1
|
Peng Y, Jiang DY, Yao SY, Zhang X, Kazuo S, Liu J, Du MQ, Lin LX, Chen Q, Jin H. Gene-modified animal models of Parkinson's disease. Exp Neurol 2025; 390:115287. [PMID: 40328415 DOI: 10.1016/j.expneurol.2025.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that commonly occurs in older individuals and clinically manifests as resting tremors, bradykinesia, muscle stiffness, and impaired postural balance. From a genetic perspective, animal models using gene-editing technologies offer distinct advantages in replicating the pathophysiological traits of PD, while also functionally exploring potential treatment targets. In this review, we highlight the available gene- modified animal models related to various mechanisms of PD, including abnormal expression of alpha-synuclein protein, dysfunction of the autophagy-lysosome system, abnormalities in the ubiquitin-proteasome system, and mitochondrial dysfunction. We further discuss their respective strengths, limitations, and prospects, aiming to provide the most up to date information for the application of PD animal models and the advancement of anti-PD drugs.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China..
| | - Dai-Yi Jiang
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Xiuli Zhang
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Sugimoto Kazuo
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Lan-Xin Lin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| |
Collapse
|
2
|
Ma Y, Erb ML, Moore DJ. Aging, cellular senescence and Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:239-254. [PMID: 39973488 DOI: 10.1177/1877718x251316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1-2% of people over age 65. The risk of developing PD dramatically increases with advanced age, indicating that aging is likely a driving factor in PD neuropathogenesis. Several age-associated biological changes are also hallmarks of PD neuropathology, including mitochondrial dysfunction, oxidative stress, and neuroinflammation. Accumulation of senescent cells is an important feature of aging that contributes to age-related diseases. How age-related cellular senescence affects brain health and whether this phenomenon contributes to neuropathogenesis in PD is not yet fully understood. In this review, we highlight hallmarks of aging, including mitochondrial dysfunction, loss of proteostasis, genomic instability and telomere attrition in relation to well established PD neuropathological pathways. We then discuss the hallmarks of cellular senescence in the context of neuroscience and review studies that directly examine cellular senescence in PD. Studying senescence in PD presents challenges and holds promise for advancing our understanding of disease mechanisms, which could contribute to the development of effective disease-modifying therapeutics. Targeting senescent cells or modulating the senescence-associated secretory phenotype (SASP) in PD requires a comprehensive understanding of the complex relationship between PD pathogenesis and cellular senescence.
Collapse
Affiliation(s)
- Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Madalynn L Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Massari CM, Dues DJ, Bergsma A, Sipple K, Frye M, Williams ET, Moore DJ. Neuropathology in an α-synuclein preformed fibril mouse model occurs independent of the Parkinson's disease-linked lysosomal ATP13A2 protein. Neurobiol Dis 2024; 202:106701. [PMID: 39406291 DOI: 10.1016/j.nbd.2024.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P5B-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear. Cellular studies report that ATP13A2 can regulate α-synuclein (α-syn) secretion via exosomes. However, the relationship between ATP13A2 and α-syn in animal models remains inconclusive. ATP13A2 knockout (KO) mice exhibit lysosomal abnormalities and reactive astrogliosis but do not develop PD-related neuropathology. Studies manipulating α-syn levels in mice lacking ATP13A2 indicate minimal effects on pathology. The delivery of α-syn preformed fibrils (PFFs) into the mouse striatum is a well-defined model to study the development and spread of α-syn pathology. In this study we unilaterally injected wild-type (WT) and homozygous ATP13A2 KO mice with mouse α-syn PFFs in the striatum and evaluated mice for neuropathology after 6 months. The distribution, spread and extent of α-syn aggregation in multiple regions of the mouse brain was largely independent of ATP13A2 expression. The loss of nigrostriatal pathway dopaminergic neurons and their nerve terminals induced by PFFs were equivalent in WT and ATP13A2 KO mice. Reactive astrogliosis was induced equivalently by α-syn PFFs in WT and KO mice but was already significantly higher in ATP13A2 KO mice due to pre-existing reactive gliosis. We did not identify asymmetric motor disturbances, microglial activation, or axonal damage induced by α-syn PFFs in WT or KO mice. Although α-syn PFFs induce an increase in lysosomal number in the SNc in general, TH-positive dopaminergic neurons did not exhibit either increased lysosomal area or intensity, regardless of genotype. Our study evaluating the spread of α-syn pathology reveals no exacerbation of α-syn pathology, neuronal loss, astrogliosis or motor deficits in ATP13A2 KO mice, suggesting that selective lysosomal abnormalities resulting from ATP13A2 loss do not play a major role in α-syn clearance or propagation in vivo.
Collapse
Affiliation(s)
- Caio M Massari
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dylan J Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexis Bergsma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kayla Sipple
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Maxwell Frye
- West Michigan Neurodegenerative Diseases (MiND) Program, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin T Williams
- West Michigan Neurodegenerative Diseases (MiND) Program, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
4
|
Baekelandt V. Depletion of ATP13A2 in adult brain induces a Parkinsonian phenotype in mice and non-human primates. NPJ Parkinsons Dis 2024; 10:193. [PMID: 39443471 PMCID: PMC11499984 DOI: 10.1038/s41531-024-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
5
|
Sikora J, Dovero S, Kinet R, Arotcarena ML, Bohic S, Bezard E, Fernagut PO, Dehay B. Nigral ATP13A2 depletion induces Parkinson's disease-related neurodegeneration in a pilot study in non-human primates. NPJ Parkinsons Dis 2024; 10:141. [PMID: 39090150 PMCID: PMC11294619 DOI: 10.1038/s41531-024-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.
