1
|
Zhang Z, Wang M, Dai R, Wang Z, Lei L, Zhao X, Han K, Shi C, Guo Q. GraphCVAE: Uncovering cell heterogeneity and therapeutic target discovery through residual and contrastive learning. Life Sci 2024; 359:123208. [PMID: 39488267 DOI: 10.1016/j.lfs.2024.123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Advancements in Spatial Transcriptomics (ST) technologies in recent years have transformed the analysis of tissue structure and function within spatial contexts. However, accurately identifying spatial domains remains challenging due to data sparsity and noise. Traditional clustering methods often fail to capture spatial dependencies, while spatial clustering methods struggle with batch effects and data integration. We introduce GraphCVAE, a model designed to enhance spatial domain identification by integrating spatial and morphological information, correcting batch effects, and managing heterogeneous data. GraphCVAE employs a multi-layer Graph Convolutional Network (GCN) and a variational autoencoder to improve the representation and integration of spatial information. Through contrastive learning, the model captures subtle differences between cell types and states. Extensive testing on various ST datasets demonstrates GraphCVAE's robustness and biological contributions. In the dorsolateral prefrontal cortex (DLPFC) dataset, it accurately delineates cortical layer boundaries. In glioblastoma, GraphCVAE reveals critical therapeutic targets such as TF and NFIB. In colorectal cancer, it explores the role of the extracellular matrix in colorectal cancer. The model's performance metrics consistently surpass existing methods, validating its effectiveness. GraphCVAE's advanced visualization capabilities further highlight its precision in resolving spatial structures, making it a powerful tool for spatial transcriptomics analysis and offering new insights into disease studies.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mengqiu Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ruoyan Dai
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhenghui Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lixin Lei
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xudong Zhao
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Chaojing Shi
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|
2
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
3
|
Goode-Romero G, Dominguez L. Descriptive molecular pharmacology of the δ opioid receptor (DOR): A computational study with structural approach. PLoS One 2024; 19:e0304068. [PMID: 38991032 PMCID: PMC11239112 DOI: 10.1371/journal.pone.0304068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
This work focuses on the δ receptor (DOR), a G protein-coupled receptor (GPCR) belonging to the opioid receptor group. DOR is expressed in numerous tissues, particularly within the nervous system. Our study explores computationally the receptor's interactions with various ligands, including opiates and opioid peptides. It elucidates how these interactions influence the δ receptor response, relevant in a wide range of health and pathological processes. Thus, our investigation aims to explore the significance of DOR as an incoming drug target for pain relief and neurodegenerative diseases and as a source for novel opioid non-narcotic analgesic alternatives. We analyze the receptor's structural properties and interactions using Molecular Dynamics (MD) simulations and Gaussian-accelerated MD across different functional states. To thoroughly assess the primary differences in the structural and conformational ensembles across our different simulated systems, we initiated our study with 1 μs of conventional Molecular Dynamics. The strategy was chosen to encompass the full activation cycle of GPCRs, as activation processes typically occur within this microsecond range. Following the cMD, we extended our study with an additional 100 ns of Gaussian accelerated Molecular Dynamics (GaMD) to enhance the sampling of conformational states. This simulation approach allowed us to capture a comprehensive range of dynamic interactions and conformational changes that are crucial for GPCR activation as influenced by different ligands. Our study includes comparing agonist and antagonist complexes to uncover the collective patterns of their functional states, regarding activation, blocking, and inactivation of DOR, starting from experimental data. In addition, we also explored interactions between agonist and antagonist molecules from opiate and opioid classifications to establish robust structure-activity relationships. These interactions have been systematically quantified using a Quantitative Structure-Activity Relationships (QSAR) model. This research significantly contributes to our understanding of this significant pharmacological target, which is emerging as an attractive subject for drug development.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Villarini NA, Robins N, Ou Y. Fabrication and Optimization of a Molecularly Imprinted Carbon Fiber Microelectrode for Selective Detection of Met-enkephalin Using Fast-Scan Cyclic Voltammetry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29728-29736. [PMID: 38804619 DOI: 10.1021/acsami.4c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Methionine-enkephalin (Met-Enk) is an endogenous opioid peptide that is involved in various physiological processes including memory. A technological gap in the understanding of Met-Enk's role in memory is the lack of rapid measurement tools to selectively quantify Met-Enk concentrations in situ. Here, we integrate molecularly imprinted polymers (MIPs) with carbon fiber microelectrodes (CFMs) to selectively detect Met-Enk by using fast-scan cyclic voltammetry (FSCV). We report two MIP conditions that yield 2-fold and 5-fold higher selectivity toward Met-Enk than the tyrosine-containing hexapeptide fragment angiotensin II (3-8). We demonstrate that MIP technology can be combined with FSCV at CFMs to create rapid and selective sensors for Met-Enk. This technology is a promising platform for creating selective sensors for other peptides and biomarkers.
Collapse
Affiliation(s)
- Nicole A Villarini
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Nathan Robins
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Yangguang Ou
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| |
Collapse
|
5
|
Roth JR, Rush T, Thompson SJ, Aldaher AR, Dunn TB, Mesina JS, Cochran JN, Boyle NR, Dean HB, Yang Z, Pathak V, Ruiz P, Wu M, Day JJ, Bostwick JR, Suto MJ, Augelli-Szafran CE, Roberson ED. Development of small-molecule Tau-SH3 interaction inhibitors that prevent amyloid-β toxicity and network hyperexcitability. Neurotherapeutics 2024; 21:e00291. [PMID: 38241154 PMCID: PMC10903085 DOI: 10.1016/j.neurot.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-β-induced dysfunction in preclinical models of AD and also prevents amyloid-β-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-β-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-β-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.
