1
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated alterations in DNA methylation and hydroxymethylation in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595193. [PMID: 39975085 PMCID: PMC11838189 DOI: 10.1101/2024.05.21.595193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epigenetic mechanisms are mediators of interactions between aging, genetics, and environmental factors in sporadic Parkinson's disease (PD). Multiple studies have explored the DNA modifications in PD, but few focus on 5-hydroxymethylcytosine (5-hmC), which is important in the central nervous system and sensitive to environmental exposures. To date, studies have not differentiated between 5-methylcytosine (5-mC) and 5-hmC or have analyzed them separately. In this study, we modeled paired 5-mC and 5-hmC data simultaneously. We identified 108 cytosines with significant PD-associated shifts between these marks in an enriched neuronal population from PD postmortem parietal cortex, within 83 genes and 34 enhancers associated with 67 genes. These data potentially link epigenetic regulation of genes related to LRRK2 and endolysosomal sort (RAB32 and AGAP1), and genes involved in neuroinflammation, the inflammasome, and neurodevelopment with early changes in PD and suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes not captured by standard methods.
Collapse
Affiliation(s)
- Juliana I Choza
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Alison I Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
2
|
Iwaizumi M, Taniguchi T, Kojima R, Osawa H, Tatsuta K, Sakata M, Osawa S, Kurachi K, Sugimoto K. Two independent families with de novo whole APC gene deletion and intellectual disability: a case report. Hered Cancer Clin Pract 2025; 23:1. [PMID: 39780213 PMCID: PMC11708175 DOI: 10.1186/s13053-024-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) is an autosomal dominant colorectal tumour syndrome characterised by the formation of multiple adenomatous polyps throughout the colon. It is important to understand the extracolonic phenotype that characterizes FAP. Most previous case reports of patients with both FAP and intellectual disability (ID) have described deletions in all or part of chromosome 5q, including the APC locus. However, it remains unclear whether the ID phenotype in patients with FAP is due to APC disruption or another genetic defect in the deleted 5q region. CASE PRESENTATION Patient of family 1 is a 32-year-old woman presented with > 500 colorectal adenomatous polyps, gastric fundic gland polyposis, several duodenal adenomas, and mild intellectual disability (ID). She had no known family history of the FAP phenotype or ID. By copy number trio analysis, a 15.4 Mb interstitial heterozygous de novo deletion including APC region was observed in 5q21.2. q22.3. The patient in family 2 was a 29-year-old man with approximately 50 colorectal adenomatous polyps, fundic gland polyposis in the stomach, non-ampullary adenomas in the duodenum, and mild ID. He had no family history of the FAP phenotype or ID. Using copy number trio analysis, a de novo 9.8 Mb heterozygous deletion was identified on 5q22.1. q23.1 which includes the APC region. CONCLUSIONS Based on previous reports and the present study, we narrowed down the 5p deletion region associated with ID in FAP. Further investigation is required to understand ID due to 5q stromal deletion.
Collapse
Affiliation(s)
- Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
- Clinical and Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Risa Kojima
- Clinical and Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Harumo Osawa
- Clinical and Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Kyota Tatsuta
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Mayu Sakata
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Kiyotaka Kurachi
- Clinical and Molecular Genetics Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| |
Collapse
|
3
|
Otero AM, Connolly MG, Gonzalez-Ricon RJ, Wang SS, Allen JM, Antonson AM. Influenza A virus during pregnancy disrupts maternal intestinal immunity and fetal cortical development in a dose- and time-dependent manner. Mol Psychiatry 2025; 30:13-28. [PMID: 38961232 PMCID: PMC11649561 DOI: 10.1038/s41380-024-02648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Epidemiological studies link exposure to viral infection during pregnancy, including influenza A virus (IAV) infection, with increased incidence of neurodevelopmental disorders (NDDs) in offspring. Models of maternal immune activation (MIA) using viral mimetics demonstrate that activation of maternal intestinal T helper 17 (TH17) cells, which produce effector cytokine interleukin (IL)-17, leads to aberrant fetal brain development, such as neocortical malformations. Fetal microglia and border-associated macrophages (BAMs) also serve as potential cellular mediators of MIA-induced cortical abnormalities. However, neither the inflammation-induced TH17 cell pathway nor fetal brain-resident macrophages have been thoroughly examined in models of live viral infection during pregnancy. Here, we inoculated pregnant mice with two infectious doses of IAV and evaluated peak innate and adaptive immune responses in the dam and fetus. While respiratory IAV infection led to dose-dependent maternal colonic shortening and microbial dysregulation, there was no elevation in intestinal TH17 cells nor IL-17. Systemically, IAV resulted in consistent dose- and time-dependent increases in IL-6 and IFN-γ. Fetal cortical abnormalities and global changes in fetal brain transcripts were observable in the high-but not the moderate-dose IAV group. Profiling of fetal microglia and BAMs revealed dose- and time-dependent differences in the numbers of meningeal but not choroid plexus BAMs, while microglial numbers and proliferative capacity of Iba1+ cells remained constant. Fetal brain-resident macrophages increased phagocytic CD68 expression, also in a dose- and time-dependent fashion. Taken together, our findings indicate that certain features of MIA are conserved between mimetic and live virus models, while others are not. Overall, we provide consistent evidence of an infection severity threshold for downstream maternal inflammation and fetal cortical abnormalities, which recapitulates a key feature of the epidemiological data and further underscores the importance of using live pathogens in NDD modeling to better evaluate the complete immune response and to improve translation to the clinic.
