1
|
Dang C, Severn-Ellis AA, Bayer P, Anderson N, Gholipour-Kanani H, Batley J, McCauley RD, Day RD, Semmens JM, Speed C, Meekan MG, Parsons MJG. Insights into the transcriptomic responses of silver-lipped pearl oysters Pinctada maxima exposed to a simulated large-scale seismic survey. BMC Genomics 2024; 25:1188. [PMID: 39639203 PMCID: PMC11622493 DOI: 10.1186/s12864-024-11091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The wild stocks of Pinctada maxima pearl oysters found off the coast of northern Australia are of critical importance for the sustainability of Australia's pearling industry. Locations inhabited by pearl oysters often have oil and gas reserves in the seafloor below and are therefore potentially subjected to seismic exploration surveys. The present study assessed the impact of a simulated commercial seismic survey on the transcriptome of pearl oysters. Animals were placed at seven distances (-1000, 0, 300, 500, 1000, 2000, and 6000 m) from the first of six operational seismic source sail lines. Vessel control groups were collected before the seismic survey started and exposed groups were collected after completion of six operational seismic sail lines (operated at varying distances over a four-day period). Samples from these groups were taken immediately and at 1, 3, and 6 months post-exposure. RNA-seq was used to identify candidate genes and pathways impacted by the seismic noise in pearl oyster mantle tissues. The quantified transcripts were compared using DESeq2 and pathway enrichment analysis was conducted using KEGG pathway, identifying differentially expressed genes and pathways associated with the seismic activity. RESULTS The study revealed the highest gene expression and pathway dysregulation after four days of exposure and a month post-exposure. However, this dysregulation diminished after three months, with only oysters at -1000 and 0 m displaying differential gene expression and pathway disruption six months post-exposure. Stress-induced responses were evident and impacted energy production, transcription, translation, and protein synthesis. CONCLUSION Seismic activity impacted the gene expression and pathways of pearl oysters at distances up to 2000 m from the source after four days of exposure, and at distances up to 1000 m from the source one-month post-exposure. At three- and six-months post-exposure, gene and pathway dysregulations were mostly observed in oysters located closest to the seismic source at 0 and - 1000 m. Overall, our results suggest that oysters successfully activated stress responses to mitigate damage and maintain cellular homeostasis and growth in response to seismic noise exposure.
Collapse
Affiliation(s)
- Cecile Dang
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, 6000, Australia.
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| | - Anita A Severn-Ellis
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, 6000, Australia
| | - Philipp Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Hosna Gholipour-Kanani
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, 6000, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Robert D McCauley
- Centre for Marine Technology, Curtin University, Bentley, WA, 6102, Australia
| | - Ryan D Day
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Conrad Speed
- Australian Institute of Marine Science, Perth, WA, 6009, Australia
| | - Mark G Meekan
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia
| | | |
Collapse
|
2
|
Lv P, Zhao Z, Hirano Y, Du J. The CoREST complex regulates multiple histone modifications temporal-specifically in clock neurons. Open Biol 2024; 14:230355. [PMID: 38981515 DOI: 10.1098/rsob.230355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024] Open
Abstract
Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yukinori Hirano
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Shao TL, Ting RT, Lee MC. Identification of Lsd1-interacting non-coding RNAs as regulators of fly oogenesis. Cell Rep 2022; 40:111294. [PMID: 36044841 DOI: 10.1016/j.celrep.2022.111294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022] Open
Abstract
Lysine-specific demethylase 1 (Lsd1) plays a key role in balancing cell proliferation and differentiation. Lsd1 has been recently reported to associate with specific long noncoding RNAs (lncRNAs) to account for oncogenic gene expression in cancer cells. However, how lncRNA-Lsd1 interplay affects cell-specific differentiation remains elusive in vivo. Here, through Lsd1 specific RNA immunopecipitation sequencing (RIP-seq) experiments, we identify three long hairpin RNAs as Lsd1-interacting non-coding RNAs (LINRs) from fly ovaries. Knocking out LINR-1 and LINR-2 affects fly egg production, while each of the LINR deletion mutant females produce eggs with reduced hatch rate, indicating important functions of LINRs in supporting oogenesis. At the cellular level, LINR-2 regulates the differentiation of germline stem cells and follicle progenitors likely though modulating the expression and function of Lsd1 in vivo. Our identification of ovarian LINRs presents a physiological example of dynamic lncRNA-Lsd1 interplay that regulates stem cell/progenitor differentiation.
Collapse
Affiliation(s)
- Tzu-Ling Shao
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruei-Teng Ting
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chia Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Gahan JM, Leclère L, Hernandez-Valladares M, Rentzsch F. A developmental role for the chromatin-regulating CoREST complex in the cnidarian Nematostella vectensis. BMC Biol 2022; 20:184. [PMID: 35999597 PMCID: PMC9400249 DOI: 10.1186/s12915-022-01385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin-modifying proteins are key players in the regulation of development and cell differentiation in animals. Most chromatin modifiers, however, predate the evolution of animal multicellularity, and how they gained new functions and became integrated into the regulatory networks underlying development is unclear. One way this may occur is the evolution of new scaffolding proteins that integrate multiple chromatin regulators into larger complexes that facilitate coordinated deposition or removal of different chromatin modifications. We test this hypothesis by analyzing the evolution of the CoREST-Lsd1-HDAC complex. RESULTS Using phylogenetic analyses, we show that a bona fide CoREST homolog is found only in choanoflagellates and animals. We then use the sea anemone Nematostella vectensis as a model for early branching metazoans and identify a conserved CoREST complex by immunoprecipitation and mass spectrometry of an endogenously tagged Lsd1 allele. In addition to CoREST, Lsd1 and HDAC1/2 this complex contains homologs of HMG20A/B and PHF21A, two subunits that have previously only been identified in mammalian CoREST complexes. NvCoREST expression overlaps fully with that of NvLsd1 throughout development, with higher levels in differentiated neural cells. NvCoREST mutants, generated using CRISPR-Cas9, fail to develop beyond the primary polyp stage, thereby revealing essential roles during development and for the differentiation of cnidocytes that phenocopy NvLsd1 mutants. We also show that this requirement is cell autonomous using a cell-type-specific rescue approach. CONCLUSIONS The identification of a Nematostella CoREST-Lsd1-HDAC1/2 complex, its similarity in composition with the vertebrate complex, and the near-identical expression patterns and mutant phenotypes of NvCoREST and NvLsd1 suggest that the complex was present before the last common cnidarian-bilaterian ancestor and thus represents an ancient component of the animal developmental toolkit.