Collapse
Affiliation(s)
- Jonathan R Roth
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha J Thompson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Aldaher
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trae B Dunn
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob S Mesina
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hunter B Dean
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhengrong Yang
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibha Pathak
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Pedro Ruiz
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Mousheng Wu
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mark J Suto
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | | | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Tanguturi P, Streicher JM. The role of opioid receptors in modulating Alzheimer's Disease. Front Pharmacol 2023; 14:1056402. [PMID: 36937877 PMCID: PMC10014470 DOI: 10.3389/fphar.2023.1056402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurological disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles. Long term investigation of AD pathogenesis suggests that β-site amyloid precursor protein [APP] cleaving enzyme 1 (BACE1) and γ-secretase enzymes promote the amyloidogenic pathway and produce toxic Aβ peptides that are predisposed to aggregate in the brain. Hence, the targeted inhibition of BACE1/γ-secretase expression and function is a promising approach for AD therapy. Several reports have suggested that the opioid family of G-protein coupled receptors modulate the etiology of AD progression. It has also been found that changes in the signaling pathways of opioid receptors increased the expression of BACE1 and γ-secretase, and is strongly correlated with abnormal production of Aβ and pathogenesis of AD. Thus, the opioid receptor family is a promising candidate for targeted drug development to treat AD. In this review, we outline the involvement and mechanisms of opioid receptor signaling modulation in Alzheimer's Disease progression.
Collapse
Affiliation(s)
- Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Ma X, Feng Y, Quan X, Geng B, Li G, Fu X, Zeng L. Multi-omics analysis revealed the role of CCT2 in the induction of autophagy in Alzheimer's disease. Front Genet 2023; 13:967730. [PMID: 36704351 PMCID: PMC9871314 DOI: 10.3389/fgene.2022.967730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Chaperonin containing TCP1 subunit 2 (CCT2) is essential in various neurodegenerative diseases, albeit its role in the pathogenesis of Alzheimer's disease (AD) remains elusive. This study aimed to evaluate the role of CCT2 in Alzheimer's disease. First, bioinformatics database analysis revealed that CCT2 was significantly downregulated in patients with Alzheimer's disease and associated with autophagic clearance of β-amyloid. The 789 differentially expressed genes overlapped in AD-group and CCT2-low/high group, and the CCT2-high-associated genes screened by Pearson coefficients were enriched in protein folding, autophagy, and messenger RNA stability regulation pathways. These results suggest that CCT2 is significantly and positively associated with multiple pathways linked to autophagy and negatively associated with neuronal death. The logistic prediction model with 13 key genes, such as CCT2, screened in this study better predicts Alzheimer's disease occurrence (AUC = 0.9671) and is a favorable candidate for predicting potential biological targets of Alzheimer's disease. Additionally, this study predicts reciprocal micro RNAs and small molecule drugs for hub genes. Our findings suggest that low CCT2 expression may be responsible for the autophagy suppression in Alzheimer's disease, providing an accurate explanation for its pathogenesis and new targets and small molecule inhibitors for its treatment.
Collapse
Affiliation(s)
- Xueting Ma
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuxin Feng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangyu Quan
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Bingyu Geng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Guodong Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Linlin Zeng
- Edmond H. Fischer Signal Transduction laboratory, School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Linlin Zeng,
| |
Collapse
|
8
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
9
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
10
|
Das M, Mao W, Shao E, Tamhankar S, Yu GQ, Yu X, Ho K, Wang X, Wang J, Mucke L. Interdependence of neural network dysfunction and microglial alterations in Alzheimer's disease-related models. iScience 2021; 24:103245. [PMID: 34755090 PMCID: PMC8561005 DOI: 10.1016/j.isci.2021.103245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Nonconvulsive epileptiform activity and microglial alterations have been detected in people with Alzheimer's disease (AD) and related mouse models. However, the relationship between these abnormalities remains to be elucidated. We suppressed epileptiform activity by treatment with the antiepileptic drug levetiracetam or by genetic ablation of tau and found that these interventions reversed or prevented aberrant microglial gene expression in brain tissues of aged human amyloid precursor protein transgenic mice, which simulate several key aspects of AD. The most robustly modulated genes included multiple factors previously implicated in AD pathogenesis, including TREM2, the hypofunction of which increases disease risk. Genetic reduction of TREM2 exacerbated epileptiform activity after mice were injected with kainate. We conclude that AD-related epileptiform activity markedly changes the molecular profile of microglia, inducing both maladaptive and adaptive alterations in their activities. Increased expression of TREM2 seems to support microglial activities that counteract this type of network dysfunction.
Collapse
Affiliation(s)
- Melanie Das
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Wenjie Mao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Soniya Tamhankar
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jiaming Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Analyzing the Effect of Weak External Transcranial Magnetic Stimulation on the Primary Dominant Frequencies of Alzheimer Patients Brain by Using MEG Recordings. Medicina (B Aires) 2021; 57:medicina57111164. [PMID: 34833381 PMCID: PMC8622009 DOI: 10.3390/medicina57111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Backround and Objectives: Alternative, non-invasive, and non-pharmaceutical options are gaining place in the battle of Alzheimer’s Disease treatment control. Lately, the magnetic stimulation of the brain is the most prevalent technique with encouraging results. The aim of this study is to establish any possible change on the Primary Dominant Frequencies (PDF) (range 2–7 Hz) of the affected brain regions in Alzheimer Disease (AD) patients after applying extremely weak Transcranial Magnetic Stimulation. Materials and Methods: For this purpose, all AD patients were scanned with the use of MagnetoEncephaloGraphy (MEG) recordings through a whole-head 122–channel MEG system. Results: Our results exerted statistically significant PDF changes due to weak TMS accompanied by rabid attenuation of clinical symptoms. Conclusion: Thus, this is the first time that a positive therapeutic effect is being demonstrated even at pico-Tesla range magnetic fields in a small clinical group of studies for AD.
