1
|
Skerjanz J, Bauernhofer L, Lenk K, Emmerstorfer-Augustin A, Leitinger G, Reichmann F, Stockner T, Groschner K, Tiapko O. TRPC1: The housekeeper of the hippocampus. Cell Calcium 2024; 123:102933. [PMID: 39116710 DOI: 10.1016/j.ceca.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Collapse
Affiliation(s)
- Julia Skerjanz
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Lena Bauernhofer
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | | | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Thomas Stockner
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria.
| |
Collapse
|
2
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
3
|
Wu W, Jia S, Xu H, Gao Z, Wang Z, Lu B, Ai Y, Liu Y, Liu R, Yang T, Luo R, Hu C, Kong L, Huang D, Yan L, Yang Z, Zhu L, Hao D. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS NANO 2023; 17:3818-3837. [PMID: 36787636 DOI: 10.1021/acsnano.2c12017] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 μm, and also had the ability to activate the PDGFRβ of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Ziheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Yixiang Ai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Tong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Chunping Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| |
Collapse
|
4
|
Zhao X, Zhang F, Kandel SR, Brau F, He JJ. HIV Tat and cocaine interactively alter genome-wide DNA methylation and gene expression and exacerbate learning and memory impairments. Cell Rep 2022; 39:110765. [PMID: 35508123 PMCID: PMC9615417 DOI: 10.1016/j.celrep.2022.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2022] Open
Abstract
Cocaine use is a major comorbidity of HIV-associated neurocognitive disorder (HAND). In this study, we show that cocaine exposure worsens the learning and memory of doxycycline-inducible and brain-specific HIV Tat transgenic mice (iTat) and results in 14,838 hypermethylated CpG-related differentially methylated regions (DMRs) and 15,800 hypomethylated CpG-related DMRs, which are linked to 52 down- and 127 upregulated genes, respectively, in the hippocampus of iTat mice. These genes are mostly enriched at the neuronal function-, cell morphology-, and synapse formation-related extracellular matrix (ECM) receptor-ligand interaction pathway and mostly impacted in microglia. The accompanying neuropathological changes include swollen dendritic spines, increased synaptophysin expression, and diminished glial activation. We also find that sex (female) and age additively worsen the behavioral and pathological changes. These findings together indicate that chronic cocaine and long-term Tat expression interactively contribute to HAND, likely involving changes of DNA methylation and ECM receptor-ligand interactions.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Fan Zhang
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA; Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
5
|
Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol 2021; 102. [PMID: 34424156 PMCID: PMC8513640 DOI: 10.1099/jgv.0.001634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses may exploit the cardiovascular system to facilitate transmission or within-host dissemination, and the symptoms of many viral diseases stem at least in part from a loss of vascular integrity. The microvascular architecture is comprised of an endothelial cell barrier ensheathed by perivascular cells (pericytes). Pericytes are antigen-presenting cells (APCs) and play crucial roles in angiogenesis and the maintenance of microvascular integrity through complex reciprocal contact-mediated and paracrine crosstalk with endothelial cells. We here review the emerging ways that viruses interact with pericytes and pay consideration to how these interactions influence microvascular function and viral pathogenesis. Major outcomes of virus-pericyte interactions include vascular leakage or haemorrhage, organ tropism facilitated by barrier disruption, including viral penetration of the blood-brain barrier and placenta, as well as inflammatory, neurological, cognitive and developmental sequelae. The underlying pathogenic mechanisms may include direct infection of pericytes, pericyte modulation by secreted viral gene products and/or the dysregulation of paracrine signalling from or to pericytes. Viruses we cover include the herpesvirus human cytomegalovirus (HCMV, Human betaherpesvirus 5), the retrovirus human immunodeficiency virus (HIV; causative agent of acquired immunodeficiency syndrome, AIDS, and HIV-associated neurocognitive disorder, HAND), the flaviviruses dengue virus (DENV), Japanese encephalitis virus (JEV) and Zika virus (ZIKV), and the coronavirus severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2; causative agent of coronavirus disease 2019, COVID-19). We touch on promising pericyte-focussed therapies for treating the diseases caused by these important human pathogens, many of which are emerging viruses or are causing new or long-standing global pandemics.
