1
|
Faust TW, Mohebi A, Berke JD. Reward expectation and receipt differentially modulate the spiking of accumbens D1+ and D2+ neurons. Curr Biol 2025; 35:1285-1297.e3. [PMID: 40020662 PMCID: PMC11968066 DOI: 10.1016/j.cub.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/21/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025]
Abstract
The nucleus accumbens (NAc) helps govern motivation to pursue reward. Two distinct sets of NAc projection neurons-expressing dopamine D1 vs. D2 receptors-are thought to promote and suppress motivated behaviors, respectively. However, support for this conceptual framework is limited: in particular, the spiking patterns of these distinct cell types during motivated behavior have been largely unknown. Using optogenetic tagging, we recorded the spiking of identified D1+ and D2+ neurons in the NAc core as unrestrained rats performed an operant task in which motivation to initiate work tracks recent reward rate. D1+ neurons preferentially increased firing as rats initiated trials and fired more when reward expectation was higher. By contrast, D2+ cells preferentially increased firing later in the trial, especially in response to reward delivery-a finding not anticipated from current theoretical models. Our results provide new evidence for the specific contribution of NAc D1+ cells to self-initiated approach behavior and will spur updated models of how D2+ cells contribute to learning.
Collapse
Affiliation(s)
- T W Faust
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - A Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J D Berke
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Druart M, Kori M, Chaimowitz C, Fan C, Sippy T. Cell-type-specific auditory responses in the striatum are shaped by feedforward inhibition. Cell Rep 2025; 44:115090. [PMID: 39721025 PMCID: PMC12080217 DOI: 10.1016/j.celrep.2024.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways. We report that auditory-evoked depolarizations onto D1 SPN responses are stronger and faster. This is due to differences in feedforward inhibition, with fast-spiking interneurons forming stronger synapses onto D2 SPNs. Our results support a model in which differences in feedforward inhibition enable the preferential recruitment of D1 SPNs by auditory stimuli, positioning the direct pathway to initiate sound-driven actions.
Collapse
Affiliation(s)
- Mélanie Druart
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Megha Kori
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Corryn Chaimowitz
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Catherine Fan
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tanya Sippy
- Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Wickersham IR, Yoshida T, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits. Curr Biol 2024; 34:5263-5283.e8. [PMID: 39447573 DOI: 10.1016/j.cub.2024.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct D1 and indirect D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These striosomal D1 (S-D1) and D2 (S-D2) pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement with net effects opposite to those exerted by the canonical pathways: S-D1 is net inhibitory and S-D2 is net excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jill R Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vasiliki Skara
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johnny H Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jonathan T Ting
- Human Cell Types Department, Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Katagiri N, Tagata H, Uchino T, Arai Y, Saito J, Kamiya K, Hori M, Mizuno M, Nemoto T. Investigating changes in the premotor cortex-derived frontal-striatal-thalamic subcircuit in attenuated psychosis syndrome. Brain Imaging Behav 2024; 18:1153-1162. [PMID: 39196522 PMCID: PMC11582096 DOI: 10.1007/s11682-024-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Frontal-striatal-thalamic circuit impairment is presumed to underlie schizophrenia. Individuals with attenuated psychosis syndrome (APS) show longitudinal volume reduction of the putamen in the striatum, which has a neural connection with the premotor cortex through the frontal-striatal-thalamic subcircuit. However, comprehensive investigations into the biological changes in the frontal-striatal-thalamic subcircuit originating from the premotor cortex in APS are lacking. We investigated differences in fractional anisotropy (FA) values between the striatum and premotor cortex (ST-PREM) and between the thalamus and premotor cortex (T-PREM) in individuals with APS and healthy controls, using a novel method TractSeg. Our study comprised 36 individuals with APS and 38 healthy controls. There was a significant difference between the control and APS groups in the right T-PREM (odds ratio = 1.76, p = 0.02). Other factors, such as age, sex, other values of FA, and antipsychotic medication, were not associated with differences between groups. However, while FA value reduction of ST-PREM and T-PREM in schizophrenia has been previously reported, in the present study on APS, the alteration of the FA value was limited to T-PREM in APS. This finding suggests that ST-PREM impairment is not predominant in APS but emerges in schizophrenia. Impairment of the neural network originating from the premotor cortex can lead to catatonia and aberrant mirror neuron networks that are presumed to provoke various psychotic symptoms of schizophrenia. Our findings highlight the potential role of changes in a segment of the frontal-thalamic pathway derived from the premotor cortex as a biological basis of APS.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Takashi Uchino
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Psychiatry and Implementation Science, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yu Arai
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kouhei Kamiya
- Department of Radiology, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Psychiatry and Implementation Science, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| |
Collapse
|
5
|
Tang S, Cui L, Pan J, Xu NL. Dynamic ensemble balance in direct- and indirect-pathway striatal projection neurons underlying decision-related action selection. Cell Rep 2024; 43:114726. [PMID: 39276352 DOI: 10.1016/j.celrep.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The posterior dorsal striatum (pDS) plays an essential role in sensory-guided decision-making. However, it remains unclear how the antagonizing direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) work in concert to support action selection. Here, we employed deep-brain two-photon imaging to investigate pathway-specific single-neuron and population representations during an auditory-guided decision-making task. We found that the majority of pDS projection neurons predominantly encode choice information. Both dSPNs and iSPNs comprise divergent subpopulations of comparable sizes representing competing choices, rendering a multi-ensemble balance between the two pathways. Intriguingly, such ensemble balance displays a dynamic shift during the decision period: dSPNs show a significantly stronger preference for the contraversive choice than iSPNs. This dynamic shift is further manifested in the inter-neuronal coactivity and population trajectory divergence. Our results support a balance-shift model as a neuronal population mechanism coordinating the direct and indirect striatal pathways for eliciting selected actions during decision-making.
Collapse
Affiliation(s)
- Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
6
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Yoshida T, Wickersham IR, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic Direct-Indirect Basal Ganglia Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596922. [PMID: 38915684 PMCID: PMC11195572 DOI: 10.1101/2024.06.01.596922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These S-D1 and S-D2 striosomal pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement oppositely to the modulation by the canonical pathways: S-D1 is inhibitory and S-D2 is excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ian R. Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Johnny H. Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Jonathan T. Ting
- Human Cell Types Dept, Allen Institute for Brain Science, Seattle WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| |
Collapse
|
8
|
Fujiyama F, Karube F, Hirai Y. Globus pallidus is not independent from striatal direct pathway neurons: an up-to-date review. Mol Brain 2024; 17:34. [PMID: 38849935 PMCID: PMC11157709 DOI: 10.1186/s13041-024-01107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Striatal projection neurons, which are classified into two groups-direct and indirect pathway neurons, play a pivotal role in our understanding of the brain's functionality. Conventional models propose that these two pathways operate independently and have contrasting functions, akin to an "accelerator" and "brake" in a vehicle. This analogy further elucidates how the depletion of dopamine neurons in Parkinson's disease can result in bradykinesia. However, the question arises: are these direct and indirect pathways truly autonomous? Despite being distinct types of neurons, their interdependence cannot be overlooked. Single-neuron tracing studies employing membrane-targeting signals have shown that the majority of direct pathway neurons terminate not only in the output nuclei, but also in the external segment of the globus pallidus (GP in rodents), a relay nucleus of the indirect pathway. Recent studies have unveiled the existence of arkypallidal neurons, which project solely to the striatum, in addition to prototypic neurons. This raises the question of which type of GP neurons receive these striatal axon collaterals. Our morphological and electrophysiological experiments showed that the striatal direct pathway neurons may affect prototypic neurons via the action of substance P on neurokinin-1 receptors. Conversely, another research group has reported that direct pathway neurons inhibit arkypallidal neurons via GABA. Regardless of the neurotransmitter involved, it can be concluded that the GP is not entirely independent of direct pathway neurons. This review article underscores the intricate interplay between different neuronal pathways and challenges the traditional understanding of their independence.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Laboratory of Cytology and Histology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Fuyuki Karube
- Laboratory of Cytology and Histology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yasuharu Hirai
- Laboratory of Cytology and Histology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Jáidar O, Albarran E, Albarran EN, Wu YW, Ding JB. Refinement of efficient encodings of movement in the dorsolateral striatum throughout learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.596654. [PMID: 38895486 PMCID: PMC11185645 DOI: 10.1101/2024.06.06.596654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The striatum is required for normal action selection, movement, and sensorimotor learning. Although action-specific striatal ensembles have been well documented, it is not well understood how these ensembles are formed and how their dynamics may evolve throughout motor learning. Here we used longitudinal 2-photon Ca2+ imaging of dorsal striatal neurons in head-fixed mice as they learned to self-generate locomotion. We observed a significant activation of both direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs, respectively) during early locomotion bouts and sessions that gradually decreased over time. For dSPNs, onset- and offset-ensembles were gradually refined from active motion-nonspecific cells. iSPN ensembles emerged from neurons initially active during opponent actions before becoming onset- or offset-specific. Our results show that as striatal ensembles are progressively refined, the number of active nonspecific striatal neurons decrease and the overall efficiency of the striatum information encoding for learned actions increases.