Collapse
|
12
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
13
|
Xu Y, Zhi F, Balboni G, Yang Y, Xia Y. Opposite Roles of δ- and μ-Opioid Receptors in BACE1 Regulation and Alzheimer's Injury. Front Cell Neurosci 2020; 14:88. [PMID: 32425755 PMCID: PMC7204847 DOI: 10.3389/fncel.2020.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid plaques and neurofibrillary tangles. Substantial evidence for AD pathogenesis suggests that β-site APP cleaving enzyme 1 (BACE1) and γ-secretase enzyme initiate the amyloidogenic pathway and produces toxic Aβ peptides that prone to aggregate in the brain. Therefore, the inhibition of BACE1 expression and function is an attractive strategy for AD therapy. In the present work, we made the first finding that activating δ-opioid receptors (DOR) with a specific DOR agonist significantly attenuated BACE1 expression and activity in the highly differentiated PC12 cells with mimicked AD injury, while the application of DOR inhibitor naltrindole reversed the UFP-512 effects, and even caused a major increase in BACE1 expression and activity as well as Aβ42 production in physiological conditions. Knocking-down DOR also enhanced BACE1 protein expression and its activity for APP processing, associating with a significant increase in Aβ42 production. In sharp contrast, activation of μ-opioid receptor (MOR) with DAMGO greatly promoted BACE1 expression and activity with an acceleration of APP cleavage, thus contributing to increased Aβ42 production. DADLE, a less selective DOR agonist that may bind to MOR, had no stable inhibitory effect on BACE1. Similar results were also found in APP mutant (APPswe) SH-SY5Y cell line, providing further validation of the DOR action on BACE1 regulation. Our novel data demonstrated entirely different roles of DOR and MOR in the regulation of BACE1 expression and activity with DOR being neuroprotective against AD injury. These findings provided a novel clue for new strategies of AD therapy via targeting endogenous opioid receptors.
Collapse
Affiliation(s)
- Yuan Xu
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Feng Zhi
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Rush T, Roth JR, Thompson SJ, Aldaher AR, Cochran JN, Roberson ED. A peptide inhibitor of Tau-SH3 interactions ameliorates amyloid-β toxicity. Neurobiol Dis 2019; 134:104668. [PMID: 31698056 PMCID: PMC7877553 DOI: 10.1016/j.nbd.2019.104668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/27/2019] [Accepted: 11/02/2019] [Indexed: 01/08/2023] Open
Abstract
The microtubule-associated protein Tau is strongly implicated in Alzheimer’s disease (AD) and aggregates into neurofibrillary tangles in AD. Genetic reduction of Tau is protective in several animal models of AD and cell culture models of amyloid-β (Aβ) toxicity, making it an exciting therapeutic target for treating AD. A variety of evidence indicates that Tau’s interactions with Fyn kinase and other SH3 domain–containing proteins, which bind to PxxP motifs in Tau’s proline-rich domain, may contribute to AD deficits and Aβ toxicity. Thus, we sought to determine if inhibiting Tau-SH3 interactions ameliorates Aβ toxicity. We developed a peptide inhibitor of Tau-SH3 interactions and a proximity ligation assay (PLA)-based target engagement assay. Then, we used membrane trafficking and neurite degeneration assays to determine if inhibiting Tau-SH3 interactions ameliorated Aβ oligomer (Aβo)-induced toxicity in primary hippocampal neurons from rats. We verified that Tau reduction ameliorated Aβo toxicity in neurons. Using PLA, we identified a peptide inhibitor that reduced Tau-SH3 interactions in HEK-293 cells and primary neurons. This peptide reduced Tau phosphorylation by Fyn without affecting Fyn’s kinase activity state. In primary neurons, endogenous Tau-Fyn interaction was present primarily in neurites and was reduced by the peptide inhibitor, from which we inferred target engagement. Reducing Tau-SH3 interactions in neurons ameliorated Aβo toxicity by multiple outcome measures, namely Aβo-induced membrane trafficking abnormalities and neurite degeneration. Our results indicate that Tau-SH3 interactions are critical for Aβo toxicity and that inhibiting them is a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan R Roth
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samantha J Thompson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam R Aldaher
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Hamidkhaniha S, Bashiri H, Omidi A, Hosseini‐Chegeni A, Tavangar SM, Sabouri S, Montazeri H, Sahebgharani M. Effect of pretreatment with intracerebroventricular injection of minocycline on morphine‐induced memory impairment in passive avoidance test: Role of P‐
CREB
and c‐Fos expression in the dorsal hippocampus and basolateral amygdala regions. Clin Exp Pharmacol Physiol 2019; 46:711-722. [DOI: 10.1111/1440-1681.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/24/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shokouh Hamidkhaniha
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology Afzalipour School of Medicine Kerman University of Medical Sciences Kerman Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences Medical Sciences Faculty Tarbiat Modares University Tehran Iran
| | | | - Seyed Mohammad Tavangar
- Department of Pathology Dr. Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Salehe Sabouri
- Department of Pharmacognosy and Pharmaceutical Biotechnology Faculty of Pharmacy Kerman University of Medical Sciences Kerman Iran
| | - Hamed Montazeri
- School of Pharmacy‐ International Campus Iran University of Medical Sciences Tehran Iran
| | - Mousa Sahebgharani
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
17
|
Lanni C, Fagiani F, Racchi M, Preda S, Pascale A, Grilli M, Allegri N, Govoni S. Beta-amyloid short- and long-term synaptic entanglement. Pharmacol Res 2019; 139:243-260. [DOI: 10.1016/j.phrs.2018.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
|
18
|
Kwak KA, Lee SP, Yang JY, Park YS. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells Int 2018; 2018:6392986. [PMID: 29686714 PMCID: PMC5852851 DOI: 10.1155/2018/6392986] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease's pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.
Collapse
Affiliation(s)
- Kyeong-Ah Kwak
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Yang
- Department of Dental Hygiene, Daejeon Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
20
|
Reduced thermal sensitivity and increased opioidergic tone in the TASTPM mouse model of Alzheimer's disease. Pain 2017; 157:2285-2296. [PMID: 27306045 PMCID: PMC5028157 DOI: 10.1097/j.pain.0000000000000644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Increased inhibition and decreased excitation in the spinal cord may be responsible for the reduced thermal sensitivity in TASTPM transgenic mouse model of Alzheimer disease. Individuals with Alzheimer's disease (AD) are in susceptible patient groups in which pain is an important clinical issue that is often underdiagnosed. However, it is unclear whether decreased pain complaints in patients with AD result from elevated pain tolerance or an impaired ability to communicate sensations. Here, we explored if AD-related pathology is present in key regions of the pain pathway and assessed whether nociceptive thresholds to acute noxious stimulation are altered in the double-mutant APPswe × PS1.M146V (TASTPM) transgenic mouse model of AD. TASTPM mice exhibited an age-dependant cognitive deficit at the age of 6 months, but not at 4 months, a deficit that was accompanied by amyloid plaques in the cortex, hippocampus, and thalamus. In the spinal cord, β-amyloid (APP/Aβ) immunoreactivity was observed in dorsal and ventral horn neurons, and the expression of vesicular glutamate transporter 2 (VGLUT2) was significantly reduced, while the expression of the inhibitory peptides enkephalins was increased in TASTPM dorsal horn, consistent with an increased inhibitory tone. TASTPM mice displayed reduced sensitivity to acute noxious heat, which was reversed by naloxone, an opioid antagonist. This study suggests that increased inhibition and decreased excitation in the spinal cord may be responsible for the reduced thermal sensitivity associated with AD-related pathology.