Collapse
Affiliation(s)
- Teemapron Butsabong
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Mariana Felippe
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Paola Campagnolo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
6
|
Chen H, Teng Y, Chen X, Liu Z, Geng F, Liu Y, Jiang H, Wang Z, Yang L. Platelet-derived growth factor (PDGF)-BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase. CNS Neurosci Ther 2021; 27:1300-1312. [PMID: 34346167 PMCID: PMC8504523 DOI: 10.1111/cns.13708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Aims The neurotropic growth factor PDGF‐BB was shown to have vital neurorestorative functions in various animal models of Parkinson's disease (PD). Previous studies indicated that the regenerative property of PDGF‐BB contributes to the increased intensity of tyrosine hydroxylase (TH) fibers in vivo. However, whether PDGF‐BB directly modulates the expression of TH, and the underlying mechanism is still unknown. We will carefully examine this in our current study. Method MPTP‐lesion mice received PDGF‐BB treatment via intracerebroventricular (i.c.v) administration, and the expression of TH in different brain regions was assessed by RT‐PCR, Western blot, and immunohistochemistry staining. The molecular mechanisms of PDGF‐BB‐mediated TH upregulation were examined by RT‐PCR, Western blot, ChIP assay, luciferase reporter assay, and immunocytochemistry. Results We validated a reversal expression of TH in MPTP‐lesion mice upon i.c.v administration of PDGF‐BB for seven days. Similar effects of PDGF‐BB‐mediated TH upregulation were also observed in MPP+‐treated primary neuronal culture and dopaminergic neuronal cell line SH‐SY5Y cells. We next demonstrated that PDGF‐BB rapidly activated the pro‐survival PI3K/Akt and MAPK/ERK signaling pathways, as well as the downstream CREB in SH‐SY5Y cells. We further confirmed the significant induction of p‐CREB in PDGF‐BB‐treated animals in vivo. Using a genetic approach, we demonstrated that the transcription factor CREB is critical for PDGF‐BB‐mediated TH expression. The activation and nucleus translocation of CREB were promoted in PDGF‐BB‐treated SH‐SY5Y cells, and the enrichment of CREB on the promoter region of TH gene was also increased upon PDGF‐BB treatment. Conclusion Our data demonstrated that PDGF‐BB directly regulated the expression of TH via activating the downstream Akt/ERK/CREB signaling pathways. Our finding will further support the therapeutic potential of PDGF‐BB in PD, and provide the possibility that targeting PDGF signaling can be harnessed as an adjunctive therapy in PD in the future.
Collapse
Affiliation(s)
- Huan Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fan Geng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Luo L, Zhang Y, Chen H, Hu F, Wang X, Xing Z, Albashari AA, Xiao J, He Y, Ye Q. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif 2020; 54:e12969. [PMID: 33332682 PMCID: PMC7848956 DOI: 10.1111/cpr.12969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Department of Stomatology, Ningbo Women and Children Hospital, Ningbo, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhong Y, Hu Z, Wu J, Dai F, Lee F, Xu Y. STAU1 selectively regulates the expression of inflammatory and immune response genes and alternative splicing of the nerve growth factor receptor signaling pathway. Oncol Rep 2020; 44:1863-1874. [PMID: 33000283 PMCID: PMC7551455 DOI: 10.3892/or.2020.7769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Double‑stranded RNA‑binding protein Staufen homolog 1 (STAU1) is a highly conserved multifunctional double‑stranded RNA‑binding protein, and is a key factor in neuronal differentiation. RNA sequencing was used to analyze the overall transcriptional levels of the upregulated cells by STAU1 and control cells, and select alternative splicing (AS). It was determined that the high expression of STAU1 led to changes in the expression levels of a variety of inflammatory and immune response genes, including IFIT2, IFIT3, OASL, and CCL2. Furthermore, STAU1 was revealed to exert a significant regulatory effect on the AS of genes related to the 'nerve growth factor receptor signaling pathway'. This is of significant importance for neuronal survival, differentiation, growth, post‑damage repair, and regeneration. In conclusion, overexpression of STAU1 was associated with immune response and regulated AS of pathways related to neuronal growth and repair. In the present study, the whole transcriptome of STAU1 expression was first analyzed, which laid a foundation for further understanding the key functions of STAU1.
