1
|
Borak N, Wai P, Rodriguez Villamayor P, Claxton PM, Liang S, Kohl J. Dominance rank inference in mice via chemosensation. Curr Biol 2025:S0960-9822(25)00560-3. [PMID: 40393450 DOI: 10.1016/j.cub.2025.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/20/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025]
Abstract
Social dominance hierarchies enable efficient resource allocation and conflict avoidance in animal communities.1 Individuals can determine their relative status by tracking previous conflict outcomes, as seen in aggression training2 and the winner effect,3,4 where successive wins increase the likelihood of future victories. Repeated optogenetic stimulation of the dorsomedial prefrontal cortex (dmPFC) results in lasting rank increases,5 suggesting that social rank is derived as a statistic of past outcomes. However, relative rank could be assessed more efficiently by incorporating information about an opponent's dominance status. Pheromone signals, such as darcin, are enriched in the urine of dominant individuals,6,7,8,9 suggesting that hierarchical behavior may integrate information about both own and opponent rank. Although prior studies have explored the learning and neural representation of own rank,5,10,11 how opponent rank is detected and encoded remains unclear. Here, we address this question in male mice using a tube test assay. We show that stable hierarchies do not rely on fixed behavioral traits and that mice can infer the rank of unfamiliar opponents by detecting scalable chemosensory rank cues. Sensory ablation experiments reveal that both olfactory and vomeronasal cues are sufficient for rank assessment. Male mice thus use chemosensory signals to infer dominance status during social interactions.
Collapse
Affiliation(s)
- Neven Borak
- State Dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK; Division of Biosciences, University College London, Gower St., London WC1E 6BT, UK
| | - Patty Wai
- State Dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Paula Rodriguez Villamayor
- State Dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Phoebe M Claxton
- State Dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Swang Liang
- State Dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Johannes Kohl
- State Dependent Neural Processing Laboratory, The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
2
|
Zaremba B, Fallahshahroudi A, Schneider C, Schmidt J, Sarropoulos I, Leushkin E, Berki B, Van Poucke E, Jensen P, Senovilla-Ganzo R, Hervas-Sotomayor F, Trost N, Lamanna F, Sepp M, García-Moreno F, Kaessmann H. Developmental origins and evolution of pallial cell types and structures in birds. Science 2025; 387:eadp5182. [PMID: 39946461 DOI: 10.1126/science.adp5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 04/23/2025]
Abstract
Innovations in the pallium likely facilitated the evolution of advanced cognitive abilities in birds. We therefore scrutinized its cellular composition and evolution using cell type atlases from chicken, mouse, and nonavian reptiles. We found that the avian pallium shares most inhibitory neuron types with other amniotes. Whereas excitatory neuron types in amniote hippocampal regions show evolutionary conservation, those in other pallial regions have diverged. Neurons in the avian mesopallium display gene expression profiles akin to the mammalian claustrum and deep cortical layers, while certain nidopallial cell types resemble neurons in the piriform cortex. Lastly, we observed substantial gene expression convergence between the dorsally located hyperpallium and ventrally located nidopallium during late development, suggesting that topological location does not always dictate gene expression programs determining functional properties in the adult avian pallium.
Collapse
Affiliation(s)
- Bastienne Zaremba
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Amir Fallahshahroudi
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Evgeny Leushkin
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Bianka Berki
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Enya Van Poucke
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Nils Trost
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Francesco Lamanna
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
4
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
5
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
He ZX, Yue MH, Liu KJ, Wang Y, Qiao JY, Lv XY, Xi K, Zhang YX, Fan JN, Yu HL, He XX, Zhu XJ. Substance P in the medial amygdala regulates aggressive behaviors in male mice. Neuropsychopharmacology 2024; 49:1689-1699. [PMID: 38649427 PMCID: PMC11399394 DOI: 10.1038/s41386-024-01863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Mei-Hui Yue
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Kai-Jie Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yao Wang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jiu-Ye Qiao
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xin-Yue Lv
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ke Xi
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ya-Xin Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jia-Ni Fan
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| |
Collapse
|
7
|
Penker S, Lawabny N, Dhamshy A, Licht T, Rokni D. Synaptic Connectivity and Electrophysiological Properties of the Nucleus of the Lateral Olfactory Tract. J Neurosci 2024; 44:e2420232024. [PMID: 38997160 PMCID: PMC11326862 DOI: 10.1523/jneurosci.2420-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The sense of smell is tightly linked to emotions, a link that is thought to rely on the direct synaptic connections between the olfactory bulb (OB) and nuclei of the amygdala. However, there are multiple pathways projecting olfactory information to the amygdala, and their unique functions are unknown. The pathway via the nucleus of the lateral olfactory tract (NLOT) that receives input from olfactory regions and projects to the basolateral amygdala (BLA) is among them. NLOT has been very little studied, and consequentially its function is unknown. Furthermore, formulation of informed hypotheses about NLOT function is at this stage limited by the lack of knowledge about its connectivity and physiological properties. Here, we used virus-based tracing methods to systematically reveal inputs into NLOT, as well as NLOT projection targets in mice of both sexes. We found that the NLOT is interconnected with several olfactory brain regions and with the BLA. Some of these connections were reciprocal, and some showed unique interhemispheric patterns. We tested the excitable properties of NLOT neurons and the properties of each of the major synaptic inputs. We found that the NLOT receives powerful input from the piriform cortex, tenia tecta, and the BLA but only very weak input from the OB. When input crosses threshold, NLOT neurons respond with calcium-dependent bursts of action potentials. We hypothesize that this integration of olfactory and amygdalar inputs serves behaviors that combine smell and emotion.