Collapse
|
21
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 673] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|
22
|
Gholami Pourbadie H, Naderi N, Janahmadi M, Mehranfard N, Motamedi F. Calcium channel blockade attenuates abnormal synaptic transmission in the dentate gyrus elicited by entorhinal amyloidopathy. Synapse 2016; 70:408-17. [DOI: 10.1002/syn.21915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology; Pasteur Institute of Iran; Tehran Iran
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Physiology; Faculty of Medicine, Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Nima Naderi
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Pharmacology and Toxicology; School of Pharmacy, Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mahyar Janahmadi
- Neurophysiology Research Center; Faculty of Medicine, Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Nasrin Mehranfard
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Physiology; Faculty of Medicine, Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Physiology; Faculty of Medicine, Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
23
|
Woodling NS, Colas D, Wang Q, Minhas P, Panchal M, Liang X, Mhatre SD, Brown H, Ko N, Zagol-Ikapitte I, van der Hart M, Khroyan TV, Chuluun B, Priyam PG, Milne GL, Rassoulpour A, Boutaud O, Manning-Boğ AB, Heller HC, Andreasson KI. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer's disease model mice. Brain 2016; 139:2063-81. [PMID: 27190010 DOI: 10.1093/brain/aww117] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers.
Collapse
Affiliation(s)
- Nathaniel S Woodling
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 2 Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Damien Colas
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qian Wang
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paras Minhas
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maharshi Panchal
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xibin Liang
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Siddhita D Mhatre
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Holden Brown
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 4 Brains On-line LLC, South San Francisco, CA, USA
| | - Novie Ko
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irene Zagol-Ikapitte
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marieke van der Hart
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taline V Khroyan
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bayarsaikhan Chuluun
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Prachi G Priyam
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ginger L Milne
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arash Rassoulpour
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Boutaud
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy B Manning-Boğ
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Craig Heller
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katrin I Andreasson
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Rizwan S, Idrees A, Ashraf M, Ahmed T. Memory-enhancing effect of aspirin is mediated through opioid system modulation in an AlCl 3-induced neurotoxicity mouse model. Exp Ther Med 2016; 11:1961-1970. [PMID: 27168835 DOI: 10.3892/etm.2016.3147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimers disease (AD) are multifaceted and there are currently a limited number of therapeutic strategies available to treat them. Aspirin is known to act on multiple therapeutic targets and is a successful anti-inflammatory agent in various tissues. The present study aimed to ascertain the performance of aspirin when employed as a therapeutic agent to treat neurodegeneration on novel targets, including opioid system genes, in an AlCl3-induced neurotoxicity mouse model. The effects of two doses of aspirin (5 and 20 mg/kg aspirin for 12 days) were investigated in an AlCl3-induced neurotoxicity mouse model (150 mg/kg AlCl3 for 12 days). Neurological improvements were assessed through different behavioral tests and the effects of aspirin on opioid system gene expression levels were assessed by reverse transcription-polymerase chain reaction. Both doses resulted in improvements in cognitive behavior. A 5 mg/kg dose of aspirin was revealed to be effective for spatial memory improvement (7.14±0.84 sec), whilst a 20 mg/kg dose was superior for improving extinction learning (7.63±4.04%). Aspirin (5 mg/kg) also significantly improved contextual memory (48.05±10.6%) when compared with the AlCl3-treated group (1.49±0.62%; P<0.001). Aspirin was also observed to significantly decrease δ-opioid receptor expression in the cortex (1.09±0.08 and 1.27±0.08, respectively) at both doses (5 and 20 mg/kg) when compared with the AlCl3-treated group (3.69±1.43; P<0.05). Furthermore, aspirin at 5 mg/kg significantly reduced expression of prodynorphin in the cortex (0.57±0.20) when compared with the AlCl3-treated group (1.95±0.84; P<0.05). Notably, the effect of aspirin was significant in the cortex but not in the hippocampus. In summary, aspirin was effective in ameliorating the AD-like symptoms via the modulation of opioid systems. However, additional studies are required to determine the long term effects of aspirin on such conditions.
Collapse
Affiliation(s)
- Saima Rizwan
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Ayesha Idrees
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Muhammad Ashraf
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
25
|
Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015; 47:e151. [PMID: 25766620 PMCID: PMC4351411 DOI: 10.1038/emm.2014.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022] Open
Abstract
Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.
Collapse
Affiliation(s)
- Leslie M Tong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Helen Fong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ, Kim D, Betourne A, Kuro-O M, Masliah E, Abraham CR, Mucke L. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 2015; 35:2358-71. [PMID: 25673831 PMCID: PMC4323521 DOI: 10.1523/jneurosci.5791-12.2015] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 12/06/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022] Open
Abstract
Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.