Collapse
Affiliation(s)
- Ashley M Otero
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Meghan G Connolly
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Selena S Wang
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adrienne M Antonson
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Neeman B, Sudhakar S, Biswas A, Rosenblum J, Sidpra J, D’Arco F, Löbel U, Gómez-Chiari M, Serrano M, Bolasell M, Reddy K, Ben-Sira L, Zakzouk R, Al-Hashem A, Mirsky DM, Patel R, Radhakrishnan R, Shekdar K, Whitehead MT, Mankad K. Sotos Syndrome: Deep Neuroimaging Phenotyping Reveals a High Prevalence of Malformations of Cortical Development. AJNR Am J Neuroradiol 2024; 45:1570-1577. [PMID: 39147584 PMCID: PMC11448971 DOI: 10.3174/ajnr.a8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE Sotos syndrome is a rare autosomal dominant condition caused by pathogenic mutations in the NSD1 gene that presents with craniofacial dysmorphism, overgrowth, seizures, and neurodevelopmental delay. Macrocephaly, ventriculomegaly, and corpus callosal dysmorphism are typical neuroimaging features that have been described in the medical literature. The purpose of this study was to expand on the neuroimaging phenotype by detailed analysis of a large cohort of patients with genetically proved Sotos syndrome. MATERIALS AND METHODS This multicenter, multinational, retrospective observational cohort study systematically analyzed the clinical characteristics and neuroimaging features of 77 individuals with genetically diagnosed Sotos syndrome, via central consensus review with 3 pediatric neuroradiologists. RESULTS In addition to previously described features, malformations of cortical development were identified in most patients (95.0%), typically dysgyria (92.2%) and polymicrogyria (22.1%), varying in location and distribution. Incomplete rotation of the hippocampus was observed in 50.6% of patients and was associated with other imaging findings, in particular with dysgyria (100% versus 84.2%, P = .012). CONCLUSIONS Our findings show a link between the genetic-biochemical basis and the neuroimaging features and aid in better understanding the underlying clinical manifestations and possible treatment options. These findings have yet to be described to this extent and correspond with recent studies that show that NSD1 participates in brain development and has interactions with other known relevant genetic pathways.
Collapse
Affiliation(s)
- Bar Neeman
- From the Department of Radiology (B.N., L.B.-S.), Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine (B.N., L.B.-S.), Tel-Aviv University, Tel-Aviv, Israel
| | - Sniya Sudhakar
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Asthik Biswas
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jessica Rosenblum
- Center of Medical Genetics (J.R.), Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Jai Sidpra
- Developmental Biology and Cancer Section (J.S., K.M.), University College London Great Ormond Street Institute of Child Health, London, UK
| | - Felice D’Arco
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Gómez-Chiari
- Diagnostic Imaging Department (M.G.-C.), Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu,(M.G.-C., M.S., M.B.), Barcelona, Spain
| | - Mercedes Serrano
- Institut de Recerca Sant Joan de Déu,(M.G.-C., M.S., M.B.), Barcelona, Spain
- Neuropediatric Department (M.S.), Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Mercè Bolasell
- Institut de Recerca Sant Joan de Déu,(M.G.-C., M.S., M.B.), Barcelona, Spain
- Department of Genetic and Molecular Medicine/IPER (M.B.), Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Kartik Reddy
- Department of Radiology and Imaging Sciences (K.R.), Emory University School of Medicine, Atlanta, Georgia
| | - Liat Ben-Sira
- From the Department of Radiology (B.N., L.B.-S.), Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine (B.N., L.B.-S.), Tel-Aviv University, Tel-Aviv, Israel
| | - Reem Zakzouk
- Division of Neuroradiology (R.Z.), Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al-Hashem
- Division of Genetics (A.A.-H.), Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - David M. Mirsky
- Department of Radiology (D.M.M.), Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Rajan Patel
- Texas Children's Hospital (R.P.), Baylor College of Medicine, Houston, Texas
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences (R.R.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Karuna Shekdar
- Department of Radiology (K.S., M.T.W.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew T. Whitehead
- Department of Radiology (K.S., M.T.W.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine (M.T.W.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kshitij Mankad
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Biology and Cancer Section (J.S., K.M.), University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
5
|
Jin L, Li Y, Luo S, Peng Q, Zhai QX, Zhai JX, Gao LD, Guo JJ, Song W, Yi YH, He N, Chen YJ. Reprint of: Recessive APC2 missense variants associated with epilepsies without neurodevelopmental disorders. Seizure 2024; 116:87-92. [PMID: 38523034 DOI: 10.1016/j.seizure.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.
Collapse
Affiliation(s)
- Liang Jin
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Li
- Department of Brain Function and Neuroelectrophysiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Xia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
6
|
Jin L, Li Y, Luo S, Peng Q, Zhai QX, Zhai JX, Gao LD, Guo JJ, Song W, Yi YH, He N, Chen YJ. Recessive APC2 missense variants associated with epilepsies without neurodevelopmental disorders. Seizure 2023; 111:172-177. [PMID: 37657306 DOI: 10.1016/j.seizure.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.