Collapse
Affiliation(s)
- Sapir Penker
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Naheel Lawabny
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Aya Dhamshy
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tamar Licht
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
8
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci 2023; 26:2131-2146. [PMID: 37946049 PMCID: PMC10689240 DOI: 10.1038/s41593-023-01475-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Kaźmierowska AM, Kostecki M, Szczepanik M, Nikolaev T, Hamed A, Michałowski JM, Wypych M, Marchewka A, Knapska E. Rats respond to aversive emotional arousal of human handlers with the activation of the basolateral and central amygdala. Proc Natl Acad Sci U S A 2023; 120:e2302655120. [PMID: 37934822 PMCID: PMC10655214 DOI: 10.1073/pnas.2302655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Reading danger signals may save an animal's life, and learning about threats from others allows avoiding first-hand aversive and often fatal experiences. Fear expressed by other individuals, including those belonging to other species, may indicate the presence of a threat in the environment and is an important social cue. Humans and other animals respond to conspecifics' fear with increased activity of the amygdala, the brain structure crucial for detecting threats and mounting an appropriate response to them. It is unclear, however, whether the cross-species transmission of threat information involves similar mechanisms, e.g., whether animals respond to the aversively induced emotional arousal of humans with activation of fear-processing circuits in the brain. Here, we report that when rats interact with a human caregiver who had recently undergone fear conditioning, they show risk assessment behavior and enhanced amygdala activation. The amygdala response involves its two major parts, the basolateral and central, which detect a threat and orchestrate defensive responses. Further, we show that humans who learn about a threat by observing another aversively aroused human, similar to rats, activate the basolateral and centromedial parts of the amygdala. Our results demonstrate that rats detect the emotional arousal of recently aversively stimulated caregivers and suggest that cross-species social transmission of threat information may involve similar neural circuits in the amygdala as the within-species transmission.
Collapse
Affiliation(s)
- Anna M. Kaźmierowska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Mateusz Kostecki
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Institute of Neuroscience and Medicine, Brain & Behavior, Research Center Jülich, Jülich52428, Germany
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Jarosław M. Michałowski
- Laboratory of Affective Neuroscience in Poznan, University of Social Sciences and Humanities, Poznań61-719, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| |
Collapse
|
10
|
Reinhardt PR, Theis CDC, Juckel G, Freund N. Rodent models for mood disorders - understanding molecular changes by investigating social behavior. Biol Chem 2023; 404:939-950. [PMID: 37632729 DOI: 10.1515/hsz-2023-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.
Collapse
Affiliation(s)
- Patrick R Reinhardt
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Candy D C Theis
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|
11
|
Zhou SF, Li SJ, Zhao TS, Liu Y, Li CQ, Cui YH, Li F. Female rats prefer to forage food from males, an effect that is not influenced by stress. Behav Brain Res 2023; 452:114597. [PMID: 37487838 DOI: 10.1016/j.bbr.2023.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
As social beings, animals and humans alike make real life decisions that are often influenced by other members. Most current research has focused on the influence of same-sex peers on individual decision-making, with potential opposite sex effect scarcely explored. Here, we developed a behavioral model to observe food foraging decision-making in female rats under various social situations. We found that female rats preferred to forage food from male over female rats or from the no-rat storage side. Female rats were more likely to forage food from familiar males than from unfamiliar. This opposite-sex preference was not altered by the lure of sweet food, or with estrous cycle, nor under stress conditions. These results suggest that the opposite sex influences food foraging decision-making in female rats. The behavioral model established could facilitate future investigation into the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Song-Ji Li
- The International-Joint Lab for Non-invasive Neural Modulation/Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
12
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Hardwired to attack: Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532692. [PMID: 36993508 PMCID: PMC10055059 DOI: 10.1101/2023.03.16.532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression. In contrast, MeA cells derived from the Dbx1-lineage (MeADbx1) respond broadly to social cues and are non-essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results support a developmentally hardwired aggression circuit at the level of the MeA and we propose a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavior relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Hoglen NEG, Manoli DS. Cupid's quiver: Integrating sensory cues in rodent mating systems. Front Neural Circuits 2022; 16:944895. [PMID: 35958042 PMCID: PMC9358210 DOI: 10.3389/fncir.2022.944895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
In many animal species, males and females exploit different mating strategies, display sex-typical behaviors, and use distinct systems to recognize ethologically relevant cues. Mate selection thus requires mutual recognition across diverse social interactions based on distinct sensory signals. These sex differences in courtship and mating behaviors correspond to differences in sensory systems and downstream neural substrates engaged to recognize and respond to courtship signals. In many rodents, males tend to rely heavily on volatile olfactory and pheromone cues, while females appear to be guided more by a combination of these chemosensory signals with acoustic cues in the form of ultrasonic vocalizations. The mechanisms by which chemical and acoustic cues are integrated to control behavior are understudied in mating but are known to be important in the control of maternal behaviors. Socially monogamous species constitute a behaviorally distinct group of rodents. In these species, anatomic differences between males and females outside the nervous system are less prominent than in species with non-monogamous mating systems, and both sexes engage in more symmetric social behaviors and form attachments. Nevertheless, despite the apparent similarities in behaviors displayed by monogamous males and females, the circuitry supporting social, mating, and attachment behaviors in these species is increasingly thought to differ between the sexes. Sex differences in sensory modalities most important for mate recognition in across species are of particular interest and present a wealth of questions yet to be answered. Here, we discuss how distinct sensory cues may be integrated to drive social and attachment behaviors in rodents, and the differing roles of specific sensory systems in eliciting displays of behavior by females or males.
Collapse
Affiliation(s)
- Nerissa E G Hoglen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice. iScience 2022; 25:104534. [PMID: 35754726 PMCID: PMC9218507 DOI: 10.1016/j.isci.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice. MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Collapse
|
15
|
Zhang L, Bian Z, Liu Q, Deng B. Dealing With Stress in Cats: What Is New About the Olfactory Strategy? Front Vet Sci 2022; 9:928943. [PMID: 35909687 PMCID: PMC9334771 DOI: 10.3389/fvets.2022.928943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic cats are descended from solitary wild species and rely heavily on the olfaction system and chemical signals for daily activities. Cats kept as companion animals may experience stress due to a lack of predictability in their physical or social environment. The olfactory system is intimately connected to the brain regions controlling stress response, thus providing unique opportunities for olfactory strategies to modify stress and related behavioral problems in cats. However, the olfactory intervention of stress in cats has been mainly focused on several analog chemical signals and studies often provide inconsistent and non-replicable results. Supportive evidence in the literature for the potentially effective olfactory stimuli (e.g., cheek and mammary gland secretions, and plant attractants) in treating stress in cats was reviewed. Limitations with some of the work and critical considerations from studies with natural or negative results were discussed as well. Current findings sometimes constitute weak evidence of a reproducible effect of cat odor therapy for stress. The welfare application of an olfactory stimulus in stress alleviation requires a better understanding of its biological function in cats and the mechanisms at play, which may be achieved in future studies through methodological improvement (e.g., experiment pre-registration and appropriate control setting) and in-depth investigation with modern techniques that integrate multisource data. Contributions from individual and environmental differences should be considered for the stress response of a single cat and its sensitivity to olfactory manipulation. Olfactory strategies customized for specific contexts and individual cats can be more effective in improving the welfare of cats in various stressful conditions.