Collapse
Affiliation(s)
- Joanna Sikora
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Univ. De Poitiers, INSERM, LNEC, Poitiers, France
| | | | - Rémi Kinet
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
| | | | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE), Grenoble, France
| | | | | | | |
Collapse
|
6
|
Erb ML, Sipple K, Levine N, Chen X, Moore DJ. Adult-onset deletion of ATP13A2 in mice induces progressive nigrostriatal pathway dopaminergic degeneration and lysosomal abnormalities. NPJ Parkinsons Dis 2024; 10:133. [PMID: 39030200 PMCID: PMC11271504 DOI: 10.1038/s41531-024-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
Although most cases of Parkinson's disease (PD) are sporadic, mutations in over 20 genes are known to cause heritable forms of the disease. Recessive loss-of-function mutations in ATP13A2, a lysosomal transmembrane P5B-type ATPase and polyamine exporter, can cause early-onset familial PD. Familial ATP13A2 mutations are also linked to related neurodegenerative diseases, including Kufor-Rakeb syndrome, hereditary spastic paraplegias, neuronal ceroid lipofuscinosis, and amyotrophic lateral sclerosis. Despite the severe effects of ATP13A2 mutations in humans, ATP13A2 knockout (KO) mice fail to exhibit neurodegeneration even at advanced ages, making it challenging to study the neuropathological effects of ATP13A2 loss in vivo. Germline deletion of ATP13A2 in rodents may trigger the upregulation of compensatory pathways during embryonic development that mask the full neurotoxic effects of ATP13A2 loss in the brain. To explore this idea, we selectively deleted ATP13A2 in the adult mouse brain by the unilateral delivery of an AAV-Cre vector into the substantia nigra of young adult mice carrying conditional loxP-flanked ATP13A2 KO alleles. We observe a progressive loss of striatal dopaminergic nerve terminals at 3 and 10 months after AAV-Cre delivery. Cre-injected mice also exhibit robust dopaminergic neuronal degeneration in the substantia nigra at 10 months. Adult-onset ATP13A2 KO also recreates many of the phenotypes observed in aged germline ATP13A2 KO mice, including lysosomal abnormalities, p62-positive inclusions, and neuroinflammation. Our study demonstrates that the adult-onset homozygous deletion of ATP13A2 in the nigrostriatal pathway produces robust and progressive dopaminergic neurodegeneration that serves as a useful in vivo model of ATP13A2-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Madalynn L Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kayla Sipple
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nathan Levine
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Xi Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|
8
|
Croucher KM, Fleming SM. ATP13A2 (PARK9) and basal ganglia function. Front Neurol 2024; 14:1252400. [PMID: 38249738 PMCID: PMC10796451 DOI: 10.3389/fneur.2023.1252400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
ATP13A2 is a lysosomal protein involved in polyamine transport with loss of function mutations associated with multiple neurodegenerative conditions. These include early onset Parkinson's disease, Kufor-Rakeb Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical heterogeneity, the basal ganglia appear to be impacted in the majority of cases. The basal ganglia is particularly vulnerable to environmental exposures such as heavy metals, pesticides, and industrial agents which are also established risk factors for many neurodegenerative conditions. Not surprisingly then, impaired function of ATP13A2 has been linked to heavy metal toxicity including manganese, iron, and zinc. This review discusses the role of ATP13A2 in basal ganglia function and dysfunction, potential common pathological mechanisms in ATP13A2-related disorders, and how gene x environment interactions may contribute to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Kristina M. Croucher
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, United States
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
9
|
Yamanaka T, Matsui H. Modeling familial and sporadic Parkinson's disease in small fishes. Dev Growth Differ 2024; 66:4-20. [PMID: 37991125 DOI: 10.1111/dgd.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
The establishment of animal models for Parkinson's disease (PD) has been challenging. Nevertheless, once established, they will serve as valuable tools for elucidating the causes and pathogenesis of PD, as well as for developing new strategies for its treatment. Following the recent discovery of a series of PD causative genes in familial cases, teleost fishes, including zebrafish and medaka, have often been used to establish genetic PD models because of their ease of breeding and gene manipulation, as well as the high conservation of gene orthologs. Some of the fish lines can recapitulate PD phenotypes, which are often more pronounced than those in rodent genetic models. In addition, a new experimental teleost fish, turquoise killifish, can be used as a sporadic PD model, because it spontaneously manifests age-dependent PD phenotypes. Several PD fish models have already made significant contributions to the discovery of novel PD pathological features, such as cytosolic leakage of mitochondrial DNA and pathogenic phosphorylation in α-synuclein. Therefore, utilizing various PD fish models with distinct degenerative phenotypes will be an effective strategy for identifying emerging facets of PD pathogenesis and therapeutic modalities.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
10
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
11
|
Zhang C, Chen S, Li X, Xu Q, Lin Y, Lin F, Yuan M, Zi Y, Cai J. Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomed Pharmacother 2022; 155:113768. [DOI: 10.1016/j.biopha.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
12
|
Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, Zhang X, Wang T, Guo C, Zhong M. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson’s Disease Model. Int J Mol Sci 2022; 23:ijms23148035. [PMID: 35887392 PMCID: PMC9318580 DOI: 10.3390/ijms23148035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies caused by α-synuclein. The imbalance of zinc homeostasis is a major cause of PD, promoting α-synuclein accumulation. ATP13A2, a transporter found in acidic vesicles, plays an important role in Zn2+ homeostasis and is highly expressed in Lewy bodies in PD-surviving neurons. ATP13A2 is involved in the transport of zinc ions in lysosomes and exosomes and inhibits the aggregation of α-synuclein. However, the potential mechanism underlying the regulation of zinc homeostasis and α-synuclein accumulation by ATP13A2 remains unexplored. We used α-synuclein-GFP transgenic mice and HEK293 α-synuclein-DsRed cell line as models. The spatial exploration behavior of mice was significantly reduced, and phosphorylation levels of α-synuclein increased upon high Zn2+ treatment. High Zn2+ also inhibited the autophagy pathway by reducing LAMP2a levels and changing the expression of LC3 and P62, by reducing mitochondrial membrane potential and increasing the expression of cytochrom C, and by activating the ERK/P38 apoptosis signaling pathway, ultimately leading to increased caspase 3 levels. These protein changes were reversed after ATP13A2 overexpression, whereas ATP13A2 knockout exacerbated α-synuclein phosphorylation levels. These results suggest that ATP13A2 may have a protective effect on Zn2+-induced abnormal aggregation of α-synuclein, lysosomal dysfunction, and apoptosis.
Collapse
Affiliation(s)
- Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Hehong Sun
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, China;
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang 110122, China;
| | - Xiaoyu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
- Correspondence:
| |
Collapse
|
13
|
Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, Lin C. The Roles of ATP13A2 Gene Mutations Leading to Abnormal Aggregation of α-Synuclein in Parkinson’s Disease. Front Cell Neurosci 2022; 16:927682. [PMID: 35875356 PMCID: PMC9296842 DOI: 10.3389/fncel.2022.927682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PARK9 (also known as ATP13A2) is recognized as one of the key genes that cause PD, and a mutation in this gene was first discovered in a rare case of PD in an adolescent. Lewy bodies (LBs) formed by abnormal aggregation of α-synuclein, which is encoded by the SNCA gene, are one of the pathological diagnostic criteria for PD. LBs are also recognized as one of the most important features of PD pathogenesis. In this article, we first summarize the types of mutations in the ATP13A2 gene and their effects on ATP13A2 mRNA and protein structure; then, we discuss lysosomal autophagy inhibition and the molecular mechanism of abnormal α-synuclein accumulation caused by decreased levels and dysfunction of the ATP13A2 protein in lysosomes. Finally, this article provides a new direction for future research on the pathogenesis and therapeutic targets for ATP13A2 gene-related PD from the perspective of ATP13A2 gene mutations and abnormal aggregation of α-synuclein.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Molecular Precision Medicine of Hunan Province, Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Changwei Lin, orcid.org/0000-0003-1676-0912
| |
Collapse
|
14
|
Takahashi K, Nelvagal HR, Lange J, Cooper JD. Glial Dysfunction and Its Contribution to the Pathogenesis of the Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:886567. [PMID: 35444603 PMCID: PMC9013902 DOI: 10.3389/fneur.2022.886567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 01/05/2023] Open
Abstract
While significant efforts have been made in developing pre-clinical treatments for the neuronal ceroid lipofuscinoses (NCLs), many challenges still remain to bring children with NCLs a cure. Devising effective therapeutic strategies for the NCLs will require a better understanding of pathophysiology, but little is known about the mechanisms by which loss of lysosomal proteins causes such devastating neurodegeneration. Research into glial cells including astrocytes, microglia, and oligodendrocytes have revealed many of their critical functions in brain homeostasis and potential contributions to neurodegenerative diseases. Genetically modified mouse models have served as a useful platform to define the disease progression in the central nervous system across NCL subtypes, revealing a wide range of glial responses to disease. The emerging evidence of glial dysfunction questions the traditional “neuron-centric” view of NCLs, and would suggest that directly targeting glia in addition to neurons could lead to better therapeutic outcomes. This review summarizes the most up-to-date understanding of glial pathologies and their contribution to the pathogenesis of NCLs, and highlights some of the associated challenges that require further research.
