GBM, including developmental (Nfia and Tcf4), mesenchymal (Prrx1 and Wwtr1), as well as cycling-associated genes (Bub3, Cenpa, Bard1, Brca1, and Mis18bp1). Perturbation of these genes led to reciprocal phenotypic shifts suggesting intrinsic feedback mechanisms that balance in vivo cellular states. Finally, we used a machine-learning approach to identify two distinct immune evasion gene programs, one of which represents a clinically-relevant phenotype and delineates a subpopulation of stem-like glioma cells that predict response to immune checkpoint inhibition in human patients. This comprehensive characterization helps bridge the gap between murine glioma models and human GBM, providing valuable insights for future therapeutic development.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vassil Dimitrov
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - David Chen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Zsolt Zador
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Kuheli Dasgupta
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Hong Han
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
| | - Sheila Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
4
|
Hang WX, Yang YC, Hu YH, Fang FQ, Wang L, Qian XH, Mcquillan PM, Xiong H, Leng JH, Hu ZY. General anesthetic agents induce neurotoxicity through oligodendrocytes in the developing brain. Zool Res 2024; 45:691-703. [PMID: 38766750 PMCID: PMC11188601 DOI: 10.24272/j.issn.2095-8137.2023.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024] Open
Abstract
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.
Collapse
Affiliation(s)
- Wen-Xin Hang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yan-Chang Yang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yu-Han Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Fu-Quan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, China
| | - Xing-Hua Qian
- Department of Anesthesiology, Jiaxing Maternity and Childcare Health Hospital, Jiaxing, Zhejiang 314009, China
| | - Patrick M Mcquillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Hui Xiong
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian-Hang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China. E-mail:
| | - Zhi-Yong Hu
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China. E-mail:
| |
Collapse
|
5
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Zhang J, Xu J, Li S, Chen W, Wu Y. Electroacupuncture Relieves HuR/KLF9-Mediated Inflammation to Enhance Neurological Repair after Spinal Cord Injury. eNeuro 2023; 10:ENEURO.0190-23.2023. [PMID: 37940560 PMCID: PMC10668228 DOI: 10.1523/eneuro.0190-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023] Open
Abstract
Electroacupuncture (EA) is widely applied in clinical therapy for spinal cord injury (SCI). However, the associated molecular mechanism has yet to be elucidated. The current study aimed to investigate the underlying mechanism of EA in neurologic repair after SCI. First, we investigated the role of EA in the neurologic repair of the SCI rat model. The expression levels of human antigen R (HuR) and Krüppel-like factor 9 (KLF9) in spinal cord tissues were quantified after treatment. Second, we conducted bioinformatics analysis, RNA pull-down assays, RNA immunoprecipitation, and luciferase reporter gene assay to verify the binding of HuR and KLF9 mRNA for mRNA stability. Last, HuR inhibitor CMLD-2 was used to verify the enhanced effect of EA on neurologic repair after SCI via the HuR/KLF9 axis. Our data provided convincing evidence that EA facilitated the recovery of neuronal function in SCI rats by reducing apoptosis and inflammation of neurons. We found that EA significantly diminished the SCI-mediated upregulation of HuR, and HuR could bind to the 3' untranslated region of KLF9 mRNA to protect its decay. In addition, a series of in vivo experiments confirmed that CMLD-2 administration increased EA-mediated pain thresholds and motor function in SCI rats. Collectively, the present study showed that EA improved pain thresholds and motor function in SCI rats via impairment of HuR-mediated KLF9 mRNA stabilization, thus providing a better understanding of the regulatory mechanisms regarding EA-mediated neurologic repair after SCI.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Jingjie Xu
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Shisheng Li
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Wei Chen
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Yaochi Wu
- Department of Acupuncture, Tuina and Traumatology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
7
|
Wei Y, Li G, Feng J, Wu F, Zhao Z, Bao Z, Zhang W, Su X, Li J, Qi X, Duan Z, Zhang Y, Vega SF, Jakola AS, Sun Y, Carén H, Jiang T, Fan X. Stalled oligodendrocyte differentiation in IDH-mutant gliomas. Genome Med 2023; 15:24. [PMID: 37055795 PMCID: PMC10103394 DOI: 10.1186/s13073-023-01175-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jing Feng
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhaoshi Bao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiuyi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Xueling Qi
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yunqiu Zhang
- Center of Growth Metabolism & Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, 41390, Sweden
| | - Yingyu Sun
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| | - Xiaolong Fan
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| |
Collapse
|
8
|
Birkhoff JC, Korporaal AL, Brouwer RWW, Nowosad K, Milazzo C, Mouratidou L, van den Hout MCGN, van IJcken WFJ, Huylebroeck D, Conidi A. Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome. Genes (Basel) 2023; 14:genes14030629. [PMID: 36980900 PMCID: PMC10048071 DOI: 10.3390/genes14030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2’s mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Claudia Milazzo
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Lidia Mouratidou
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | | | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7043169
| |
Collapse
|
9
|
Dennys CN, Roussel F, Rodrigo R, Zhang X, Sierra Delgado A, Hartlaub A, Saelim-Ector A, Ray W, Heintzman S, Fox A, Kolb SJ, Beckman J, Franco MC, Meyer K. CuATSM effectively ameliorates ALS patient astrocyte-mediated motor neuron toxicity in human in vitro models of amyotrophic lateral sclerosis. Glia 2023; 71:350-365. [PMID: 36213964 PMCID: PMC10092379 DOI: 10.1002/glia.24278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022]
Abstract
Patient diversity and unknown disease cause are major challenges for drug development and clinical trial design for amyotrophic lateral sclerosis (ALS). Transgenic animal models do not adequately reflect the heterogeneity of ALS. Direct reprogramming of patient fibroblasts to neuronal progenitor cells and subsequent differentiation into patient astrocytes allows rapid generation of disease relevant cell types. Thus, this methodology can facilitate compound testing in a diverse genetic background resulting in a more representative population for therapeutic evaluation. Here, we used established co-culture assays with motor neurons and reprogrammed patient skin-derived astrocytes (iAs) to evaluate the effects of (SP-4-2)-[[2,2'-(1,2-dimethyl-1,2-ethanediylidene)bis[N-methylhydrazinecarbothioamidato-κN2 ,κS]](2-)]-copper (CuATSM), currently in clinical trial for ALS in Australia. Pretreatment of iAs with CuATSM had a differential effect on neuronal survival following co-culture with healthy motor neurons. Using this assay, we identified responding and non-responding cell lines for both sporadic and familial ALS (mutant SOD1 and C9ORF72). Importantly, elevated mitochondrial respiration was the common denominator in all CuATSM-responders, a metabolic phenotype not observed in non-responders. Pre-treatment of iAs with CuATSM restored mitochondrial activity to levels comparable to healthy controls. Hence, this metabolic parameter might allow selection of patient subpopulations best suited for CuATSM treatment. Moreover, CuATSM might have additional therapeutic value for mitochondrial disorders. Enhanced understanding of patient-specific cellular and molecular profiles could help improve clinical trial design in the future.