Collapse
Affiliation(s)
- Yi Zhong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhengchao Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jingcui Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fan Dai
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Feng Lee
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| | - Yangping Xu
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
10
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
11
|
Kim MS, Choi HS, Wu M, Myung J, Kim EJ, Kim YS, Ro S, Ha SE, Bartlett A, Wei L, Ryu HS, Choi SC, Park WC, Kim KY, Lee MY. Potential Role of PDGFRβ-Associated THBS4 in Colorectal Cancer Development. Cancers (Basel) 2020; 12:2533. [PMID: 32899998 PMCID: PMC7564555 DOI: 10.3390/cancers12092533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a significant cause of death since it frequently metastasizes to several organs such as the lung or liver. Tumor development is affected by various factors, including a tumor microenvironment, which may be an essential factor that leads to tumor growth, proliferation, invasion, and metastasis. In the tumor microenvironment, abnormal changes in various growth factors, enzymes, and cytokines can wield a strong influence on cancer. Thrombospondin-4 (THBS4), which is an extracellular matrix protein, also plays essential roles in the tumor microenvironment and mediates angiogenesis by transforming growth factor-β (TGFβ) signaling. Platelet-derived growth factor receptor β (PDGFRβ), which is a receptor tyrosine kinase and is also a downstream signal of TGFβ, is associated with invasion and metastasis in colorectal cancer. We identified that PDGFRβ and THBS4 are overexpressed in tumor tissues of colorectal cancer patients, and that PDGF-D expression increased after TGFβ treatment in the colon cancer cell line DLD-1. TGFβ and PDGF-D increased cellular THBS4 protein levels and secretion but did not increase THBS4 mRNA levels. This response was further confirmed by the inositol 1,4,5-triphosphate receptor (IP3R) and stromal interaction molecule 1 (STIM1) blockade as well as the PDGFRβ blockade. We propose that the PDGFRβ signal leads to a modification of the incomplete form of THBS4 to its complete form through IP3R, STIM1, and Ca2+-signal proteins, which further induces THBS4 secretion. Additionally, we identified that DLD-1 cell-conditioned medium stimulated with PDGF-D promotes adhesion, migration, and proliferation of colon myofibroblast CCD-18co cells, and this effect was intensified in the presence of thrombin. These findings suggest that excessive PDGFRβ signaling due to increased TGFβ and PDGF-D in colorectal tumors leads to over-secretion of THBS4 and proliferative tumor development.