Collapse
|
16
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
17
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
18
|
Dwortz MF, Curley JP, Tye KM, Padilla-Coreano N. Neural systems that facilitate the representation of social rank. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200444. [PMID: 35000438 PMCID: PMC8743891 DOI: 10.1098/rstb.2020.0444] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Across species, animals organize into social dominance hierarchies that serve to decrease aggression and facilitate survival of the group. Neuroscientists have adopted several model organisms to study dominance hierarchies in the laboratory setting, including fish, reptiles, rodents and primates. We review recent literature across species that sheds light onto how the brain represents social rank to guide socially appropriate behaviour within a dominance hierarchy. First, we discuss how the brain responds to social status signals. Then, we discuss social approach and avoidance learning mechanisms that we propose could drive rank-appropriate behaviour. Lastly, we discuss how the brain represents memories of individuals (social memory) and how this may support the maintenance of unique individual relationships within a social group. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Madeleine F. Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kay M. Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nancy Padilla-Coreano
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Neuroscience, University of Florida, Gainesville, FN 32611, USA
| |
Collapse
|
19
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
20
|
Wang F, Yin XS, Lu J, Cen C, Wang Y. Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Sci Signal 2022; 15:eabd0033. [PMID: 35104164 DOI: 10.1126/scisignal.abd0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social memory enables one to recognize and distinguish specific individuals. It is fundamental to social behaviors that can be mediated by the oxytocin receptor (OXTR), such as forming relationships. We investigated the molecular regulation and function of OXTR in animal behavior involving social memory. We found that Ser261 in OXTR was phosphorylated by protein kinase D1 (PKD1). Neuronal Ca2+ signaling and behavior analyses revealed that rats expressing a mutated form of OXTR that cannot be phosphorylated at this residue (OXTR S261A) in the medial amygdala (MeA) exhibited impaired long-term social memory (LTSM). Blocking the phosphorylation of wild-type OXTR in the MeA using an interfering peptide in rats or through conditional knockout of Pkd1 in mice reduced social memory retention, whereas expression of a phosphomimetic mutant of OXTR rescued it. In HEK293A cells, the PKD1-mediated phosphorylation of OXTR promoted its binding to Gq protein and, in turn, OXTR-mediated phosphorylation of PKD1, indicating a positive feedback loop. In addition, OXTR with a single-nucleotide polymorphism found in humans (rs200362197), which has a mutation in the conserved recognition region in the PKD1 phosphorylation site, showed impaired activation and signaling in vitro and in HEK293A cells similar to that of the S216A mutant. Our findings describe a phosphoregulatory loop for OXTR and its critical role in social behavior that might be further explored in associated disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Jie Lu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Cheng Cen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Abstract
In this review, we describe proposed circuits mediating the mechanism of action of pherines, a new class of synthetic neuroactive steroids with demonstrated antianxiety and antidepressant properties, that engage nasal chemosensory receptors. We hypothesize that afferent signals triggered by activation of these peripheral receptors could reach subgroups of olfactory bulb neurons broadcasting information to gamma-aminobutyric acid (GABAergic) and corticotropin-releasing hormone (CRH) neurons in the limbic amygdala. We propose that chemosensory inputs triggered by pherines project to centrolateral (CeL) and centromedial (CeM) amygdala neurons, with downstream effects mediating behavioral actions. Anxiolytic pherines could activate the forward inhibitory GABAergic neurons that facilitate the release of neuropeptide S (NPS) in the locus coeruleus (LC) and GABA in the bed nucleus of the stria terminalis (BNST) and inhibit catecholamine release in the LC and ventral tegmental area (VTA) leading to rapid anxiolytic effect. Alternatively, antidepressant pherines could facilitate the CRH and GABAergic neurons that inhibit the release of NPS from the LC, increase glutamate release from the BNST, and increase norepinephrine (NE), dopamine (DA), and serotonin release from the LC, VTA, and raphe nucleus, respectively. Activation of these neural circuits leads to rapid antidepressant effect. The information provided is consistent with this model, but it should be noted that some steps on these pathways have not been demonstrated conclusively in the human brain.