Collapse
Affiliation(s)
- James M Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-Sur-Mer (LBDV), 06230, Villefranche-sur-Mer, France
| | - Maria Hernandez-Valladares
- Department of Physical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020, Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 53, 5006, Bergen, Norway.
| |
Collapse
|
5
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
6
|
Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021; 15:720560. [PMID: 34650404 PMCID: PMC8505678 DOI: 10.3389/fncel.2021.720560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both in vitro and animal studies had helped clarify the basic molecular features of the members of the Drosophila nAchR gene family and illustrated their utility as targets for insecticides. Later, increasingly sophisticated techniques have illuminated how nAchRs mediate excitatory neurotransmission in the Drosophila brain and play an integral part in neural development and synaptic plasticity, as well as cognitive processes such as learning and memory. This review is intended to provide an updated survey of Drosophila nAchR subunits, focusing on their molecular diversity and unique contributions to physiology and plasticity of the fly neural circuitry. We will also highlight promising new avenues for nAchR research that will likely contribute to better understanding of central cholinergic neurotransmission in both Drosophila and other organisms.
Collapse
Affiliation(s)
- Justin S Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Glastad KM, Ju L, Berger SL. Tramtrack acts during late pupal development to direct ant caste identity. PLoS Genet 2021; 17:e1009801. [PMID: 34550980 PMCID: PMC8489709 DOI: 10.1371/journal.pgen.1009801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Linyang Ju
- Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| |
Collapse
|
8
|
Rpd3/CoRest-mediated activity-dependent transcription regulates the flexibility in memory updating in Drosophila. Nat Commun 2021; 12:628. [PMID: 33504795 PMCID: PMC7840730 DOI: 10.1038/s41467-021-20898-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Consolidated memory can be preserved or updated depending on the environmental change. Although such conflicting regulation may happen during memory updating, the flexibility of memory updating may have already been determined in the initial memory consolidation process. Here, we explored the gating mechanism for activity-dependent transcription in memory consolidation, which is unexpectedly linked to the later memory updating in Drosophila. Through proteomic analysis, we discovered that the compositional change in the transcriptional repressor, which contains the histone deacetylase Rpd3 and CoRest, acts as the gating mechanism that opens and closes the time window for activity-dependent transcription. Opening the gate through the compositional change in Rpd3/CoRest is required for memory consolidation, but closing the gate through Rpd3/CoRest is significant to limit future memory updating. Our data indicate that the flexibility of memory updating is determined through the initial activity-dependent transcription, providing a mechanism involved in defining memory state.
Collapse
|
9
|
Liu Y, Zhang Y. ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Rev Rep 2020; 15:703-716. [PMID: 31273540 DOI: 10.1007/s12015-019-09904-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural progenitor cells (NPCs) are multipotent cells that have the potential to produce neurons and glial cells in the neural system. NPCs undergo identity maintenance or differentiation regulated by different kinds of transcription factors. Here we present evidence that ETV5, which is an ETS transcription factor, promotes the generation of glial cells and drives the neuronal subtype-specific genes in newly differentiated neurons from the human embryonic stem cells-derived NPCs. Next, we find a new role for ETV5 in the repression of NEUROG2 expression in NPCs. ETV5 represses NEUROG2 transcription via NEUROG2 promoter and requires the ETS domain. We identify ETV5 has the binding sites and is implicated in silent chromatin in NEUROG2 promoter by chromatin immunoprecipitation (ChIP) assays. Further, NEUROG2 transcription repression by ETV5 was shown to be dependent on a transcriptional corepressor (CoREST). During NPC differentiation toward neurons, ETV5 represses NEUROG2 expression and blocks the appearance of glutamatergic neurons. This finding suggests that ETV5 negatively regulates NEUROG2 expression and increases the number of GABAergic subtype neurons derived from NPCs. Thus, ETV5 represents a potent new candidate protein with benefits for the generation of GABAergic neurons.
Collapse
Affiliation(s)
- Yang Liu
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuanyuan Zhang
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
10
|
Mačinković I, Theofel I, Hundertmark T, Kovač K, Awe S, Lenz J, Forné I, Lamp B, Nist A, Imhof A, Stiewe T, Renkawitz-Pohl R, Rathke C, Brehm A. Distinct CoREST complexes act in a cell-type-specific manner. Nucleic Acids Res 2019; 47:11649-11666. [PMID: 31701127 PMCID: PMC7145674 DOI: 10.1093/nar/gkz1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.
Collapse
Affiliation(s)
- Igor Mačinković
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ina Theofel
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Tim Hundertmark
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Stephan Awe
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Jonathan Lenz
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Boris Lamp
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Renate Renkawitz-Pohl
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Christina Rathke
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| |
Collapse
|
11
|
Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL. Epigenetic Regulator CoREST Controls Social Behavior in Ants. Mol Cell 2019; 77:338-351.e6. [PMID: 31732456 DOI: 10.1016/j.molcel.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.
Collapse
Affiliation(s)
- Karl M Glastad
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riley J Graham
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linyang Ju
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Roessler
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cristina M Brady
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Monestime CM, Taibi A, Gates KP, Jiang K, Sirotkin HI. CoRest1 regulates neurogenesis in a stage‐dependent manner. Dev Dyn 2019; 248:918-930. [DOI: 10.1002/dvdy.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Andrew Taibi
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| | - Keith P. Gates
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| | - Karen Jiang
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| | - Howard I. Sirotkin
- Department of Neurobiology and BehaviorStony Brook University Stony Brook New York
| |
Collapse
|
13
|
Lee MC, Spradling AC. The progenitor state is maintained by lysine-specific demethylase 1-mediated epigenetic plasticity during Drosophila follicle cell development. Genes Dev 2015; 28:2739-49. [PMID: 25512561 PMCID: PMC4265677 DOI: 10.1101/gad.252692.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progenitors are early lineage cells that proliferate before the onset of terminal differentiation. Although widespread, the epigenetic mechanisms that control the progenitor state and the onset of differentiation remain elusive. By studying Drosophila ovarian follicle cell progenitors, we identified lysine-specific demethylase 1 (lsd1) and CoRest as differentiation regulators using a GAL4∷GFP variegation assay. The follicle cell progenitors in lsd1 or CoRest heterozygotes prematurely lose epigenetic plasticity, undergo the Notch-dependent mitotic-endocycle transition, and stop dividing before a normal number of follicle cells can be produced. Simultaneously reducing the dosage of the histone H3K4 methyltransferase Trithorax reverses these effects, suggesting that an Lsd1/CoRest complex times progenitor differentiation by controlling the stability of H3K4 methylation levels. Individual cells or small clones initially respond to Notch; hence, a critical level of epigenetic stabilization is acquired cell-autonomously and initiates differentiation by making progenitors responsive to pre-existing external signals.