Collapse
Affiliation(s)
- Cassandra N Dennys
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Florence Roussel
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rochelle Rodrigo
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaojin Zhang
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Andrea Sierra Delgado
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Annalisa Hartlaub
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Asya Saelim-Ector
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Will Ray
- Mathematics Department, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah Heintzman
- Department of Neurology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ashley Fox
- Department of Neurology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Medical Center, Columbus, Ohio, USA.,Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Kathrin Meyer
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Guo F, Wang Y. TCF7l2, a nuclear marker that labels premyelinating oligodendrocytes and promotes oligodendroglial lineage progression. Glia 2023; 71:143-154. [PMID: 35841271 PMCID: PMC9772070 DOI: 10.1002/glia.24249] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023]
Abstract
Clinical and basic neuroscience research is greatly benefited from the identification and characterization of lineage specific and developmental stage-specific markers. In the glial research community, histological markers that specifically label newly differentiated premyelinating oligodendrocytes are still scarce. Premyelinating oligodendrocyte markers, especially those of nuclear localization, enable researchers to easily quantify the rate of oligodendrocyte generation regardless of developmental ages. We propose that the transcription factor 7-like 2 (TCF7l2, mouse gene symbol Tcf7l2) is a useful nuclear marker that specifically labels newly generated premyelinating oligodendrocytes and promotes oligodendroglial lineage progression. Here, we highlight the controversial research history of TCF7l2 expression and function in oligodendroglial field and discuss previous experimental data justifying TCF7l2 as a specific nuclear marker for premyelinating oligodendrocytes during developmental myelination and remyelination. We conclude that TCF7l2 can be used alone or combined with pan-oligodendroglial lineage markers to identify newly differentiated or newly regenerated oligodendrocytes and quantify the rate of oligodendrocyte generation.
Collapse
Affiliation(s)
- Fuzheng Guo
- Institute for Pediatric Regenerative Medicine University of California Davis School of Medicine, Shriners Hospitals for Children Sacramento California USA
| | - Yan Wang
- Institute for Pediatric Regenerative Medicine University of California Davis School of Medicine, Shriners Hospitals for Children Sacramento California USA
| |
Collapse
|
11
|
Ping J, Fu H, Xiong YJ, Soomro S, Huang ZH, Yu PP. Poly-L-ornithine blocks the inhibitory effects of fibronectin on oligodendrocyte differentiation and promotes myelin repair. Neural Regen Res 2023; 18:832-839. [DOI: 10.4103/1673-5374.353493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
13
|
Favrais G, Bokobza C, Saliba E, Chalon S, Gressens P. Alteration of the Oligodendrocyte Lineage Varies According to the Systemic Inflammatory Stimulus in Animal Models That Mimic the Encephalopathy of Prematurity. Front Physiol 2022; 13:881674. [PMID: 35928559 PMCID: PMC9343871 DOI: 10.3389/fphys.2022.881674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth before the gestational age of 32 weeks is associated with the occurrence of specific white matter damage (WMD) that can compromise the neurological outcome. These white matter abnormalities are embedded in more global brain damage defining the encephalopathy of prematurity (EoP). A global reduction in white matter volume that corresponds to chronic diffuse WMD is the most frequent form in contemporary cohorts of very preterm infants. This WMD partly results from alterations of the oligodendrocyte (OL) lineage during the vulnerability window preceding the beginning of brain myelination. The occurrence of prenatal, perinatal and postnatal events in addition to preterm birth is related to the intensity of WMD. Systemic inflammation is widely recognised as a risk factor of WMD in humans and in animal models. This review reports the OL lineage alterations associated with the WMD observed in infants suffering from EoP and emphasizes the role of systemic inflammation in inducing these alterations. This issue is addressed through data on human tissue and imaging, and through neonatal animal models that use systemic inflammation to induce WMD. Interestingly, the OL lineage damage varies according to the inflammatory stimulus, i.e., the liposaccharide portion of the E.Coli membrane (LPS) or the proinflammatory cytokine Interleukin-1β (IL-1β). This discrepancy reveals multiple cellular pathways inducible by inflammation that result in EoP. Variable long-term consequences on the white matter morphology and functioning may be speculated upon according to the intensity of the inflammatory challenge. This hypothesis emerges from this review and requires further exploration.
Collapse
Affiliation(s)
- Geraldine Favrais
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- Neonatology Unit, CHRU de Tours, Tours, France
- *Correspondence: Geraldine Favrais,
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
| | - Elie Saliba
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | | |
Collapse
|
14
|
Matrine inhibits the Wnt3a/β-catenin/TCF7L2 signaling pathway in experimental autoimmune encephalomyelitis. J Neuroimmunol 2022; 367:577876. [DOI: 10.1016/j.jneuroim.2022.577876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
|
15
|
Sustained ErbB Activation Causes Demyelination and Hypomyelination by Driving Necroptosis of Mature Oligodendrocytes and Apoptosis of Oligodendrocyte Precursor Cells. J Neurosci 2021; 41:9872-9890. [PMID: 34725188 PMCID: PMC8638686 DOI: 10.1523/jneurosci.2922-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target. SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.
Collapse
|
16
|
Bou Zerdan M, Assi HI. Oligodendroglioma: A Review of Management and Pathways. Front Mol Neurosci 2021; 14:722396. [PMID: 34675774 PMCID: PMC8523914 DOI: 10.3389/fnmol.2021.722396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
Anaplastic oligodendrogliomas are a type of glioma that occurs primarily in adults but are also found in children. These tumors are genetically defined according to the mutations they harbor. Grade II and grade III tumors can be differentiated most of the times by the presence of anaplastic features. The earliest regimen used for the treatment of these tumors was procarbazine, lomustine, and vincristine. The treatment modalities have shifted over time, and recent studies are considering immunotherapy as an option as well. This review assesses the latest management modalities along with the pathways involved in the pathogenesis of this malignancies.