Collapse
Affiliation(s)
- Keigo Takahashi
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Hemanth R. Nelvagal
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Jenny Lange
- Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Genetics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Jonathan D. Cooper
| |
Collapse
|
15
|
Yousefi M, Peymani M, Ghaedi K, Irani S, Etemadifar M. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci Rep 2022; 12:2569. [PMID: 35173238 PMCID: PMC8850599 DOI: 10.1038/s41598-022-06539-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease; the evidence suggests that lncRNAs and miRNAs play an important role in regulating the PD-related genes. The purpose of this research was to introduce two novel lncRNAs as the biomarker of PD diagnosis and treatment. We evaluated the expression profiles of six nodes of two regulatory networks in the PBMCs which had been got from 38 PD patients and 20 healthy individuals by qRT-PCR. Then, we compared the expression of these RNAs in both early and late stages of PD with the controls to determine if their expression could be related to the severity of disease. Further, this study investigated the direct interaction between one of the lncRNAs and target miRNA by using the dual luciferase assay. The results of the expression profiles of six nodes of the two ceRNA networks shown that linc01128, hsa-miR-24-3p and hsa-miR-30c-5p expression were significantly downregulated. While, the Linc00938, LRRK2 and ATP13A2 expression were up-regulated in the PBMC of the PD patients, in comparison to the controls. In addition, this study demonstrated that linc00938 directly sponged hsa-miR-30c-5p. The present study, therefore, for the first time, revealed two candidate lncRNAs as the biomarkers in the PD patients.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Etemadifar
- Department of Neurology and Isfahan Neurosurgery Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
17
|
Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson's disease. Sci Rep 2022; 12:2038. [PMID: 35132125 PMCID: PMC8821705 DOI: 10.1038/s41598-022-05941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and autophagy-related genes have been proposed as biomolecules of interest related to idiopathic Parkinson’s disease (PD). The objective of this study was to determine the IGF2 and IGF1 levels in plasma and peripheral blood mononuclear cells (PBMCs) from patients with moderately advanced PD and explore the potential correlation with autophagy-related genes in the same blood samples. IGF1 and IGF2 levels in patients' plasma were measured by ELISA, and the IGF2 expression levels were determined by real-time PCR and Western blot in PBMCs. The expression of autophagy-related genes was evaluated by real-time PCR. The results show a significant decrease in IGF2 plasma levels in PD patients compared with a healthy control group. We also report a dramatic decrease in IGF2 mRNA and protein levels in PBMCs from PD patients. In addition, we observed a downregulation of key components of the initial stages of the autophagy process. Although IGF2 levels were not directly correlated with disease severity, we found a correlation between its levels and autophagy gene profile expression in a sex-dependent pattern from the same samples. To further explore this correlation, we treated mice macrophages cell culture with α-synuclein and IGF2. While α-synuclein treatment decreased levels Atg5, IGF2 treatment reverted these effects, increasing Atg5 and Beclin1 levels. Our results suggest a relationship between IGF2 levels and the autophagy process in PD and their potential application as multi-biomarkers to determine PD patients' stages of the disease.
Collapse
|
18
|
Petese A, Cesaroni V, Cerri S, Blandini F. Are Lysosomes Potential Therapeutic Targets for Parkinson's Disease? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:642-655. [PMID: 34370650 DOI: 10.2174/1871527320666210809123630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Parkinson´s Disease (PD) is the second most common neurodegenerative disorder, affecting ~2-3% of the population over 65 years old. In addition to progressive degeneration of nigrostriatal neurons, the histopathological feature of PD is the accumulation of misfolded α-synuclein protein in abnormal cytoplasmatic inclusions, known as Lewy Bodies (LBs). Recently, Genome-Wide Association Studies (GWAS) have indicated a clear association of variants within several lysosomal genes with risk for PD. Newly evolving data have been shedding light on the relationship between lysosomal dysfunction and alpha-synuclein aggregation. Defects in lysosomal enzymes could lead to the insufficient clearance of neurotoxic protein materials, possibly leading to selective degeneration of dopaminergic neurons. Specific modulation of lysosomal pathways and their components could be considered a novel opportunity for therapeutic intervention for PD. The purpose of this review is to illustrate lysosomal biology and describe the role of lysosomal dysfunction in PD pathogenesis. Finally, the most promising novel therapeutic approaches designed to modulate lysosomal activity, as a potential disease-modifying treatment for PD will be highlighted.
Collapse
Affiliation(s)
- Alessandro Petese
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Cesaroni
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Fellner L, Gabassi E, Haybaeck J, Edenhofer F. Autophagy in α-Synucleinopathies-An Overstrained System. Cells 2021; 10:3143. [PMID: 34831366 PMCID: PMC8618716 DOI: 10.3390/cells10113143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha-synucleinopathies comprise progressive neurodegenerative diseases, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). They all exhibit the same pathological hallmark, which is the formation of α-synuclein positive deposits in neuronal or glial cells. The aggregation of α-synuclein in the cell body of neurons, giving rise to the so-called Lewy bodies (LBs), is the major characteristic for PD and DLB, whereas the accumulation of α-synuclein in oligodendroglial cells, so-called glial cytoplasmic inclusions (GCIs), is the hallmark for MSA. The mechanisms involved in the intracytoplasmic inclusion formation in neuronal and oligodendroglial cells are not fully understood to date. A possible mechanism could be an impaired autophagic machinery that cannot cope with the high intracellular amount of α-synuclein. In fact, different studies showed that reduced autophagy is involved in α-synuclein aggregation. Furthermore, altered levels of different autophagy markers were reported in PD, DLB, and MSA brains. To date, the trigger point in disease initiation is not entirely clear; that is, whether autophagy dysfunction alone suffices to increase α-synuclein or whether α-synuclein is the pathogenic driver. In the current review, we discuss the involvement of defective autophagy machinery in the formation of α-synuclein aggregates, propagation of α-synuclein, and the resulting neurodegenerative processes in α-synucleinopathies.
Collapse
Affiliation(s)
- Lisa Fellner
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Elisa Gabassi
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Heterozygous GBA D409V and ATP13a2 mutations do not exacerbate pathological α-synuclein spread in the prodromal preformed fibrils model in young mice. Neurobiol Dis 2021; 159:105513. [PMID: 34536552 DOI: 10.1016/j.nbd.2021.105513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Autophagic dysregulation and lysosomal impairment have been implicated in the pathogenesis of Parkinson's disease, partly due to the identification of mutations in multiple genes involved in these pathways such as GBA, SNCA, ATP13a2 (also known as PARK9), TMEM175 and LRRK2. Mutations resulting in lysosomal dysfunction are proposed to contribute to Parkinson's disease by increasing α-synuclein levels, that in turn may promote aggregation of this protein. Here, we used two different genetic models-one heterozygous for a mutated form of the GBA protein (D409V), and the other heterozygous for an ATP13a2 loss-of-function mutation, to test whether these mutations exacerbate the spread of α-synuclein pathology following injection of α-synuclein preformed fibrils in the olfactory bulb of 12-week-old mice. Contrary to our hypothesis, we found that mice harboring GBA D409V+/- and ATP13a2+/- mutations did not have exacerbated behavioral impairments or histopathology (α-synuclein, LAMP2, and Iba1) when compared to their wildtype littermates. This indicates that in the young mouse brain, neither the GBA D409V mutation or ATP13a2 loss-of-function mutation accelerate the spread of α-synuclein pathology. As a consequence, we postulate that these mutations increase Parkinson's disease risk only by acting in one of the initial, upstream events in the Parkinson's disease pathogenic process. Further, the mutations, and the molecular pathways they impact, appear to play a less important role once the pathogenic process has been triggered and therefore do not specifically influence α-synuclein pathology spread.