Collapse
Affiliation(s)
- Ming-Chia Lee
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| |
Collapse
|
14
|
A genetic screen and transcript profiling reveal a shared regulatory program for Drosophila linker histone H1 and chromatin remodeler CHD1. G3-GENES GENOMES GENETICS 2015; 5:677-87. [PMID: 25628309 PMCID: PMC4390582 DOI: 10.1534/g3.115.016709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression.
Collapse
|
15
|
Differential properties of transcriptional complexes formed by the CoREST family. Mol Cell Biol 2014; 34:2760-70. [PMID: 24820421 DOI: 10.1128/mcb.00083-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1), and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases 1 and 2 (HDAC1/2) and the finding that all three CoRESTs are expressed in the adult rat brain. CoRESTs interact equally strongly with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2, which is barely present in LSD1/KDM1A-CoREST2 complexes. A nonconserved leucine in the first SANT domain of CoREST2 severely weakens its association with HDAC1/2. Furthermore, CoREST2 mutants with increased HDAC1/2 interaction and those without HDAC1/2 interaction exhibit equivalent transcriptional repression capacities, indicating that CoREST2 represses in an HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental in the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine-tuning gene expression regulation.
Collapse
|
16
|
Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics 2014; 9:1485-95. [PMID: 25482055 PMCID: PMC4622878 DOI: 10.4161/15592294.2014.971580] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.
Collapse
Key Words
- ATP, adenosine triphosphate
- BAP, brahma associated protein
- BHC80, BRAF-histone deacetylase complex 80
- BRG1, brahma Related Gene 1
- CHD, chromo domain helicase DNA binding
- CoREST
- CoREST REST, corepressor
- DNA, deoxyribonucleic acid
- DNMT, DNA methyltransferase
- DP-1, dimerization partner 1
- E2F, E2 transcription Factor
- ELM2, EGL-27 and MTA1 homology 2
- ES cell, embryonic stem cells
- H, histone
- HDAC, histone deacetylas
- HMTase, histone methylase
- HP1, heterochromatin protein 1
- K, lysine
- L3MBTL, lethal 3 malignant brain tumor-like
- LINT, l(3)mbt interacting
- LSD1, lysine-specific demethylase 1
- Lint-1, l(3)mbt interacting 1
- MBT protein
- MBT, malignant brain tumor
- MBTS, malignant brain tumor signature
- NPA1, nucleosome assembly protein
- NRSF, neural-restrictive silencing factor
- NuRD, nucleosome remodeling and deacetylase
- PBAP, polybromo-associated BAP
- PHD, plant homeo domain
- PRC1, polycomb repressive complex 1
- PRE, polycomb responsive element
- Pc, polycomb
- PcG, polycomb group
- Ph, polyhomeotic
- Pho, pleiohomeotic
- PhoRC, Pho repressive complex
- Psc, posterior sex combs
- RB, retinoblastoma
- REST, repressor element 1 silencing transcription factor
- RNA, ribonucleic acid
- Rpd3, reduced potassium dependency 3
- SANT, SWI/ADA2/N-CoR/TFIIIB
- SCML, sex combs on midleg-like
- SLC, SFMBT1, LSD1, CoREST
- SWH, Salvador-Warts-Hippo
- SWI/SNF, switching defective/sucrose non-fermenting
- Sce, sex combs extra
- Scm, sex combs on midleg
- Sfmbt, Scm-related gene containing 4 mbt domains
- TSS, transcription start site
- YY1, ying-yang 1
- ZNF, zinc finger
- complex family
- dL(3)mbt, Drosophila Lethal 3 malignant brain tumor
- hBRM, human Brahma
- l(3)mbt, lethal 3 malignant brain tumor
- protein complex
- transcriptional regulation
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México City, México
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
| |
Collapse
|
17
|
Soshnev AA, Baxley RM, Manak JR, Tan K, Geyer PK. The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary. Development 2013; 140:3613-23. [PMID: 23884443 DOI: 10.1242/dev.094953] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding factor required for gypsy insulator function and female germline development in Drosophila. The insulator function of the gypsy retrotransposon depends on Su(Hw) binding to clustered Su(Hw) binding sites (SBSs) and recruitment of the insulator proteins Centrosomal Protein 190 kD (CP190) and Modifier of mdg4 67.2 kD (Mod67.2). By contrast, the Su(Hw) germline function involves binding to non-clustered SBSs and does not require CP190 or Mod67.2. Here, we identify Su(Hw) target genes, using genome-wide analyses in the ovary to uncover genes with an ovary-bound SBS that are misregulated upon Su(Hw) loss. Most Su(Hw) target genes demonstrate enriched expression in the wild-type CNS. Loss of Su(Hw) leads to increased expression of these CNS-enriched target genes in the ovary and other tissues, suggesting that Su(Hw) is a repressor of neural genes in non-neural tissues. Among the Su(Hw) target genes is RNA-binding protein 9 (Rbp9), a member of the ELAV/Hu gene family. Su(Hw) regulation of Rbp9 appears to be insulator independent, as Rbp9 expression is unchanged in a genetic background that compromises the functions of the CP190 and Mod67.2 insulator proteins, even though both localize to Rbp9 SBSs. Rbp9 misregulation is central to su(Hw)(-/-) sterility, as Rbp9(+/-), su(Hw)(-/-) females are fertile. Eggs produced by Rbp9(+/-), su(Hw)(-/-) females show patterning defects, revealing a somatic requirement for Su(Hw) in the ovary. Our studies demonstrate that Su(Hw) is a versatile transcriptional regulatory protein with an essential developmental function involving transcriptional repression.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
18
|
Bhargava A, Ahad A, Wang S, Mansfield SD, Haughn GW, Douglas CJ, Ellis BE. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. PLANTA 2013; 237:1199-211. [PMID: 23328896 DOI: 10.1007/s00425-012-1821-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana KNAT7 (KNOX family) and MYB75 (MYB family) transcription factors were each shown earlier to interact in yeast two-hybrid assays, and to modulate secondary cell wall formation in inflorescence stems. We demonstrate here that their interaction also occurs in vivo, and that specific domains of each protein mediate this process. The participation of these interacting transcription factors in secondary cell wall formation was then extended to the developing seed coat through the use of targeted transcript analysis and SEM in single loss-of-function mutants. Novel genetic and protein-protein interactions of MYB75 and KNAT7 with other transcription factors known to be involved in seed coat regulation were also identified. We propose that a MYB75-associated protein complex is likely to be involved in modulating secondary cell wall biosynthesis in both the Arabidopsis inflorescence stem and seed coat, and that at least some parts of the transcriptional regulatory network in the two tissues are functionally conserved.