Collapse
Affiliation(s)
- Liang Jin
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Li
- Department of Brain Function and Neuroelectrophysiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Xia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
8
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
9
|
Chisada S, Ohtsuka K, Fujiwara M, Yoshida M, Matsushima S, Watanabe T, Karita K, Ohnishi H. A rad50 germline mutation induces tumorigenesis and ataxia-telangiectasia phenotype in a transparent medaka model. PLoS One 2023; 18:e0282277. [PMID: 37098078 PMCID: PMC10129005 DOI: 10.1371/journal.pone.0282277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/11/2023] [Indexed: 04/26/2023] Open
Abstract
The MRE11A-RAD50-NBS1 complex activates the ataxia-telangiectasia mutated (ATM) pathway and plays a central role in genome homeostasis. The association of RAD50 mutations with disease remains unclear; hence, we adopted a medaka rad50 mutant to demonstrate the significance of RAD50 mutation in pathogenesis using the medaka as an experimental animal. A 2-base pair deletion in the rad50 gene was introduced into transparent STIII medaka using the CRISPR/Cas9 system. The mutant was analyzed histologically for tumorigenicity and hindbrain quality, as well as for swimming behavior, to compare with existing ATM-, MRE11A-, and NBS1-mutation-related pathology. Our results revealed that the medaka rad50 mutation concurrently reproduced tumorigenesis (8 out of 10 rad50Δ2/+ medaka), had a decrease in median survival time (65.7 ± 1.1 weeks in control vs. 54.2 ± 2.6 weeks in rad50Δ2/+ medaka, p = 0.001, Welch's t-test), exhibited semi-lethality in rad50Δ2/Δ2 medaka and most of the major ataxia-telangiectasia phenotypes, including ataxia (rheotaxis ability was lower in rad50Δ2/+ medaka than in the control, Mann-Whitney U test, p < 0.05), and telangiectasia (6 out of 10 rad50Δ2/+ medaka). The fish model may aid in further understanding the tumorigenesis and phenotype of ataxia-telangiectasia-related RAD50 germline mutations and in developing novel therapeutic strategies against RAD50 molecular disorders.
Collapse
Affiliation(s)
- Shinichi Chisada
- Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kouki Ohtsuka
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masachika Fujiwara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masao Yoshida
- Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Satsuki Matsushima
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kanae Karita
- Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
10
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
11
|
Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, Kouki T, Ohno N, Kawai K, Endo H. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS One 2021; 16:e0255355. [PMID: 34320035 PMCID: PMC8318236 DOI: 10.1371/journal.pone.0255355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction is significantly associated with neurological deficits and age-related neurological diseases. While mitochondria are dynamically regulated and properly maintained during neurogenesis, the manner in which mitochondrial activities are controlled and contribute to these processes is not fully understood. Mitochondrial transcription factor A (TFAM) contributes to mitochondrial function by maintaining mitochondrial DNA (mtDNA). To clarify how mitochondrial dysfunction affects neurogenesis, we induced mitochondrial dysfunction specifically in murine neural stem cells (NSCs) by inactivating Tfam. Tfam inactivation in NSCs resulted in mitochondrial dysfunction by reducing respiratory chain activities and causing a severe deficit in neural differentiation and maturation both in vivo and in vitro. Brain tissue from Tfam-deficient mice exhibited neuronal cell death primarily at layer V and microglia were activated prior to cell death. Cultured Tfam-deficient NSCs showed a reduction in reactive oxygen species produced by the mitochondria. Tfam inactivation during neurogenesis resulted in the accumulation of ATF4 and activation of target gene expression. Therefore, we propose that the integrated stress response (ISR) induced by mitochondrial dysfunction in neurogenesis is activated to protect the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rintaro Kuroda
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kaoru Tominaga
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail: (KT); (HE)
| | - Katsumi Kasashima
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kenji Kuroiwa
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Eiji Sakashita
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroko Hayakawa
- Core Center of Research Apparatus, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tom Kouki
- Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail: (KT); (HE)
| |
Collapse
|
12
|
Luo W, Lin GN, Song W, Zhang Y, Lai H, Zhang M, Miao J, Cheng X, Wang Y, Li W, Wei W, Gao WQ, Yang R, Wang J. Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biol 2021; 19:135. [PMID: 34210306 PMCID: PMC8247169 DOI: 10.1186/s12915-021-01071-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebellar neurogenesis involves the generation of large numbers of cerebellar granule neurons (GNs) throughout development of the cerebellum, a process that involves tight regulation of proliferation and differentiation of granule neuron progenitors (GNPs). A number of transcriptional regulators, including Math1, and the signaling molecules Wnt and Shh have been shown to have important roles in GNP proliferation and differentiation, and deregulation of granule cell development has been reported to be associated with the pathogenesis of medulloblastoma. While the progenitor/differentiation states of cerebellar granule cells have been broadly investigated, a more detailed association between developmental differentiation programs and spatial gene expression patterns, and how these lead to differential generation of distinct types of medulloblastoma remains poorly understood. Here, we provide a comparative single-cell spatial transcriptomics analysis to better understand the similarities and differences between developing granule and medulloblastoma cells. RESULTS To acquire an enhanced understanding of the precise cellular states of developing cerebellar granule cells, we performed single-cell RNA sequencing of 24,919 murine cerebellar cells from granule neuron-specific reporter mice (Math1-GFP; Dcx-DsRed mice). Our single-cell analysis revealed that there are four major states of developing cerebellar granule cells, including two subsets of granule progenitors and two subsets of differentiating/differentiated granule neurons. Further spatial transcriptomics technology enabled visualization of their spatial locations in cerebellum. In addition, we performed single-cell RNA sequencing of 18,372 cells from Patched+/- mutant mice and found that the transformed granule cells in medulloblastoma closely resembled developing granule neurons of varying differentiation states. However, transformed granule neuron progenitors in medulloblastoma exhibit noticeably less tendency to differentiate compared with cells in normal development. CONCLUSION In sum, our study revealed the cellular and spatial organization of the detailed states of cerebellar granule cells and provided direct evidence for the similarities and discrepancies between normal cerebellar development and tumorigenesis.