Collapse
Affiliation(s)
- Min Seob Kim
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Hyun Seok Choi
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - JiYeon Myung
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Eui Joong Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Yong Sung Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Han-Seung Ryu
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Suck Chei Choi
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Won Cheol Park
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Keun Young Kim
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Moon Young Lee
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| |
Collapse
|
12
|
Oikari LE, Yu C, Okolicsanyi RK, Avgan N, Peall IW, Griffiths LR, Haupt LM. HSPGs glypican‐1 and glypican‐4 are human neuronal proteins characteristic of different neural phenotypes. J Neurosci Res 2020; 98:1619-1645. [DOI: 10.1002/jnr.24666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Lotta E. Oikari
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Chieh Yu
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Rachel K. Okolicsanyi
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Nesli Avgan
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Ian W. Peall
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Lyn R. Griffiths
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| | - Larisa M. Haupt
- Genomics Research Centre Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Kelvin Grove QLD Australia
| |
Collapse
|
13
|
Goyal R, Spencer KA, Borodinsky LN. From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development. Front Mol Neurosci 2020; 13:62. [PMID: 32390800 PMCID: PMC7193536 DOI: 10.3389/fnmol.2020.00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural cells that in turn regulate the needed cellular processes taking place during each developmental period. These include neural cell proliferation and neuronal differentiation, which are crucial for developmental events ranging from the earliest steps of morphogenesis of the neural tube through the establishment of neuronal circuits. Here, we compile studies assessing the ontogeny of ionic currents in the developing nervous system. We then review work demonstrating a role for ion channels in neural tube formation, to underscore the necessity of the signaling downstream ion channels even at the earliest stages of neural development. We discuss the function of ion channels in neural cell proliferation and neuronal differentiation and conclude with how the regulation of all these morphogenetic and cellular processes by electrical activity enables the appropriate development of the nervous system and the establishment of functional circuits adapted to respond to a changing environment.
Collapse
Affiliation(s)
- Raman Goyal
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kira A Spencer
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
14
|
He D, Mao A, Li Y, Tam S, Zheng Y, Yao X, Birnbaumer L, Ambudkar IS, Ma X. TRPC1 participates in the HSV-1 infection process by facilitating viral entry. SCIENCE ADVANCES 2020; 6:eaaz3367. [PMID: 32206724 PMCID: PMC7080438 DOI: 10.1126/sciadv.aaz3367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Mammalian transient receptor potential (TRP) channels are major components of Ca2+ signaling pathways and control a diversity of physiological functions. Here, we report a specific role for TRPC1 in the entry of herpes simplex virus type 1 (HSV-1) into cells. HSV-1-induced Ca2+ release and entry were dependent on Orai1, STIM1, and TRPC1. Inhibition of Ca2+ entry or knockdown of these proteins attenuated viral entry and infection. HSV-1 glycoprotein D interacted with the third ectodomain of TRPC1, and this interaction facilitated viral entry. Knockout of TRPC1 attenuated HSV-1-induced ocular abnormality and morbidity in vivo in TRPC1-/- mice. There was a strong correlation between HSV-1 infection and plasma membrane localization of TRPC1 in epithelial cells within oral lesions in buccal biopsies from HSV-1-infected patients. Together, our findings demonstrate a critical role for TRPC1 in HSV-1 infection and suggest the channel as a potential target for anti-HSV therapy.
Collapse
Affiliation(s)
- DongXu He
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Jiangsu, China
| | - AiQin Mao
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Jiangsu, China
| | - YouRan Li
- School of Biotechnology, Jiangnan University, Jiangsu, China
| | - SiuCheung Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - YongTang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - XiaoQiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, NIEHS, NIH, Research Triangle Park, NC, USA
- BIOMED, School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Indu S. Ambudkar
- Secretory Physiology Section, MPTB, NIDCR, NIH, Bethesda, MD, USA
| | - Xin Ma
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Jiangsu, China
| |
Collapse
|
15
|
Mackiewicz MM, Overk C, Achim CL, Masliah E. Pathogenesis of age-related HIV neurodegeneration. J Neurovirol 2019; 25:622-633. [PMID: 30790184 PMCID: PMC6703984 DOI: 10.1007/s13365-019-00728-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
People over the age of 50 are the fastest growing segment of the HIV-infected population in the USA. Although antiretroviral therapy has remarkable success controlling the systemic HIV infection, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group, and cognitive deficits appear more severe in aged patients with HIV. The mechanisms of HAND in the aged population are not completely understood; a leading hypothesis is that aged individuals with HIV might be at higher risk of developing Alzheimer's disease (AD) or one of the AD-related dementias (ADRD). There are a number of mechanisms through which chronic HIV disease alone or in combination with antiretroviral therapy and other comorbidities (e.g., drug use, hepatitis C virus (HCV)) might be contributing to HAND in individuals over the age of 50 years, including (1) overlapping pathogenic mechanisms between HIV and aging (e.g., decreased proteostasis, DNA damage, chronic inflammation, epigenetics, vascular), which could lead to accelerated cellular aging and neurodegeneration and/or (2) by promoting pathways involved in AD/ADRD neuropathogenesis (e.g., triggering amyloid β, Tau, or α-synuclein accumulation). In this manuscript, we will review some of the potential common mechanisms involved and evidence in favor and against a role of AD/ADRD in HAND.