Collapse
Affiliation(s)
- Omar Jáidar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Eddy Albarran
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Current address: Columbia University
| | | | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Current address: Institute of Molecular Biology, Academia Sinica
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
10
|
Druart M, Kori M, Chaimowitz C, Fan C, Sippy T. Cell-type specific auditory responses in the striatum are shaped by feed forward inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.592848. [PMID: 38766066 PMCID: PMC11100736 DOI: 10.1101/2024.05.09.592848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and has been demonstrated to play a role in behaviors that require sensorimotor integration including discrimination 1,2 , avoidance 3 and defense 4 responses. The output neurons of the striatum, the D1 and D2 striatal projection neurons (SPNs) that make up the direct and indirect pathways, respectively, are thought to play differential roles in these behavioral responses, although it remains unclear if or how these neurons display differential responsivity to sensory stimuli. Here, we used whole-cell recordings in vivo and ex vivo to examine the strength of excitatory and inhibitory synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways. While D1 and D2 SPNs both displayed stimulus-evoked depolarizations, D1 SPN responses were stronger and faster for all stimuli tested in vivo as well as in brain slices. This difference did not arise from differences in the strength of excitatory inputs but from differences in the strength of feed forward inhibition. Indeed, fast spiking interneurons, which are readily engaged by auditory afferents exerted stronger inhibition onto D2 SPNs compared to D1 SPNs. Our results support a model in which differences in feed forward inhibition enable the preferential recruitment of the direct pathway in response to auditory stimuli, positioning this pathway to initiate sound-driven actions.
Collapse
|
11
|
Tiroshi L, Atamna Y, Gilin N, Berkowitz N, Goldberg JA. Striatal Neurons Are Recruited Dynamically into Collective Representations of Self-Initiated and Learned Actions in Freely Moving Mice. eNeuro 2024; 11:ENEURO.0315-23.2023. [PMID: 38164559 PMCID: PMC11057506 DOI: 10.1523/eneuro.0315-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Striatal spiny projection neurons are hyperpolarized-at-rest (HaR) and driven to action potential threshold by a small number of powerful inputs-an input-output configuration that is detrimental to response reliability. Because the striatum is important for habitual behaviors and goal-directed learning, we conducted a microendoscopic imaging in freely moving mice that express a genetically encoded Ca2+ indicator sparsely in striatal HaR neurons to evaluate their response reliability during self-initiated movements and operant conditioning. The sparse expression was critical for longitudinal studies of response reliability, and for studying correlations among HaR neurons while minimizing spurious correlations arising from contamination by the background signal. We found that HaR neurons are recruited dynamically into action representation, with distinct neuronal subsets being engaged in a moment-by-moment fashion. While individual neurons respond with little reliability, the population response remained stable across days. Moreover, we found evidence for the temporal coupling between neuronal subsets during conditioned (but not innate) behaviors.
Collapse
Affiliation(s)
- Lior Tiroshi
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Yara Atamna
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Naomi Gilin
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Noa Berkowitz
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| |
Collapse
|
12
|
Liu J, Liu D, Pu X, Zou K, Xie T, Li Y, Yao H. The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior. Neurosci Bull 2023; 39:1544-1560. [PMID: 37253985 PMCID: PMC10533474 DOI: 10.1007/s12264-023-01073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/08/2023] [Indexed: 06/01/2023] Open
Abstract
The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaotian Pu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kexin Zou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaping Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
13
|
Li H, Jin X. Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. eLife 2023; 12:RP87644. [PMID: 37751468 PMCID: PMC10522336 DOI: 10.7554/elife.87644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The basal ganglia are known to be essential for action selection. However, the functional role of basal ganglia direct and indirect pathways in action selection remains unresolved. Here, by employing cell-type-specific neuronal recording and manipulation in mice trained in a choice task, we demonstrate that multiple dynamic interactions from the direct and indirect pathways control the action selection. While the direct pathway regulates the behavioral choice in a linear manner, the indirect pathway exerts a nonlinear inverted-U-shaped control over action selection, depending on the inputs and the network state. We propose a new center (direct)-surround (indirect)-context (indirect) 'Triple-control' functional model of basal ganglia, which can replicate the physiological and behavioral experimental observations that cannot be simply explained by either the traditional 'Go/No-go' or more recent 'Co-activation' model. These findings have important implications on understanding the basal ganglia circuitry and action selection in health and disease.
Collapse
Affiliation(s)
- Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal UniversityShanghaiChina
- NYU–ECNU Institute of Brain and Cognitive Science, New York University ShanghaiShanghaiChina
| |
Collapse
|
14
|
Rios A, Nonomura S, Kato S, Yoshida J, Matsushita N, Nambu A, Takada M, Hira R, Kobayashi K, Sakai Y, Kimura M, Isomura Y. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Commun Biol 2023; 6:914. [PMID: 37673949 PMCID: PMC10482957 DOI: 10.1038/s42003-023-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task. Movement-related activity of direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) were enhanced by reward expectation, similarly to the SNc dopaminergic neurons, in both medial and lateral nigrostriatal projections. Given the classical basal ganglia model wherein dopamine stimulates dSPNs and suppresses iSPNs through distinct dopamine receptors, dopamine might not be the primary driver of iSPN activity increasing following higher reward expectation. In contrast, outcome-related activity was affected by reward expectation in line with the classical model and reinforcement learning theory, suggesting purposive effects of reward expectation.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Aichi, 480-1195, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute of Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Aichi, 444-8585, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Minoru Kimura
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan.
| |
Collapse
|
15
|
Li H, Jin X. Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533567. [PMID: 36993546 PMCID: PMC10055198 DOI: 10.1101/2023.03.20.533567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The basal ganglia are known to be essential for action selection. However, the functional role of basal ganglia direct and indirect pathways in action selection remains unresolved. Here by employing cell-type-specific neuronal recording and manipulation in mice trained in a choice task, we demonstrate that multiple dynamic interactions from the direct and indirect pathways control the action selection. While the direct pathway regulates the behavioral choice in a linear manner, the indirect pathway exerts a nonlinear inverted-U-shaped control over action selection, depending on the inputs and the network state. We propose a new center (direct) - surround (indirect) - context (indirect) "Triple-control" functional model of basal ganglia, which can replicate the physiological and behavioral experimental observations that cannot be simply explained by either the traditional "Go/No-go" or more recent "Co-activation" model. These findings have important implications on understanding the basal ganglia circuitry and action selection in health and disease.