Collapse
|
21
|
Chien HF, Rodriguez RD, Bonifati V, Nitrini R, Pasqualucci CA, Gelpi E, Barbosa ER. Neuropathologic Findings in a Patient With Juvenile-Onset Levodopa-Responsive Parkinsonism Due to ATP13A2 Mutation. Neurology 2021; 97:763-766. [PMID: 34475127 DOI: 10.1212/wnl.0000000000012705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe the postmortem neuropathologic findings of a patient with Kufor Rakeb syndrome (KRS) due to ATP13A2 mutation. KRS is characterized by juvenile-onset levodopa-responsive parkinsonism associated with pyramidal signs, supranuclear gaze palsy, and cognitive impairment. METHODS A detailed neuropathologic analysis of the brain was performed. The patient had a genetically confirmed ATP13A2 homozygous missense mutation and died at age 38 years, which was 26 years after the onset of his symptoms. RESULTS The main brain neuropathologic findings were widespread neuronal and glial lipofuscin accumulation with no Lewy body-type inclusions and absence of α-synuclein-positive, tau-positive, β-amyloid-positive, and TDP-43 protein-positive pathologies. Sparse iron deposits were observed in several brain areas, but no obvious axonal spheroids were identified. DISCUSSION This is to our knowledge the first KRS postmortem neuropathologic description. Iron deposits were found but not associated with increased axonal spheroids, as frequently observed in neurodegeneration with brain iron accumulation. ATP13A2 mutations have been described in patients with neuronal ceroid lipofuscinosis (CLN). Moreover, animal models with these mutations develop neurodegenerative disorders with CLN pathology. Therefore, our findings support that ATP13A2 mutations may be considered a genetic etiology of neuronal lipofuscinosis.
Collapse
Affiliation(s)
- Hsin Fen Chien
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria.
| | - Roberta Diehl Rodriguez
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria
| | - Vincenzo Bonifati
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria
| | - Ricardo Nitrini
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria
| | - Carlos Augusto Pasqualucci
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria
| | - Ellen Gelpi
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria
| | - Egberto Reis Barbosa
- From the Department of Orthopedic and Traumatology (H.F.C.); Department of Neurology (H.F.C., R.D.R., R.N., E.R.B.); Biobank for Aging Studies (R.D.R., R.N., C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; Department of Clinical Genetics (V.B.), Erasmus MC, Rotterdam, The Netherlands; Department of Pathology (C.A.P.), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Brazil; and Division of Neuropathology and Neurochemistry (E.G.), Department of Neurology, Medical University of Vienna, Austria
| |
Collapse
|
22
|
Sanchiz-Calvo M, Bentea E, Baekelandt V. Rodent models based on endolysosomal genes involved in Parkinson's disease. Curr Opin Neurobiol 2021; 72:55-62. [PMID: 34628360 DOI: 10.1016/j.conb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
Genes associated with endolysosomal function have been recently associated with familial Parkinson's disease and described as risk factors for sporadic cases. This indicates that deficits in this pathway predispose to parkinsonism. To better understand the role of these genes in disease development, rodent models have been created by targeting genes playing a role in endolysosomal function, such as LRRK2, DNAJC6, SYNJ1, VPS35, GBA1, ATP13A2 and TMEM175. Here, we review the latest findings describing parkinsonian features in these animal models secondary to endolysosomal dysfunction. Also, we provide suggestions for further development and application of these animal models to better understand the contribution of endolysosomal dysfunction in Parkinson's disease and provide novel models for testing therapeutic approaches.
Collapse
Affiliation(s)
- María Sanchiz-Calvo
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eduard Bentea
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
23
|
Zhao W, Guo F, Kong L, Liu J, Hong X, Jiang Z, Song H, Cui X, Ruan J, Liu X. Yeast YPK9 deficiency results in shortened replicative lifespan and sensitivity to hydrogen peroxide. Biogerontology 2021; 22:547-563. [PMID: 34524607 DOI: 10.1007/s10522-021-09935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
YPK9/YOR291W of Saccharomyces cerevisiae encodes a vacuolar membrane protein. Previous research has suggested that Ypk9p is similar to the yeast P5-type ATPase Spf1p and that it plays a role in the sequestration of heavy metals. In addition, bioinformatics analysis has suggested that Ypk9p is a homolog of human ATP13A2, which encodes a protein of the subfamily of P5 ATPases. However, no specific function of Ypk9p has been described to date. In this study, we found, for the first time, that YPK9 is involved in the oxidative stress response and modulation of the replicative lifespan (RLS). We found that YPK9 deficiency confers sensitivity to the oxidative stress inducer hydrogen peroxide accompanied by increased intracellular ROS levels, decreased mitochondrial membrane potential, abnormal mitochondrial function, and increased incidence of early apoptosis in budding yeast. More importantly, YPK9 deficiency can lead to a shortened RLS. In addition, we found that overexpression of the catalase-encoding gene CTA1 can reverse the phenotypic abnormalities of the ypk9Δ yeast strain. Collectively, these findings highlight the involvement of Ypk9p in the oxidative stress response and modulation of RLS.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Fang Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Lingyue Kong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoshan Hong
- Institute of Gynecology, Women and Children's Hospital of Guangdong Province, Guangzhou, 511442, China
| | - Zhiwen Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Haochang Song
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaojing Cui
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Jie Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
24
|
Bastioli G, Regoni M, Cazzaniga F, De Luca CMG, Bistaffa E, Zanetti L, Moda F, Valtorta F, Sassone J. Animal Models of Autosomal Recessive Parkinsonism. Biomedicines 2021; 9:biomedicines9070812. [PMID: 34356877 PMCID: PMC8301401 DOI: 10.3390/biomedicines9070812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. The neuropathological hallmark of the disease is the loss of dopamine neurons of the substantia nigra pars compacta. The clinical manifestations of PD are bradykinesia, rigidity, resting tremors and postural instability. PD patients often display non-motor symptoms such as depression, anxiety, weakness, sleep disturbances and cognitive disorders. Although, in 90% of cases, PD has a sporadic onset of unknown etiology, highly penetrant rare genetic mutations in many genes have been linked with typical familial PD. Understanding the mechanisms behind the DA neuron death in these Mendelian forms may help to illuminate the pathogenesis of DA neuron degeneration in the more common forms of PD. A key step in the identification of the molecular pathways underlying DA neuron death, and in the development of therapeutic strategies, is the creation and characterization of animal models that faithfully recapitulate the human disease. In this review, we outline the current status of PD modeling using mouse, rat and non-mammalian models, focusing on animal models for autosomal recessive PD.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Regoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Cazzaniga
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Chiara Maria Giulia De Luca
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Edoardo Bistaffa
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Letizia Zanetti
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence:
| |
Collapse
|
25
|
Izco M, Vettorazzi A, Forcen R, Blesa J, de Toro M, Alvarez-Herrera N, Cooper JM, Gonzalez-Peñas E, Lopez de Cerain A, Alvarez-Erviti L. Oral subchronic exposure to the mycotoxin ochratoxin A induces key pathological features of Parkinson's disease in mice six months after the end of the treatment. Food Chem Toxicol 2021; 152:112164. [PMID: 33819549 DOI: 10.1016/j.fct.2021.112164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Some epidemiological studies with different levels of evidence have pointed to a higher risk of Parkinson's disease (PD) after exposure to environmental toxicants. A practically unexplored potential etiological factor is a group of naturally-occurring fungal secondary metabolites called mycotoxins. The mycotoxin ochratoxin A (OTA) has been reported to be neurotoxic in mice. To further identify if OTA exposure could have a role in PD pathology, Balb/c mice were orally treated with OTA (0.21, 0.5 mg/kg bw) four weeks and left for six months under normal diet. Effects of OTA on the onset, progression of alpha-synuclein pathology and development of motor deficits were evaluated. Immunohistochemical and biochemical analyses showed that oral subchronic OTA treatment induced loss of striatal dopaminergic innervation and dopaminergic cell dysfunction responsible for motor impairments. Phosphorylated alpha-synuclein levels were increased in gut and brain. LAMP-2A protein was decreased in tissues showing alpha-synuclein pathology. Cell cultures exposed to OTA exhibited decreased LAMP-2A protein, impairment of chaperone-mediated autophagy and decreased alpha-synuclein turnover which was linked to miRNAs deregulation, all reminiscent of PD. These results support the hypothesis that oral exposure to low OTA doses in mice can lead to biochemical and pathological changes reported in PD.