Collapse
Affiliation(s)
- Dena B Dubal
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158,
| | - Lei Zhu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Pascal E Sanchez
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Kurtresha Worden
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Lauren Broestl
- Department of Neurology, University of California, San Francisco, California 94158
| | - Erik Johnson
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Alexander Betourne
- Department of Neurology, University of California, San Francisco, California 94158
| | - Makoto Kuro-O
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, San Diego, California 92093, and
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158,
| |
Collapse
|
27
|
Wang Y, Wang YX, Liu T, Law PY, Loh HH, Qiu Y, Chen HZ. μ-Opioid receptor attenuates Aβ oligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther 2014; 21:8-14. [PMID: 25146548 DOI: 10.1111/cns.12316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022] Open
Abstract
AIMS μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling. METHODS The effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. RESULTS Morphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity. CONCLUSIONS Our findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Silymarin Attenuated the Amyloid β Plaque Burden and Improved Behavioral Abnormalities in an Alzheimer’s Disease Mouse Model. Biosci Biotechnol Biochem 2014; 74:2299-306. [DOI: 10.1271/bbb.100524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Seizure resistance without parkinsonism in aged mice after tau reduction. Neurobiol Aging 2014; 35:2617-2624. [PMID: 24908165 DOI: 10.1016/j.neurobiolaging.2014.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/07/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023]
Abstract
Tau is an emerging target for Alzheimer's disease (AD) and other conditions with epileptiform activity. Genetic tau reduction (in Tau(+/-) and Tau(-/-) mice) prevents deficits in AD models and has an excitoprotective effect, increasing resistance to seizures, without causing apparent neuronal dysfunction. However, most studies of tau reduction have been conducted in <1-year-old mice, and the effects of tau reduction in aged mice are less clear. Specifically, whether the excitoprotective effects of tau reduction persist with aging is unknown and whether tau reduction causes neuronal dysfunction, including parkinsonism, with aging is controversial. Here, we performed a comprehensive analysis of 2-year-old Tau(+/+), Tau(+/-), and Tau(-/-) mice. In aged mice, tau reduction still conferred resistance to pentylenetetrazole-induced seizures. Moreover, tau reduction did not cause parkinsonian abnormalities in dopamine levels or motor function and did not cause iron accumulation or impaired cognition, although Tau(-/-) mice had mild hyperactivity and decreased brain weight. Importantly, the excitoprotective effect in aged Tau(+/-) mice was not accompanied by detectable abnormalities, indicating that partially reducing tau or blocking its function may be a safe and effective therapeutic approach for AD and other conditions with increased excitability.
Collapse
|
30
|
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014; 5:88. [PMID: 24795750 PMCID: PMC4005958 DOI: 10.3389/fgene.2014.00088] [Citation(s) in RCA: 513] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023] Open
Abstract
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Neurology, University of Kentucky Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Anatomy and Neurobiology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
31
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
32
|
Sex and estrogen receptor expression influence opioid peptide levels in the mouse hippocampal mossy fiber pathway. Neurosci Lett 2013; 552:66-70. [PMID: 23933204 DOI: 10.1016/j.neulet.2013.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022]
Abstract
The opioid peptides, dynorphin (DYN) and enkephalin (L-ENK) are contained in the hippocampal mossy fiber pathway where they modulate synaptic plasticity. In rats, the levels of DYN and L-ENK immunoreactivity (-ir) are increased when estrogen levels are elevated (Torres-Reveron et al., 2008, 2009). Here, we used quantitative immunocytochemistry to examine whether opioid levels are similarly regulated in wildtype (WT) mice over the estrous cycle, and how these compared to males. Moreover, using estrogen receptor (ER) alpha and beta knock-out mice (AERKO and BERKO, respectively), the present study examined the role of ERs in rapid, membrane-initiated (6 h), or slower, nucleus-initiated (48 h) estradiol effects on mossy fiber opioid levels. Unlike rats, the levels of DYN and L-ENK-ir did not change over the estrous cycle. However, compared to males, females had higher levels of DYN-ir in CA3a and L-ENK-ir in CA3b. In WT and BERKO ovariectomized (OVX) mice, neither DYN- nor L-ENK-ir changed following 6 or 48 h estradiol benzoate (EB) administration. However, DYN-ir significantly increased 48 h after EB in the dentate gyrus (DG) and CA3b of AERKO mice only. These findings suggest that cyclic hormone levels regulate neither DYN nor L-ENK levels in the mouse mossy fiber pathway as they do in the rat. This may be due to species-specific differences in the mossy fiber pathway. However, in the mouse, DYN levels are regulated by exogenous EB in the absence of ERα possibly via an ERβ-mediated pathway requiring new gene transcription.
Collapse
|
33
|
Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2013; 2:a006338. [PMID: 22762015 DOI: 10.1101/cshperspect.a006338] [Citation(s) in RCA: 781] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Evidence for an ever-expanding variety of molecular mediators of amyloid β-protein neurotoxicity (membrane lipids, receptor proteins, channel proteins, second messengers and related signaling cascades, cytoskeletal proteins, inflammatory mediators, etc.) has led to the notion that the binding of hydrophobic Aβ assemblies to cellular membranes triggers multiple effects affecting diverse pathways. It appears unlikely that there are only one or two cognate receptors for neurotoxic forms of Aβ and also that there are just one or two assembly forms of the peptide that induce neuronal dysfunction. Rather, various soluble (diffusible) oligomers of Aβ that may be in dynamic equilibrium with insoluble, fibrillar deposits (amyloid plaques) and that can bind to different components of neuronal and non-neuronal plasma membranes appear to induce complex patterns of synaptic dysfunction and network disorganization that underlie the intermittent but gradually progressive cognitive manifestations of the clinical disorder. Modern analyses of this problem utilize electrophysiology coupled with synaptic biochemistry and behavioral phenotyping of animal models to elucidate the affected circuits and assess the effects of potential therapeutic interventions.