Collapse
|
22
|
Shao YF, Wang C, Rao XP, Wang HD, Ren YL, Li J, Dong CY, Xie JF, Yang XW, Xu FQ, Hou YP. Neuropeptide S Attenuates the Alarm Pheromone-Evoked Defensive and Risk Assessment Behaviors Through Activation of Cognate Receptor-Expressing Neurons in the Posterior Medial Amygdala. Front Mol Neurosci 2022; 14:752516. [PMID: 35002616 PMCID: PMC8739225 DOI: 10.3389/fnmol.2021.752516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Neuropeptide S (NPS) acts by activating its cognate receptor (NPSR). High level expression of NPSR in the posterior medial amygdala suggests that NPS-NPSR system should be involved in regulation of social behaviors induced by social pheromones. The present study was undertaken to investigate the effects of central administration of NPS or with NPSR antagonist on the alarm pheromone (AP)-evoked defensive and risk assessment behaviors in mice. Furthermore, H129-H8, a novel high-brightness anterograde multiple trans-synaptic virus, c-Fos and NPSR immunostaining were employed to reveal the involved neurocircuits and targets of NPS action. The mice exposed to AP displayed an enhancement in defensive and risk assessment behaviors. NPS (0.1–1 nmol) intracerebroventricular (i.c.v.) injection significantly attenuated the AP-evoked defensive and risk assessment behaviors. NPSR antagonist [D-Val5]NPS at the dose of 40 nmol completely blocked the effect of 0.5 nmol of NPS which showed the best effective among dose range. The H129-H8-labeled neurons were observed in the bilateral posterodorsal medial amygdala (MePD) and posteroventral medial amygdala (MePV) 72 h after the virus injection into the unilateral olfactory bulb (OB), suggesting that the MePD and MePV receive olfactory information inputs from the OB. The percentage of H129-H8-labeled neurons that also express NPSR were 90.27 ± 3.56% and 91.67 ± 2.46% in the MePD and MePV, respectively. NPS (0.5 nmol, i.c.v.) remarkably increased the number of Fos immunoreactive (-ir) neurons in the MePD and MePV, and the majority of NPS-induced Fos-ir neurons also expressed NPSR. The behavior characteristic of NPS or with [D-Val5]NPS can be better replicated in MePD/MePV local injection within lower dose. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the posterior medial amygdala, attenuates the AP-evoked defensive and risk assessment behaviors in mice.
Collapse
Affiliation(s)
- Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| | - Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Ping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hua-Dong Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Yu Dong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xing-Wen Yang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fu-Qiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Hakim M, Beecher K, Jacques A, Chaaya N, Belmer A, Battle AR, Johnson LR, Bartlett SE, Chehrehasa F. Retrieval of olfactory fear memory alters cell proliferation and expression of pCREB and pMAPK in the corticomedial amygdala and piriform cortex. Chem Senses 2022; 47:6673813. [PMID: 35997758 PMCID: PMC9397123 DOI: 10.1093/chemse/bjac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain forms robust associations between odors and emotionally salient memories, making odors especially effective at triggering fearful or traumatic memories. Using Pavlovian olfactory fear conditioning (OFC), a variant of the traditional tone-shock paradigm, this study explored the changes involved in its processing. We assessed the expression of neuronal plasticity markers phosphorylated cyclic adenosine monophosphate response element binding protein (pCREB) and phosphorylated mitogen-activated protein kinase (pMAPK) 24 h and 14 days following OFC, in newborn neurons (EdU+) and in brain regions associated with olfactory memory processing; the olfactory bulb, piriform cortex, amygdale, and hippocampus. Here, we show that all proliferating neurons in the dentate gyrus of the hippocampus and glomerular layer of the olfactory bulb were colocalized with pCREB at 24 h and 14 days post-conditioning, and the number of proliferating neurons at both time points were statistically similar. This suggests the occurrence of long-term potentiation within the neurons of this pathway. Finally, OFC significantly increased the density of pCREB- and pMAPK-positive immunoreactive neurons in the medial and cortical subnuclei of the amygdala and the posterior piriform cortex, suggesting their key involvement in its processing. Together, our investigation identifies changes in neuroplasticity within critical neural circuits responsible for olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,School of Medicine. Division of Psychology, University of Tasmania, Launceston, TAS, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Noto T, Zhou G, Yang Q, Lane G, Zelano C. Human Primary Olfactory Amygdala Subregions Form Distinct Functional Networks, Suggesting Distinct Olfactory Functions. Front Syst Neurosci 2021; 15:752320. [PMID: 34955769 PMCID: PMC8695617 DOI: 10.3389/fnsys.2021.752320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.
Collapse
Affiliation(s)
- Torben Noto
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiaohan Yang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Raam T, Hong W. Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Curr Opin Neurobiol 2021; 68:124-136. [PMID: 33940499 DOI: 10.1016/j.conb.2021.02.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
The medial amygdala (MeA) is critical for the expression of a broad range of social behaviors, and is also connected to many other brain regions that mediate those same behaviors. Here, we summarize recent advances toward elucidating mechanisms that enable the MeA to regulate a diversity of social behaviors, and also consider what role the MeA plays within the broader network of regions that orchestrate social sensorimotor transformations. We outline the molecular, anatomical, and electrophysiological features of the MeA that segregate distinct social behaviors, propose experimental strategies to disambiguate sensory representations from behavioral function in the context of a social interaction, and consider to what extent MeA function may overlap with other regions mediating similar behaviors.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
26
|
Kolter JF, Hildenbrand MF, Popp S, Nauroth S, Bankmann J, Rother L, Waider J, Deckert J, Asan E, Jakob PM, Lesch KP, Schmitt-Böhrer A. Serotonin transporter genotype modulates resting state and predator stress-induced amygdala perfusion in mice in a sex-dependent manner. PLoS One 2021; 16:e0247311. [PMID: 33606835 PMCID: PMC7895400 DOI: 10.1371/journal.pone.0247311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
The serotonin transporter (5-HTT) is a key molecule of serotoninergic neurotransmission and target of many anxiolytics and antidepressants. In humans, 5-HTT gene variants resulting in lower expression levels are associated with behavioral traits of anxiety. Furthermore, functional magnetic resonance imaging (fMRI) studies reported increased cerebral blood flow (CBF) during resting state (RS) and amygdala hyperreactivity. 5-HTT deficient mice as an established animal model for anxiety disorders seem to be well suited for investigating amygdala (re-)activity in an fMRI study. We investigated wildtype (5-HTT+/+), heterozygous (5-HTT+/-), and homozygous 5-HTT-knockout mice (5-HTT-/-) of both sexes in an ultra-high-field 17.6 Tesla magnetic resonance scanner. CBF was measured with continuous arterial spin labeling during RS, stimulation state (SS; with odor of rats as aversive stimulus), and post-stimulation state (PS). Subsequently, post mortem c-Fos immunohistochemistry elucidated neural activation on cellular level. The results showed that in reaction to the aversive odor CBF in total brain and amygdala of all mice significantly increased. In male 5-HTT+/+ mice amygdala RS CBF levels were found to be significantly lower than in 5-HTT+/- mice. From RS to SS 5-HTT+/+ amygdala perfusion significantly increased compared to both 5-HTT+/- and 5-HTT-/- mice. Perfusion level changes of male mice correlated with the density of c-Fos-immunoreactive cells in the amygdaloid nuclei. In female mice the perfusion was not modulated by the 5-Htt-genotype, but by estrous cycle stages. We conclude that amygdala reactivity is modulated by the 5-Htt genotype in males. In females, gonadal hormones have an impact which might have obscured genotype effects. Furthermore, our results demonstrate experimental support for the tonic model of 5-HTTLPR function.