Collapse
Affiliation(s)
- María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006, Logroño, Spain.
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, MITOX Research Group, Universidad de Navarra, Pamplona, 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain.
| | - Raquel Forcen
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006, Logroño, Spain.
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Av. Carlos V, 70, 28938, Móstoles, Madrid, Spain.
| | - Maria de Toro
- Genomics and Bioinformatics Core Facility, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain.
| | - Natalia Alvarez-Herrera
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006, Logroño, Spain.
| | - J Mark Cooper
- Department of Clinical and Movement Neuroscience, Institute of Neurology, UCL, Gower Street, London, UK.
| | - Elena Gonzalez-Peñas
- Department of Pharmaceutical Technology and Chemistry, Universidad de Navarra, Pamplona, 31008, Spain.
| | - Adela Lopez de Cerain
- Department of Pharmacology and Toxicology, MITOX Research Group, Universidad de Navarra, Pamplona, 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain.
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006, Logroño, Spain.
| |
Collapse
|
26
|
ATP13A2 Regulates Cellular α-Synuclein Multimerization, Membrane Association, and Externalization. Int J Mol Sci 2021; 22:ijms22052689. [PMID: 33799982 PMCID: PMC7962109 DOI: 10.3390/ijms22052689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/02/2022] Open
Abstract
ATP13A2, a late endo-/lysosomal polyamine transporter, is implicated in a variety of neurodegenerative diseases, including Parkinson’s disease and Kufor–Rakeb syndrome, an early-onset atypical form of parkinsonism. Loss-of-function mutations in ATP13A2 result in lysosomal deficiency as a consequence of impaired lysosomal export of the polyamines spermine/spermidine. Furthermore, accumulating evidence suggests the involvement of ATP13A2 in regulating the fate of α-synuclein, such as cytoplasmic accumulation and external release. However, no consensus has yet been reached on the mechanisms underlying these effects. Here, we aimed to gain more insight into how ATP13A2 is linked to α-synuclein biology in cell models with modified ATP13A2 activity. We found that loss of ATP13A2 impairs lysosomal membrane integrity and induces α-synuclein multimerization at the membrane, which is enhanced in conditions of oxidative stress or exposure to spermine. In contrast, overexpression of ATP13A2 wildtype (WT) had a protective effect on α-synuclein multimerization, which corresponded with reduced αsyn membrane association and stimulation of the ubiquitin-proteasome system. We also found that ATP13A2 promoted the secretion of α-synuclein through nanovesicles. Interestingly, the catalytically inactive ATP13A2 D508N mutant also affected polyubiquitination and externalization of α-synuclein multimers, suggesting a regulatory function independent of the ATPase and transport activity. In conclusion, our study demonstrates the impact of ATP13A2 on α-synuclein multimerization via polyamine transport dependent and independent functions.
Collapse
|
27
|
Gopurappilly R. Pluripotent Stem Cell Derived Neurons as In Vitro Models for Studying Autosomal Recessive Parkinson's Disease (ARPD): PLA2G6 and Other Gene Loci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:115-133. [PMID: 33990932 PMCID: PMC7612166 DOI: 10.1007/5584_2021_643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative motor disorder which is largely sporadic; however, some familial forms have been identified. Genetic PD can be inherited by autosomal, dominant or recessive mutations. While the dominant mutations mirror the prototype of PD with adult-onset and L-dopa-responsive cases, autosomal recessive PD (ARPD) exhibit atypical phenotypes with additional clinical manifestations. Young-onset PD is also very common with mutations in recessive gene loci. The main genes associated with ARPD are Parkin, PINK1, DJ-1, ATP13A2, FBXO7 and PLA2G6. Calcium dyshomeostasis is a mainstay in all types of PD, be it genetic or sporadic. Intriguingly, calcium imbalances manifesting as altered Store-Operated Calcium Entry (SOCE) is suggested in PLA2G6-linked PARK 14 PD. The common pathways underlying ARPD pathology, including mitochondrial abnormalities and autophagic dysfunction, can be investigated ex vivo using induced pluripotent stem cell (iPSC) technology and are discussed here. PD pathophysiology is not faithfully replicated by animal models, and, therefore, nigral dopaminergic neurons generated from iPSC serve as improved human cellular models. With no cure to date and treatments aiming at symptomatic relief, these in vitro models derived through midbrain floor-plate induction provide a platform to understand the molecular and biochemical pathways underlying PD etiology in a patient-specific manner.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
28
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
29
|
The Emerging Role of the Lysosome in Parkinson's Disease. Cells 2020; 9:cells9112399. [PMID: 33147750 PMCID: PMC7692401 DOI: 10.3390/cells9112399] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson’s disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson’s disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.