Collapse
Affiliation(s)
- Lennart Mucke
- Gladstone Institute of Neurological Disease and University of California, San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
34
|
Webster SJ, Bachstetter AD, Van Eldik LJ. Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer's disease. Alzheimers Res Ther 2013; 5:28. [PMID: 23705774 PMCID: PMC3706792 DOI: 10.1186/alzrt182] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/29/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite the extensive mechanistic and pathological characterization of the amyloid precursor protein (APP)/presenilin-1 (PS-1) knock-in mouse model of Alzheimer's disease (AD), very little is known about the AD-relevant behavioral deficits in this model. Characterization of the baseline behavioral performance in a variety of functional tasks and identification of the temporal onset of behavioral impairments are important to provide a foundation for future preclinical testing of AD therapeutics. Here we perform a comprehensive behavioral characterization of this model, discuss how the observed behavior correlates with the mechanistic and pathological observations of others, and compare this model with other commonly used AD mouse models. METHODS FOUR DIFFERENT GROUPS OF MICE RANGING ACROSS THE LIFESPAN OF THIS MODEL (TEST GROUPS: 7, 11, 15, and 24 months old) were run in a behavioral test battery consisting of tasks to assess motor function (grip strength, rotor rod, beam walk, open field ambulatory movement), anxiety-related behavior (open field time spent in peripheral zone vs. center zone, elevated plus maze), and cognitive function (novel object recognition, radial arm water maze). RESULTS There were no differences in motor function or anxiety-related behavior between APP/PS-1 knock-in mice and wild-type counterpart mice for any age group. Cognitive deficits in both recognition memory (novel object recognition) and spatial reference memory (radial arm water maze) became apparent for the knock-in animals as the disease progressed. CONCLUSION This is the first reported comprehensive behavioral analysis of the APP/PS1 knock-in mouse model of AD. The lack of motor/coordination deficits or abnormal anxiety levels, coupled with the age/disease-related cognitive decline and high physiological relevance of this model, make it well suited for utilization in preclinical testing of AD-relevant therapeutics.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
- Department of Anatomy and Neurobiology, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
35
|
Zagon IS, Donahue R, McLaughlin PJ. Targeting the opioid growth factor: Opioid growth factor receptor axis for treatment of human ovarian cancer. Exp Biol Med (Maywood) 2013; 238:579-87. [DOI: 10.1177/1535370213488483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The opioid growth factor (OGF) – opioid growth factor receptor (OGFr) axis is a biological pathway that is present in human ovarian cancer cells and tissues. OGF, chemically termed [Met5]-enkephalin, is an endogenous opioid peptide that interfaces with OGFr to delay cells moving through the cell cycle by upregulation of cyclin-dependent inhibitory kinase pathways. OGF inhibitory activity is dose dependent, receptor mediated, reversible, protein and RNA dependent, but not related to apoptosis or necrosis. The OGF-OGFr axis can be targeted for treatment of human ovarian cancer by (i) administration of exogenous OGF, (ii) genetic manipulation to over-express OGFr and (iii) use of low dosages of naltrexone, an opioid antagonist, which stimulates production of OGF and OGFr for subsequent interaction following blockade of the receptor. The OGF-OGFr axis may be a feasible target for treatment of cancer of the ovary (i) in a prophylactic fashion, (ii) following cytoreduction or (iii) in conjunction with standard chemotherapy for additive effectiveness. In summary, preclinical data support the transition of these novel therapies for treatment of human ovarian cancer from the bench to bedside to provide additional targets for treatment of this devastating disease.
Collapse
Affiliation(s)
- Ian S Zagon
- Department of Neural and Behavioral Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Renee Donahue
- Department of Neural and Behavioral Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Patricia J McLaughlin
- Department of Neural and Behavioral Science, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Lahiri DK, Maloney B, Rogers JT, Ge YW. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE). BMC Genomics 2013; 14:68. [PMID: 23368879 PMCID: PMC3582491 DOI: 10.1186/1471-2164-14-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/10/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is intimately tied to amyloid-β (Aβ) peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP) account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP) may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or "proximal regulatory element" (PRE), at -76/-47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA) and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. RESULTS EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2), nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF), and specificity protein 1 (SP1). These sites crossed a known single nucleotide polymorphism (SNP). EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. CONCLUSIONS We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also interacts with the integrins. These proteins are connected to vital cellular and neurological functions. In addition, the transcription factor PuF is a known inhibitor of metastasis and regulates cell growth during development. Given that APP is a known cell adhesion protein and ferroxidase, this suggests biochemical links among cell signaling, the cell cycle, iron metabolism in cancer, and AD in the context of overall aging.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| | - Jack T Rogers
- Neurochemistry lab, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charleston, MA, 02129, USA
| | - Yuan-Wen Ge
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
37
|
Age-dependent rescue by simvastatin of Alzheimer's disease cerebrovascular and memory deficits. J Neurosci 2012; 32:4705-15. [PMID: 22492027 DOI: 10.1523/jneurosci.0169-12.2012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is now established as a progressive compromise not only of the neurons but also of the cerebral vasculature. Increasing evidence also indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD, emphasizing the importance to properly control this deficit when aiming for effective therapy. Here, we report that simvastatin (3-6 months, 40 mg/kg/d) completely rescued cerebrovascular reactivity, basal endothelial nitric oxide synthesis, and activity-induced neurometabolic and neurovascular coupling in adult (6 months) and aged (12 months) transgenic mice overexpressing the Swedish and Indiana mutations of the human amyloid precursor protein (AD mice). Remarkably, simvastatin fully restored short- and long-term memory in adult, but not in aged AD mice. These beneficial effects occurred without any decreasing effect of simvastatin on brain amyloid-β (Aβ) levels or plaque load. However, in AD mice with recovered memory, protein levels of the learning- and memory-related immediate early genes c-Fos and Egr-1 were normalized or upregulated in hippocampal CA1 neurons, indicative of restored neuronal function. In contrast, the levels of phospholipase A2, enkephalin, PSD-95, synaptophysin, or glutamate NMDA receptor subunit type 2B were either unaltered in AD mice or unaffected by treatment. These findings disclose new sites of action for statins against Aβ-induced neuronal and cerebrovascular deficits that could be predictive of therapeutic benefit in AD patients. They further indicate that simvastatin and, possibly, other brain penetrant statins bear high therapeutic promise in early AD and in patients with vascular diseases who are at risk of developing AD.