Collapse
Affiliation(s)
- Jann F. Kolter
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Markus F. Hildenbrand
- Department of Magnetic Resonance and X-Ray Imaging, Fraunhofer Development Center X-Ray Technology, Wuerzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Stephan Nauroth
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Julian Bankmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Rother
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Peter M. Jakob
- Department of Experimental Physics 5, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Angelika Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Bálint F, Csillag V, Vastagh C, Liposits Z, Farkas I. Insulin-Like Growth Factor 1 Increases GABAergic Neurotransmission to GnRH Neurons via Suppressing the Retrograde Tonic Endocannabinoid Signaling Pathway in Mice. Neuroendocrinology 2021; 111:1219-1230. [PMID: 33361699 DOI: 10.1159/000514043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Flóra Bálint
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Veronika Csillag
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Zsolt Liposits
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary,
| |
Collapse
|
28
|
Neural mechanisms of aggression across species. Nat Neurosci 2020; 23:1317-1328. [PMID: 33046890 DOI: 10.1038/s41593-020-00715-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Aggression is a social behavior essential for securing resources and defending oneself and family. Thanks to its indispensable function in competition and thus survival, aggression exists widely across animal species, including humans. Classical works from Tinbergen and Lorenz concluded that instinctive behaviors including aggression are mediated by hardwired brain circuitries that specialize in processing certain sensory inputs to trigger stereotyped motor outputs. They further suggest that instinctive behaviors are influenced by an animal's internal state and past experiences. Following this conceptual framework, here we review our current understanding regarding the neural substrates underlying aggression generation, highlighting an evolutionarily conserved 'core aggression circuit' composed of four subcortical regions. We further discuss the neural mechanisms that support changes in aggression based on the animal's internal state. We aim to provide an overview of features of aggression and the relevant neural substrates across species, highlighting findings in rodents, primates and songbirds.
Collapse
|
29
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Kohl J. Parenting - a paradigm for investigating the neural circuit basis of behavior. Curr Opin Neurobiol 2020; 60:84-91. [PMID: 31830690 PMCID: PMC7005672 DOI: 10.1016/j.conb.2019.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Parenting is essential for survival and wellbeing in many species. Since it can be performed with little prior experience and entails considerable sacrifices without immediate benefits for the caregiver, this behavior is likely orchestrated by evolutionarily shaped, hard-wired neural circuits. At the same time, experience, environmental factors and internal state also make parenting highly malleable. These characteristics have made parenting an attractive paradigm for linking complex, naturalistic behavior to its underlying neural mechanisms. Recent work - based on the identification of critical neuronal populations and improved tools for dissecting neural circuits - has uncovered novel functional principles and challenged simplistic models of parenting control. A better understanding of the neural basis of parenting will provide crucial clues to how complex behaviors are organized at the level of cells, circuits and computations. Here I review recent progress, discuss emerging functional principles of parental circuits, and outline future opportunities and challenges.
Collapse
Affiliation(s)
- Johannes Kohl
- The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
31
|
Hakim M, Battle AR, Belmer A, Bartlett SE, Johnson LR, Chehrehasa F. Pavlovian Olfactory Fear Conditioning: Its Neural Circuity and Importance for Understanding Clinical Fear-Based Disorders. Front Mol Neurosci 2019; 12:221. [PMID: 31607858 PMCID: PMC6761252 DOI: 10.3389/fnmol.2019.00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Odors have proven to be the most resilient trigger for memories of high emotional saliency. Fear associated olfactory memories pose a detrimental threat of potentially transforming into severe mental illness such as fear and anxiety-related disorders. Many studies have deliberated on auditory, visual and general contextual fear memory (CFC) processes; however, fewer studies have investigated mechanisms of olfactory fear memory. Evidence strongly suggests that the neuroanatomical representation of olfactory fear memory differs from that of auditory and visual fear memory. The aim of this review article is to revisit the literature regarding the understanding of the neurobiological process of fear conditioning and to illustrate the circuitry of olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Selena E Bartlett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Center for the Study of Traumatic Stress, School of Medicine, College of Health and Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Fatemeh Chehrehasa
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
32
|
Csillag V, Vastagh C, Liposits Z, Farkas I. Secretin Regulates Excitatory GABAergic Neurotransmission to GnRH Neurons via Retrograde NO Signaling Pathway in Mice. Front Cell Neurosci 2019; 13:371. [PMID: 31507377 PMCID: PMC6716020 DOI: 10.3389/fncel.2019.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/28/2023] Open
Abstract
In mammals, reproduction is regulated by a wide range of metabolic hormones that maintain the proper energy balance. In addition to regulating feeding and energy expenditure, these metabolic messengers also modulate the functional performance of the hypothalamic-pituitary-gonadal (HPG) axis. Secretin, a member of the secretin-glucagon-vasoactive intestinal peptide hormone family, has been shown to alter reproduction centrally, although the underlying mechanisms have not been explored yet. In order to elucidate its central action in the neuroendocrine regulation of reproduction, in vitro electrophysiological slice experiments were carried out on GnRH-GFP neurons in male mice. Bath application of secretin (100 nM) significantly increased the frequency of the spontaneous postsynaptic currents (sPSCs) to 118.0 ± 2.64% compared to the control, and that of the GABAergic miniature postsynaptic currents (mPSCs) to 147.6 ± 19.19%. Resting membrane potential became depolarized by 12.74 ± 4.539 mV after secretin treatment. Frequency of evoked action potentials (APs) also increased to 144.3 ± 10.8%. The secretin-triggered elevation of the frequency of mPSCs was prevented by using either a secretin receptor antagonist (3 μM) or intracellularly applied G-protein-coupled receptor blocker (GDP-β-S; 2 mM) supporting the involvement of secretin receptor in the process. Regarding the actions downstream to secretin receptor, intracellular blockade of protein kinase A (PKA) with KT-5720 (2 μM) or intracellular inhibition of the neuronal nitric oxide synthase (nNOS) by NPLA (1 μM) abolished the stimulatory effect of secretin on mPSCs. These data suggest that secretin acts on GnRH neurons via secretin receptors whose activation triggers the cAMP/PKA/nNOS signaling pathway resulting in nitric oxide release and in the presynaptic terminals this retrograde NO machinery regulates the GABAergic input to GnRH neurons.