Collapse
|
30
|
Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. J Neurosci 2020; 40:8618-8628. [PMID: 33046546 DOI: 10.1523/jneurosci.0954-20.2020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
The pathologic hallmark of Parkinson's disease is the accumulation of α-synuclein-containing Lewy bodies/neurites almost exclusively in neurons, and rarely in glial cells. However, emerging evidence suggests that glia such as astrocytes play an important role in the development of α-synuclein pathology. Using induced pluripotent stem-derived dopaminergic neurons and astrocytes from healthy subjects and patients carrying mutations in lysosomal ATP13A2, a monogenic form of synucleinopathy, we found that astrocytes rapidly internalized α-synuclein, and exhibited higher lysosomal degradation rates compared with neurons. Moreover, coculturing astrocytes and neurons led to decreased accumulation of α-synuclein in neurons and consequently diminished interneuronal transfer of α-synuclein. These protective functions of astrocytes were attenuated by ATP13A2 deficiency, suggesting that the loss of ATP13A2 function in astrocytes at least partially contributes to neuronal α-synuclein pathology. Together, our results highlight the importance of lysosomal function in astrocytes in the pathogenesis of synucleinopathies.SIGNIFICANCE STATEMENT While most neurodegenerative disorders are characterized by the accumulation of aggregated mutant proteins exclusively in neurons, the contribution of glial cells in this process remains poorly explored. Here, we demonstrate that astrocytes contribute to the removal of extracellular α-synuclein and that disruption of this pathway caused by mutations in the Parkinson's disease-linked gene ATP13A2 result in α-synuclein accumulation in human dopaminergic neurons. We found that astrocytes also protect neurons from α-synuclein propagation, whereas ATP13A2 deficiency in astrocytes compromises this protective function. These results highlight astrocyte-mediated α-synuclein clearance as a potential therapeutic target in disorders characterized by the accumulation of α-synuclein, including Parkinson's disease.
Collapse
|
31
|
Nyuzuki H, Ito S, Nagasaki K, Nitta Y, Matsui N, Saitoh A, Matsui H. Degeneration of dopaminergic neurons and impaired intracellular trafficking in Atp13a2 deficient zebrafish. IBRO Rep 2020; 9:1-8. [PMID: 32529115 PMCID: PMC7283103 DOI: 10.1016/j.ibror.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
ATP13A2 is the autosomal recessive causative gene for juvenile-onset Parkinson’s disease (PARK9, Parkinson’s disease 9), also known as Kufor-Rakeb syndrome. The disease is characterized by levodopa-responsive Parkinsonism, supranuclear gaze palsy, spasticity, and dementia. Previously, we have reported that Atp13a2 deficient medaka fish showed dopaminergic neurodegeneration and lysosomal dysfunction, indicating that lysosome-autophagy impairment might be one of the key pathogeneses of Parkinson’s disease. Here, we established Atp13a2 deficient zebrafish using CRISPR/Cas9 gene editing. We found that the number of TH + neurons in the posterior tuberculum and the locus coeruleus significantly reduced (dopaminergic neurons, 64 % at 4 months and 37 % at 12 months, p < 0.001 and p < 0.05, respectively; norepinephrine neurons, 52 % at 4 months and 40 % at 12 months, p < 0.001 and p < 0.05, respectively) in Atp13a2 deficient zebrafish, proving the degeneration of dopaminergic neurons. In addition, we found the reduction (60 %, p < 0.05) of cathepsin D protein expression in Atp13a2 deficient zebrafish using immunoblot. Transmission electron microscopy analysis using middle diencephalon samples from Atp13a2 deficient zebrafish showed lysosome-like bodies with vesicle accumulation and fingerprint-like structures, suggesting lysosomal dysfunction. Furthermore, a significant reduction (p < 0.001) in protein expression annotated with vesicle fusion with Golgi apparatus in Atp13a2 deficient zebrafish by liquid-chromatography tandem mass spectrometry suggested intracellular trafficking impairment. Therefore, we concluded that Atp13a2 deficient zebrafish exhibited degeneration of dopaminergic neurons, lysosomal dysfunction and the possibility of intracellular trafficking impairment, which would be the key pathogenic mechanism underlying Parkinson’s disease.
Collapse
Affiliation(s)
- Hiromi Nyuzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shinji Ito
- Medical Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Nagasaki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohei Nitta
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Noriko Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
32
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
34
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
35
|
Heins-Marroquin U, Jung PP, Cordero-Maldonado ML, Crawford AD, Linster CL. Phenotypic assays in yeast and zebrafish reveal drugs that rescue ATP13A2 deficiency. Brain Commun 2019; 1:fcz019. [PMID: 32954262 PMCID: PMC7425419 DOI: 10.1093/braincomms/fcz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/27/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in ATP13A2 (PARK9) are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of ATP13A2-associated disorders is not yet well understood and currently, these diseases remain without effective treatment. Interestingly, ATP13A2 is widely conserved among eukaryotes, and the yeast model for ATP13A2 deficiency was the first to indicate a role in heavy metal homeostasis, which was later confirmed in human cells. In this study, we show that the deletion of YPK9 (the yeast orthologue of ATP13A2) in Saccharomyces cerevisiae leads to growth impairment in the presence of Zn2+, Mn2+, Co2+ and Ni2+, with the strongest phenotype being observed in the presence of zinc. Using the ypk9Δ mutant, we developed a high-throughput growth rescue screen based on the Zn2+ sensitivity phenotype. Screening of two libraries of Food and Drug Administration-approved drugs identified 11 compounds that rescued growth. Subsequently, we generated a zebrafish model for ATP13A2 deficiency and found that both partial and complete loss of atp13a2 function led to increased sensitivity to Mn2+. Based on this phenotype, we confirmed two of the drugs found in the yeast screen to also exert a rescue effect in zebrafish-N-acetylcysteine, a potent antioxidant, and furaltadone, a nitrofuran antibiotic. This study further supports that combining the high-throughput screening capacity of yeast with rapid in vivo drug testing in zebrafish can represent an efficient drug repurposing strategy in the context of rare inherited disorders involving conserved genes. This work also deepens the understanding of the role of ATP13A2 in heavy metal detoxification and provides a new in vivo model for investigating ATP13A2 deficiency.
Collapse
Affiliation(s)
- Ursula Heins-Marroquin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
- Institute for Orphan Drug Discovery, Bremer Innovations- und Technologiezentrum, 28359 Bremen, Germany
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
36
|
Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019; 150:487-506. [PMID: 31287913 PMCID: PMC6707858 DOI: 10.1111/jnc.14820] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Izco M, Blesa J, Schleef M, Schmeer M, Porcari R, Al-Shawi R, Ellmerich S, de Toro M, Gardiner C, Seow Y, Reinares-Sebastian A, Forcen R, Simons JP, Bellotti V, Cooper JM, Alvarez-Erviti L. Systemic Exosomal Delivery of shRNA Minicircles Prevents Parkinsonian Pathology. Mol Ther 2019; 27:2111-2122. [PMID: 31501034 DOI: 10.1016/j.ymthe.2019.08.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/29/2022] Open
Abstract
The development of new therapies to slow down or halt the progression of Parkinson's disease is a health care priority. A key pathological feature is the presence of alpha-synuclein aggregates, and there is increasing evidence that alpha-synuclein propagation plays a central role in disease progression. Consequently, the downregulation of alpha-synuclein is a potential therapeutic target. As a chronic disease, the ideal treatment will be minimally invasive and effective in the long-term. Knockdown of gene expression has clear potential, and siRNAs specific to alpha-synuclein have been designed; however, the efficacy of siRNA treatment is limited by its short-term efficacy. To combat this, we designed shRNA minicircles (shRNA-MCs), with the potential for prolonged effectiveness, and used RVG-exosomes as the vehicle for specific delivery into the brain. We optimized this system using transgenic mice expressing GFP and demonstrated its ability to downregulate GFP protein expression in the brain for up to 6 weeks. RVG-exosomes were used to deliver anti-alpha-synuclein shRNA-MC therapy to the alpha-synuclein preformed-fibril-induced model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved the clinical symptoms. Our results confirm the therapeutic potential of shRNA-MCs delivered by RVG-exosomes for long-term treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño 26006, La Rioja, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles 28938, Madrid, Spain
| | | | - Marco Schmeer
- PlasmidFactory GmbH & Co. KG, Bielefeld 33607, Germany
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | - Raya Al-Shawi
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK; Centre for Biomedical Science, Division of Medicine, University College London, London NW3 2PF, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | - María de Toro
- Genomics and Bioinformatics Core Facility, Center for Biomedical Research of La Rioja (CIBIR), Logroño 26006, La Rioja, Spain
| | - Chris Gardiner
- Department of Haematology, University College London, London NW3 2PF, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore 138668, Singapore
| | | | - Raquel Forcen
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño 26006, La Rioja, Spain
| | - J Paul Simons
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK; Centre for Biomedical Science, Division of Medicine, University College London, London NW3 2PF, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | - J Mark Cooper
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño 26006, La Rioja, Spain; Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK.