Collapse
Affiliation(s)
- Wenqin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China
| | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China
| | - Huadong Lai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Man Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juju Miao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaomu Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongjie Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China
| | - Wang Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China
| | - Wenxiang Wei
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, 215123, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China.
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China.
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd., Shanghai, 200127, China.
| |
Collapse
|
13
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Lee S, Chen DY, Zaki MS, Maroofian R, Houlden H, Di Donato N, Abdin D, Morsy H, Mirzaa GM, Dobyns WB, McEvoy-Venneri J, Stanley V, James KN, Mancini GM, Schot R, Kalayci T, Altunoglu U, Karimiani EG, Brick L, Kozenko M, Jamshidi Y, Manzini MC, Beiraghi Toosi M, Gleeson JG. Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay. Am J Hum Genet 2019; 105:844-853. [PMID: 31585108 DOI: 10.1016/j.ajhg.2019.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.
Collapse
|
15
|
Mohamed NE, Hay T, Reed KR, Smalley MJ, Clarke AR. APC2 is critical for ovarian WNT signalling control, fertility and tumour suppression. BMC Cancer 2019; 19:677. [PMID: 31291912 PMCID: PMC6617595 DOI: 10.1186/s12885-019-5867-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Canonical WNT signalling plays a critical role in the regulation of ovarian development; mis-regulation of this key pathway in the adult ovary is associated with subfertility and tumourigenesis. The roles of Adenomatous polyposis coli 2 (APC2), a little-studied WNT signalling pathway regulator, in ovarian homeostasis, fertility and tumourigenesis have not previously been explored. Here, we demonstrate essential roles of APC2 in regulating ovarian WNT signalling and ovarian homeostasis. METHODS A detailed analysis of ovarian histology, gene expression, ovulation and hormone levels was carried out in 10 week old and in aged constitutive APC2-knockout (Apc2-/-) mice (mixed background). Statistical significance for qRT-PCR data was determined from 95% confidence intervals. Significance testing was performed using 2-tailed Student's t-test, when 2 experimental cohorts were compared. When more were compared, ANOVA test was used, followed by a post-hoc test (LSD or Games-Howell). P-values of < 0.05 were considered statistically significant. RESULTS APC2-deficiency resulted in activation of ovarian WNT signalling and sub-fertility driven by intra-ovarian defects. Follicular growth was perturbed, resulting in a reduced rate of ovulation and corpora lutea formation, which could not be rescued by administration of gonadotrophins. Defects in steroidogenesis and follicular vascularity contributed to the subfertility phenotype. Tumour incidence was assessed in aged APC2-deficient mice, which also carried a hypomorphic Apc allele. APC2-deficiency in these mice resulted in predisposition to granulosa cell tumour (GCT) formation, accompanied by acute tumour-associated WNT-signalling activation and a histologic pattern and molecular signature seen in human adult GCTs. CONCLUSIONS Our work adds APC2 to the growing list of WNT-signalling members that regulate ovarian homeostasis, fertility and suppress GCT formation. Importantly, given that the APC2-deficient mouse develops tumours that recapitulate the molecular signature and histological features of human adult GCTs, this mouse has excellent potential as a pre-clinical model to study ovarian subfertility and transitioning to GCT, tumour biology and for therapeutic testing.
Collapse
Affiliation(s)
- Noha-Ehssan Mohamed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
- Hormones Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
- Present address: CRUK Beatson Institute, Switchback road, Bearsden, Glasgow, G61 1BD UK
| | - Trevor Hay
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Karen R. Reed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy, Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
16
|
Rojek KO, Krzemień J, Doleżyczek H, Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J, Holmgren L, Prószyński TJ. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol 2019; 17:e3000253. [PMID: 31042703 PMCID: PMC6513106 DOI: 10.1371/journal.pbio.3000253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Krzemień
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Doleżyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł M. Boguszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Rylski
- Centre of Postgraduate Medical Education, Warsaw, Poland
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
17
|
Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development. Proc Natl Acad Sci U S A 2019; 116:4661-4670. [PMID: 30765517 DOI: 10.1073/pnas.1813244116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellum depends on intricate processes of neurogenesis, migration, and differentiation of neural stem cells (NSCs) and progenitor cells. Defective cerebellar development often results in motor dysfunctions and psychiatric disorders. Understanding the molecular mechanisms that underlie the complex development of the cerebellum will facilitate the development of novel treatment options. Here, we report that the receptor for activated C kinase (Rack1), a multifaceted signaling adaptor protein, regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Rack1 in mouse NSCs or granule neuron progenitors (GNPs), but not Bergmann glial cells (BGs), causes severe defects in cerebellar morphogenesis, including impaired folia and fissure formation. NSCs and GNPs lacking Rack1 exhibit enhanced Wnt/β-catenin signaling but reduced Sonic hedgehog (Shh) signaling. Simultaneous deletion of β-catenin in NSCs, but not GNPs, significantly rescues the Rack1 mutant phenotype. Interestingly, Rack1 controls the activation of Shh signaling by regulating the ubiquitylation and stability of histone deacetylase 1 (HDAC1)/HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cerebellum phenocopies the Rack1 mutant. Together, these results reveal a previously unknown role of Rack1 in controlling mammalian cerebellar development by opposite regulation of Wnt/β-catenin and Shh signaling pathways.