Collapse
Affiliation(s)
- Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
33
|
Chen P, Hong W. Neural Circuit Mechanisms of Social Behavior. Neuron 2019; 98:16-30. [PMID: 29621486 DOI: 10.1016/j.neuron.2018.02.026] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/11/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
We live in a world that is largely socially constructed, and we are constantly involved in and fundamentally influenced by a broad array of complex social interactions. Social behaviors among conspecifics, either conflictive or cooperative, are exhibited by all sexually reproducing animal species and are essential for the health, survival, and reproduction of animals. Conversely, impairment in social function is a prominent feature of several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia. Despite the importance of social behaviors, many fundamental questions remain unanswered. How is social sensory information processed and integrated in the nervous system? How are different social behavioral decisions selected and modulated in brain circuits? Here we discuss conceptual issues and recent advances in our understanding of brain regions and neural circuit mechanisms underlying the regulation of social behaviors.
Collapse
Affiliation(s)
- Patrick Chen
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Dalpian F, Rasia-Filho AA, Calcagnotto ME. Sexual dimorphism, estrous cycle and laterality determine the intrinsic and synaptic properties of medial amygdala neurons in rat. J Cell Sci 2019; 132:jcs.227793. [PMID: 30967401 DOI: 10.1242/jcs.227793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
The posterodorsal medial amygdala (MePD) is a sex steroid-sensitive area that modulates different social behavior by relaying chemosensorial information to hypothalamic nuclei. However, little is known about MePD cell type diversity and functional connectivity. Here, we have characterized neurons and synaptic inputs in the right and left MePD of adult male and cycling female (in diestrus, proestrus or estrus) rats. Based on their electrophysiological properties and morphology, we found two coexisting subpopulations of spiny neurons that are sexually dimorphic. They were classified as Class I (predominantly bitufted-shaped neurons showing irregular spikes with frequency adaptation) or Class II (predominantly stellate-shaped neurons showing full spike frequency adaptation). Furthermore, excitatory and inhibitory inputs onto MePD cells were modulated by sex, estrous cycle and hemispheric lateralization. In the left MePD, there was an overall increase in the excitatory input to neurons of males compared to cycling females. However, in proestrus, the MePD neurons received mainly inhibitory inputs. Our findings indicate the existence of hemispheric lateralization, estrous cycle and sexual dimorphism influences at cellular and synaptic levels in the adult rat MePD.
Collapse
Affiliation(s)
- Francine Dalpian
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil.,Department of Basic Sciences/Physiology, Federal University of Health Sciences, Porto Alegre, RS 90170-050, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil .,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
35
|
Ishii KK, Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 2018; 140:59-76. [PMID: 30389572 DOI: 10.1016/j.neures.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
Abstract
Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
36
|
Estradiol Increases Glutamate and GABA Neurotransmission into GnRH Neurons via Retrograde NO-Signaling in Proestrous Mice during the Positive Estradiol Feedback Period. eNeuro 2018; 5:eN-NWR-0057-18. [PMID: 30079374 PMCID: PMC6073979 DOI: 10.1523/eneuro.0057-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor β (ERβ), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERβ/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABAA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERβ/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.
Collapse
|
37
|
Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr Opin Behav Sci 2018; 24:104-112. [PMID: 30746430 DOI: 10.1016/j.cobeha.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggression is a crucial survival behavior: it is employed to defend territory, compete for food and mating opportunities, protect kin, and resolve disputes. Although widely differing in its behavioral expression, aggression is observed across many species. The neural substrates of aggression have been investigated for nearly a century and two highly conserved circuitries emerge as critical substrates for generating and modulating aggression. One circuitry centers on the medial hypothalamus. Activity of the medial hypothalamic cells closely correlates with attacks and can bi-directionally modulate aggressive behaviors. The other aggression-related circuit involves the mesolimbic dopamine cells. Dopaminergic antagonists are the most commonly used treatment for suppressing human aggression in psychotic patients. Animal studies support essential roles of dopaminergic signaling in the nucleus accumbens in assessing the reward value of aggression and reinforcing the aggressive behaviors. In this review, we will provide an overview regarding the functions of medial hypothalamus and dopaminergic system in mediating aggressive behaviors and the potential interactions between these two circuitries.
Collapse
|
38
|
Wacker D, Ludwig M. The role of vasopressin in olfactory and visual processing. Cell Tissue Res 2018; 375:201-215. [PMID: 29951699 PMCID: PMC6335376 DOI: 10.1007/s00441-018-2867-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Neural vasopressin is a potent modulator of behaviour in vertebrates. It acts at both sensory processing regions and within larger regulatory networks to mediate changes in social recognition, affiliation, aggression, communication and other social behaviours. There are multiple populations of vasopressin neurons within the brain, including groups in olfactory and visual processing regions. Some of these vasopressin neurons, such as those in the main and accessory olfactory bulbs, anterior olfactory nucleus, piriform cortex and retina, were recently identified using an enhanced green fluorescent protein-vasopressin (eGFP-VP) transgenic rat. Based on the interconnectivity of vasopressin-producing and sensitive brain areas and in consideration of autocrine, paracrine and neurohormone-like actions associated with somato-dendritic release, we discuss how these different neuronal populations may interact to impact behaviour.
Collapse
Affiliation(s)
- Douglas Wacker
- School of STEM (Division of Biological Sciences), University of Washington Bothell, Bothell, WA, USA.