Collapse
Affiliation(s)
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cristian L Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging/NIH, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Putatunda R, Zhang Y, Li F, Yang XF, Barbe MF, Hu W. Adult neurogenic deficits in HIV-1 Tg26 transgenic mice. J Neuroinflammation 2018; 15:287. [PMID: 30314515 PMCID: PMC6182864 DOI: 10.1186/s12974-018-1322-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
Background Even in the antiretroviral treatment (ART) era, HIV-1-infected patients suffer from milder forms of HIV-1-associated neurocognitive disorders (HAND). While the viral proteins Tat and gp120 have been shown to individually inhibit the proliferation and neural differentiation of neural stem cells (NSCs), no studies have characterized the effects of all the combined viral proteins on adult neurogenesis. Methods The HIV-1 Tg26 transgenic mouse model was used due to its clinical relevance to ART-controlled HIV-1-infected patients who lack active viral replication but suffer from continuous stress from the viral proteins. Quantitative RT-PCR analysis was performed to validate the expression of viral genes in the neurogenic zones. In vitro stemness and lineage differentiation assays were performed in cultured NSCs from HIV-1 Tg26 transgenic mice and their wild-type littermates. Hippocampal neurogenic lineage analysis was performed to determine potential changes in initial and late differentiation of NSCs in the subgranular zone (SGZ). Finally, fluorescent retroviral labeling of mature dentate granule neurons was performed to assess dendritic complexity and dendritic spine densities. Results Varying copy numbers of partial gag (p17), tat (unspliced and spliced variants), env (gp120), vpu, and nef transcripts were detected in the neurogenic zones of Tg26 mice. Significantly fewer primary neurospheres and a higher percentage of larger sized primary neurospheres were generated from Tg26 NSCs than from littermated wild-type mouse NSCs, implying that Tg26 mouse NSCs exhibit deficits in initial differentiation. In vitro differentiation assays revealed that Tg26 mouse NSCs have reduced neuronal differentiation and increased astrocytic differentiation. In the SGZs of Tg26 mice, significantly higher amounts of quiescent NSCs, as well as significantly lower levels of active NSCs, proliferating neural progenitor cells, and neuroblasts, were observed. Finally, newborn mature granule neurons in the dentate gyri of Tg26 mice had deficiencies in dendritic arborization, dendritic length, and dendritic spine density. Conclusions Both in vitro and in vivo studies demonstrate that HIV-1 Tg26 mice have early- and late-stage neurogenesis deficits, which could possibly contribute to the progression of HAND. Future therapies should be targeting this process to ameliorate, if not eliminate HAND-like symptoms in HIV-1-infected patients.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Yonggang Zhang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
17
|
Mohseni Ahooyi T, Shekarabi M, Decoppet EA, Langford D, Khalili K, Gordon J. Network analysis of hippocampal neurons by microelectrode array in the presence of HIV-1 Tat and cocaine. J Cell Physiol 2018; 233:9299-9311. [PMID: 29206302 DOI: 10.1002/jcp.26322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
Abstract
HIV-associated neurocognitive disorders affecting greater than 30% of patients are caused by HIV-1 infection of the CNS, and in part, include neurotoxic effects of the viral transactivator of transcription, Tat protein. In addition to increasing the risk for becoming HIV infected, cocaine abuse enhances the neuropathogenic impacts of HIV-1. To investigate the outcome of Tat and cocaine interference in the hippocampal neuronal network, cross-rank-corrlation was employed to develop a systematic framework to assess hippocampal neurons behavior cultured on multielectrode arrays. Tat and cocaine differentially disturbed neuronal spiking rates, amplitude, synchronous activity, and oscillations within the hippocampal neuronal network via potentiation of inhibitory neurotransmission. The Tat-mediated impairment of neuronal spiking was reversible by removal of Tat, which restored neuronal activity. The presence of astrocytes co-cultured with neuronal networks diminished the effects of Tat and cocaine on neuron function suggesting a role for astrocytes in stabilizing neuronal behavior and increasing neuronal spontaneous activities such as bursting amplitude, frequency, and wave propagation rate. Taken together, our studies indicate that the HIV protein Tat and cocaine impair hippocampal neuronal network functioning and that the presence of astrocytes alleviates network dysfunction pointing to a newly discovered pathway through which ionic homeostasis is maintained by neuron-glial crosstalk in the CNS.