Collapse
|
38
|
Armstrong C, Krook-Magnuson E, Soltesz I. Neurogliaform and Ivy Cells: A Major Family of nNOS Expressing GABAergic Neurons. Front Neural Circuits 2012; 6:23. [PMID: 22623913 PMCID: PMC3353154 DOI: 10.3389/fncir.2012.00023] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/13/2012] [Indexed: 12/05/2022] Open
Abstract
Neurogliaform and Ivy cells are members of an abundant family of neuronal nitric oxide synthase (nNOS) expressing GABAergic interneurons found in diverse brain regions. These cells have a defining dense local axonal plexus, and display unique synaptic properties including a biphasic postsynaptic response with both a slow GABA(A) component and a GABA(B) component following even a single action potential. The type of transmission displayed by these cells has been termed "volume transmission," distinct from both tonic and classical synaptic transmission. Electrical connections are also notable in that, unlike other GABAergic cell types, neurogliaform family cells will form gap junctions not only with other neurogliaform cells, but also with non-neurogliaform family GABAergic cells. In this review, we focus on neurogliaform and Ivy cells throughout the hippocampal formation, where recent studies highlight their role in feedforward inhibition, uncover their ability to display a phenomenon called persistent firing, and reveal their modulation by opioids. The unique properties of this family of cells, their abundance, rich connectivity, and modulation by clinically relevant drugs make them an attractive target for future studies in vivo during different behavioral and pharmacological conditions.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy and Neurobiology, University of California IrvineIrvine, CA, USA
| | - Esther Krook-Magnuson
- Department of Anatomy and Neurobiology, University of California IrvineIrvine, CA, USA
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California IrvineIrvine, CA, USA
| |
Collapse
|
39
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
40
|
Abstract
There are still no effective treatments to prevent, halt, or reverse Alzheimer's disease, but research advances over the past three decades could change this gloomy picture. Genetic studies demonstrate that the disease has multiple causes. Interdisciplinary approaches combining biochemistry, molecular and cell biology, and transgenic modeling have revealed some of its molecular mechanisms. Progress in chemistry, radiology, and systems biology is beginning to provide useful biomarkers, and the emergence of personalized medicine is poised to transform pharmaceutical development and clinical trials. However, investigative and drug development efforts should be diversified to fully address the multifactoriality of the disease.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | |
Collapse
|
41
|
Lu WD, Liu T, Li S, Woods VL, Hook V. The prohormone proenkephalin possesses differential conformational features of subdomains revealed by rapid H-D exchange mass spectrometry. Protein Sci 2012; 21:178-87. [PMID: 22102294 DOI: 10.1002/pro.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/19/2011] [Accepted: 10/22/2011] [Indexed: 11/11/2022]
Abstract
Active enkephalin and related peptide hormones or neurotransmitters are generated by proteolytic processing of inactive prohormone precursors. Little is known about the relative accessibilities of prohormone cleavage sites and conformations of subdomains that undergo proteolytic processing. Therefore, this study investigated the conformational features of the prohormone proenkephalin (PE) by rapid hydrogen-deuterium exchange mass spectrometry (DXMS). DXMS analyzes rates of hydrogen exchange of the polypeptide backbone of PE with deuterium from D(2) O (heavy water) by mass spectrometry, accomplished at sub-second and multisecond time periods. Results showed differential accessibilities of cleavage sites and adjacent subdomains of PE to the aqueous environment. Importantly, protease cleavage sites of PE with greater relative accessibilities correspond to sites most readily cleaved by processing proteases to generate active peptide neurotransmitters. For comparison, peptides derived from PE (by pepsin digestion) displayed greater accessibility to the solvent environment, illustrated by their higher rates of H-D exchange compared to that of intact PE protein. The more limited H-D exchange accessibilities of PE protein, compared to peptides derived from PE, indicate that PE possesses tertiary conformation. These results demonstrate that differential tertiary conformations of PE subdomains undergo ordered proteolytic processing to generate active enkephalin peptides for cell-cell communication in the nervous and endocrine systems.
Collapse
Affiliation(s)
- Weiya D Lu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
42
|
Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation. J Neurosci 2011; 31:14861-70. [PMID: 22016519 DOI: 10.1523/jneurosci.2269-11.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.
Collapse
|
43
|
Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 2011; 31:10427-31. [PMID: 21775587 DOI: 10.1523/jneurosci.1459-11.2011] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies suggested that the cellular prion protein (PrP(c)) plays a critical role in the pathogenesis of Alzheimer's disease (AD). Specifically, amyloid-β (Aβ) oligomers were proposed to cause synaptic and cognitive dysfunction by binding to PrP(c). To test this hypothesis, we crossed human amyloid precursor protein (hAPP) transgenic mice from line J20 onto a PrP(c)-deficient background. Ablation of PrP(c) did not prevent the premature mortality and abnormal neural network activity typically seen in hAPPJ20 mice. Furthermore, hAPPJ20 mice with or without PrP(c) expression showed comparably robust abnormalities in learning and memory and in other behavioral domains at 6-8 months of age. Notably, these abnormalities are not refractory to therapeutic manipulations in general: they can be effectively prevented by interventions that prevent Aβ-dependent neuronal dysfunction also in other lines of hAPP transgenic mice. Thus, at least in this model, PrP(c) is not an important mediator of Aβ-induced neurological impairments.
Collapse
|
44
|
Roberson ED, Hope OA, Martin RC, Schmidt D. Geriatric epilepsy: research and clinical directions for the future. Epilepsy Behav 2011; 22:103-11. [PMID: 21596624 DOI: 10.1016/j.yebeh.2011.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/01/2023]
Abstract
There is a growing awareness of the need for improved treatment and care of older adults with epilepsy. The present review article highlights key clinical and research issues in the emerging field of geriatric epilepsy. Drs. Martin and Schmidt explore the scope of the problems in the field, outline topic areas including cognitive health/dementia, and diagnostic challenges, and also present important research questions that should be considered for the future. As part of this presentation, we will highlight the work of two promising young investigators whose work holds great promise for the field of geriatric epilepsy. Dr. Roberson will discuss his work focusing on the relationship of epilepsy and cognitive impairment, particularly as it relates to Alzheimer's disease pathology including tau and its role in epileptiform activity. Dr. Hope will outline key issues, as well as her work, relating to defining and measuring quality care in geriatric epilepsy.