Collapse
Affiliation(s)
- Apurva Bhargava
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Curtis BJ, Zraly CB, Dingwall AK. Drosophila LSD1-CoREST demethylase complex regulates DPP/TGFβ signaling during wing development. Genesis 2012; 51:16-31. [PMID: 22965777 DOI: 10.1002/dvg.22346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 12/30/2022]
Abstract
The choice and timing of specific developmental pathways in organogenesis are determined by tissue-specific temporal and spatial cues that are acted upon to impart unique cellular and compartmental identities. A consequence of cellular signaling is the rapid transcriptional reprogramming of a wide variety of target genes. To overcome intrinsic epigenetic chromatin barriers to transcription modulation, histone modifying and remodeling complexes are employed. The deposition or erasure of specific covalent histone modifications, including acetylation, methylation, and ubiquitination are essential features of gene activation and repression. We have found that the activity of a specific class of histone demethylation enzymes is required for the specification of vein cell fates during Drosophila wing development. Genetic tests revealed that the Drosophila LSD1-CoREST complex is required for proper cell specification through regulation of the DPP/TGFβ pathway. An important finding from this analysis is that LSD1-CoREST functions through control of rhomboid expression in an EGFR-independent pathway.
Collapse
Affiliation(s)
- Brenda J Curtis
- Program in Molecular and Cellular Biochemistry, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | | | | |
Collapse
|
20
|
Kok FO, Taibi A, Wanner SJ, Xie X, Moravec CE, Love CE, Prince VE, Mumm JS, Sirotkin HI. Zebrafish rest regulates developmental gene expression but not neurogenesis. Development 2012; 139:3838-48. [PMID: 22951640 DOI: 10.1242/dev.080994] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transcriptional repressor Rest (Nrsf) recruits chromatin-modifying complexes to RE1 'silencer elements', which are associated with hundreds of neural genes. However, the requirement for Rest-mediated transcriptional regulation of embryonic development and cell fate is poorly understood. Conflicting views of the role of Rest in controlling cell fate have emerged from recent studies. To address these controversies, we examined the developmental requirement for Rest in zebrafish using zinc-finger nuclease-mediated gene targeting. We discovered that germ layer specification progresses normally in rest mutants despite derepression of target genes during embryogenesis. This analysis provides the first evidence that maternal rest is essential for repression of target genes during blastula stages. Surprisingly, neurogenesis proceeds largely normally in rest mutants, although abnormalities are observed within the nervous system, including defects in oligodendrocyte precursor cell development and a partial loss of facial branchiomotor neuron migration. Mutants progress normally through embryogenesis but many die as larvae (after 12 days). However, some homozygotes reach adulthood and are viable. We utilized an RE1/NRSE transgenic reporter system to dynamically monitor Rest activity. This analysis revealed that Rest is required to repress gene expression in mesodermal derivatives including muscle and notochord, as well as within the nervous system. Finally, we demonstrated that Rest is required for long-term repression of target genes in non-neural tissues in adult zebrafish. Our results point to a broad role for Rest in fine-tuning neural gene expression, rather than as a widespread regulator of neurogenesis or cell fate.
Collapse
Affiliation(s)
- Fatma O Kok
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Meier K, Mathieu EL, Finkernagel F, Reuter LM, Scharfe M, Doehlemann G, Jarek M, Brehm A. LINT, a novel dL(3)mbt-containing complex, represses malignant brain tumour signature genes. PLoS Genet 2012; 8:e1002676. [PMID: 22570633 PMCID: PMC3342951 DOI: 10.1371/journal.pgen.1002676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access. Mutations in the l(3)mbt result in the formation of brain tumours. The molecular basis underlying this phenotype has remained obscure. Here, we have isolated LINT, a novel protein complex containing dL(3)mbt, the corepressor dCoREST, and the uncharacterised protein dLint-1. We have used genome-wide ChIP–Seq analysis to map the binding sites of LINT. LINT occupies the promoters of many genes that are deregulated in l(3)mbt brain tumours, suggesting that these genes are repressed by LINT. Indeed, RNAi–mediated depletion of LINT subunits results in the derepression of these genes. Surprisingly, LINT-mediated repression is largely independent of histone modification status, arguing for a repression mechanism that operates by restricting promoter access.
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Eve-Lyne Mathieu
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - L. Maximilian Reuter
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Maren Scharfe
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Michael Jarek
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Chen S, Spletter M, Ni X, White KP, Luo L, Long M. Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila. Cell Rep 2012; 1:118-32. [PMID: 22832161 DOI: 10.1016/j.celrep.2011.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/07/2011] [Accepted: 12/21/2011] [Indexed: 10/28/2022] Open
Abstract
The evolution of the brain and behavior are coupled puzzles. The genetic bases for brain evolution are widely debated, yet whether newly evolved genes impact the evolution of the brain and behavior is vaguely understood. Here, we show that during recent evolution in Drosophila, new genes have frequently acquired neuronal expression, particularly in the mushroom bodies. Evolutionary signatures combined with expression profiling showed that natural selection influenced the evolution of young genes expressed in the brain, notably in mushroom bodies. Case analyses showed that two young retrogenes are expressed in the olfactory circuit and facilitate foraging behavior. Comparative behavioral analysis revealed divergence in foraging behavior between species. Our data suggest that during adaptive evolution, new genes gain expression in specific brain structures and evolve new functions in neural circuits, which might contribute to the phenotypic evolution of animal behavior.
Collapse
Affiliation(s)
- Sidi Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
23
|
Domanitskaya E, Schüpbach T. CoREST acts as a positive regulator of Notch signaling in the follicle cells of Drosophila melanogaster. J Cell Sci 2012; 125:399-410. [PMID: 22331351 DOI: 10.1242/jcs.089797] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Notch signaling pathway plays important roles in a variety of developmental events. The context-dependent activities of positive and negative modulators dramatically increase the diversity of cellular responses to Notch signaling. In a screen for mutations affecting the Drosophila melanogaster follicular epithelium, we isolated a mutation in CoREST that disrupts the Notch-dependent mitotic-to-endocycle switch of follicle cells at stage 6 of oogenesis. We show that Drosophila CoREST positively regulates Notch signaling, acting downstream of the proteolytic cleavage of Notch but upstream of Hindsight activity; the Hindsight gene is a Notch target that coordinates responses in the follicle cells. We show that CoREST genetically interacts with components of the Notch repressor complex, Hairless, C-terminal Binding Protein and Groucho. In addition, we demonstrate that levels of H3K27me3 and H4K16 acetylation are dramatically increased in CoREST mutant follicle cells. Our data indicate that CoREST acts as a positive modulator of the Notch pathway in the follicular epithelium as well as in wing tissue, and suggests a previously unidentified role for CoREST in the regulation of Notch signaling. Given its high degree of conservation among species, CoREST probably also functions as a regulator of Notch-dependent cellular events in other organisms.