Collapse
Affiliation(s)
- Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Masoud Shekarabi
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Emilie A Decoppet
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dianne Langford
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Huang TY, Lin YH, Chang HA, Yeh TY, Chang YH, Chen YF, Chen YC, Li CC, Chiu WT. STIM1 Knockout Enhances PDGF-Mediated Ca 2+ Signaling through Upregulation of the PDGFR⁻PLCγ⁻STIM2 Cascade. Int J Mol Sci 2018; 19:ijms19061799. [PMID: 29912163 PMCID: PMC6032054 DOI: 10.3390/ijms19061799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023] Open
Abstract
Platelet-derived growth factor (PDGF) has mitogenic and chemotactic effects on fibroblasts. An increase in intracellular Ca2+ is one of the first events that occurs following the stimulation of PDGF receptors (PDGFRs). PDGF activates Ca2+ elevation by activating the phospholipase C gamma (PLCγ)-signaling pathway, resulting in ER Ca2+ release. Store-operated Ca2+ entry (SOCE) is the major form of extracellular Ca2+ influx following depletion of ER Ca2+ stores and stromal interaction molecule 1 (STIM1) is a key molecule in the regulation of SOCE. In this study, wild-type and STIM1 knockout mouse embryonic fibroblasts (MEF) cells were used to investigate the role of STIM1 in PDGF-induced Ca2+ oscillation and its functions in MEF cells. The unexpected findings suggest that STIM1 knockout enhances PDGFR–PLCγ–STIM2 signaling, which in turn increases PDGF-BB-induced Ca2+ elevation. Enhanced expressions of PDGFRs and PLCγ in STIM1 knockout cells induce Ca2+ release from the ER store through PLCγ–IP3 signaling. Moreover, STIM2 replaces STIM1 to act as the major ER Ca2+ sensor in activating SOCE. However, activation of PDGFRs also activate Akt, ERK, and JNK to regulate cellular functions, such as cell migration. These results suggest that alternative switchable pathways can be observed in cells, which act downstream of the growth factors that regulate Ca2+ signaling.