Collapse
Affiliation(s)
| | - Hazem I. Assi
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
17
|
Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the Olig Family on Neurodevelopmental Disorders. Front Neurosci 2021; 15:659601. [PMID: 33859549 PMCID: PMC8042229 DOI: 10.3389/fnins.2021.659601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and strictly regulate cellular specification and differentiation. Extensive studies have established functional roles of Olig1 and Olig2 in directing neuronal and glial formation during different stages in development. Recently, Olig2 overexpression was implicated in neurodevelopmental disorders down syndrome (DS) and autism spectrum disorder (ASD) but its influence on cognitive and intellectual defects remains unknown. In this review, we summarize the biological functions of the Olig family and how it uniquely promotes cellular diversity in the CNS. This is followed up with a discussion on how abnormal Olig2 expression impacts brain development and function in DS and ASD. Collectively, the studies described here emphasize vital features of the Olig members and their distinctive potential roles in neurodevelopmental disease states.
Collapse
Affiliation(s)
- Jenny Szu
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alexandre Wojcinski
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| |
Collapse
|
18
|
Chang L, Soomro SH, Zhang H, Fu H. Ankfy1 Is Involved in the Maintenance of Cerebellar Purkinje Cells. Front Cell Neurosci 2021; 15:648801. [PMID: 33796010 PMCID: PMC8008124 DOI: 10.3389/fncel.2021.648801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
Purkinje cells are critical for the function of cerebellum. The degeneration of Purkinje cells leads to defects in motion control. We have found that Purkinje cells specifically express Ankfy1 protein during development and in adult. This protein seems to play minor functions during development as Ankfy1 knockout mice appear normal till adult. However, at 9-month-old, knockout mice showed abnormal cerebellum with reduced vermis size and developed defective motor function. Further investigation demonstrated that the cerebellum of the mutant mouse has lost most of its Purkinje cells, while other cerebellar cells remained largely normal. Our data suggested that the Ankfy1 might be important for the maintenance of cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Liansheng Chang
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shahid Hussain Soomro
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Fu
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
The Wnt Effector TCF7l2 Promotes Oligodendroglial Differentiation by Repressing Autocrine BMP4-Mediated Signaling. J Neurosci 2021; 41:1650-1664. [PMID: 33452226 DOI: 10.1523/jneurosci.2386-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/02/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
Promoting oligodendrocyte (OL) differentiation represents a promising option for remyelination therapy for treating the demyelinating disease multiple sclerosis (MS). The Wnt effector transcription factor 7-like 2 (TCF7l2) was upregulated in MS lesions and had been proposed to inhibit OL differentiation. Recent data suggest the opposite yet underlying mechanisms remain elusive. Here, we unravel a previously unappreciated function of TCF7l2 in controlling autocrine bone morphogenetic protein (BMP)4-mediated signaling. Disrupting TCF7l2 in mice of both sexes results in oligodendroglial-specific BMP4 upregulation and canonical BMP4 signaling activation in vivo Mechanistically, TCF7l2 binds to Bmp4 gene regulatory element and directly represses its transcriptional activity. Functionally, enforced TCF7l2 expression promotes OL differentiation by reducing autocrine BMP4 secretion and dampening BMP4 signaling. Importantly, compound genetic disruption demonstrates that oligodendroglial-specific BMP4 deletion rescues arrested OL differentiation elicited by TCF7l2 disruption in vivo Collectively, our study reveals a novel connection between TCF7l2 and BMP4 in oligodendroglial lineage and provides new insights into augmenting TCF7l2 for promoting remyelination in demyelinating disorders such as MS.SIGNIFICANCE STATEMENT Incomplete or failed myelin repairs, primarily resulting from the arrested differentiation of myelin-forming oligodendrocytes (OLs) from oligodendroglial progenitor cells, is one of the major reasons for neurologic progression in people affected by multiple sclerosis (MS). Using in vitro culture systems and in vivo animal models, this study unraveled a previously unrecognized autocrine regulation of bone morphogenetic protein (BMP)4-mediated signaling by the Wnt effector transcription factor 7-like 2 (TCF7l2). We showed for the first time that TCF7l2 promotes oligodendroglial differentiation by repressing BMP4-mediated activity, which is dysregulated in MS lesions. Our study suggests that elevating TCF7l2 expression may be possible in overcoming arrested oligodendroglial differentiation as observed in MS patients.
Collapse
|
20
|
Wedel M, Fröb F, Elsesser O, Wittmann MT, Lie DC, Reis A, Wegner M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res 2020; 48:4839-4857. [PMID: 32266943 PMCID: PMC7229849 DOI: 10.1093/nar/gkaa218] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.
Collapse
Affiliation(s)
- Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D Chichung Lie
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
22
|
Kim H, Berens NC, Ochandarena NE, Philpot BD. Region and Cell Type Distribution of TCF4 in the Postnatal Mouse Brain. Front Neuroanat 2020; 14:42. [PMID: 32765228 PMCID: PMC7379912 DOI: 10.3389/fnana.2020.00042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factor 4 is a class I basic helix-loop-helix transcription factor regulating gene expression. Altered TCF4 gene expression has been linked to non-syndromic intellectual disability, schizophrenia, and a severe neurodevelopmental disorder known as Pitt-Hopkins syndrome. An understanding of the cell types expressing TCF4 protein in the mouse brain is needed to help identify potential pathophysiological mechanisms and targets for therapeutic delivery in TCF4-linked disorders. Here we developed a novel green fluorescent protein reporter mouse to visualize TCF4-expressing cells throughout the brain. Using this TCF4 reporter mouse, we observed prominent expression of TCF4 in the pallial region and cerebellum of the postnatal brain. At the cellular level, both glutamatergic and GABAergic neurons express TCF4 in the cortex and hippocampus, while only a subset of GABAergic interneurons express TCF4 in the striatum. Among glial cell groups, TCF4 is present in astrocytes and immature and mature oligodendrocytes. In the cerebellum, cells in the granule and molecular layer express TCF4. Our findings greatly extend our knowledge of the spatiotemporal and cell type-specific expression patterns of TCF4 in the brain, and hence, lay the groundwork to better understand TCF4-linked neurological disorders. Any effort to restore TCF4 functions through small molecule or genetic therapies should target these brain regions and cell groups to best recapitulate TCF4 expression patterns.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Noah C. Berens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicole E. Ochandarena
- MD-Ph.D. Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. Philpot
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
The subcellular localization of bHLH transcription factor TCF4 is mediated by multiple nuclear localization and nuclear export signals. Sci Rep 2019; 9:15629. [PMID: 31666615 PMCID: PMC6821749 DOI: 10.1038/s41598-019-52239-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
Transcription factor 4 (TCF4) is a class I basic helix-loop-helix (bHLH) transcription factor which regulates the neurogenesis and specialization of cells. TCF4 also plays an important role in the development and functioning of the immune system. Additionally, TCF4 regulates the development of Sertoli cells and pontine nucleus neurons, myogenesis, melanogenesis and epithelial-mesenchymal transition. The ability of transcription factors to fulfil their function often depends on their intracellular trafficking between the nucleus and cytoplasm of the cell. The trafficking is regulated by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear export signal (NES). We performed research on the TCF4 trafficking regulating sequences by mapping and detailed characterization of motifs potentially acting as the NLS or NES. We demonstrate that the bHLH domain of TCF4 contains an NLS that overlaps two NESs. The results of in silico analyses show high conservation of the sequences, especially in the area of the NLS and NESs. This high conservation is not only between mouse and human TCF4, but also between TCF4 and other mammalian E proteins, indicating the importance of these sequences for the functioning of bHLH class I transcription factors.