Collapse
Affiliation(s)
- Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- NYU–ECNU Institute of Brain and Cognitive Science, New York University Shanghai, 3663 North Zhongshan Road, Shanghai 200062, China
- Lead Contact
| |
Collapse
|
16
|
Soma S, Ohara S, Nonomura S, Suematsu N, Yoshida J, Pastalkova E, Sakai Y, Tsutsui KI, Isomura Y. Rat hippocampal CA1 region represents learning-related action and reward events with shorter latency than the lateral entorhinal cortex. Commun Biol 2023; 6:584. [PMID: 37258700 DOI: 10.1038/s42003-023-04958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
The hippocampus and entorhinal cortex are deeply involved in learning and memory. However, little is known how ongoing events are processed in the hippocampal-entorhinal circuit. By recording from head-fixed rats during action-reward learning, here we show that the action and reward events are represented differently in the hippocampal CA1 region and lateral entorhinal cortex (LEC). Although diverse task-related activities developed after learning in both CA1 and LEC, phasic activities related to action and reward events differed in the timing of behavioral event representation. CA1 represented action and reward events almost instantaneously, whereas the superficial and deep layers of the LEC showed a delayed representation of the same events. Interestingly, we also found that ramping activity towards spontaneous action was correlated with waiting time in both regions and exceeded that in the motor cortex. Such functional activities observed in the entorhinal-hippocampal circuits may play a crucial role for animals in utilizing ongoing information to dynamically optimize their behaviors.
Collapse
Affiliation(s)
- Shogo Soma
- Brain Science Institute, Tamagawa University, Tokyo, Japan.
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Satoshi Nonomura
- Brain Science Institute, Tamagawa University, Tokyo, Japan
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, Japan
| | - Naofumi Suematsu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junichi Yoshida
- Brain Science Institute, Tamagawa University, Tokyo, Japan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eva Pastalkova
- Department of Clinical Psychology, Pacifica Graduate Institute, Carpinteria, CA, USA
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Tokyo, Japan.
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
17
|
Sippy T, Tritsch NX. Unraveling the dynamics of dopamine release and its actions on target cells. Trends Neurosci 2023; 46:228-239. [PMID: 36635111 PMCID: PMC10204099 DOI: 10.1016/j.tins.2022.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
The neuromodulator dopamine (DA) is essential for regulating learning, motivation, and movement. Despite its importance, however, the mechanisms by which DA influences the activity of target cells to alter behavior remain poorly understood. In this review, we describe recent methodological advances that are helping to overcome challenges that have historically hindered the field. We discuss how the employment of these methods is shedding light on the complex dynamics of extracellular DA in the brain, as well as how DA signaling alters the electrical, biochemical, and population activity of target neurons in vivo. These developments are generating novel hypotheses about the mechanisms through which DA release modifies behavior.
Collapse
Affiliation(s)
- Tanya Sippy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
18
|
Crego ACG, Amaya KA, Palmer JA, Smith KS. Task history dictates how the dorsolateral striatum controls action strategy and vigor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523640. [PMID: 36711550 PMCID: PMC9882068 DOI: 10.1101/2023.01.11.523640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dorsolateral striatum (DLS) is linked to the learning and honing of action routines. However, the DLS is also important for performing behaviors that have been successful in the past. The learning function can be thought of as prospective, helping to plan ongoing actions to be efficient and often optimal. The performance function is more retrospective, helping the animal continue to behave in a way that had worked previously. How the DLS manages this all is curious. What happens when a learned behavior becomes sub-optimal due to environment changes. In this case, the prospective function of the DLS would cause animals to (adaptively) learn and plan more optimal actions. In contrast, the retrospective function would cause animals to (maladaptively) favor the old behavior. Here we find that, during a change in learned task rules, DLS inhibition causes animals to adjust less rapidly to the new task (and to behave less vigorously) in a 'maladaptive' way. Yet, when the task is changed back to the initially learned rules, DLS inhibition instead causes a rapid and vigorous adjustment of behavior in an 'adaptive' way. These results show that inhibiting the DLS biases behavior towards initially acquired strategies, implying a more retrospective outlook in action selection when the DLS is offline. Thus, an active DLS could encourage planning and learning action routines more prospectively. Moreover, the DLS control over behavior can appear to be either advantageous/flexible or disadvantageous/inflexible depending on task context, and its control over vigor can change depending on task context. Significant Statement Basal ganglia networks aid behavioral learning (a prospective planning function) but also favor the use of old behaviors (a retrospective performance function), making it unclear what happens when learned behaviors become suboptimal. Here we inhibit the dorsolateral striatum (DLS) as animals encounter a change in task rules, and again when they shift back to those learned task rules. DLS inhibition reduces adjustment to new task rules (and reduces behavioral vigor), but it increases adjustment back to the initially learned task rules later (and increases vigor). Thus, in both cases, DLS inhibition favored the use of the initially learned behavioral strategy, which could appear either maladaptive or adaptive. We suggest that the DLS might promote a prospective orientation of action control.
Collapse
|
19
|
Mitani K, Kawabata M, Isomura Y, Sakai Y. Automated and parallelized spike collision tests to identify spike signal projections. iScience 2022; 25:105071. [PMID: 36157577 PMCID: PMC9490030 DOI: 10.1016/j.isci.2022.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 10/28/2022] Open
Abstract
The spike collision test is a highly reliable technique to identify the axonal projection of a neuron recorded electrophysiologically for investigating functional spike information among brain areas. It is potentially applicable to more neuronal projections by combining multi-channel recording with optogenetic stimulation. Yet, it remains inefficient and laborious because an experimenter must visually select spikes in every channel and manually repeat spike collision tests for each neuron serially. Here, we automated spike collision tests for all channels in parallel (Multi-Linc analysis) in a multi-channel real-time processing system. The rat cortical neurons identified with this technique displayed physiological spike features consistent with excitatory projection neurons. Their antidromic spikes were similar in shape but slightly larger in amplitude compared with spontaneous spikes. In addition, we demonstrated simultaneous identification of reciprocal or bifurcating projections among cortical areas. Thus, our Multi-Linc analysis will be a powerful approach to elucidate interareal spike communication.