Collapse
Affiliation(s)
- Tzu-Yu Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tzu-Ying Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ya-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Fan Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
19
|
Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Aspects Med 2018; 62:63-74. [PMID: 29409855 DOI: 10.1016/j.mam.2018.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are expressed in several cell types including the brain cells such as neuronal progenitors, neurons, astrocytes, and oligodendrocytes. Emerging evidence shows that PDGF-mediated signaling regulates diverse functions in the central nervous system (CNS) such as neurogenesis, cell survival, synaptogenesis, modulation of ligand-gated ion channels, and development of specific types of neurons. Interestingly, PDGF/PDFGR signaling can elicit paradoxical roles in the CNS, depending on the cell type and the activation stimuli and is implicated in the pathogenesis of various neurodegenerative diseases. This review summarizes the role of PDGFs/PDGFRs in several neurodegenerative diseases such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, brain cancer, cerebral ischemia, HIV-1 and drug abuse. Understanding PDGF/PDGFR signaling may lead to novel approaches for the future development of therapeutic strategies for combating CNS pathologies.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
20
|
Langford D, Oh Kim B, Zou W, Fan Y, Rahimain P, Liu Y, He JJ. Doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) as an HIV/neuroAIDS model. J Neurovirol 2017; 24:168-179. [PMID: 29143286 DOI: 10.1007/s13365-017-0598-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
HIV-1 Tat is known to be neurotoxic and important for HIV/neuroAIDS pathogenesis. However, the overwhelming majority of the studies involved use of recombinant Tat protein. To understand the contributions of Tat protein to HIV/neuroAIDS and the underlying molecular mechanisms of HIV-1 Tat neurotoxicity in the context of a whole organism and independently of HIV-1 infection, a doxycycline-inducible astrocyte-specific HIV-1 Tat transgenic mouse (iTat) was created. Tat expression in the brains of iTat mice was determined to be in the range of 1-5 ng/ml and led to astrocytosis, loss of neuronal dendrites, and neuroinflammation. iTat mice have allowed us to define the direct effects of Tat on astrocytes and the molecular mechanisms of Tat-induced GFAP expression/astrocytosis, astrocyte-mediated Tat neurotoxicity, Tat-impaired neurogenesis, Tat-induced loss of neuronal integrity, and exosome-associated Tat release and uptake. In this review, we will provide an overview about the creation and characterization of this model and its utilities for our understanding of Tat neurotoxicity and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Byung Oh Kim
- School of Food Science & Biotechnology and College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Wei Zou
- The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yan Fan
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Pejman Rahimain
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Ying Liu
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Johnny J He
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
21
|
Chen C, Ma Q, Deng P, Yang J, Yang L, Lin M, Yu Z, Zhou Z. Critical role of TRPC1 in thyroid hormone-dependent dopaminergic neuron development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1900-1912. [PMID: 28779972 DOI: 10.1016/j.bbamcr.2017.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023]
Abstract
Thyroid hormones play a crucial role in midbrain dopaminergic (DA) neuron development. However, the underlying molecular mechanisms remain largely unknown. In this study, we revealed that thyroid hormone treatment evokes significant calcium entry through canonical transient receptor potential (TRPC) channels in ventral midbrain neural stem cells and this calcium signaling is essential for thyroid hormone-dependent DA neuronal differentiation. We also found that TRPC1 is the dominant TRPC channel expressed in ventral midbrain neural stem cells which responds to thyroid hormone. In addition, thyroid hormone increases TRPC1 expression through its receptor alpha 1 during DA neuron differentiation, and, importantly, produces calcium signals by activating TRPC1 channels. In vivo and in vitro gene silencing experiments indicate that TRPC1-mediated calcium signaling is required for thyroid hormone-dependent DA neuronal differentiation. Finally, we confirmed that the activation of OTX2, a determinant of DA neuron development and the expression of which is induced by thyroid hormone, is dependent on TRPC1-mediated calcium signaling. These data revealed the molecular mechanisms of how thyroid hormone regulates DA neuron development from ventral midbrain neural stem cells, particularly endowing a novel physiological relevance to TRPC1 channels.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China.
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Jianjing Yang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China.