Collapse
|
24
|
Gnanakkumaar P, Murugesan R, Ahmed SSSJ. Gene Regulatory Networks in Peripheral Mononuclear Cells Reveals Critical Regulatory Modules and Regulators of Multiple Sclerosis. Sci Rep 2019; 9:12732. [PMID: 31484947 PMCID: PMC6726613 DOI: 10.1038/s41598-019-49124-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex, demyelinating disease with the involvement of autoimmunity and neurodegeneration. Increasing efforts have been made towards identifying the diagnostic markers to differentiate the classes of MS from other similar neurological conditions. Using a systems biology approach, we constructed four types of gene regulatory networks (GRNs) involved in peripheral blood mononuclear cells (PBMCs). The regulatory strength of each GRN across primary progressive MS (PPMS), relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and control were evaluated by an integrity algorithm. Among the constructed GRNs (referred as TF_gene_miRNA), POU3F2_CDK6_hsa-miR-590-3p, MEIS1_CASC3_hsa-miR-1261, STAT3_OGG1_hsa-miR-298, and TCF4_FMR1_hsa-miR-301b were top-ranked and differentially regulated in all classes of MS compared to control. These GRNs showed potential involvement in regulating various molecular pathways such as interleukin, integrin, glypican, sphingosine phosphate, androgen, and Wnt signaling pathways. For validation, the qPCR analysis of the GRN components (TFs, gene, and miRNAs) in PBMCs of healthy controls (n = 30), RRMS (n = 14), PPMS (n = 13) and SPMS (n = 12) were carried out. Real-time expression analysis of GRNs showed a similar regulatory pattern as derived from our systems biology approach. Also, our study provided several novel GRNs that regulate unique and common molecular mechanisms between MS conditions. Hence, these regulatory components of GRNs will help to understand the disease mechanism across MS classes and further insight may though light towards diagnosis.
Collapse
Affiliation(s)
- Perumal Gnanakkumaar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India
| | - Ram Murugesan
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India
| | - Shiek S S J Ahmed
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India.
| |
Collapse
|
25
|
Skaper SD, Barbierato M, Facci L, Borri M, Contarini G, Zusso M, Giusti P. Co-Ultramicronized Palmitoylethanolamide/Luteolin Facilitates the Development of Differentiating and Undifferentiated Rat Oligodendrocyte Progenitor Cells. Mol Neurobiol 2019; 55:103-114. [PMID: 28822061 DOI: 10.1007/s12035-017-0722-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes, the myelin-producing cells of the central nervous system (CNS), have limited capability to bring about repair in chronic CNS neuroinflammatory demyelinating disorders such as multiple sclerosis (MS). MS lesions are characterized by a compromised pool of undifferentiated oligodendrocyte progenitor cells (OPCs) unable to mature into myelin-producing oligodendrocytes. An attractive strategy may be to replace lost OLs and/or promote their maturation. N-palmitoylethanolamine (PEA) is an endogenous fatty acid amide signaling molecule with anti-inflammatory and neuroprotective actions. Recent studies show a co-ultramicronized composite of PEA and the flavonoid luteolin (co-ultraPEALut) to be more efficacious than PEA in improving outcome in CNS injury models. Here, we examined the effects of co-ultraPEALut on development of OPCs from newborn rat cortex cultured under conditions favoring either differentiation (Sato medium) or proliferation (fibroblast growth factor-2 and platelet-derived growth factor (PDGF)-AA-supplemented serum-free medium ("SFM")). OPCs in SFM displayed high expression of PDGF receptor alpha gene and the proliferation marker Ki-67. In Sato medium, in contrast, OPCs showed rapid decreases in PDGF receptor alpha and Ki-67 expression with a concomitant rise in myelin basic protein (MBP) expression. In these conditions, co-ultraPEALut (10 μM) enhanced OPC morphological complexity and expression of MBP and the transcription factor TCF7l2. Surprisingly, co-ultraPEALut also up-regulated MBP mRNA expression in OPCs in SFM. MBP expression in all cases was sensitive to inhibition of mammalian target of rapamycin. Within the context of strategies to promote endogenous remyelination in MS which focus on enhancing long-term survival of OPCs and stimulating their differentiation into remyelinating oligodendrocytes, co-ultraPEALut may represent a novel pharmacological approach.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy.
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Mila Borri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| |
Collapse
|
26
|
Sock E, Wegner M. Transcriptional control of myelination and remyelination. Glia 2019; 67:2153-2165. [PMID: 31038810 DOI: 10.1002/glia.23636] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Liu Z, Yan M, Liang Y, Liu M, Zhang K, Shao D, Jiang R, Li L, Wang C, Nussenzveig DR, Zhang K, Chen S, Zhong C, Mo W, Fontoura BMA, Zhang L. Nucleoporin Seh1 Interacts with Olig2/Brd7 to Promote Oligodendrocyte Differentiation and Myelination. Neuron 2019; 102:587-601.e7. [PMID: 30876848 DOI: 10.1016/j.neuron.2019.02.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/12/2019] [Accepted: 02/13/2019] [Indexed: 01/10/2023]
Abstract
Nucleoporins (Nups) are involved in neural development, and alterations in Nup genes are linked to human neurological diseases. However, physiological functions of specific Nups and the underlying mechanisms involved in these processes remain elusive. Here, we show that tissue-specific depletion of the nucleoporin Seh1 causes dramatic myelination defects in the CNS. Although proliferation is not altered in Seh1-deficient oligodendrocyte progenitor cells (OPCs), they fail to differentiate into mature oligodendrocytes, which impairs myelin production and remyelination after demyelinating injury. Genome-wide analyses show that Seh1 regulates a core myelinogenic regulatory network and establishes an accessible chromatin landscape. Mechanistically, Seh1 regulates OPCs differentiation by assembling Olig2 and Brd7 into a transcription complex at nuclear periphery. Together, our results reveal that Seh1 is required for oligodendrocyte differentiation and myelination by promoting assembly of an Olig2-dependent transcription complex and define a nucleoporin as a key player in the CNS.