Collapse
Affiliation(s)
- Keita Mitani
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.,Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Kawabata
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.,Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan.,Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
20
|
Delevich K, Hoshal B, Zhou LZ, Zhang Y, Vedula S, Lin WC, Chase J, Collins AGE, Wilbrecht L. Activation, but not inhibition, of the indirect pathway disrupts choice rejection in a freely moving, multiple-choice foraging task. Cell Rep 2022; 40:111129. [PMID: 35905722 PMCID: PMC10481643 DOI: 10.1016/j.celrep.2022.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The dorsomedial striatum (DMS) plays a key role in action selection, but less is known about how direct and indirect pathway spiny projection neurons (dSPNs and iSPNs, respectively) contribute to choice rejection in freely moving animals. Here, we use pathway-specific chemogenetic manipulation during a serial choice foraging task to test the role of dSPNs and iSPNs in learned choice rejection. We find that chemogenetic activation, but not inhibition, of iSPNs disrupts rejection of nonrewarded choices, contrary to predictions of a simple "select/suppress" heuristic. Our findings suggest that iSPNs' role in stopping and freezing does not extend in a simple fashion to choice rejection in an ethological, freely moving context. These data may provide insights critical for the successful design of interventions for addiction or other conditions in which it is desirable to strengthen choice rejection.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Benjamin Hoshal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lexi Z Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuting Zhang
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Satya Vedula
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juliana Chase
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anne G E Collins
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
A dual-process perspective to explore decision making in internet gaming disorder: An ERP study of comparison with recreational game users. COMPUTERS IN HUMAN BEHAVIOR 2022. [DOI: 10.1016/j.chb.2021.107104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Ogata K, Kadono F, Hirai Y, Inoue KI, Takada M, Karube F, Fujiyama F. Conservation of the Direct and Indirect Pathway Dichotomy in Mouse Caudal Striatum With Uneven Distribution of Dopamine Receptor D1- and D2-Expressing Neurons. Front Neuroanat 2022; 16:809446. [PMID: 35185482 PMCID: PMC8854186 DOI: 10.3389/fnana.2022.809446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The striatum is one of the key nuclei for adequate control of voluntary behaviors and reinforcement learning. Two striatal projection neuron types, expressing either dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R) constitute two independent output routes: the direct or indirect pathways, respectively. These pathways co-work in balance to achieve coordinated behavior. Two projection neuron types are equivalently intermingled in most striatal space. However, recent studies revealed two atypical zones in the caudal striatum: the zone in which D1R-neurons are the minor population (D1R-poor zone) and that in which D2R-neurons are the minority (D2R-poor zone). It remains obscure as to whether these imbalanced zones have similar properties on axonal projections and electrophysiology compared to other striatal regions. Based on morphological experiments in mice using immunofluorescence, in situ hybridization, and neural tracing, here, we revealed that the poor zones densely projected to the globus pallidus and substantia nigra pars lateralis, with a few collaterals in substantia nigra pars reticulata and compacta. Similar to that in other striatal regions, D1R-neurons were the direct pathway neurons. We also showed that the membrane properties of projection neurons in the poor zones were largely similar to those in the conventional striatum using in vitro electrophysiological recording. In addition, the poor zones existed irrespective of the age or sex of mice. We also identified the poor zones in the common marmoset as well as other rodents. These results suggest that the poor zones in the caudal striatum follow the conventional projection patterns irrespective of the imbalanced distribution of projection neurons. The poor zones could be an innate structure and common in mammals. The unique striatal zones possessing highly restricted projections could relate to functions different from those of motor-related striatum.
Collapse
Affiliation(s)
- Kumiko Ogata
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuko Kadono
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Fuyuki Karube,
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Fumino Fujiyama,
| |
Collapse
|
23
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
24
|
Howe AG, Blair HT. Modulation of lateral septal and dorsomedial striatal neurons by hippocampal sharp-wave ripples, theta rhythm, and running speed. Hippocampus 2021; 32:153-178. [PMID: 34918836 PMCID: PMC9299855 DOI: 10.1002/hipo.23398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 05/04/2021] [Accepted: 11/28/2021] [Indexed: 11/12/2022]
Abstract
Single units were recorded in hippocampus, lateral septum (LS), and dorsomedial striatum (DMS) while freely behaving rats (n = 3) ran trials in a T‐maze task and rested in a holding bucket between trials. In LS, 28% (64/226) of recorded neurons were excited and 14% (31/226) were inhibited during sharp wave ripples (SWRs). LS neurons that were excited during SWRs fired preferentially on the downslope of hippocampal theta rhythm and had firing rates that were positively correlated with running speed; LS neurons that were inhibited during SWRs fired preferentially on the upslope of hippocampal theta rhythm and had firing rates that were negatively correlated with running speed. In DMS, only 3.3% (12/366) of recorded neurons were excited and 5.7% (21/366) were inhibited during SWRs. As in LS, DMS neurons that were excited by SWRs tended to have firing rates that were positively modulated by running speed, whereas DMS neurons that were inhibited by SWRs tended to have firing rates that were negatively modulated by running speed. But in contrast with LS, these two DMS subpopulations did not clearly segregate their spikes to different phases of the theta cycle. Based on these results and a review of prior findings, we discuss how concurrent activation of spatial trajectories in hippocampus and motor representations in LS and DMS may contribute to neural computations that support reinforcement learning and value‐based decision making.
Collapse
Affiliation(s)
- Andrew G Howe
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Hugh T Blair
- Department of Psychology, UCLA, Los Angeles, California, USA
| |
Collapse
|
25
|
K Namboodiri VM, Stuber GD. The learning of prospective and retrospective cognitive maps within neural circuits. Neuron 2021; 109:3552-3575. [PMID: 34678148 PMCID: PMC8809184 DOI: 10.1016/j.neuron.2021.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Brain circuits are thought to form a "cognitive map" to process and store statistical relationships in the environment. A cognitive map is commonly defined as a mental representation that describes environmental states (i.e., variables or events) and the relationship between these states. This process is commonly conceptualized as a prospective process, as it is based on the relationships between states in chronological order (e.g., does reward follow a given state?). In this perspective, we expand this concept on the basis of recent findings to postulate that in addition to a prospective map, the brain forms and uses a retrospective cognitive map (e.g., does a given state precede reward?). In doing so, we demonstrate that many neural signals and behaviors (e.g., habits) that seem inflexible and non-cognitive can result from retrospective cognitive maps. Together, we present a significant conceptual reframing of the neurobiological study of associative learning, memory, and decision making.
Collapse
Affiliation(s)
- Vijay Mohan K Namboodiri
- Department of Neurology, Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Chen Z, Zhang ZY, Zhang W, Xie T, Li Y, Xu XH, Yao H. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Rep 2021; 37:109847. [PMID: 34686331 DOI: 10.1016/j.celrep.2021.109847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Drinking behavior in rodents is characterized by stereotyped, rhythmic licking movement, which is regulated by the basal ganglia. It is unclear how direct and indirect pathways control the lick bout and individual spout contact. We find that inactivating D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the ventrolateral striatum (VLS) oppositely alters the number of licks in a bout. D1- and D2-MSNs exhibit different patterns of lick-sequence-related activity and different phases of oscillation time-locked to the lick cycle. On the timescale of a lick cycle, transient inactivation of D1-MSNs during tongue protrusion reduces spout contact probability, whereas transiently inactivating D2-MSNs has no effect. On the timescale of a lick bout, inactivation of D1-MSNs (D2-MSNs) causes rate increase (decrease) in a subset of basal ganglia output neurons that decrease firing during licking. Our results reveal the distinct roles of D1- and D2-MSNs in regulating licking at both coarse and fine timescales.