Collapse
|
18
|
He Y, Sun LY, Wang J, Gong R, Shao Q, Zhang ZC, Ye ZL, Wang HY, Xu RH, Shao JY. Hypermethylation of APC2 Is a Predictive Epigenetic Biomarker for Chinese Colorectal Cancer. DISEASE MARKERS 2018; 2018:8619462. [PMID: 30510602 PMCID: PMC6231383 DOI: 10.1155/2018/8619462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/20/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate methylation of the adenomatosis polyposis coli homologue (APC2) promoter and its correlation with prognostic implications in Chinese colorectal cancer (CRC). METHODS The mRNA expression of APC2 in colorectal tissues was evaluated using the database of The Cancer Genome Atlas (TCGA). Methylation analysis of APC2 in tumor (n = 66) and corresponding adjacent formalin-fixed and paraffin-embedded (FFPE) tissues (n = 44) was performed by Sequenom EpiTYPER® and verified by cloning-based bisulfite sequencing analysis. Demethylation and retrieval of APC2 expression in cell lines HT29, HCT116, and SW480 were treated with 5-aza-2'-deoxycytidine (5-AZC). RESULTS Analysis of TCGA showed that APC2 mRNA was significantly downregulated in primary tumors when compared to normal tissues (p < 0.05). APC2 methylation was upregulated (43.93% vs 7.31%, p < 0.05) in tumors compared to adjacent FFPE tissues. In vitro experiments demonstrated that 5-AZC downregulated the methylation of APC2 and retrieved its expression of mRNA and protein levels (p < 0.05). Multivariate Cox regression indicated that APC2_CPG_14 was an independent risk factor for overall survival (HR = 6.38, 95% CI: 1.59-25.64, p < 0.05). CONCLUSION This study indicates that APC2 is hypermethylated and may be a tumorigenesis biomarker for Chinese CRC patients.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiong Shao
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Chen Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zu-Lu Ye
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Chemical Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- School of Laboratory Medicine, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
19
|
Kahn OI, Schätzle P, van de Willige D, Tas RP, Lindhout FW, Portegies S, Kapitein LC, Hoogenraad CC. APC2 controls dendrite development by promoting microtubule dynamics. Nat Commun 2018; 9:2773. [PMID: 30018294 PMCID: PMC6050278 DOI: 10.1038/s41467-018-05124-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Mixed polarity microtubule organization is the signature characteristic of vertebrate dendrites. Oppositely oriented microtubules form the basis for selective cargo trafficking in neurons, however the mechanisms that establish and maintain this organization are unclear. Here, we show that APC2, the brain-specific homolog of tumor-suppressor protein adenomatous polyposis coli (APC), promotes dynamics of minus-end-out microtubules in dendrites. We found that APC2 localizes as distinct clusters along microtubule bundles in dendrites and that this localization is driven by LC8-binding and two separate microtubule-interacting domains. Depletion of APC2 reduces the plus end dynamics of minus-end-out oriented microtubules, increases microtubule sliding, and causes defects in dendritic morphology. We propose a model in which APC2 regulates dendrite development by promoting dynamics of minus-end-out microtubules.