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
39
|
Lymer JM, Sheppard PAS, Kuun T, Blackman A, Jani N, Mahbub S, Choleris E. Estrogens and their receptors in the medial amygdala rapidly facilitate social recognition in female mice. Psychoneuroendocrinology 2018; 89:30-38. [PMID: 29309995 DOI: 10.1016/j.psyneuen.2017.12.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 12/27/2017] [Indexed: 11/26/2022]
Abstract
Estrogens have been shown to rapidly (within 1 h) affect learning and memory processes, including social recognition. Both systemic and hippocampal administration of 17β-estradiol facilitate social recognition in female mice within 40 min of administration. These effects were likely mediated by estrogen receptor (ER) α and the G-protein coupled estrogen receptor (GPER), as administration of the respective receptor agonists (PPT and G-1) also facilitated social recognition on a rapid time scale. The medial amygdala has been shown to be necessary for social recognition and long-term manipulations in rats have implicated medial amygdalar ERα. As such, our objective was to investigate whether estrogens and different ERs within the medial amygdala play a role in the rapid facilitation of social recognition in female mice. 17β-estradiol, G-1, PPT, or ERβ agonist DPN was infused directly into the medial amygdala of ovariectomized female mice. Mice were then tested in a social recognition paradigm, which was completed within 40 min, thus allowing the assessment of rapid effects of treatments. 17β-estradiol (10, 25, 50, 100 nM), PPT (300 nM), DPN (150 nM), and G-1 (50 nM) each rapidly facilitated social recognition. Therefore, estrogens in the medial amygdala rapidly facilitate social recognition in female mice, and the three main estrogen receptors: ERα, ERβ, and the GPER all are involved in these effects. This research adds to a network of brain regions, including the medial amygdala and the dorsal hippocampus, that are involved in mediating the rapid estrogenic facilitation of social recognition in female mice.
Collapse
Affiliation(s)
- Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Talya Kuun
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrea Blackman
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nilay Jani
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sahnon Mahbub
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
40
|
Vargas-Barroso V, Peña-Ortega F, Larriva-Sahd JA. Olfaction and Pheromones: Uncanonical Sensory Influences and Bulbar Interactions. Front Neuroanat 2017; 11:108. [PMID: 29187814 PMCID: PMC5695156 DOI: 10.3389/fnana.2017.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
The rodent main and accessory olfactory systems (AOS) are considered functionally and anatomically segregated information-processing pathways. Each system is devoted to the detection of volatile odorants and pheromones, respectively. However, a growing number of evidences supports a cooperative interaction between them. For instance, at least four non-canonical receptor families (i.e., different from olfactory and vomeronasal receptor families) have been recently discovered. These atypical receptor families are expressed in the sensory organs of the nasal cavity and furnish parallel processing-pathways that detect specific stimuli and mediate specific behaviors as well. Aside from the receptor and functional diversity of these sensory modalities, they converge into a poorly understood bulbar area at the intersection of the main- main olfactory bulb (MOB) and accessory olfactory bulb (AOB) that has been termed olfactory limbus (OL). Given the intimate association the OL with specialized glomeruli (i.e., necklace and modified glomeruli) receiving uncanonical sensory afferences and its interactions with the MOB and AOB, the possibility that OL is a site of non-olfactory and atypical vomeronasal sensory decoding is discussed.
Collapse
Affiliation(s)
- Víctor Vargas-Barroso
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Jorge A Larriva-Sahd
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
41
|
Cádiz-Moretti B, Abellán-Álvaro M, Pardo-Bellver C, Martínez-García F, Lanuza E. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse. J Comp Neurol 2017; 525:2929-2954. [DOI: 10.1002/cne.24248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Bernardita Cádiz-Moretti
- Unitat Mixta de Neuroanatomia Funcional UV-UJI - Dept. de Biologia Cel·lular i Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València; Burjassot 46100 València Spain
| | - María Abellán-Álvaro
- Unitat Mixta de Neuroanatomia Funcional UV-UJI - Dept. de Biologia Cel·lular i Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València; Burjassot 46100 València Spain
| | - Cecília Pardo-Bellver
- Unitat Mixta de Neuroanatomia Funcional UV-UJI - Dept. de Biologia Cel·lular i Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València; Burjassot 46100 València Spain
| | - Fernando Martínez-García
- Unitat Mixta de Neuroanatomia Funcional UV-UJI - Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I; Castelló de la Plana Spain
| | - Enrique Lanuza
- Unitat Mixta de Neuroanatomia Funcional UV-UJI - Dept. de Biologia Cel·lular i Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València; Burjassot 46100 València Spain
| |
Collapse
|
42
|
Roalf DR, Quarmley M, Calkins ME, Satterthwaite TD, Ruparel K, Elliott MA, Moore TM, Gur RC, Gur RE, Moberg PJ, Turetsky BI. Temporal Lobe Volume Decrements in Psychosis Spectrum Youths. Schizophr Bull 2017; 43:601-610. [PMID: 27559077 PMCID: PMC5463880 DOI: 10.1093/schbul/sbw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structural brain abnormalities have been amply demonstrated in schizophrenia. These include volume decrements in the perirhinal/entorhinal regions of the ventromedial temporal lobe, which comprise the primary olfactory cortex. Olfactory impairments, which are a hallmark of schizophrenia, precede the onset of illness, distinguish adolescents experiencing prodromal symptoms from healthy youths, and may predict the transition from the prodrome to frank psychosis. We therefore examined temporal lobe regional volumes in a large adolescent sample to determine if structural deficits in ventromedial temporal lobe areas were associated, not only with schizophrenia, but also with a heightened risk for psychosis. Seven temporal lobe regional volumes (amygdala [AM], hippocampus, inferior temporal gyrus, parahippocampal gyrus, superior temporal gyrus, temporal pole, and entorhinal cortex [EC]) were measured in 386 psychosis spectrum adolescents, 521 adolescents with other types of psychopathology, and 359 healthy adolescents from the Philadelphia Neurodevelopment Cohort. Total intracranial and left EC volumes, which were both smallest among the psychosis spectrum, were the only measures that distinguished all 3 groups. Left AM was also smaller in psychosis spectrum compared with healthy subjects. EC volume decrement was strongly correlated with impaired cognition and less robustly associated with heightened negative/disorganized symptoms. AM volume decrement correlated with positive symptoms (persecution/special abilities). Temporal lobe volumes classified psychosis spectrum youths with very high specificity but relatively low sensitivity. These MRI measures may therefore serve as important confirmatory biomarkers denoting a worrisome preclinical trajectory among at-risk youths, and the specific pattern of deficits may predict specific symptom profiles.