Collapse
Affiliation(s)
- Zhaorong Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaping Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
27
|
Handa T, Harukuni R, Fukai T. Concomitant Processing of Choice and Outcome in Frontal Corticostriatal Ensembles Correlates with Performance of Rats. Cereb Cortex 2021; 31:4357-4375. [PMID: 33914862 PMCID: PMC8328202 DOI: 10.1093/cercor/bhab091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/30/2022] Open
Abstract
The frontal cortex-basal ganglia network plays a pivotal role in adaptive goal-directed behaviors. Medial frontal cortex (MFC) encodes information about choices and outcomes into sequential activation of neural population, or neural trajectory. While MFC projects to the dorsal striatum (DS), whether DS also displays temporally coordinated activity remains unknown. We studied this question by simultaneously recording neural ensembles in the MFC and DS of rodents performing an outcome-based alternative choice task. We found that the two regions exhibited highly parallel evolution of neural trajectories, transforming choice information into outcome-related information. When the two trajectories were highly correlated, spike synchrony was task-dependently modulated in some MFC-DS neuron pairs. Our results suggest that neural trajectories concomitantly process decision-relevant information in MFC and DS with increased spike synchrony between these regions.
Collapse
Affiliation(s)
- Takashi Handa
- Department of Behavior and Brain Organization, Center Advanced European Study and Research (Caesar), Bonn 53175, Germany
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences (Medicine), Hiroshima University, Hiroshima 734-8553, Japan
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Rie Harukuni
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Tomoki Fukai
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| |
Collapse
|
28
|
Cano A, Ettcheto M, Espina M, Auladell C, Folch J, Kühne BA, Barenys M, Sánchez-López E, Souto EB, García ML, Turowski P, Camins A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond) 2021; 16:19-35. [PMID: 33410329 DOI: 10.2217/nnm-2020-0239] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To compare free and nanoparticle (NP)-encapsulated epigallocatechin-3-gallate (EGCG) for the treatment of Huntington's disease (HD)-like symptoms in mice. Materials & methods: EGCG was incorporated into PEGylated poly(lactic-co-glycolic) acid NPs with ascorbic acid (AA). HD-like striatal lesions and motor deficit were induced in mice by 3-nitropropionic acid-intoxication. EGCG and EGCG/AA NPs were co-administered and behavioral motor assessments and striatal histology performed after 5 days. Results: EGCG/AA NPs were significantly more effective than free EGCG in reducing motor disturbances and depression-like behavior associated with 3-nitropropionic acid toxicity. EGCG/AA NPs treatment also mitigated neuroinflammation and prevented neuronal loss. Conclusion: NP encapsulation enhances therapeutic robustness of EGCG in this model of HD symptomatology. Together with our previous findings, this highlights the potential of EGCG/AA NPs in the symptomatic treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| |
Collapse
|
29
|
Xiao X, Deng H, Furlan A, Yang T, Zhang X, Hwang GR, Tucciarone J, Wu P, He M, Palaniswamy R, Ramakrishnan C, Ritola K, Hantman A, Deisseroth K, Osten P, Huang ZJ, Li B. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement. Cell 2020; 183:211-227.e20. [PMID: 32937106 DOI: 10.1016/j.cell.2020.08.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/02/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the direct pathway, drives negative reinforcement and is essential for aversive learning in mice. Contrasting a "conventional" striosomal direct pathway, the Tshz1 neurons cause aversion, movement suppression, and negative reinforcement once activated, and they receive a distinct set of synaptic inputs. These neurons are predominantly excited by punishment rather than reward and represent the anticipation of punishment or the motivation for avoidance. Furthermore, inhibiting these neurons impairs punishment-based learning without affecting reward learning or movement. These results establish a major role of striosomal neurons in behaviors reinforced by punishment and moreover uncover functions of the direct pathway unaccounted for in classic models.
Collapse
Affiliation(s)
- Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hanfei Deng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Tao Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ga-Ram Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Charu Ramakrishnan
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Adam Hantman
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
30
|
Urakubo H, Yagishita S, Kasai H, Ishii S. Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity. PLoS Comput Biol 2020; 16:e1008078. [PMID: 32701987 PMCID: PMC7402527 DOI: 10.1371/journal.pcbi.1008078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 08/04/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Animals remember temporal links between their actions and subsequent rewards. We previously discovered a synaptic mechanism underlying such reward learning in D1 receptor (D1R)-expressing spiny projection neurons (D1 SPN) of the striatum. Dopamine (DA) bursts promote dendritic spine enlargement in a time window of only a few seconds after paired pre- and post-synaptic spiking (pre-post pairing), which is termed as reinforcement plasticity (RP). The previous study has also identified underlying signaling pathways; however, it still remains unclear how the signaling dynamics results in RP. In the present study, we first developed a computational model of signaling dynamics of D1 SPNs. The D1 RP model successfully reproduced experimentally observed protein kinase A (PKA) activity, including its critical time window. In this model, adenylate cyclase type 1 (AC1) in the spines/thin dendrites played a pivotal role as a coincidence detector against pre-post pairing and DA burst. In particular, pre-post pairing (Ca2+ signal) stimulated AC1 with a delay, and the Ca2+-stimulated AC1 was activated by the DA burst for the asymmetric time window. Moreover, the smallness of the spines/thin dendrites is crucial to the short time window for the PKA activity. We then developed a RP model for D2 SPNs, which also predicted the critical time window for RP that depended on the timing of pre-post pairing and phasic DA dip. AC1 worked for the coincidence detector in the D2 RP model as well. We further simulated the signaling pathway leading to Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation and clarified the role of the downstream molecules of AC1 as the integrators that turn transient input signals into persistent spine enlargement. Finally, we discuss how such timing windows guide animals' reward learning.
Collapse
Affiliation(s)
- Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| |
Collapse
|
31
|
Rizzi G, Tan KR. Synergistic Nigral Output Pathways Shape Movement. Cell Rep 2020; 27:2184-2198.e4. [PMID: 31091455 DOI: 10.1016/j.celrep.2019.04.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 01/26/2023] Open
Abstract
Locomotion relies on the activity of basal ganglia networks, where, as the output, the substantia nigra pars reticulata (SNr) integrates incoming signals and relays them to downstream areas. The cellular and circuit substrates of such a complex function remain unclear. We hypothesized that the SNr controls different aspects of locomotion through coordinated cell-type-specific sub-circuits. Using anatomical mapping, single-cell qPCR, and electrophysiological techniques, we identified two SNr sub-populations: the centromedial-thalamo projectors (CMps) and the SN compacta projectors (SNcps), which are genetically targeted based on vesicular transporter for gamma-aminobutyric acid (VGAT) or parvalbumin (PV) expression, respectively. Optogenetic manipulation of these two sub-types across a series of motor tests provided evidence that they govern different aspects of motor behavior. While CMp activity supports the continuity of motor patterns, SNcp modulates the immediate motor drive behind them. Collectively, our data suggest that at least two different sub-circuits arise from the SNr, engage different behavioral motor components, and collaborate to produce correct locomotion.