Collapse
Affiliation(s)
- Zhixiong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Minbiao Yan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Yaoji Liang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China; XMU School of Pharmaceutical Sciences-Amogene Joint R&D Center for Genetic Diagnostics, Amogene Biotech, Xiamen, Fujian 361102, China; The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dandan Shao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rencai Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chaomeng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Daniel R Nussenzveig
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA; Veterans Affairs North Texas Health Care System: Dallas VA Medical Center, Dallas, TX 75216, USA
| | - Kunkun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaoxuan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
28
|
Mamet J, Klukinov M, Harris S, Manning DC, Xie S, Pascual C, Taylor BK, Donahue RR, Yeomans DC. Intrathecal administration of AYX2 DNA-decoy produces a long-term pain treatment in rat models of chronic pain by inhibiting the KLF6, KLF9 and KLF15 transcription factors. Mol Pain 2018; 13:1744806917727917. [PMID: 28814144 PMCID: PMC5582654 DOI: 10.1177/1744806917727917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain.
Collapse
|
29
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 PMCID: PMC11482031 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
30
|
Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 2017; 141:42-55. [DOI: 10.1016/j.bcp.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
31
|
Choi MH, Na JE, Yoon YR, Lee HJ, Yoon S, Rhyu IJ, Baik JH. Role of Dopamine D2 Receptor in Stress-Induced Myelin Loss. Sci Rep 2017; 7:11654. [PMID: 28912499 PMCID: PMC5599541 DOI: 10.1038/s41598-017-10173-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Dopaminergic systems play a major role in reward-related behavior and dysregulation of dopamine (DA) systems can cause several mental disorders, including depression. We previously reported that dopamine D2 receptor knockout (D2R-/-) mice display increased anxiety and depression-like behaviors upon chronic stress. Here, we observed that chronic stress caused myelin loss in wild-type (WT) mice, while the myelin level in D2R-/- mice, which was already lower than that in WT mice, was not affected upon stress. Fewer mature oligodendrocytes (OLs) were observed in the corpus callosum of stressed WT mice, while in D2R-/- mice, both the control and stressed group displayed a decrease in the number of mature OLs. We observed a decrease in the number of active β-catenin (ABC)-expressing and TCF4-expressing cells among OL lineage cells in the corpus callosum of stressed WT mice, while such regulation was not found in D2R-/- mice. Administration of lithium normalized the behavioral impairments and myelin damage induced by chronic stress in WT mice, and restored the number of ABC-positive and TCF4-positive OLs, while such effect was not found in D2R-/- mice. Together, our findings indicate that chronic stress induces myelin loss through the Wnt/β-catenin signaling pathway in association with DA signaling through D2R.
Collapse
Affiliation(s)
- Mi-Hyun Choi
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ye Ran Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyo Jin Lee
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
32
|
Weng C, Ding M, Fan S, Cao Q, Lu Z. Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination. Mol Med Rep 2017; 16:1864-1870. [PMID: 28656232 PMCID: PMC5562062 DOI: 10.3892/mmr.2017.6843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
Transcription factor 7 like 2 (TCF7L2, also termed TCF4), is a Wnt effector induced transiently in the oligodendroglial lineage. The current well accepted hypothesis is that TCF7L2 inhibits oligodendrocyte differentiation and remyelination through canonical Wnt/β‑catenin signaling. However, recent studies indicated that TCF7L2 activity is required during oligodendrocyte differentiation and remyelination. In order to clarify this, in situ hybridization, immunofluorescence and western blot analysis using in vivo TCF7L2 conditional knockout mice, were performed and it was found that TCF7L2 promotes oligodendrocyte differentiation during myelin formation and remyelination. Furthermore, it was established that TCF7L2 does not affect oligodendrocyte precursor cells during remyelination. These data are of important clinical significance to develop novel therapeutic targets to overcome multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Cao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
Aquino A, Perini M, Cosmai S, Zanon S, Pisa V, Castagna C, Uberti S. Osteopathic Manipulative Treatment Limits Chronic Constipation in a Child with Pitt-Hopkins Syndrome. Case Rep Pediatr 2017; 2017:5437830. [PMID: 28251008 PMCID: PMC5306969 DOI: 10.1155/2017/5437830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
Pitt-Hopkins Syndrome (PTHS) is a rare genetic disorder caused by insufficient expression of the TCF4 gene. Children with PTHS typically present with gastrointestinal disorders and early severe chronic constipation is frequently found (75%). Here we describe the case of a PTHS male 10-year-old patient with chronic constipation in whom Osteopathic Manipulative Treatment (OMT) resulted in improved bowel functions, as assessed by the diary, the QPGS-Form A Section C questionnaire, and the Paediatric Bristol Stool Form Scale. The authors suggested that OMT may be a valid tool to improve the defecation frequency and reduce enema administration in PTHS patients.
Collapse
Affiliation(s)
- Alessandro Aquino
- Research Department, Istituto Superiore di Osteopatia, 20126 Milan, Italy
- Department of Clinical Paediatrics & Obstetrics-Gynaecology, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Mattia Perini
- Department of Clinical Paediatrics & Obstetrics-Gynaecology, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Silvia Cosmai
- Department of Clinical Paediatrics & Obstetrics-Gynaecology, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Silvia Zanon
- Department of Clinical Paediatrics & Obstetrics-Gynaecology, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Viviana Pisa
- Research Department, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Carmine Castagna
- Research Department, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| | - Stefano Uberti
- Research Department, Istituto Superiore di Osteopatia, 20126 Milan, Italy
| |
Collapse
|
34
|
Abstract
Reactive astrogliosis occurs after central nervous system (CNS) injuries whereby resident astrocytes form rapid responses along a graded continuum. Following CNS lesions, naïve astrocytes are converted into reactive astrocytes and eventually into scar-forming astrocytes that block axon regeneration and neural repair. It has been known for decades that scarring development and its related extracellular matrix molecules interfere with regeneration of injured axons after CNS injury, but the cellular and molecular mechanisms for controlling astrocytic scar formation and maintenance are not well known. Recent use of various genetic tools has made tremendous progress in better understanding genesis of reactive astrogliosis. Especially, the latest experiments demonstrate environment-dependent plasticity of reactive astrogliosis because reactive astrocytes isolated from injured spinal cord form scarring astrocytes when transplanted into injured spinal cord, but revert in retrograde to naive astrocytes when transplanted into naive spinal cord. The interactions between upregulated type I collagen and its receptor integrin β1 and the N-cadherin-mediated cell adhesion appear to play major roles for local astrogliosis around the lesion. This review centers on the environment-dependent plasticity of reactive astrogliosis after spinal cord injury and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Fatima M Nathan
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK. Oligodendrocyte regeneration: Its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology 2016; 110:633-643. [PMID: 26474658 PMCID: PMC4841742 DOI: 10.1016/j.neuropharm.2015.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Oligodendrocytes readily regenerate and replace myelin membranes around axons in the adult mammalian central nervous system (CNS) following injury. The ability to regenerate oligodendrocytes depends on the availability of neural progenitors called oligodendrocyte precursor cells (OPCs) in the adult CNS that respond to injury-associated signals to induce OPC expansion followed by oligodendrocyte differentiation, axonal contact and myelin regeneration (remyelination). Remyelination ensures the maintenance of axonal conduction, and the oligodendrocytes themselves provide metabolic factors that are necessary to maintain neuronal integrity. Recent advances in oligodendrocyte regeneration research are beginning to shed light on critical intrinsic signals, as well as extrinsic, environmental factors that regulate the distinct steps of oligodendrocyte lineage progression and myelin replacement under CNS injury. These studies may offer novel pharmacological targets for regenerative medicine in inflammatory demyelinating disorders in the CNS such as multiple sclerosis. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA
| | - Sonia E Nanescu
- Department of Biology, Georgetown University, Washington, D.C., USA
| | | | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA.