| |
Collapse
|
38
|
Ugolino J, Dziki KM, Kim A, Wu JJ, Vogel BE, Monteiro MJ. Overexpression of human Atp13a2Isoform-1 protein protects cells against manganese and starvation-induced toxicity. PLoS One 2019; 14:e0220849. [PMID: 31393918 PMCID: PMC6687281 DOI: 10.1371/journal.pone.0220849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in ATP13A2 cause Kufor-Rakeb syndrome (KRS), a juvenile form of Parkinson's disease (PD) with dementia. However, the mechanisms by which mutations in ATP13A2 cause KRS is not understood. The mutations lead to misfolding of the translated Atp13a2 protein and its premature degradation in the endoplasmic reticulum, never reaching the lysosome where the protein is thought to function. Atp13a2 is a P-type ATPase, a class of proteins that function in ion transport. Indeed, studies of human, mouse, and yeast Atp13a2 proteins suggest a possible involvement in regulation of heavy metal toxicity. Here we report on the cytoprotective function of Atp13a2 on HeLa cells and dopamine neurons of Caenorhabditis elegans (C. elegans). HeLa cells stably overexpressing V5- tagged Atp13a2Isoform-1 protein were more resistant to elevated manganese exposure and to starvation-induced cell death compared to cells not overexpressing the protein. Because PD is characterized by loss of dopamine neurons, we generated transgenic C. elegans expressing GFP-tagged human Atp13a2 protein in dopamine neurons. The transgenic animals exhibited higher resistance to dopamine neuron degeneration after acute exposure to manganese compared to nematodes that expressed GFP alone. The results suggest Atp13a2 Isoform-1 protein confers cytoprotection against toxic insults, including those that cause PD syndromes.
Collapse
Affiliation(s)
- Janet Ugolino
- Biochemistry and Molecular Biology Graduate Program, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kristina M. Dziki
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Annette Kim
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Josephine J. Wu
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bruce E. Vogel
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mervyn J. Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
39
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
40
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
41
|
Arotcarena ML, Teil M, Dehay B. Autophagy in Synucleinopathy: The Overwhelmed and Defective Machinery. Cells 2019; 8:cells8060565. [PMID: 31181865 PMCID: PMC6627933 DOI: 10.3390/cells8060565] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein positive-intracytoplasmic inclusions are the common denominators of the synucleinopathies present as Lewy bodies in Parkinson’s disease, dementia with Lewy bodies, or glial cytoplasmic inclusions in multiple system atrophy. These neurodegenerative diseases also exhibit cellular dyshomeostasis, such as autophagy impairment. Several decades of research have questioned the potential link between the autophagy machinery and alpha-synuclein protein toxicity in synucleinopathy and neurodegenerative processes. Here, we aimed to discuss the active participation of autophagy impairment in alpha-synuclein accumulation and propagation, as well as alpha-synuclein-independent neurodegenerative processes in the field of synucleinopathy. Therapeutic approaches targeting the restoration of autophagy have started to emerge as relevant strategies to reverse pathological features in synucleinopathies.
Collapse
Affiliation(s)
- Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
42
|
Marcos AL, Corradi GR, Mazzitelli LR, Casali CI, Fernández Tome MDC, Adamo HP, de Tezanos Pinto F. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182993. [PMID: 31132336 DOI: 10.1016/j.bbamem.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.
Collapse
Affiliation(s)
- Alejandra Lucía Marcos
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Gerardo Raul Corradi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Luciana Romina Mazzitelli
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo Pedro Adamo
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
43
|
Schmutz I, Jagannathan V, Bartenschlager F, Stein VM, Gruber AD, Leeb T, Katz ML. ATP13A2 missense variant in Australian Cattle Dogs with late onset neuronal ceroid lipofuscinosis. Mol Genet Metab 2019; 127:95-106. [PMID: 30956123 PMCID: PMC6548654 DOI: 10.1016/j.ymgme.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by progressive neurodegeneration and declines in neurological functions. Pathogenic sequence variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been found to occur in 11 dog breeds in which they result in progressive neurological disorders similar to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic interventions for these disorders. In most NCLs, the onset of neurological signs occurs in childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants in ATP13A2 which encodes a putative transmembrane ion transporter important for lysosomal function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with a progressive neurological disorder with an onset of clinical signs at approximately 6 years of age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high frequency of the mutant allele in this breed suggests that further screening for this variant should identify additional homozygous dogs and indicates that it would be advisable to perform such screening prior to breeding Australian Cattle Dogs.
Collapse
Affiliation(s)
- Isabelle Schmutz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Florian Bartenschlager
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Veronika M Stein
- Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Achim D Gruber
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Martin L Katz
- Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
44
|
Tremblay ME, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener 2019; 14:16. [PMID: 30953527 PMCID: PMC6451240 DOI: 10.1186/s13024-019-0314-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
An emerging picture suggests that glial cells' loss of beneficial roles or gain of toxic functions can contribute to neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein accumulation is a key feature in Parkinson's disease (PD), compromised phagocytic clearance might participate in PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss the therapeutic relevance of restoring or enhancing lysosomal function in PD.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC Canada
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Laura Civiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
45
|
Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019; 12:ph12010027. [PMID: 30744104 PMCID: PMC6469182 DOI: 10.3390/ph12010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.