Collapse
Affiliation(s)
- Giorgio Rizzi
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Kelly R Tan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
32
|
Tanaka T, Isomura Y, Kobayashi K, Hanakawa T, Tanaka S, Honda M. Electrophysiological Effects of Transcranial Direct Current Stimulation on Neural Activity in the Rat Motor Cortex. Front Neurosci 2020; 14:495. [PMID: 32714126 PMCID: PMC7340144 DOI: 10.3389/fnins.2020.00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/20/2020] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the neuronal membrane potential. We have previously documented a sustainable increase in extracellular dopamine levels in the rat striatum of cathodal tDCS, suggesting that cathodal tDCS enhances the neuronal excitability of the cortex. In the present study, we investigated changes in neuronal activity in the cerebral cortex induced by tDCS at the point beneath the stimulus electrode in anesthetized rats in vivo. Multiunit recordings were performed to examine changes in neuronal activity before and after the application of tDCS. In the cathodal tDCS group, multiunit activity (indicating the collective firing rate of recorded neuronal populations) increased in the cerebral cortex. Both anodal and cathodal tDCS increased the firing rate of isolated single units in the cerebral cortex. Significant differences in activity were observed immediately following stimulation and persisted for more than an hour after stimulation. The primary finding of this study was that both anodal and cathodal tDCS increased in vivo neuronal activity in the rat cerebral cortex underneath the stimulus electrode.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan.,Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshikazu Isomura
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Hanakawa
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Centre, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Manabu Honda
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
33
|
Cell-Type-Specific Outcome Representation in the Primary Motor Cortex. Neuron 2020; 107:954-971.e9. [PMID: 32589878 DOI: 10.1016/j.neuron.2020.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Adaptive movements are critical for animal survival. To guide future actions, the brain monitors various outcomes, including achievement of movement and appetitive goals. The nature of these outcome signals and their neuronal and network realization in the motor cortex (M1), which directs skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in the murine forelimb M1. We found two populations of layer 2-3 neurons, termed success- and failure-related neurons, that develop with training, and report end results of trials. In these neurons, prolonged responses were recorded after success or failure trials independent of reward and kinematics. In addition, the initial state of layer 5 pyramidal tract neurons contained a memory trace of the previous trial's outcome. Intertrial cortical activity was needed to learn new task requirements. These M1 layer-specific performance outcome signals may support reinforcement motor learning of skilled behavior.
Collapse
|
34
|
A neural network model of basal ganglia's decision-making circuitry. Cogn Neurodyn 2020; 15:17-26. [PMID: 33786076 DOI: 10.1007/s11571-020-09609-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
The basal ganglia have been increasingly recognized as an important structure involved in decision making. Neurons in the basal ganglia were found to reflect the evidence accumulation process during decision making. However, it is not well understood how the direct and indirect pathways of the basal ganglia work together for decision making. Here, we create a recurrent neural network model that is composed of the direct and indirect pathways and test it with the classic random dot motion discrimination task. The direct pathway drives the outputs, which are modulated through a gating mechanism controlled by the indirect pathway. We train the network to learn the task and find that the network reproduces the accuracy and reaction time patterns of previous animal studies. Units in the model exhibit ramping activities that reflect evidence accumulation. Finally, we simulate manipulations of the direct and indirect pathways and find that the manipulations of the direct pathway mainly affect the choice while the manipulations of the indirect pathway affect the model's reaction time. These results suggest a potential circuitry mechanism of the basal ganglia's role in decision making with predictions that can be tested experimentally in the future.
Collapse
|
35
|
Bakhurin KI, Li X, Friedman AD, Lusk NA, Watson GDR, Kim N, Yin HH. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife 2020; 9:e54831. [PMID: 32324535 PMCID: PMC7180055 DOI: 10.7554/elife.54831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia have been implicated in action selection and timing, but the relative contributions of the striatonigral (direct) and striatopallidal (indirect) pathways to these functions remain unclear. We investigated the effects of optogenetic stimulation of D1+ (direct) and A2A+ (indirect) neurons in the ventrolateral striatum in head-fixed mice on a fixed time reinforcement schedule. Direct pathway stimulation initiates licking, whereas indirect pathway stimulation suppresses licking and results in rebound licking after stimulation. Moreover, direct and indirect pathways also play distinct roles in timing. Direct pathway stimulation produced a resetting of the internal timing process, whereas indirect pathway stimulation transiently paused timing, and proportionally delayed the next bout of licking. Our results provide evidence for the continuous and opposing contributions of the direct and indirect pathways in the production and timing of reward-guided behavior.
Collapse
Affiliation(s)
| | - Xiaoran Li
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | | | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Glenn DR Watson
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
36
|
Continuous Representations of Speed by Striatal Medium Spiny Neurons. J Neurosci 2020; 40:1679-1688. [PMID: 31953369 DOI: 10.1523/jneurosci.1407-19.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
The striatum is critical for controlling motor output. However, it remains unclear how striatal output neurons encode and facilitate movement. A prominent theory suggests that striatal units encode movements in bursts of activity near specific events, such as the start or end of actions. These bursts are theorized to gate or permit specific motor actions, thereby encoding and facilitating complex sequences of actions. An alternative theory has suggested that striatal neurons encode continuous changes in sensory or motor information with graded changes in firing rate. Supporting this theory, many striatal neurons exhibit such graded changes without bursting near specific actions. Here, we evaluated these two theories in the same recordings of mice (both male and female). We recorded single-unit and multiunit activity from the dorsomedial striatum of mice as they spontaneously explored an arena. We observed both types of encoding, although continuous encoding was more prevalent than bursting near movement initiation or termination. The majority of recorded units did not exhibit positive linear relationships with speed but instead exhibited nonlinear relationships that peaked at a range of locomotor speeds. Bulk calcium recordings of identified direct and indirect pathway neurons revealed similar speed tuning profiles, indicating that the heterogeneity in response profiles was not due to this genetic distinction. We conclude that continuous encoding of speed is a central component of movement encoding in the striatum.SIGNIFICANCE STATEMENT The striatum is a structure that is linked to volitional movements and is a primary site of pathology in movement disorders. It remains unclear how striatal neurons encode motor parameters and use them to facilitate movement. Here, we evaluated two models for this: a "discrete encoding model" in which striatal neurons facilitate movements with brief burst of activity near the start and end of movements, and a "continuous encoding model," in which striatal neurons encode the sensory or motor state of the animal with continuous changes in firing. We found evidence primarily in support of the continuous encoding model. This may have implications for understanding the striatal control of movement, as well as informing therapeutic approaches for treating movement disorders.
Collapse
|
37
|
Transient Chemogenetic Inhibition of D1-MSNs in the Dorsal Striatum Enhances Methamphetamine Self-Administration. Brain Sci 2019; 9:brainsci9110330. [PMID: 31752398 PMCID: PMC6895983 DOI: 10.3390/brainsci9110330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
The dorsal striatum is important for the development of drug addiction; however, the role of dopamine D1 receptor (D1R) expressing medium-sized spiny striatonigral (direct pathway) neurons (D1-MSNs) in regulating excessive methamphetamine intake remains elusive. Here we seek to determine if modulating D1-MSNs in the dorsal striatum alters methamphetamine self-administration in animals that have demonstrated escalation of self-administration. A viral vector-mediated approach was used to induce expression of the inhibitory (Gi coupled-hM4D) or stimulatory (Gs coupled-rM3D) designer receptors exclusively activated by designer drugs (DREADDs) engineered to specifically respond to the exogenous ligand clozapine-N-oxide (CNO) selectively in D1-MSNs in the dorsal striatum. CNO in animals expressing hM4D increased responding for methamphetamine compared to vehicle in a within subject treatment paradigm. CNO in animals that did not express DREADDs (DREADD naïve-CNO) or expressed rM3D did not alter responding for methamphetamine, demonstrating specificity for hM4D-CNO interaction in increasing self-administration. Postmortem tissue analysis reveals that hM4D-CNO animals had reduced Fos immunoreactivity in the dorsal striatum compared to rM3D-CNO animals and DREADD naïve-CNO animals. Cellular mechanisms in the dorsal striatum in hM4D-CNO animals reveal enhanced expression of D1R and Ca2+/calmodulin-dependent kinase II (CaMKII). Conversely, rM3D-CNO animals had enhanced activity of extracellular signal-regulated kinase (Erk1/2) and Akt in the dorsal striatum, supporting rM3D-CNO interaction in these animals compared with drug naïve controls, DREADD naïve-CNO and hM4D-CNO animals. Our studies indicate that transient inhibition of D1-MSNs-mediated strengthening of methamphetamine addiction-like behavior is associated with cellular adaptations that support dysfunctional dopamine signaling in the dorsal striatum.