| |
Collapse
|
36
|
Jasty S, Krishnakumar S. Profiling of DNA and histone methylation reveals epigenetic-based regulation of gene expression during retinal differentiation of stem/progenitor cells isolated from the ciliary pigment epithelium of human cadaveric eyes. Brain Res 2016; 1651:1-10. [PMID: 27641993 DOI: 10.1016/j.brainres.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 08/20/2016] [Accepted: 09/03/2016] [Indexed: 01/23/2023]
Abstract
Millions of people around the world suffer from retinal degenerative diseases at varying degrees of vision loss including, complete blindness that are caused by the damage to cells of the retina. The cell replacement therapy could be a promising tool in treating these conditions, since the stem/progenitor cells could be isolated form adult ciliary pigment epithelial cells and could be differentiated into retinal phenotypes in vitro and could be of great importance. The present study aims to identify the role of epigenetic regulators during cellular differentiation, which involves loss of pluripotency and gain of lineage and cell type-specific characteristics. We analyzed DNA methylation and Histone methylation-H3K4me3 and H3K27me3 in ciliary body derived lineage committed progenitor to terminally differentiated cells. Our results demonstrate that several promoters including pluripotency and lineage specific genes become methylated in the differentiated population, suggesting that methylation may repress the pluripotency in this population. On the other hand, we detect bivalent modifications that are involved in the process of differentiation of stem/progenitor cells. Therefore, this data suggest a model for studying the epigenetic regulation involved in self renewal, pluripotency and differentiation potential of ciliary stem/progenitor cells. This work presents the first outline of epigenetic modifications in ciliary derived stem/progenitor cells and the progeny that underwent differentiation into retinal neurons/glial cells and shows that specific DNA methylation and histone methylations are extensively involved in gene expression reprogramming during differentiation.
Collapse
Affiliation(s)
- Srilatha Jasty
- L&T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18 College Road, Chennai 600006, Tamilnadu, India
| | - Subramanian Krishnakumar
- L&T Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18 College Road, Chennai 600006, Tamilnadu, India.
| |
Collapse
|
37
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
38
|
Regulation of oligodendrocyte differentiation: Insights and approaches for the management of neurodegenerative disease. PATHOPHYSIOLOGY 2016; 23:203-10. [DOI: 10.1016/j.pathophys.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
|
39
|
Maduro V, Pusey BN, Cherukuri PF, Atkins P, du Souich C, Rupps R, Limbos M, Adams DR, Bhatt SS, Eydoux P, Links AE, Lehman A, Malicdan MC, Mason CE, Morimoto M, Mullikin JC, Sear A, Van Karnebeek C, Stankiewicz P, Gahl WA, Toro C, Boerkoel CF. Complex translocation disrupting TCF4 and altering TCF4 isoform expression segregates as mild autosomal dominant intellectual disability. Orphanet J Rare Dis 2016; 11:62. [PMID: 27179618 PMCID: PMC4868023 DOI: 10.1186/s13023-016-0439-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mutations of TCF4, which encodes a basic helix-loop-helix transcription factor, cause Pitt-Hopkins syndrome (PTHS) via multiple genetic mechanisms. TCF4 is a complex locus expressing multiple transcripts by alternative splicing and use of multiple promoters. To address the relationship between mutation of these transcripts and phenotype, we report a three-generation family segregating mild intellectual disability with a chromosomal translocation disrupting TCF4. RESULTS Using whole genome sequencing, we detected a complex unbalanced karyotype disrupting TCF4 (46,XY,del(14)(q23.3q23.3)del(18)(q21.2q21.2)del(18)(q21.2q21.2)inv(18)(q21.2q21.2)t(14;18)(q23.3;q21.2)(14pter®14q23.3::18q21.2®18q21.2::18q21.1®18qter;18pter®18q21.2::14q23.3®14qter). Subsequent transcriptome sequencing, qRT-PCR and nCounter analyses revealed that cultured skin fibroblasts and peripheral blood had normal expression of genes along chromosomes 14 or 18 and no marked changes in expression of genes other than TCF4. Affected individuals had 12-33 fold higher mRNA levels of TCF4 than did unaffected controls or individuals with PTHS. Although the derivative chromosome generated a PLEKHG3-TCF4 fusion transcript, the increased levels of TCF4 mRNA arose from transcript variants originating distal to the translocation breakpoint, not from the fusion transcript. CONCLUSIONS Although validation in additional patients is required, our findings suggest that the dysmorphic features and severe intellectual disability characteristic of PTHS are partially rescued by overexpression of those short TCF4 transcripts encoding a nuclear localization signal, a transcription activation domain, and the basic helix-loop-helix domain.
Collapse
Affiliation(s)
- Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Barbara N Pusey
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Praveen F Cherukuri
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Paul Atkins
- Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, BC, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christèle du Souich
- Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, BC, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, BC, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Samarth S Bhatt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amanda E Links
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, BC, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - May C Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute (BMRI), New York, NY, USA
| | - Marie Morimoto
- Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, BC, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Sear
- Department of General Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Clara Van Karnebeek
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
- NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
- Department of Medical Genetics, University of British Columbia, Children's and Women's Health Centre of BC, Vancouver, BC, Canada.
- Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
40
|
Laitman BM, Asp L, Mariani JN, Zhang J, Liu J, Sawai S, Chapouly C, Horng S, Kramer EG, Mitiku N, Loo H, Burlant N, Pedre X, Hara Y, Nudelman G, Zaslavsky E, Lee YM, Braun DA, Lu QR, Narla G, Raine CS, Friedman SL, Casaccia P, John GR. The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination. PLoS Biol 2016; 14:e1002467. [PMID: 27213272 PMCID: PMC4877075 DOI: 10.1371/journal.pbio.1002467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 12/31/2022] Open
Abstract
Growth factors of the gp130 family promote oligodendrocyte differentiation, and viability, and myelination, but their mechanisms of action are incompletely understood. Here, we show that these effects are coordinated, in part, by the transcriptional activator Krüppel-like factor-6 (Klf6). Klf6 is rapidly induced in oligodendrocyte progenitors (OLP) by gp130 factors, and promotes differentiation. Conversely, in mice with lineage-selective Klf6 inactivation, OLP undergo maturation arrest followed by apoptosis, and CNS myelination fails. Overlapping transcriptional and chromatin occupancy analyses place Klf6 at the nexus of a novel gp130-Klf-importin axis, which promotes differentiation and viability in part via control of nuclear trafficking. Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-α5 (Impα5), and interfering with this mechanism interrupts step-wise differentiation. Underscoring the significance of this axis in vivo, mice with conditional inactivation of gp130 signaling display defective Klf6 and Impα5 expression, OLP maturation arrest and apoptosis, and failure of CNS myelination.
Collapse
Affiliation(s)
- Benjamin M. Laitman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Linnéa Asp
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - John N. Mariani
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jingya Zhang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jia Liu
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Setsu Sawai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Candice Chapouly
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sam Horng
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Elisabeth G. Kramer
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nesanet Mitiku
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hannah Loo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Natalie Burlant
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiomara Pedre
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yuko Hara
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - German Nudelman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Elena Zaslavsky
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Young-Min Lee
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David A. Braun
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Q. Richard Lu
- Pediatrics, Cincinnati Childrens’ Hospital, Cincinnati, Ohio, United States of America
| | - Goutham Narla
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Cedric S. Raine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott L. Friedman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Patrizia Casaccia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gareth R. John
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
41
|
Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun 2016; 7:10883. [PMID: 26955760 PMCID: PMC4786870 DOI: 10.1038/ncomms10883] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/28/2016] [Indexed: 01/04/2023] Open
Abstract
Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis.
Collapse
|
42
|
Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 2016; 283:501-11. [PMID: 26957369 DOI: 10.1016/j.expneurol.2016.03.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed.
Collapse
|
43
|
Li R, Li Y, Hu X, Lian H, Wang L, Fu H. Transcription factor 3 controls cell proliferation and migration in glioblastoma multiforme cell lines. Biochem Cell Biol 2016; 94:247-55. [PMID: 27105323 DOI: 10.1139/bcb-2015-0162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription factor 3 (TCF3) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family. Recent studies have demonstrated its potential carcinogenic properties. Here we show that TCF3 was upregulated in glioma tissues compared with normal brain tissues. This upregulation of the TCF3 gene probably has functional significance in brain-tumor progression. Our studies on glioblastoma multiforme (GBM) cell lines show that knock-down of TCF3 induced apoptosis and inhibited cell migration. Further analysis revealed that down-regulation of TCF3 gene expression inhibits Akt and Erk1/2 activation, suggesting that the carcinogenic properties of TCF3 in GBM are partially mediated by the phosphatidylinositol 3-kinase-Akt and MAPK-Erk signaling pathways. Considered together, the results of this study demonstrate that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways.
Collapse
Affiliation(s)
- Ruiting Li
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Yinghui Li
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Xin Hu
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Haiwei Lian
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Lei Wang
- b Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hui Fu
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
44
|
Weng C, Ding M, Chang LS, Ren MX, Zhang HF, Lu ZN, Fu H. Ankfy1 is dispensable for neural stem/precursor cell development. Neural Regen Res 2016; 11:1804-1809. [PMID: 28123425 PMCID: PMC5204237 DOI: 10.4103/1673-5374.194750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There are few studies on the membrane protein Ankfy1. We have found Ankfy1 is specifically expressed in neural stem/precursor cells during early development in mice (murine). To further explore Ankfy1 function in neural development, we developed a gene knockout mouse with a mixed Balb/C and C57/BL6 genetic background. Using immunofluorescence and in situ hybridization, neural defects were absent in mixed genetic Ankfy1 null mice during development and in adults up to 2 months old. However, Ankfy1 gene knockout mice with a pure genetic background were found to be lethal in the C57/BL6 inbred mice embryos, even after seven generations of backcrossing. Polymerase chain reaction confirmed homozygotes were unattainable as early as embryonic day 11.5. We conclude that Ankfy1 protein is dispensable in neural stem/precursor cells, but could be critical for early embryonic murine development, depending on the genetic background.