Collapse
|
46
|
Wang R, Tan J, Chen T, Han H, Tian R, Tan Y, Wu Y, Cui J, Chen F, Li J, Lv L, Guan X, Shang S, Lu J, Zhang Z. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J Cell Biol 2019; 218:267-284. [PMID: 30538141 PMCID: PMC6314552 DOI: 10.1083/jcb.201804165] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in ATP13A2 cause Kufor-Rakeb syndrome, an autosomal recessive form of juvenile-onset atypical Parkinson's disease (PD). Recent work tied ATP13A2 to autophagy and other cellular features of neurodegeneration, but how ATP13A2 governs numerous cellular functions in PD pathogenesis is not understood. In this study, the ATP13A2-deficient mouse developed into aging-dependent phenotypes resembling those of autophagy impairment. ATP13A2 deficiency impaired autophagosome-lysosome fusion in cultured cells and in in vitro reconstitution assays. In ATP13A2-deficient cells or Drosophila melanogaster or mouse tissues, lysosomal localization and activity of HDAC6 were reduced, with increased acetylation of tubulin and cortactin. Wild-type HDAC6, but not a deacetylase-inactive mutant, restored autophagosome-lysosome fusion, antagonized cortactin hyperacetylation, and promoted lysosomal localization of cortactin in ATP13A2-deficient cells. Mechanistically, ATP13A2 facilitated recruitment of HDAC6 and cortactin to lysosomes. Cortactin overexpression in cultured cells reversed ATP13A2 deficiency-associated impairment of autophagosome-lysosome fusion. PD-causing ATP13A2 mutants failed to rescue autophagosome-lysosome fusion or to promote degradation of protein aggregates and damaged mitochondria. These results suggest that ATP13A2 recruits HDAC6 to lysosomes to deacetylate cortactin and promotes autophagosome-lysosome fusion and autophagy. This study identifies ATP13A2 as an essential molecular component for normal autophagy flux in vivo and implies potential treatments targeting HDAC6-mediated autophagy for PD.
Collapse
Affiliation(s)
- Ruoxi Wang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Tingting Chen
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hailong Han
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Runyi Tian
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ya Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Yiming Wu
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jingyi Cui
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jie Li
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xinjie Guan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Shuai Shang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
- Department of Neurosciences, School of Medicine, University of South China, Hengyang, Hunan, China
| |
Collapse
|
47
|
Genetic mimics of the non-genetic atypical parkinsonian disorders – the ‘atypical’ atypical. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:327-351. [DOI: 10.1016/bs.irn.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Rayaprolu S, Seven YB, Howard J, Duffy C, Altshuler M, Moloney C, Giasson BI, Lewis J. Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis. Mol Cell Neurosci 2018; 92:17-26. [PMID: 29859891 DOI: 10.1016/j.mcn.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Loss-of-function mutations in ATP13A2 are associated with three neurodegenerative diseases: a rare form of Parkinson's disease termed Kufor-Rakeb syndrome (KRS), a lysosomal storage disorder termed neuronal ceroid lipofuscinosis (NCL), and a form of hereditary spastic paraplegia (HSP). Furthermore, recent data suggests that heterozygous carriers of mutations in ATP13A2 may confer risk for the development of Parkinson's disease, similar to the association of mutations in glucocerebrosidase (GBA) with both Parkinson's disease and Gaucher's disease, a lysosomal storage disorder. Mutations in ATP13A2 are generally thought to be loss of function; however, the lack of human autopsy tissue has prevented the field from determining the pathological consequences of losing functional ATP13A2. We and others have previously neuropathologically characterized mice completely lacking murine Atp13a2, demonstrating the presence of lipofuscinosis within the brain - a key feature of NCL, one of the diseases to which ATP13A2 mutations have been linked. To determine if loss of one functional Atp13a2 allele can serve as a risk factor for disease, we have now assessed heterozygous Atp13a2 knockout mice for key features of NCL. In this report, we demonstrate that loss of one functional Atp13a2 allele leads to both microgliosis and astrocytosis in multiple brain regions compared to age-matched controls; however, levels of lipofuscin were only modestly elevated in the cortex of heterozygous Atp13a2 knockout mice over controls. This data suggests the possibility that partial loss of ATP13A2 causes inflammatory changes within the brain which appear to be independent of robust lipofuscinosis. This study suggests that heterozygous loss-of-function mutations in ATP13A2 are likely harmful and indicates that glial involvement in the disease process may be an early event that positions the CNS for subsequent disease development.
Collapse
Affiliation(s)
- Sruti Rayaprolu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Yasin B Seven
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Colin Duffy
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Marcelle Altshuler
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Christina Moloney
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
49
|
Dirr ER, Ekhator OR, Blackwood R, Holden JG, Masliah E, Schultheis PJ, Fleming SM. Exacerbation of sensorimotor dysfunction in mice deficient in Atp13a2 and overexpressing human wildtype alpha-synuclein. Behav Brain Res 2018; 343:41-49. [PMID: 29407413 PMCID: PMC5829010 DOI: 10.1016/j.bbr.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022]
Abstract
Loss of function mutations in the gene ATP13A2 are associated with Kufor-Rakeb Syndrome and Neuronal Ceroid Lipofuscinosis, the former designated as an inherited form of Parkinson's disease (PD). The function of ATP13A2 is unclear but in vitro studies indicate it is a lysosomal protein and may interact with the presynaptic protein alpha-synuclein (aSyn) and certain heavy metals. Accumulation of aSyn is a major component of lewy bodies, the pathological hallmark of PD. Atp13a2-deficient (13a2) mice develop age-dependent sensorimotor deficits, and accumulation of insoluble aSyn in the brain. To better understand the interaction between ATP13A2 and aSyn, double mutant mice with loss of Atp13a2 function combined with overexpression of human wildtype aSyn were generated. Female and male wildtype (WT), 13a2, aSyn, and 13a2-aSyn mice were tested on a battery of sensorimotor tests including adhesive removal, challenging beam traversal, spontaneous activity, gait, locomotor activity, and nest-building at 2, 4, and 6 months of age. Double mutant mice showed an earlier onset and accelerated alterations in sensorimotor function that were age, sex and test-dependent. Female 13a2-aSyn mice showed early and progressive dysfunction on the beam and in locomotor activity. In males, 13a2-aSyn mice showed more severe impairments in spontaneous activity and adhesive removal. Sex differences were also observed in aSyn and 13a2-aSyn mice on the beam, cylinder, and adhesive removal tests. In other tasks, double mutant mice displayed deficits similar to aSyn mice. These results indicate loss of Atp13a2 function exacerbates the sensorimotor phenotype in aSyn mice in an age and sex-dependent manner.
Collapse
Affiliation(s)
- Emily R Dirr
- Department of Neurology, School of Medicine, University of Cincinnati, USA
| | - Osunde R Ekhator
- Department of Neurology, School of Medicine, University of Cincinnati, USA
| | - Rachel Blackwood
- Department of Neurology, School of Medicine, University of Cincinnati, USA
| | - John G Holden
- Department of Neurology, School of Medicine, University of Cincinnati, USA
| | | | | | - Sheila M Fleming
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, USA.
| |
Collapse
|
50
|
The genetics of Parkinson disease. Ageing Res Rev 2018; 42:72-85. [PMID: 29288112 DOI: 10.1016/j.arr.2017.12.007] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
About 15% of patients with Parkinson disease (PD) have family history and 5-10% have a monogenic form of the disease with Mendelian inheritance. To date, at least 23 loci and 19 disease-causing genes for parkinsonism have been found, but many more genetic risk loci and variants for sporadic PD phenotype have been identified in various association studies. Investigating the mutated protein products has uncovered potential pathogenic pathways that provide insights into mechanisms of neurodegeneration in familial and sporadic PD. To commemorate the 200th anniversary of Parkinson's publication of An Essay on the Shaking Palsy, we provide a comprehensive and critical overview of the current clinical, neuropathological, and genetic understanding of genetic forms of PD. We also discuss advances in screening for genetic PD-related risk factors and how they impact genetic counseling and contribute to the development of potential disease-modifying therapies.
Collapse
|