Collapse
|
38
|
Karube F, Takahashi S, Kobayashi K, Fujiyama F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife 2019; 8:e49511. [PMID: 31711567 PMCID: PMC6863630 DOI: 10.7554/elife.49511] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
The basal ganglia are critical for the control of motor behaviors and for reinforcement learning. Here, we demonstrate in rats that primary and secondary motor areas (M1 and M2) make functional synaptic connections in the globus pallidus (GP), not usually thought of as an input site of the basal ganglia. Morphological observation revealed that the density of axonal boutons from motor cortices in the GP was 47% and 78% of that in the subthalamic nucleus (STN) from M1 and M2, respectively. Cortical excitation of GP neurons was comparable to that of STN neurons in slice preparations. FoxP2-expressing arkypallidal neurons were preferentially innervated by the motor cortex. The connection probability of cortico-pallidal innervation was higher for M2 than M1. These results suggest that cortico-pallidal innervation is an additional excitatory input to the basal ganglia, and that it can affect behaviors via the cortex-basal ganglia-thalamus motor loop.
Collapse
Affiliation(s)
- Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
| | - Kenta Kobayashi
- Section of Viral Vector DevelopmentNational Institute for Physiological SciencesOkazakiJapan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
| |
Collapse
|
39
|
Sutton LP, Muntean BS, Ostrovskaya O, Zucca S, Dao M, Orlandi C, Song C, Xie K, Martemyanov KA. NF1-cAMP signaling dissociates cell type-specific contributions of striatal medium spiny neurons to reward valuation and motor control. PLoS Biol 2019; 17:e3000477. [PMID: 31600280 PMCID: PMC6805008 DOI: 10.1371/journal.pbio.3000477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/22/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
The striatum plays a fundamental role in motor learning and reward-related behaviors that are synergistically shaped by populations of D1 dopamine receptor (D1R)- and D2 dopamine receptor (D2R)-expressing medium spiny neurons (MSNs). How various neurotransmitter inputs converging on common intracellular pathways are parsed out to regulate distinct behavioral outcomes in a neuron-specific manner is poorly understood. Here, we reveal that distinct contributions of D1R-MSNs and D2R-MSNs towards reward and motor behaviors are delineated by the multifaceted signaling protein neurofibromin 1 (NF1). Using genetic mouse models, we show that NF1 in D1R-MSN modulates opioid reward, whereas loss of NF1 in D2R-MSNs delays motor learning by impeding the formation and consolidation of repetitive motor sequences. We found that motor learning deficits upon NF1 loss were associated with the disruption in dopamine signaling to cAMP in D2R-MSN. Restoration of cAMP levels pharmacologically or chemogenetically rescued the motor learning deficits seen upon NF1 loss in D2R-MSN. Our findings illustrate that multiplex signaling capabilities of MSNs are deployed at the level of intracellular pathways to achieve cell-specific control over behavioral outcomes. A mouse genetic study reveals that the multifaceted signaling protein neurofibromin (known for its role in the human genetic disease neurofibromatosis type 1) plays a key role in differential routing of motor and reward signals in populations of striatal medium spiny neurons.
Collapse
Affiliation(s)
- Laurie P. Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Brian S. Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Tsutsumi S, Hidaka N, Isomura Y, Matsuzaki M, Sakimura K, Kano M, Kitamura K. Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. eLife 2019; 8:47021. [PMID: 31596238 PMCID: PMC6844646 DOI: 10.7554/elife.47021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023] Open
Abstract
The cerebellum has a parasagittal modular architecture characterized by precisely organized climbing fiber (CF) projections that are congruent with alternating aldolase C/zebrin II expression. However, the behavioral relevance of CF inputs into individual modules remains poorly understood. Here, we used two-photon calcium imaging in the cerebellar hemisphere Crus II in mice performing an auditory go/no-go task to investigate the functional differences in CF inputs to modules. CF signals in medial modules show anticipatory decreases, early increases, secondary increases, and reward-related increases or decreases, which represent quick motor initiation, go cues, fast motor behavior, and positive reward outcomes. CF signals in lateral modules show early increases and reward-related decreases, which represent no-go and/or go cues and positive reward outcomes. The boundaries of CF functions broadly correspond to those of aldolase C patterning. These results indicate that spatially segregated CF inputs in different modules play distinct roles in the execution of goal-directed behavior.
Collapse
Affiliation(s)
- Shinichiro Tsutsumi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Naoki Hidaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan.,Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshikazu Isomura
- CREST, Japan Science and Technology Agency, Saitama, Japan.,Brain Science Institute, Tamagawa University, Tokyo, Japan.,Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Matsuzaki
- CREST, Japan Science and Technology Agency, Saitama, Japan.,Department of Cellular and Molecular Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan.,Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
41
|
Abstract
The striatum is essential for learning which actions lead to reward and for implementing those actions. Decades of experimental and theoretical work have led to several influential theories and hypotheses about how the striatal circuit mediates these functions. However, owing to technical limitations, testing these hypotheses rigorously has been difficult. In this Review, we briefly describe some of the classic ideas of striatal function. We then review recent studies in rodents that take advantage of optical and genetic methods to test these classic ideas by recording and manipulating identified cell types within the circuit. This new body of work has provided experimental support of some longstanding ideas about the striatal circuit and has uncovered critical aspects of the classic view that are incorrect or incomplete.
Collapse
Affiliation(s)
- Julia Cox
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
42
|
Amita H, Hikosaka O. Indirect pathway from caudate tail mediates rejection of bad objects in periphery. SCIENCE ADVANCES 2019; 5:eaaw9297. [PMID: 31457095 PMCID: PMC6685718 DOI: 10.1126/sciadv.aaw9297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The essential everyday task of making appropriate choices is a process controlled mainly by the basal ganglia. To this end, subjects need not only to find "good" objects in their environment but also to reject "bad" objects. To reveal this rejection mechanism, we created a sequential saccade choice task for monkeys and studied the role of the indirect pathway from the CDt (tail of the caudate nucleus) mediated by cvGPe (caudal-ventral globus pallidus externus). Neurons in cvGPe were typically inhibited by the appearance of bad objects; however, this inhibition was reduced on trials when the monkeys made undesired saccades to the bad objects. Moreover, disrupting the inhibitory influence of CDt on cvGPe by local injection of bicuculline (GABAA receptor antagonist) impaired the monkeys' ability to suppress saccades to bad objects. Thus, the indirect pathway mediates the rejection of bad choices, a crucial component of goal-directed behavior.
Collapse
|
43
|
Ciriachi C, Svane‐Petersen D, Rickhag M. Genetic tools to study complexity of striatal function. J Neurosci Res 2019; 97:1181-1193. [DOI: 10.1002/jnr.24479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Chiara Ciriachi
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - David Svane‐Petersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
44
|
A striatal interneuron circuit for continuous target pursuit. Nat Commun 2019; 10:2715. [PMID: 31222009 PMCID: PMC6586681 DOI: 10.1038/s41467-019-10716-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Most adaptive behaviors require precise tracking of targets in space. In pursuit behavior with a moving target, mice use distance to target to guide their own movement continuously. Here, we show that in the sensorimotor striatum, parvalbumin-positive fast-spiking interneurons (FSIs) can represent the distance between self and target during pursuit behavior, while striatal projection neurons (SPNs), which receive FSI projections, can represent self-velocity. FSIs are shown to regulate velocity-related SPN activity during pursuit, so that movement velocity is continuously modulated by distance to target. Moreover, bidirectional manipulation of FSI activity can selectively disrupt performance by increasing or decreasing the self-target distance. Our results reveal a key role of the FSI-SPN interneuron circuit in pursuit behavior and elucidate how this circuit implements distance to velocity transformation required for the critical underlying computation. Many natural behaviours involve tracking of a target in space. Here, the authors describe a task to assess this behaviour in mice and use in vivo electrophysiology, calcium imaging, optogenetics, and chemogenetics to investigate the role of the striatum in target pursuit.