Collapse
Affiliation(s)
- Elena Domanitskaya
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
24
|
Bitel CL, Singh V, Frederikse PH. miR-124, miR-125b, let-7 and vesicle transport proteins in squid lenses in L. pealei. Curr Eye Res 2012; 37:388-94. [PMID: 22257219 DOI: 10.3109/02713683.2011.635833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Studies over the past several decades identified parallels between neuron and lens fiber cell morphology, development, and physiology. Consistent with this, mammalian lens fiber cells were shown to express a substantial complement of genes that cluster with respect to synaptic vesicle transport and exocytosis. Expression of these genes in these two cell types also appears consistent with similarities described between lens fiber cell lateral protrusions and neuronal dendrites. Recently, we showed vertebrate neurons and lens fiber cells share expression of a core set of factors that form an interlocking regulatory network which has a fundamental role in determining neural cell identity. These included the REST/NRSF transcription factor, neural RNA binding proteins and miR-124. In addition, we identified miR-125 and let-7 in mammalian lenses that have been shown to regulate dendrite formation in neurons. The present study examined expression of miR-124, miR-125, and let-7 as well as genes involved in vesicle transport in lens in the squid Loligo (also referred to as Doryteuthis) pealei. METHODS Northern blot, RT-PCR, immunoblots, and in situ detection were used to analyze expression in squid and vertebrate tissues. RESULTS The present study provided evidence that miR-124, miR-125, let-7 and vesicle transport-related proteins are produced in squid lenses. Consistent with these mRNAs and miRNAs in squid lenses, and polyribosomes shown by others, we detected substantial levels of tRNA and rRNA in anuclear squid lenses which do not produce an epithelial cell layer that would be analogous to vertebrate lenses. CONCLUSIONS Our study provided evidence that miR-124, miR-125, and let-7, as well as proteins involved in vesicle transport linked with synaptic and cargo vesicle transport in vertebrates are also expressed in squid lenses.
Collapse
Affiliation(s)
- Claudine L Bitel
- Department of Pharmacology and Physiology and the Rutgers-UMDNJ Integrative Neurosciences Program, Newark, NJ 07103, USA
| | | | | |
Collapse
|
25
|
Yamasaki Y, Lim YM, Niwa N, Hayashi S, Tsuda L. Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST-like repressor of extramacrochaetae and hairy. Genes Cells 2011; 16:896-909. [PMID: 21762412 DOI: 10.1111/j.1365-2443.2011.01537.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sensory bristle formation in Drosophila is a well-characterized system for studying sensory organ development at the molecular level. The master proneural genes of the achaete-scute (ac-sc) complex, which encode basic-helix-loop-helix (bHLH) transcription factors, are necessary and sufficient for sensory bristle formation. charlatan (chn) was originally identified as a transcriptional activator of ac-sc gene expression through interaction with its enhancer, an activity that promotes sensory bristle development. In contrast, Chn was also identified as a functional homologue of mammalian neuron-restrictive silencing factor or RE1 silencing transcription factor (NRSF/REST), an important transcriptional repressor during vertebrate neurogenesis and stem cell development that acts through epigenetic gene silencing. Here, we report that Chn acts as a repressor of extramacrochaetae (emc) and hairy, molecules that inhibit ac-sc expression. This double-negative mechanism, together with direct activation via the achaete enhancer, increases expression of achaete and ensures robust development of sensory neurons. A mutation in the C-terminal repressor motif of Chn, which causes Chn to lose its repression activity, converted Chn to an activator of emc and hairy, suggesting that Chn is a dual functional regulator of transcription. Because chn-like sequences are found among arthropods, regulation of neuronal development by Chn-like molecules may be widely conserved.
Collapse
Affiliation(s)
- Yasutoyo Yamasaki
- Animal Model of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | | | | | | | | |
Collapse
|
26
|
Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 2010; 5:e14051. [PMID: 21124962 PMCID: PMC2988793 DOI: 10.1371/journal.pone.0014051] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of qimmune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in melanotic mutant strains, large numbers of lamellocytes differentiate and encapsulate material recognized as "non-self". Current models speculate that lamellocytes, plasmatocytes and crystal cells are distinct lineages that arise from a common prohemocyte progenitor. We show here that over-expression of the CoREST-interacting transcription factor Chn in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. Lamellocyte increases are accompanied by the extinction of plasmatocyte markers suggesting that plasmatocytes are transformed into lamellocytes. Consistent with this, timed induction of Chn over-expression induces rapid lamellocyte differentiation within 18 hours. We detect double-positive intermediates between plasmatocytes and lamellocytes, and show that isolated plasmatocytes can be triggered to differentiate into lamellocytes in vitro, either in response to Chn over-expression, or following activation of the JAK/STAT pathway. Finally, we have marked plasmatocytes and show by lineage tracing that these differentiate into lamellocytes in response to the Drosophila parasite model Leptopilina boulardi. Taken together, our data suggest that lamellocytes arise from plasmatocytes and that plasmatocytes may be inherently plastic, possessing the ability to differentiate further into lamellocytes upon appropriate challenge.
Collapse
|
27
|
Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system. J Neurosci 2010; 30:2521-32. [PMID: 20164337 DOI: 10.1523/jneurosci.5500-09.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A variety of chromatin remodeling complexes are thought to orchestrate transcriptional programs that lead neuronal precursors from earliest commitment to terminal differentiation. Here we show that mammalian neurons have a specialized chromatin remodeling enzyme arising from a neurospecific splice variant of LSD1/KDM1, histone lysine specific demethylase 1, whose demethylase activity on Lys4 of histone H3 has been related to gene repression. We found that alternative splicing of LSD1 transcript generates four full-length isoforms from combinatorial retention of two identified exons: the 4 aa exon E8a is internal to the amine oxidase domain, and its inclusion is restricted to the nervous system. Remarkably, the expression of LSD1 splice variants is dynamically regulated throughout cortical development, particularly during perinatal stages, with a progressive increase of LSD1 neurospecific isoforms over the ubiquitous ones. Notably, the same LSD1 splice dynamics can be fairly recapitulated in cultured cortical neurons. Functionally, LSD1 isoforms display in vitro a comparable demethylase activity, yet the inclusion of the sole exon E8a reduces LSD1 repressor activity on a reporter gene. Additional distinction among isoforms is supported by the knockdown of neurospecific variants in cortical neurons resulting in the inhibition of neurite maturation, whereas overexpression of the same variants enhances it. Instead, perturbation of LSD1 isoforms that are devoid of the neurospecific exon elicits no morphogenic effect. Collectively, results demonstrate that the arousal of neuronal LSD1 isoforms pacemakes early neurite morphogenesis, conferring a neurospecific function to LSD1 epigenetic activity.