Collapse
Affiliation(s)
- Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lian-Sheng Chang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Ming-Xin Ren
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Hong-Feng Zhang
- Department of Pathology, Central Hospital of Wuhan, Wuhan, Hubei Province, China
| | - Zu-Neng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hui Fu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Hubei-MOST KLOS & KLOBME, Wuhan, Hubei Province, China
| |
Collapse
|
45
|
Li H, Richardson WD. Evolution of the CNS myelin gene regulatory program. Brain Res 2015; 1641:111-121. [PMID: 26474911 DOI: 10.1016/j.brainres.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
46
|
Grubišić V, Kennedy AJ, Sweatt JD, Parpura V. Pitt-Hopkins Mouse Model has Altered Particular Gastrointestinal Transits In Vivo. Autism Res 2015; 8:629-33. [PMID: 25728630 PMCID: PMC5724775 DOI: 10.1002/aur.1467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/04/2015] [Indexed: 12/31/2022]
Abstract
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder, classified as an autism spectrum disorder that is caused by the haploinsufficiency of Transcription Factor 4 (TCF4). The most common non-neurological symptoms in PTHS patients are gastrointestinal (GI) disturbances, mainly gastroesophageal reflux and severe constipation (in about 30 and 75% of PTHS patients, respectively). We hypothesized that the recently recognized mouse model of PTHS will exhibit problems with their gut function. We conducted series of in vivo tests on 15- to 19- week old male mice, heterozygous for the TCF4 functional deletion, mimicking the TCF4 haploinsufficiency in PTHS patients, and their wild type littermates. Data collection and initial analysis were performed blindly, that is, the genotyping key was received after the mean values were calculated for each individual animal, and then mean/median of each group was subsequently calculated. Body weight, fecal pellet output, and fluid content were similar between the groups, indicating normal gross growth of PTHS mice and their overall physiological GI motility and intestinal secretion/absorption. There were no significant differences in gut length and gross appearance pointing out that PTHS mice have normal gut in gross anatomical terms. However, the assessment of gut transit indicates that, while whole-gut transit velocity was similar between the groups, the upper GI and distal colon transit velocities were significantly reduced in the PTHS mice. This is the first evidence of specific gut related problems in the PTHS mice. Our study also validates the TCF4 functional knockout mice as an animal model to study PTHS-associated GI disturbances.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew J Kennedy
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
47
|
Abstract
Oligodendrocyte precursor cells (OPCs) originate in the ventricular zones (VZs) of the brain and spinal cord and migrate throughout the developing central nervous system (CNS) before differentiating into myelinating oligodendrocytes (OLs). It is not known whether OPCs or OLs from different parts of the VZ are functionally distinct. OPCs persist in the postnatal CNS, where they continue to divide and generate myelinating OLs at a decreasing rate throughout adult life in rodents. Adult OPCs respond to injury or disease by accelerating their cell cycle and increasing production of OLs to replace lost myelin. They also form synapses with unmyelinated axons and respond to electrical activity in those axons by generating more OLs and myelin locally. This experience-dependent "adaptive" myelination is important in some forms of plasticity and learning, for example, motor learning. We review the control of OL lineage development, including OL population dynamics and adaptive myelination in the adult CNS.
Collapse
Affiliation(s)
- Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, WBSB 1001, Baltimore, Maryland 21205
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
48
|
Zhao C, Ma D, Zawadzka M, Fancy SPJ, Elis-Williams L, Bouvier G, Stockley JH, de Castro GM, Wang B, Jacobs S, Casaccia P, Franklin RJM. Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS Demyelination and Primes Them for Differentiation during Remyelination. J Neurosci 2015; 35:11482-99. [PMID: 26290228 PMCID: PMC6605237 DOI: 10.1523/jneurosci.3655-14.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 12/16/2022] Open
Abstract
The Sox family of transcription factors have been widely studied in the context of oligodendrocyte development. However, comparatively little is known about the role of Sox2, especially during CNS remyelination. Here we show that the expression of Sox2 occurs in oligodendrocyte progenitor cells (OPCs) in rodent models during myelination and in activated adult OPCs responding to demyelination, and is also detected in multiple sclerosis lesions. In normal adult white matter of both mice and rats, it is neither expressed by adult OPCs nor by oligodendrocytes (although it is expressed by a subpopulation of adult astrocytes). Overexpression of Sox2 in rat OPCs in vitro maintains the cells in a proliferative state and inhibits differentiation, while Sox2 knockout results in decreased OPC proliferation and survival, suggesting that Sox2 contributes to the expansion of OPCs during the recruitment phase of remyelination. Loss of function in cultured mouse OPCs also results in an impaired ability to undergo normal differentiation in response to differentiation signals, suggesting that Sox2 expression in activated OPCs also primes these cells to eventually undergo differentiation. In vivo studies on remyelination following experimental toxin-induced demyelination in mice with inducible loss of Sox2 revealed impaired remyelination, which was largely due to a profound attenuation of OPC recruitment and likely also due to impaired differentiation. Our results reveal a key role of Sox2 expression in OPCs responding to demyelination, enabling them to effectively contribute to remyelination. SIGNIFICANCE STATEMENT Understanding the mechanisms of CNS remyelination is central to developing effective means by which this process can be therapeutically enhanced in chronic demyelinating diseases such as multiple sclerosis. In this study, we describe the role of Sox2, a transcription factor widely implicated in stem cell biology, in CNS myelination and remyelination. We show how Sox2 is expressed in oligodendrocyte progenitor cells (OPCs) preparing to undergo differentiation, allowing them to undergo proliferation and priming them for subsequent differentiation. Although Sox2 is unlikely to be a direct therapeutic target, these data nevertheless provide more information on how OPC differentiation is controlled and therefore enriches our understanding of this important CNS regenerative process.
Collapse
Affiliation(s)
- Chao Zhao
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Dan Ma
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Malgorzata Zawadzka
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Stephen P J Fancy
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Lowri Elis-Williams
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Guy Bouvier
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - John H Stockley
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Glaucia Monteiro de Castro
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Bowei Wang
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Sabrina Jacobs
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| | - Patrizia Casaccia
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, United Kingdom, and
| |
Collapse
|
49
|
Basmanav FB, Forstner AJ, Fier H, Herms S, Meier S, Degenhardt F, Hoffmann P, Barth S, Fricker N, Strohmaier J, Witt SH, Ludwig M, Schmael C, Moebus S, Maier W, Mössner R, Rujescu D, Rietschel M, Lange C, Nöthen MM, Cichon S. Investigation of the role of TCF4 rare sequence variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:354-62. [PMID: 26010163 DOI: 10.1002/ajmg.b.32318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations.
Collapse
Affiliation(s)
- F Buket Basmanav
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Heide Fier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandra Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| | - Sandra Barth
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Christine Schmael
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Susanne Moebus
- Centre of Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Essen, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Psychiatry, University of Tübingen
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Christoph Lange
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| |
Collapse
|
50
|
Emery B, Lu QR. Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2015; 7:a020461. [PMID: 26134004 DOI: 10.1101/cshperspect.a020461] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) myelination by oligodendrocytes (OLs) is a highly orchestrated process involving well-defined steps from specification of neural stem cells into proliferative OL precursors followed by terminal differentiation and subsequent maturation of these precursors into myelinating OLs. These specification and differentiation processes are mediated by profound global changes in gene expression, which are in turn subject to control by both extracellular signals and regulatory networks intrinsic to the OL lineage. Recently, basic transcriptional mechanisms that control OL differentiation and myelination have begun to be elucidated at the molecular level and on a genome scale. The interplay between transcription factors activated by differentiation-promoting signals and master regulators likely exerts a crucial role in controlling stage-specific progression of the OL lineage. In this review, we describe the current state of knowledge regarding the transcription factors and the epigenetic programs including histone methylation, acetylation, chromatin remodeling, micro-RNAs, and noncoding RNAs that regulate development of OLs and myelination.
Collapse
Affiliation(s)
- Ben Emery
- Department of Anatomy and Neurobiology, University of Melbourne, Victoria 3010, Australia Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia
| | - Q Richard Lu
- Department of Pediatrics, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|