Collapse
|
45
|
Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proc Natl Acad Sci U S A 2019; 116:11038-11047. [PMID: 31072930 DOI: 10.1073/pnas.1901712116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The dorsolateral striatum (DLS) is essential for motor and procedure learning, but the role of DLS spiny projection neurons (SPNs) of direct and indirect pathways, as marked, respectively, by D1 and D2 receptor (D1R and D2R) expression, remains to be clarified. Long-term two-photon calcium imaging of the same neuronal population during mouse learning of a cued lever-pushing task revealed a gradual emergence of distinct D1R and D2R neuronal ensembles that reproducibly fired in a sequential manner, with more D1R and D2R neurons fired during the lever-pushing period and intertrial intervals (ITIs), respectively. This sequential firing pattern was specifically associated with the learned motor behavior, because it changed markedly when the trained mice performed other cued motor tasks. Selective chemogenetic silencing of D1R and D2R neurons impaired the initiation of learned motor action and suppression of erroneous lever pushing during ITIs, respectively. Thus, motor learning involves reorganization of DLS neuronal activity, forming stable D1R and D2R neuronal ensembles that fired sequentially to regulate different aspects of the learned behavior.
Collapse
|
46
|
Saiki A, Sakai Y, Fukabori R, Soma S, Yoshida J, Kawabata M, Yawo H, Kobayashi K, Kimura M, Isomura Y. In Vivo Spiking Dynamics of Intra- and Extratelencephalic Projection Neurons in Rat Motor Cortex. Cereb Cortex 2019; 28:1024-1038. [PMID: 28137723 DOI: 10.1093/cercor/bhx012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
In motor cortex, 2 types of deep layer pyramidal cells send their axons to other areas: intratelencephalic (IT)-type neurons specifically project bilaterally to the cerebral cortex and striatum, whereas neurons of the extratelencephalic (ET)-type, termed conventionally pyramidal tract-type, project ipsilaterally to the thalamus and other areas. Although they have totally different synaptic and membrane potential properties in vitro, little is known about the differences between them in ongoing spiking dynamics in vivo. We identified IT-type and ET-type neurons, as well as fast-spiking-type interneurons, using novel multineuronal analysis based on optogenetically evoked spike collision along their axons in behaving/resting rats expressing channelrhodopsin-2 (Multi-Linc method). We found "postspike suppression" (~100 ms) as a characteristic of ET-type neurons in spike auto-correlograms, and it remained constant independent of behavioral conditions in functionally different ET-type neurons. Postspike suppression followed even solitary spikes, and spike bursts significantly extended its duration. We also observed relatively strong spike synchrony in pairs containing IT-type neurons. Thus, spiking dynamics in IT-type and ET-type neurons may be optimized differently for precise and coordinated motor control.
Collapse
Affiliation(s)
- Akiko Saiki
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan.,JST CREST, Tokyo 102-0076, Japan.,Department of Neurobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan.,JST CREST, Tokyo 102-0076, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Ryoji Fukabori
- JST CREST, Tokyo 102-0076, Japan.,Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shogo Soma
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Junichi Yoshida
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Masanori Kawabata
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Kazuto Kobayashi
- JST CREST, Tokyo 102-0076, Japan.,Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Minoru Kimura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan.,JST CREST, Tokyo 102-0076, Japan.,Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| |
Collapse
|
47
|
Klaus A, Alves da Silva J, Costa RM. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu Rev Neurosci 2019; 42:459-483. [PMID: 31018098 DOI: 10.1146/annurev-neuro-072116-031033] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.
Collapse
Affiliation(s)
- Andreas Klaus
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
48
|
Geddes CE, Li H, Jin X. Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell 2019; 174:32-43.e15. [PMID: 29958111 DOI: 10.1016/j.cell.2018.06.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
The organization of action into sequences underlies complex behaviors that are essential for organismal survival and reproduction. Despite extensive studies of innate sequences in relation to central pattern generators, how learned action sequences are controlled and whether they are organized as a chain or a hierarchy remain largely unknown. By training mice to perform heterogeneous action sequences, we demonstrate that striatal direct and indirect pathways preferentially encode different behavioral levels of sequence structure. State-dependent closed-loop optogenetic stimulation of the striatal direct pathway can selectively insert a single action element into the sequence without disrupting the overall sequence length. Optogenetic manipulation of the striatal indirect pathway completely removes the ongoing subsequence while leaving the following subsequence to be executed with the appropriate timing and length. These results suggest that learned action sequences are not organized in a serial but rather a hierarchical structure that is distinctly controlled by basal ganglia pathways.
Collapse
Affiliation(s)
- Claire E Geddes
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hao Li
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Bonnavion P, Fernández EP, Varin C, de Kerchove d’Exaerde A. It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. Neurochem Int 2019; 124:200-214. [DOI: 10.1016/j.neuint.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
|
50
|
Amita H, Kim HF, Smith MK, Gopal A, Hikosaka O. Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia. Eur J Neurosci 2019; 49:712-725. [PMID: 29737578 PMCID: PMC6492451 DOI: 10.1111/ejn.13936] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
Abstract
Direct and indirect pathways in the basal ganglia work together for controlling behavior. However, it is still a controversial topic whether these pathways are segregated or merged with each other. To address this issue, we studied the connections of these two pathways in the caudal parts of the basal ganglia of rhesus monkeys using anatomical tracers. Our previous studies showed that the caudal basal ganglia control saccades by conveying long-term values (stable values) of many visual objects toward the superior colliculus. In experiment 1, we injected a tracer in the caudate tail (CDt), and found local dense plexuses of axon terminals in the caudal-dorsal-lateral part of substantia nigra pars reticulata (cdlSNr) and the caudal-ventral part of globus pallidus externus (cvGPe). These anterograde projections may correspond to the direct and indirect pathways, respectively. To verify this in experiment 2, we injected different tracers into cdlSNr and cvGPe, and found many retrogradely labeled neurons in CDt and, in addition, the caudal-ventral part of the putamen (cvPut). These cdlSNr-projecting and cvGPe-projecting neurons were found intermingled in both CDt and cvPut (which we call "striatum tail"). A small but significant proportion of neurons (<15%) were double-labeled, indicating that they projected to both cdlSNr and cvGPe. These anatomical results suggest that stable value signals (good vs. bad) are sent from the striatum tail to cdlSNr and cvGPe in a biased (but not exclusive) manner. These connections may play an important role in biasing saccades toward higher valued objects and away from lower valued objects.
Collapse
Affiliation(s)
- Hidetoshi Amita
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| | - Hyoung F. Kim
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonKorea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)SuwonKorea
| | - Mitchell K. Smith
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| | - Atul Gopal
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| | - Okihide Hikosaka
- Laboratory of Sensorimotor ResearchNational Eye InstituteNational Institutes of HealthBethesdaMaryland
| |
Collapse
|