Collapse
|
28
|
Gómez AV, Galleguillos D, Maass JC, Battaglioli E, Kukuljan M, Andrés ME. CoREST represses the heat shock response mediated by HSF1. Mol Cell 2008; 31:222-31. [PMID: 18657505 DOI: 10.1016/j.molcel.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 03/23/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
The stress response in cells involves a rapid and transient transcriptional activation of stress genes. It has been shown that Hsp70 limits its own transcriptional activation functioning as a corepressor of heat shock factor 1 (HSF1) during the attenuation of the stress response. Here we show that the transcriptional corepressor CoREST interacts with Hsp70. Through this interaction, CoREST represses both HSF1-dependent and heat shock-dependent transcriptional activation of the hsp70 promoter. In cells expressing short hairpin RNAs directed against CoREST, Hsp70 cannot repress HSF1-dependent transcription. A reduction of CoREST levels also provoked a significant increase of Hsp70 protein levels and an increase of HSF1-dependent transactivation of hsp70 promoter. Via chromatin immunoprecipitation assays we show that CoREST is bound to the hsp70 gene promoter under basal conditions and that its binding increases during heat shock response. In conclusion, we demonstrated that CoREST is a key regulator of the heat shock stress response.
Collapse
Affiliation(s)
- Andrea V Gómez
- Millenium Nucleus in Stress and Addiction, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | | | | | | | | | | |
Collapse
|
29
|
LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem Sci 2008; 33:181-9. [PMID: 18343668 DOI: 10.1016/j.tibs.2008.01.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/06/2008] [Accepted: 01/11/2008] [Indexed: 11/22/2022]
Abstract
Three years after its discovery, lysine-specific demethylase 1 remains at the forefront of chromatin research. Its demethylase activity on Lys4 of histone H3 supports its role in gene repression. By contrast, the biochemical mechanisms underlying lysine-specific demethylase 1 involvement in transcriptional activation are not firmly established. Structural studies highlight a specific binding site for the histone H3 N-terminal tail and a catalytic machinery that is closely related to that of other flavin-dependent amine oxidases. These insights are crucial for the development of demethylation inhibitors. Furthermore, the exploration of putative non-histone substrates and potential signaling roles of hydrogen peroxide produced by the demethylation reaction could lead to new paradigms in chromatin biology.
Collapse
|
30
|
Bajpe PK, van der Knaap JA, Demmers JAA, Bezstarosti K, Bassett A, van Beusekom HMM, Travers AA, Verrijzer CP. Deubiquitylating enzyme UBP64 controls cell fate through stabilization of the transcriptional repressor tramtrack. Mol Cell Biol 2008; 28:1606-15. [PMID: 18160715 PMCID: PMC2258761 DOI: 10.1128/mcb.01567-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/30/2007] [Accepted: 12/15/2007] [Indexed: 11/20/2022] Open
Abstract
Protein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate in the developing eye. UBP64 represses neuronal cell fate but promotes the formation of nonneuronal cone cells. Using a proteomics approach, we identified the transcriptional repressor Tramtrack (TTK) as a primary UBP64 substrate. In common with TTK, reduced UBP64 levels lead to a loss of cone cells, supernumerary photoreceptors, and mechanosensory bristle cells. Previously, it was demonstrated that the blockade of neuronal cell fate was relieved by SINA-dependent ubiquitylation and degradation of TTK. We found that UBP64 counteracts SINA function by deubiquitylating TTK, leading to its stabilization and thereby promoting a nonneuronal cell fate. Mass spectrometric mapping revealed that SINA ubiquitylates multiple sites dispersed throughout TTK, which are duly deubiquitylated by UBP64. This observation suggests that both E3 SINA and UBP64 use a scanning mechanism to (de)ubiquitylate TTK. We conclude that the balance of TTK ubiquitylation by SINA and deubiquitylation by UBP64 constitutes a specific posttranslational switch controlling cell fate.
Collapse
Affiliation(s)
- Prashanth Kumar Bajpe
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cooper SE, Murawsky CM, Lowe N, Travers AA. Two modes of degradation of the tramtrack transcription factors by Siah homologues. J Biol Chem 2007; 283:1076-83. [PMID: 17962185 DOI: 10.1074/jbc.m707765200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as ubiquitin-protein isopeptide ligase enzymes to target a wide range of cellular proteins for degradation. We report here a novel Drosophila protein that is homologous to Sina, named Sina-Homologue (SinaH). We show that it can direct the degradation of the transcriptional repressor Tramtrack (Ttk) using two different mechanisms. One is similar to Sina and requires the adaptor Phyllopod, and the other is a novel mechanism of recognition. This novel mode of targeting for degradation is specific for the 69-kDa Ttk isoform, Ttk69. Ttk69 contains a region that is required for binding of SinaH and for SinaH-directed degradation. This region contains an AXVXP motif, which is the consensus sequence found in Siah substrate proteins. These results suggest that degradation directed by SinaH differs from that directed by Sina and is more similar to that found in vertebrates. We speculate that SinaH may be involved in regulating the levels of developmentally important transcription factors.
Collapse
Affiliation(s)
- Sarah E Cooper
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Saleque S, Kim J, Rooke HM, Orkin SH. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 2007; 27:562-72. [PMID: 17707228 DOI: 10.1016/j.molcel.2007.06.039] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 04/27/2007] [Accepted: 06/25/2007] [Indexed: 02/06/2023]
Abstract
Gfi-1 and Gfi-1b are homologous transcriptional repressors involved in diverse developmental contexts, including hematopoiesis and oncogenesis. Transcriptional repression by Gfi proteins requires the conserved SNAG domain. To elucidate the function of Gfi proteins, we purified Gfi-1b complexes and identified interacting proteins. Prominent among these is the corepressor CoREST, the histone demethylase LSD1, and HDACs 1 and 2. CoREST and LSD1 associate with Gfi-1/1b via the SNAG repression domain. Gfi-1b further recruits these cofactors to the majority of target gene promoters in vivo. Inhibition of CoREST and LSD1 perturbs differentiation of erythroid, megakaryocytic, and granulocytic cells as well as primary erythroid progenitors. LSD1 depletion derepresses Gfi targets in lineage-specific patterns, accompanied by enhanced histone 3 lysine 4 methylation at the respective promoters. Overall, we show that chromatin regulatory proteins CoREST and LSD1 mediate transcriptional repression by Gfi proteins. Lineage-restricted deployment of these cofactors through interaction with Gfi proteins controls hematopoietic differentiation.