Collapse
Affiliation(s)
- Olga I Kahn
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Feline W Lindhout
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Merkurjev D, Hong WT, Iida K, Oomoto I, Goldie BJ, Yamaguti H, Ohara T, Kawaguchi SY, Hirano T, Martin KC, Pellegrini M, Wang DO. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci 2018; 21:1004-1014. [DOI: 10.1038/s41593-018-0173-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/14/2018] [Indexed: 01/21/2023]
|
21
|
Saito-Diaz K, Benchabane H, Tiwari A, Tian A, Li B, Thompson JJ, Hyde AS, Sawyer LM, Jodoin JN, Santos E, Lee LA, Coffey RJ, Beauchamp RD, Williams CS, Kenworthy AK, Robbins DJ, Ahmed Y, Lee E. APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway. Dev Cell 2018; 44:566-581.e8. [PMID: 29533772 PMCID: PMC5884143 DOI: 10.1016/j.devcel.2018.02.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 01/02/2018] [Accepted: 02/13/2018] [Indexed: 01/02/2023]
Abstract
Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Bin Li
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joshua J Thompson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annastasia S Hyde
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leah M Sawyer
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeanne N Jodoin
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eduardo Santos
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Laura A Lee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - R Daniel Beauchamp
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anne K Kenworthy
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Differences in neuropsychological and behavioral parameters and brain structure in patients with familial adenomatous polyposis: a sibling-paired study. Hered Cancer Clin Pract 2016; 14:20. [PMID: 27777639 PMCID: PMC5057475 DOI: 10.1186/s13053-016-0060-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/01/2016] [Indexed: 11/13/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary colon cancer syndrome caused by mutations in adenomatous polyposis coli (APC) with both colonic and extra-colonic manifestations. Case reports have noted an association with FAP and intellectual disability and animal studies have shown that APC is implicated in neural development and function, but no studies have investigated neuropsychological, behavioral, or structural brain characteristics of patients with FAP. Methods We undertook a pilot, sibling-pair study comparing three patients with FAP to their sex-matched siblings without FAP. Each sibling pair underwent neuropsychological testing by a blinded examiner, high resolution brain MRI scans, and the mother of each pair rated her children’s adaptive life skills and behavioral and emotional characteristics. Given the small number of study participants in this pilot study, quantitative comparisons of results were made by subtracting the score of the non-FAP sibling from the FAP patient on the various neuropsychological tests and parent rating questionnaires to calculate a difference, which was then divided by the standard deviation for each individual test to determine the difference, corrected for the standard deviation. Diffusion numbers in multiple regions of the brain as assessed by MRI were calculated for each study participant. Results We found similarity between siblings in all three pairs on a wide range of neuropsychological measures (general intelligence, executive function, and basic academic skills) as tested by the psychologist as well as in descriptions of adaptive life skills as rated by mothers. However, mothers’ ratings of behavioral and emotional characteristics of two of the three pairs showed differences between the siblings, specifically that the patients with FAP were found to have more behavioral and emotional problems compared to their siblings. No differences in brain structure were identified by MRI. Conclusion We report the first study exploring neuropsychological, behavioral, emotional, and structural brain characteristics of patients with FAP and found subjective differences as assessed by maternal perception in behavioral and emotional characteristics in patients with FAP compared to their siblings. Larger studies are needed to elucidate the relationship, if any, between FAP and brain function.
Collapse
|
23
|
Palumbo P, Palumbo O, Leone MP, Stallone R, Palladino T, Zelante L, Carella M. Clinical and molecular characterization of a de novo 19p13.3 microdeletion. Mol Cytogenet 2016; 9:40. [PMID: 27239227 PMCID: PMC4882821 DOI: 10.1186/s13039-016-0252-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural rearrangements of chromosome 19p13.3 are a rare condition, and their phenotypic consequences remain not well defined, because of the variability of clinical manifestations. Increasing knowledge of new 19p13.3 microdeletion is useful to clarify the phenotypic variability observed in some patients. In a small number of recent papers, patients with intellectual disabilities, multiple congenital anomalies and microdeletion of the chromosome band 19p13.3 have been described. However, little is known about genes responsible for clinical features in patients carriers of 19p13.3 microdeletion; thus, increasing number of reported cases will be helpful to investigate the contribution of candidate genes, providing bases for future investigations. CASE PRESENTATION Here, we report on a 10-years-old girl referred to our genetics clinic due to intellectual disability, attention deficit, behavioral and speech delay, hypotonia, facial dysmorphisms, eye anomalies and congenital malformations. Using an high resolution SNP array, we identified a de novo microdeletion of chromosome 19p13.3, resulting in the heterozygous loss of 27 RefSeq genes and a miRNA, partially overlapping with three others deletions already reported in literature, but extending downstream (centromeric) for additional 386 Kb. This chromosomal region includes 13 genes amongst of which we suggest for the first time the APC2, PLK5 and MBD3 genes as potential functional candidates for neurodevelopmental and behavioral phenotypes observed. CONCLUSIONS Here we describe a patient with a 19p13.3 microdeletion that spans to the downstream chromosomal region with respect to the overlapping deletions previously reported in several other cases. The neurobehavioral features observed in our case has extended the phenotypic spectrum associated with the 19p13.3 microdeletion. New candidate genes are proposed for the neurobehavioral phenotype observed in our case.
Collapse
Affiliation(s)
- Pietro Palumbo
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Orazio Palumbo
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Maria Pia Leone
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy ; Dipartimento di Scienze del suolo, della pianta e degli alimenti, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Raffaella Stallone
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Teresa Palladino
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Leopoldo Zelante
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Laboratorio di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
24
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Frazer S, Otomo K, Dayer A. Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry 2015; 5:e644. [PMID: 26393490 PMCID: PMC5068808 DOI: 10.1038/tp.2015.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
Early-life deficiency of the serotonin transporter (SERT) gives rise to a wide range of psychiatric-relevant phenotypes; however, the molecular and cellular targets of serotonin dyregulation during neural circuit formation remain to be identified. Interestingly, migrating cortical interneurons (INs) derived from the caudal ganglionic eminence (CGE) have been shown to be more responsive to serotonin-mediated signalling compared with INs derived from the medial ganglionic eminence (MGE). Here we investigated the impact of early-life SERT deficiency on the migration and positioning of CGE-derived cortical INs in SERT-ko mice and in mice exposed to the SERT inhibitor fluoxetine during the late embryonic period. Using confocal time-lapse imaging and microarray-based expression analysis we found that genetic and pharmacological SERT deficiency significantly increased the migratory speed of CGE-derived INs and affected transcriptional programmes regulating neuronal migration. Postnatal studies revealed that SERT deficiency altered the cortical laminar distribution of subtypes of CGE-derived INs but not MGE-derived INs. More specifically, we found that the distribution of vasointestinal peptide (VIP)-expressing INs in layer 2/3 was abnormal in both genetic and pharmacological SERT-deficiency models. Collectively, these data indicate that early-life SERT deficiency has an impact on the migration and molecular programmes of CGE-derived INs, thus leading to specific alterations in the positioning of VIP-expressing INs. These data add to the growing evidence that early-life serotonin dysregulation affects cortical microcircuit formation and contributes to the emergence of psychiatric-relevant phenotypes.