Collapse
Affiliation(s)
- David R. Roalf
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan Quarmley
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Monica E. Calkins
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kosha Ruparel
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark A. Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tyler M. Moore
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Raquel E. Gur
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul J. Moberg
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Smell and Taste Center, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bruce I. Turetsky
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Smell and Taste Center, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
43
|
Population Coding in an Innately Relevant Olfactory Area. Neuron 2017; 93:1180-1197.e7. [PMID: 28238549 DOI: 10.1016/j.neuron.2017.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/22/2016] [Accepted: 02/04/2017] [Indexed: 11/23/2022]
Abstract
Different olfactory cortical regions are thought to harbor distinct sensory representations, enabling each area to play a unique role in odor perception and behavior. In the piriform cortex (PCx), spatially dispersed sensory inputs evoke activity in distributed ensembles of neurons that act as substrates for odor learning. In contrast, the posterolateral cortical amygdala (plCoA) receives hardwired inputs that may link specific odor cues to innate olfactory behaviors. Here we show that despite stark differences in the patterning of plCoA and PCx inputs, odor-evoked neural ensembles in both areas are equally capable of discriminating odors, and exhibit similar odor tuning, reliability, and correlation structure. These results demonstrate that brain regions mediating odor-driven innate behaviors can, like brain areas involved in odor learning, represent odor objects using distributive population codes; these findings suggest both alternative mechanisms for the generation of innate odor-driven behaviors and additional roles for the plCoA in odor perception.
Collapse
|
44
|
Westberry JM, Meredith M. Characteristic Response to Chemosensory Signals in GABAergic Cells of Medial Amygdala Is Not Driven by Main Olfactory Input. Chem Senses 2017; 42:13-24. [PMID: 27651427 PMCID: PMC5155562 DOI: 10.1093/chemse/bjw096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemosensory stimuli from same species (conspecific) and different species (heterospecific) elicit categorically different immediate-early gene (IEG) response patterns in medial amygdala in male hamsters and mice. All heterospecific stimuli activate anterior medial amygdala (MeA) but only especially salient heterospecific stimuli, such as those from predators activate posterior medial amygdala (MeP). We previously reported that characteristic patterns of response in separate populations of cells in MeA and MeP distinguish between different conspecific stimuli. Both gamma aminobutyric acid (GABA)-immunoreactive (ir) cells and GABA-receptor-ir cells make this distinction. Here, using zinc sulfate lesions of the main olfactory epithelium, we show evidence that main olfactory input does not contribute to the characteristic patterns of response in GABA-ir cells of male hamster amygdala, either for conspecific or heterospecific stimuli. Some GABAergic cells are output neurons carrying information from medial amygdala to behavioral executive regions of basal forebrain. Thus, the differential response to different conspecific signals can lead to differential activation of downstream circuits based on nonolfactory input. Finally, we show that an intact vomeronasal organ is necessary and sufficient to produce the characteristic patterns of response to conspecific and heterospecific chemosensory stimuli in hamster medial amygdala. Although main olfactory input may be critical in species with less prominent vomeronasal input for equivalent medial amygdala responses, work presented here suggests that hamster medial amygdala uses primarily vomeronasal input to discriminate between important unlearned conspecific social signals, to distinguish them from the social signals of other species, and may convey that information to brain circuits eliciting appropriate social behavior.
Collapse
Affiliation(s)
- Jenne M Westberry
- Present address: Department of Biology, University of St. Thomas, St. Paul, MN 555105, USA
| | | |
Collapse
|
45
|
Zancan M, Dall'Oglio A, Quagliotto E, Rasia‐Filho AA. Castration alters the number and structure of dendritic spines in the male posterodorsal medial amygdala. Eur J Neurosci 2016; 45:572-580. [DOI: 10.1111/ejn.13460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Aline Dall'Oglio
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Edson Quagliotto
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
46
|
Westberry JM, Meredith M. GABAergic mechanisms contributing to categorical amygdala responses to chemosensory signals. Neuroscience 2016; 331:186-96. [PMID: 27329335 PMCID: PMC4955787 DOI: 10.1016/j.neuroscience.2016.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 11/15/2022]
Abstract
Chemosensory stimuli from conspecific and heterospecific animals, elicit categorically different immediate-early gene response-patterns in medial amygdala in male hamsters and mice. We previously showed that conspecific signals activate posterior (MeP) as well as anterior medial amygdala (MeA), and especially relevant heterospecific signals such as chemosensory stimuli from potential predators also activate MeP in mice. Other heterospecific chemosignals activate MeA, but not MeP. Here we show that male hamster amygdala responds significantly differentially to different conspecific signals, by activating different proportions of cells of different phenotype, possibly leading to differential activation of downstream circuits. Heterospecific signals that fail to activate MeP do activate GABA-immunoreactive cells in the adjacent caudal main intercalated nucleus (mICNc) and elicit selective suppression of MeP cells bearing GABA-Receptors, suggesting GABA inhibition in MeP by GABAergic cells in mICNc. Overall, work presented here suggests that medial amygdala may discriminate between important conspecific social signals, distinguish them from the social signals of other species and convey that information to brain circuits eliciting appropriate social behavior.
Collapse
Affiliation(s)
- Jenne M Westberry
- Program in Neuroscience and Department Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| | - Michael Meredith
- Program in Neuroscience and Department Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
47
|
A Cellular Mechanism for Main and Accessory Olfactory Integration at the Medial Amygdala. J Neurosci 2016; 36:2083-5. [PMID: 26888920 DOI: 10.1523/jneurosci.4304-15.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|