Collapse
Affiliation(s)
- Shireen Saleque
- Division of Hematology-Oncology, Children's Hospital Boston, Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
Visvanathan J, Lee S, Lee B, Lee JW, Lee SK. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 2007; 21:744-9. [PMID: 17403776 PMCID: PMC1838526 DOI: 10.1101/gad.1519107] [Citation(s) in RCA: 515] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuronal gene expression is tightly regulated in developing CNS. Here, we demonstrate the anti-neural function of phosphatase SCP1 (small C-terminal domain phosphatase 1) during development. We further show that the neuron-enriched microRNA miR-124 directly targets SCP1-3' untranslated region (UTR) to suppress SCP1 expression. In developing spinal cord, expression of miR-124 and SCP1 is complementary, and miR-124 antagonism phenocopies SCP1 overexpression and vice versa. In P19 cells, miR-124 suppresses SCP1 expression and induces neurogenesis, and SCP1 counteracts this proneural activity of miR-124. Our results suggest that, during CNS development, timely down-regulation of SCP1 is critical for inducing neurogenesis, and miR-124 contributes to this process at least in part by down-regulating SCP1 expression.
Collapse
Affiliation(s)
- Jaya Visvanathan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Seunghee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bora Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jae W. Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Soo-Kyung Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- The Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Corresponding author.E-MAIL ; FAX (713) 790-0545
| |
Collapse
|
34
|
Chosed R, Dent SYR. A Two-Way Street: LSD1 Regulates Chromatin Boundary Formation in S. pombe and Drosophila. Mol Cell 2007; 26:160-2. [PMID: 17466618 DOI: 10.1016/j.molcel.2007.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two recent studies in Molecular Cell (Lan et al., 2007; Rudolph et al., 2007) implicate histone demethylation by LSD1 in the regulation of boundaries between silenced and active chromatin domains in both fission yeast and flies, but by distinct mechanisms.
Collapse
Affiliation(s)
- Renee Chosed
- Program in Genes and Development, Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 2007; 8:307-18. [PMID: 17342184 DOI: 10.1038/nrm2143] [Citation(s) in RCA: 645] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone methylation has important roles in regulating transcription, genome integrity and epigenetic inheritance. Historically, methylated histone arginine and lysine residues have been considered static modifications because of the low levels of methyl-group turnover in chromatin. The recent identification of enzymes that antagonize or remove histone methylation has changed this view and now the dynamic nature of these modifications is being appreciated. Here, we examine the enzymatic and structural basis for the mechanisms that these enzymes use to counteract histone methylation and provide insights into their substrate specificity and biological function.
Collapse
Affiliation(s)
- Robert J Klose
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|
36
|
Lakowski B, Roelens I, Jacob S. CoREST-like complexes regulate chromatin modification and neuronal gene expression. J Mol Neurosci 2007; 29:227-39. [PMID: 17085781 DOI: 10.1385/jmn:29:3:227] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 11/30/1999] [Accepted: 02/03/2006] [Indexed: 12/29/2022]
Abstract
The mammalian CoREST ([co]repressor for element-1-silencing transcription factor) complex was first identified associated with the repressor for element-1 silencing transcription factor (REST)/neuronal restrictive silencing factor. The CoREST complex is a chromatin-modifying corepressor complex that acts with REST to regulate neuronal gene expression and neuronal stem cell fate. Components of a CoREST-like complex have been identified recently in Xenopus laevis, Caenorhabditis elegans, and Drosophila melanogaster. Like the mammalian complex, the Drosophila complex is required to regulate neuronal gene expression, whereas the C. elegans homologs regulate the expression of the hop-1 presenilin gene, suggesting an ancient conserved function of CoREST complexes in regulating neuronal gene expression.
Collapse
Affiliation(s)
- Bernard Lakowski
- Nematode Genetics Group, Department of Neuroscience, Pasteur Institute, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
37
|
Mortazavi A, Thompson ECL, Garcia ST, Myers RM, Wold B. Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genes Dev 2006; 16:1208-21. [PMID: 16963704 PMCID: PMC1581430 DOI: 10.1101/gr.4997306] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 07/19/2006] [Indexed: 01/09/2023]
Abstract
We constructed and applied an open source informatic framework called Cistematic in an effort to predict the target gene repertoire for transcription factors with large binding sites. Cistematic uses two different evolutionary conservation-filtering algorithms in conjunction with several analysis modules. Beginning with a single conserved and biologically tested site for the neuronal repressor NRSF/REST, Cistematic generated a refined PSFM (position specific frequency matrix) based on conserved site occurrences in mouse, human, and dog genomes. Predictions from this model were validated by chromatin immunoprecipitation (ChIP) followed by quantitative PCR. The combination of transfection assays and ChIP enrichment data provided an objective basis for setting a threshold for membership and rank-ordering a final gene cohort model consisting of 842 high-confidence sites in the human genome associated with 733 genes. Statistically significant enrichment of NRSE-associated genes was found for neuron-specific Gene Ontology (GO) terms and neuronal mRNA expression profiles. A more extensive evolutionary survey showed that NRSE sites matching the PSFM model exist in roughly similar numbers in all fully sequenced vertebrate genomes but are notably absent from invertebrate and protochordate genomes, as is NRSF itself. Some NRSF/REST sites reside in repeats, which suggests a mechanism for both ancient and modern dispersal of NRSEs through vertebrate genomes. Multiple predicted sites are located near neuronal microRNA and splicing-factor genes, and these tested positive for NRSF/REST occupancy in vivo. The resulting network model integrates post-transcriptional and translational controllers, including candidate feedback loops on NRSF and its corepressor, CoREST.