Collapse
Affiliation(s)
- S Frazer
- Department of Mental Health and Psychiatry, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - K Otomo
- Department of Mental Health and Psychiatry, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - A Dayer
- Department of Mental Health and Psychiatry, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Department of Psychiatry and Basic Neurosciences, University of Geneva Medical School (CMU), Rue Michel-Servet 1, 1211 Genève 4, Geneva 1211, Switzerland. E-mail:
| |
Collapse
|
26
|
Loss of the neuron-specific F-box protein FBXO41 models an ataxia-like phenotype in mice with neuronal migration defects and degeneration in the cerebellum. J Neurosci 2015; 35:8701-17. [PMID: 26063905 DOI: 10.1523/jneurosci.2133-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.
Collapse
|
27
|
Zheng X, Demirci FY, Barmada MM, Richardson GA, Lopez OL, Sweet RA, Kamboh MI, Feingold E. Genome-wide copy-number variation study of psychosis in Alzheimer's disease. Transl Psychiatry 2015; 5:e574. [PMID: 26035058 PMCID: PMC4490277 DOI: 10.1038/tp.2015.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/23/2015] [Accepted: 02/08/2015] [Indexed: 01/17/2023] Open
Abstract
About 40-60% of patients with late-onset Alzheimer's disease (AD) develop psychosis, which represents a distinct phenotype of more severe cognitive and functional deficits. The estimated heritability of AD+P is ~61%, which makes it a good target for genetic mapping. We performed a genome-wide copy-number variation (CNV) study on 496 AD cases with psychosis (AD+P), 639 AD subjects with intermediate psychosis (AD intermediate P) and 156 AD subjects without psychosis (AD-P) who were recruited at the University of Pittsburgh Alzheimer's Disease Research Center using over 1 million single-nucleotide polymorphisms (SNPs) and CNV markers. CNV load analysis found no significant difference in total and average CNV length and CNV number in the AD+P or AD intermediate P groups compared with the AD-P group. Our analysis revealed a marginally significant lower number of duplication events in AD+P cases compared with AD-P controls (P=0.059) using multivariable regression model. The most interesting finding was the presence of a genome-wide significant duplication in the APC2 gene on chromosome 19, which was protective against developing AD+P (odds ratio=0.42; P=7.2E-10). We also observed suggestive associations of duplications with AD+P in the SET (P=1.95E-06), JAG2 (P=5.01E-07) and ZFPM1 (P=2.13E-07) genes and marginal association of a deletion in CNTLN (P=8.87E-04). We have identified potential novel loci for psychosis in Alzheimer's disease that warrant follow-up in large-scale independent studies.
Collapse
Affiliation(s)
- X Zheng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA,Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27514, USA. E-mail:
| | - F Y Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M M Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - G A Richardson
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - O L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - M I Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Feingold
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Eom TY, Stanco A, Guo J, Wilkins G, Deslauriers D, Yan J, Monckton C, Blair J, Oon E, Perez A, Salas E, Oh A, Ghukasyan V, Snider WD, Rubenstein JLR, Anton ES. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration. Dev Cell 2015; 31:677-89. [PMID: 25535916 DOI: 10.1016/j.devcel.2014.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 09/14/2014] [Accepted: 11/13/2014] [Indexed: 01/15/2023]
Abstract
Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. The two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial versus tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT-severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Stanco
- Department of Psychiatry, Neuroscience Program, and Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Jiami Guo
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Gary Wilkins
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Danielle Deslauriers
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jessica Yan
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chase Monckton
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joshua Blair
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Eesim Oon
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Abby Perez
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Eduardo Salas
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Adrianna Oh
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vladimir Ghukasyan
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - William D Snider
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - E S Anton
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Almuriekhi M, Shintani T, Fahiminiya S, Fujikawa A, Kuboyama K, Takeuchi Y, Nawaz Z, Nadaf J, Kamel H, Kitam AK, Samiha Z, Mahmoud L, Ben-Omran T, Majewski J, Noda M. Loss-of-Function Mutation in APC2 Causes Sotos Syndrome Features. Cell Rep 2015; 10:1585-1598. [PMID: 25753423 DOI: 10.1016/j.celrep.2015.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 01/24/2023] Open
Abstract
Sotos syndrome, characterized by intellectual disability and characteristic facial features, is caused by haploinsufficiency in the NSD1 gene. We conducted an etiological study on two siblings with Sotos features without mutations in NSD1 and detected a homozygous frameshift mutation in the APC2 gene by whole-exome sequencing, which resulted in the loss of function of cytoskeletal regulation in neurons. Apc2-deficient (Apc2-/-) mice exhibited impaired learning and memory abilities along with an abnormal head shape. Endogenous Apc2 expression was downregulated by the knockdown of Nsd1, indicating that APC2 is a downstream effector of NSD1 in neurons. Nsd1 knockdown in embryonic mouse brains impaired the migration and laminar positioning of cortical neurons, as observed in Apc2-/- mice, and this defect was rescued by the forced expression of Apc2. Thus, APC2 is a crucial target of NSD1, which provides an explanation for the intellectual disability associated with Sotos syndrome.