Collapse
Affiliation(s)
- Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
45
|
Ghale G, Ramalingam V, Urbach AR, Nau WM. Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays. J Am Chem Soc 2011; 133:7528-35. [PMID: 21513303 DOI: 10.1021/ja2013467] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An analytical method has been developed for the continuous monitoring of protease activity on unlabeled peptides in real time by fluorescence spectroscopy. The assay is enabled by a reporter pair comprising the macrocycle cucurbit[7]uril (CB7) and the fluorescent dye acridine orange (AO). CB7 functions by selectively recognizing N-terminal phenylalanine residues as they are produced during the enzymatic cleavage of enkephalin-type peptides by the metalloendopeptidase thermolysin. The substrate peptides (e.g., Thr-Gly-Ala-Phe-Met-NH(2)) bind to CB7 with moderately high affinity (K ≈ 10(4) M(-1)), while their cleavage products (e.g., Phe-Met-NH(2)) bind very tightly (K > 10(6) M(-1)). AO signals the reaction upon its selective displacement from the macrocycle by the high affinity product of proteolysis. The resulting supramolecular tandem enzyme assay effectively measures the kinetics of thermolysin, including the accurate determination of sequence specificity (Ser and Gly instead of Ala), stereospecificity (d-Ala instead of l-Ala), endo- versus exopeptidase activity (indicated by differences in absolute fluorescence response), and sensitivity to terminal charges (-CONH(2) vs -COOH). The capability of the tandem assay to measure protease inhibition constants was demonstrated on phosphoramidon as a known inhibitor to afford an inhibition constant of (17.8 ± 0.4) nM. This robust and label-free approach to the study of protease activity and inhibition should be transferable to other endo- and exopeptidases that afford products with N-terminal aromatic amino acids.
Collapse
Affiliation(s)
- Garima Ghale
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
46
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, Ho K, Yu GQ, Mucke L. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 2011; 469:47-52. [PMID: 21113149 PMCID: PMC3030448 DOI: 10.1038/nature09635] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 11/08/2010] [Indexed: 12/11/2022]
Abstract
Amyloid-β oligomers may cause cognitive deficits in Alzheimer's disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-β oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer's disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-β-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer's disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Brian Halabisky
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Julie Harris
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Dena B. Dubal
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Binggui Sun
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Anna Orr
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Gregor Lotz
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Daniel H. Kim
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Patricia Hamto
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
48
|
Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, Palop JJ, Masliah E, Mucke L. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 2010; 68:428-41. [PMID: 21040845 PMCID: PMC3050043 DOI: 10.1016/j.neuron.2010.10.020] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2010] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is one of the earliest affected, most vulnerable brain regions in Alzheimer's disease (AD), which is associated with amyloid-β (Aβ) accumulation in many brain areas. Selective overexpression of mutant amyloid precursor protein (APP) predominantly in layer II/III neurons of the EC caused cognitive and behavioral abnormalities characteristic of mouse models with widespread neuronal APP overexpression, including hyperactivity, disinhibition, and spatial learning and memory deficits. APP/Aβ overexpression in the EC elicited abnormalities in synaptic functions and activity-related molecules in the dentate gyrus and CA1 and epileptiform activity in parietal cortex. Soluble Aβ was observed in the dentate gyrus, and Aβ deposits in the hippocampus were localized to perforant pathway terminal fields. Thus, APP/Aβ expression in EC neurons causes transsynaptic deficits that could initiate the cortical-hippocampal network dysfunction in mouse models and human patients with AD.
Collapse
Affiliation(s)
- Julie A. Harris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Laure Verret
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Brian Halabisky
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Myo T. Thwin
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Patricia Hamto
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Eliezer Masliah
- Departments of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
49
|
Williams TJ, Mitterling KL, Thompson LI, Torres-Reveron A, Waters EM, McEwen BS, Gore AC, Milner TA. Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation. Brain Res 2010; 1379:71-85. [PMID: 20828542 DOI: 10.1016/j.brainres.2010.08.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/13/2010] [Accepted: 08/31/2010] [Indexed: 02/05/2023]
Abstract
Circulating estrogen levels and hippocampal-dependent cognitive functions decline with aging. Moreover, the responses of hippocampal synaptic structure to estrogens differ between aged and young rats. We recently reported that estrogens increase levels of post-synaptic proteins, including PSD-95, and opioid peptides leu-enkephalin and dynorphin in the hippocampus of young animals. However, the influence of ovarian hormones on synaptic protein and opioid peptide levels in the aging hippocampus is understudied. Here, young (3- to 5-month-old), middle-aged (9- to 12-month-old), and aged (about 22-month-old) female rats were ovariectomized and then, 4 weeks later, subcutaneously implanted with a silastic capsule containing vehicle or 17β-estradiol. After 48 h, rats were subcutaneously injected with progesterone or vehicle and sacrificed 1 day later. Coronal sections through the dorsal hippocampus were processed for quantitative peroxidase immunohistochemistry of leu-enkephalin, dynorphin, synaptophysin, and PSD-95. With age, females showed opposing changes in leu-enkephalin and dynorphin levels in the mossy fiber pathway, particularly within the hilus, and regionally specific changes in synaptic protein levels. 17β-estradiol, with or without progesterone, altered leu-enkephalin levels in the dentate gyrus and synaptophysin levels in the CA1 of young but not middle-aged or aged females. Additionally, 17β-estradiol decreased synaptophysin levels in the CA3 of middle-aged females. Our results support and extend previous findings indicating 17β-estradiol modulation of hippocampal opioid peptides and synaptic proteins while demonstrating regional and age-specific effects. Moreover, they lend credence to the "window of opportunity" hypothesis during which hormone replacement can modulate hippocampal structure and circuitry to improve cognitive outcomes.
Collapse
Affiliation(s)
- Tanya J Williams
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 2010; 13:812-8. [PMID: 20581818 DOI: 10.1038/nn.2583] [Citation(s) in RCA: 1244] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is the most frequent neurodegenerative disorder and the most common cause of dementia in the elderly. Diverse lines of evidence suggest that amyloid-beta (Abeta) peptides have a causal role in its pathogenesis, but the underlying mechanisms remain uncertain. Here we discuss recent evidence that Abeta may be part of a mechanism controlling synaptic activity, acting as a positive regulator presynaptically and a negative regulator postsynaptically. The pathological accumulation of oligomeric Abeta assemblies depresses excitatory transmission at the synaptic level, but also triggers aberrant patterns of neuronal circuit activity and epileptiform discharges at the network level. Abeta-induced dysfunction of inhibitory interneurons likely increases synchrony among excitatory principal cells and contributes to the destabilization of neuronal networks. Strategies that block these Abeta effects may prevent cognitive decline in Alzheimer's disease. Potential obstacles and next steps toward this goal are discussed.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, California, USA.
| | | |
Collapse
|