Collapse
Affiliation(s)
- Ali Mortazavi
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Sarah T. Garcia
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Richard M. Myers
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Barbara Wold
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
38
|
Tsuda L, Kaido M, Lim YM, Kato K, Aigaki T, Hayashi S. An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J 2006; 25:3191-202. [PMID: 16763555 PMCID: PMC1500973 DOI: 10.1038/sj.emboj.7601179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 05/15/2006] [Indexed: 11/09/2022] Open
Abstract
The corepressor complex that includes Ebi and SMRTER is a target of epidermal growth factor (EGF) and Notch signaling pathways and regulates Delta (Dl)-mediated induction of support cells adjacent to photoreceptor neurons of the Drosophila eye. We describe a mechanism by which the Ebi/SMRTER corepressor complex maintains Dl expression. We identified a gene, charlatan (chn), which encodes a C2H2-type zinc-finger protein resembling human neuronal restricted silencing factor/repressor element RE-1 silencing transcription factor (NRSF/REST). The Ebi/SMRTER corepressor complex represses chn transcription by competing with the activation complex that includes the Notch intracellular domain (NICD). Chn represses Dl expression and is critical for the initiation of eye development. Thus, under EGF signaling, double negative regulation mediated by the Ebi/SMRTER corepressor complex and an NRSF/REST-like factor, Chn, maintains inductive activity in developing photoreceptor cells by promoting Dl expression.
Collapse
Affiliation(s)
- Leo Tsuda
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Masako Kaido
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Young-Mi Lim
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Kagayaki Kato
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Shigeo Hayashi
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Life Science, Kobe University Graduate School of Science and Technology, Kobe, Japan
| |
Collapse
|
39
|
Conaco C, Otto S, Han JJ, Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 2006; 103:2422-7. [PMID: 16461918 PMCID: PMC1413753 DOI: 10.1073/pnas.0511041103] [Citation(s) in RCA: 560] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in both tissue differentiation and maintenance of tissue identity. In most cases, however, the mechanisms underlying their regulation are not known. One brain-specific miRNA, miR-124a, decreases the levels of hundreds of nonneuronal transcripts, such that its introduction into HeLa cells promotes a neuronal-like mRNA profile. The transcriptional repressor, RE1 silencing transcription factor (REST), has a reciprocal activity, inhibiting the expression of neuronal genes in nonneuronal cells. Here, we show that REST regulates the expression of a family of miRNAs, including brain-specific miR-124a. In nonneuronal cells and neural progenitors, REST inhibits miR-124a expression, allowing the persistence of nonneuronal transcripts. As progenitors differentiate into mature neurons, REST leaves miR-124a gene loci, and nonneuronal transcripts are degraded selectively. Thus, the combined transcriptional and posttranscriptional consequences of REST action maximize the contrast between neuronal and nonneuronal cell phenotypes.
Collapse
Affiliation(s)
- Cecilia Conaco
- Department of Neurobiology and Behavior, Howard Hughes Medical Institute, State University of New York, Stony Brook, NY 11794
| | - Stefanie Otto
- Department of Neurobiology and Behavior, Howard Hughes Medical Institute, State University of New York, Stony Brook, NY 11794
| | - Jong-Jin Han
- Department of Neurobiology and Behavior, Howard Hughes Medical Institute, State University of New York, Stony Brook, NY 11794
| | - Gail Mandel
- Department of Neurobiology and Behavior, Howard Hughes Medical Institute, State University of New York, Stony Brook, NY 11794
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 2005; 15:500-6. [PMID: 16150588 DOI: 10.1016/j.conb.2005.08.015] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/25/2005] [Indexed: 11/26/2022]
Abstract
Nervous system development relies on a complex signaling network to engineer the orderly transitions that lead to the acquisition of a neural cell fate. Progression from the non-neuronal pluripotent stem cell to a restricted neural lineage is characterized by distinct patterns of gene expression, particularly the restriction of neuronal gene expression to neurons. Concurrently, cells outside the nervous system acquire and maintain a non-neuronal fate that permanently excludes expression of neuronal genes. Studies of the transcriptional repressor REST, which regulates a large network of neuronal genes, provide a paradigm for elucidating the link between epigenetic mechanisms and neurogenesis. REST orchestrates a set of epigenetic modifications that are distinct between non-neuronal cells that give rise to neurons and those that are destined to remain as nervous system outsiders.
Collapse
Affiliation(s)
- Nurit Ballas
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
41
|
Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437:432-5. [PMID: 16079794 DOI: 10.1038/nature04021] [Citation(s) in RCA: 615] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 07/08/2005] [Indexed: 11/09/2022]
Abstract
We have previously described a multiprotein complex termed the BHC or BRAF-HDAC complex, which is required for the repression of neuronal-specific genes. We have shown that the BHC complex is recruited by a neuronal silencer, REST (RE1-silencing transcription factor), and mediates the repression of REST-responsive genes. BHC is a multiprotein complex consisting of two enzymatic activities: a histone deacetylase (HDAC1 or 2) and a recently described histone demethylase (BHC110, also known as LSD1 or AOF2). Here we show that BHC110-containing complexes show a nearly fivefold increase in demethylation of histone H3 lysine 4 (H3K4) compared to recombinant BHC110. Furthermore, recombinant BHC110 is unable to demethylate H3K4 on nucleosomes, but BHC110-containing complexes readily demethylate nucleosomes. In vitro reconstitution of the BHC complex using recombinant subunits reveals an essential role for the REST corepressor CoREST, not only in stimulating demethylation on core histones but also promoting demethylation of nucleosomal substrates. We find that nucleosomal demethylation is the result of CoREST enhancing the association between BHC110 and nucleosomes. Depletion of CoREST in in vivo cell culture results in de-repression of REST-responsive gene expression and increased methylation of H3K4. Together, these results highlight an essential role for CoREST in demethylation of H3K4 both in vitro and in vivo.
Collapse
Affiliation(s)
- Min Gyu Lee
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
42
|
Forneris F, Binda C, Vanoni MA, Mattevi A, Battaglioli E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett 2005; 579:2203-7. [PMID: 15811342 DOI: 10.1016/j.febslet.2005.03.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/11/2005] [Accepted: 03/06/2005] [Indexed: 10/25/2022]
Abstract
Lysine-specific histone demethylase 1 (LSD1) is a very recently discovered enzyme which specifically removes methyl groups from Lys4 of histone 3. We have addressed the functional properties of the protein demonstrating that histone demethylation involves the flavin-catalysed oxidation of the methylated lysine. The nature of the substrate that acts as the electron acceptor required to complete the catalytic cycle was investigated. LSD1 converts oxygen to hydrogen peroxide although this reactivity is not as pronounced as that of other flavin-dependent oxidases. Our findings raise the possibility that in vivo LSD1 might not necessarily function as an oxidase, but it might use alternative electron acceptors.
Collapse
Affiliation(s)
- Federico Forneris
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|