Collapse
Affiliation(s)
- Mariam Almuriekhi
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Somayyeh Fahiminiya
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasushi Takeuchi
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Zafar Nawaz
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Javad Nadaf
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Hussein Kamel
- Department of Radiology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abu Khadija Kitam
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zaineddin Samiha
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Laila Mahmoud
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Jacek Majewski
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan.
| |
Collapse
|
30
|
Improving mRNA 5' coding sequence determination in the mouse genome. Mamm Genome 2014; 25:149-59. [PMID: 24504701 DOI: 10.1007/s00335-013-9498-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
The incomplete determination of the mRNA 5' end sequence may lead to the incorrect assignment of the first AUG codon and to errors in the prediction of the encoded protein product. Due to the significance of the mouse as a model organism in biomedical research, we performed a systematic identification of coding regions at the 5' end of all known mouse mRNAs, using an automated expressed sequence tag (EST)-based approach which we have previously described. By parsing almost 4 million BLAT alignments we found 351 mouse loci, out of 20,221 analyzed, in which an extension of the mRNA 5' coding region was identified. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for Apc2 and Mknk2 cDNAs. We also generated a list of 16,330 mouse mRNAs where the presence of an in-frame stop codon upstream of the known start codon indicates completeness of the coding sequence at 5' end in the current form. Systematic searches in the main mouse genome databases and genome browsers showed that 82% of our results are original and have not been identified by their annotation pipelines. Moreover, the same information is not easily derivable from RNA-Seq data, due to short sequence length and laboriousness in building full-length transcript structures. In conclusion, our results improve the determination of full-length 5' coding sequences and might be useful in order to reduce errors when studying mouse gene structure and function in biomedical research.
Collapse
|
31
|
Schneikert J, Vijaya Chandra SH, Ruppert JG, Ray S, Wenzel EM, Behrens J. Functional comparison of human adenomatous polyposis coli (APC) and APC-like in targeting beta-catenin for degradation. PLoS One 2013; 8:e68072. [PMID: 23840886 PMCID: PMC3698177 DOI: 10.1371/journal.pone.0068072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/25/2013] [Indexed: 01/17/2023] Open
Abstract
Truncating mutations affect the adenomatous polyposis coli (APC) gene in most cases of colon cancer, resulting in the stabilization of β-catenin and uncontrolled cell proliferation. We show here that colon cancer cell lines express also the paralog APC-like (APCL or APC2). RNA interference revealed that it controls the level and/or the activity of β-catenin, but it is less efficient and binds less well to β-catenin than APC, thereby providing one explanation as to why the gene is not mutated in colon cancer. A further comparison indicates that APCL down-regulates the β-catenin level despite the lack of the 15R region known to be important in APC. To understand this discrepancy, we performed immunoprecipitation experiments that revealed that phosphorylated β-catenin displays a preference for binding to the 15 amino acid repeats (15R) rather than the first 20 amino acid repeat of APC. This suggests that the 15R region constitutes a gate connecting the steps of β-catenin phosphorylation and subsequent ubiquitination/degradation. Using RNA interference and domain swapping experiments, we show that APCL benefits from the 15R of truncated APC to target β-catenin for degradation, in a process likely involving heterodimerization of the two partners. Our data suggest that the functional complementation of APCL by APC constitutes a substantial facet of tumour development, because the truncating mutations of APC in colorectal tumours from familial adenomatous polyposis (FAP) patients are almost always selected for the retention of at least one 15R.
Collapse
Affiliation(s)
- Jean Schneikert
- Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Sakamoto Y, Boëda B, Etienne-Manneville S. APC binds intermediate filaments and is required for their reorganization during cell migration. ACTA ACUST UNITED AC 2013; 200:249-58. [PMID: 23382461 PMCID: PMC3563686 DOI: 10.1083/jcb.201206010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The tumor suppressor APC binds to the intermediate filament vimentin and is required for its microtubule-dependent rearrangements during astrocyte migration. Intermediate filaments (IFs) are components of the cytoskeleton involved in most cellular functions, including cell migration. Primary astrocytes mainly express glial fibrillary acidic protein, vimentin, and nestin, which are essential for migration. In a wound-induced migration assay, IFs reorganized to form a polarized network that was coextensive with microtubules in cell protrusions. We found that the tumor suppressor adenomatous polyposis coli (APC) was required for microtubule interaction with IFs and for microtubule-dependent rearrangements of IFs during astrocyte migration. We also show that loss or truncation of APC correlated with the disorganization of the IF network in glioma and carcinoma cells. In migrating astrocytes, vimentin-associated APC colocalized with microtubules. APC directly bound polymerized vimentin via its armadillo repeats. This binding domain promoted vimentin polymerization in vitro and contributed to the elongation of IFs along microtubules. These results point to APC as a crucial regulator of IF organization and confirm its fundamental role in the coordinated regulation of cytoskeletons.
Collapse
Affiliation(s)
- Yasuhisa Sakamoto
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|