| |
Collapse
|
22
|
HIV Tat Impairs Neurogenesis through Functioning As a Notch Ligand and Activation of Notch Signaling Pathway. J Neurosci 2017; 36:11362-11373. [PMID: 27807176 DOI: 10.1523/jneurosci.1208-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023] Open
Abstract
Alterations in adult neurogenesis have been noted in the brain of HIV-infected individuals and are likely linked to HIV-associated neurocognitive deficits, including those in learning and memory. But the underlying molecular mechanisms are not fully understood. In the study, we took advantage of doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) and determined the relationship between Tat expression and neurogenesis. Tat expression in astrocytes was associated with fewer neuron progenitor cells (NPCs), fewer immature neurons, and fewer mature neurons in the dentate gyrus of the hippocampus of the mouse brain. In vitro NPC-derived neurosphere assays showed that Tat-containing conditioned media from astrocytes or recombinant Tat protein inhibited NPC proliferation and migration and altered NPC differentiation, while immunodepletion of Tat from Tat-containing conditioned media or heat inactivation of recombinant Tat abrogated those effects. Notch signaling downstream gene Hes1 promoter-driven luciferase reporter gene assay and Western blotting showed that recombinant Tat or Tat-containing conditioned media activated Hes1 transcription and protein expression, which were abrogated by Tat heat inactivation, immunodepletion, and cysteine mutation at position 30. Last, Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) significantly rescued Tat-impaired NPC differentiation in vitro and neurogenesis in vivo Together, these results show that Tat adversely affects NPCs and neurogenesis through Notch signaling and point to the potential of developing Notch signaling inhibitors as HIV/neuroAIDS therapeutics. SIGNIFICANCE STATEMENT HIV infection of the CNS causes cognitive and memory deficits, which have become more prevalent in the era of combination antiretroviral therapy (cART). Neurogenesis is impaired in HIV-infected individuals. But the underlying molecular mechanisms remain largely unknown. In this study, we have discovered that HIV Tat impairs neurogenesis through the Notch signaling pathway. These findings are particularly important because Tat protein has recently been detected in the brain of HIV-infected individuals with HIV replication in the periphery being effectively controlled by cART. The current study not only further highlights the importance of HIV Tat protein in HIV/neuroAIDS, but also presents a new strategy to develop novel HIV/neuroAIDS therapeutics, particularly in the era of cART.
Collapse
|
23
|
Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol Int 2017; 67:235-246. [DOI: 10.1111/pin.12530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Yoko Ishii
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| | - Takeru Hamashima
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| | - Seiji Yamamoto
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| | - Masakiyo Sasahara
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| |
Collapse
|
24
|
STIM-TRP Pathways and Microdomain Organization: Ca 2+ Influx Channels: The Orai-STIM1-TRPC Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:139-157. [PMID: 28900913 DOI: 10.1007/978-3-319-57732-6_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ influx by plasma membrane Ca2+ channels is the crucial component of the receptor-evoked Ca2+ signal. The two main Ca2+ influx channels of non-excitable cells are the Orai and TRPC families of Ca2+ channels. These channels are activated in response to cell stimulation and Ca2+ release from the endoplasmic reticulum (ER). The protein that conveys the Ca2+ content of the ER to the plasma membrane is the ER Ca2+ sensor STIM1. STIM1 activates the Orai channels and is obligatory for channel opening. TRPC channels can function in two modes, as STIM1-dependent and STIM1-independent. When activated by STIM1, both channel types function at the ER/PM (plasma membrane) junctions. This chapter describes the properties and regulation of the channels by STIM1, with emphasis how and when TRPC channels function as STIM1-dependent and STIM1-independent modes and their unique Ca2+-dependent physiological functions that are not shared with the Orai channels.
Collapse
|
25
|
Transient Receptor Potential-canonical 1 is Essential for Environmental Enrichment-Induced Cognitive Enhancement and Neurogenesis. Mol Neurobiol 2016; 54:1992-2002. [DOI: 10.1007/s12035-016-9758-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
26
|
Liao K, Guo M, Niu F, Yang L, Callen SE, Buch S. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J Neuroinflammation 2016; 13:33. [PMID: 26860188 PMCID: PMC4748483 DOI: 10.1186/s12974-016-0501-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Neuroinflammation associated with advanced human immunodeficiency virus (HIV)-1 infection is often exacerbated by chronic cocaine abuse. Cocaine exposure has been demonstrated to mediate up-regulation of inflammatory mediators in in vitro cultures of microglia. The molecular mechanisms involved in this process, however, remain poorly understood. In this study, we sought to explore the underlying signaling pathways involved in cocaine-mediated activation of microglial cells. Methods BV2 microglial cells were exposed to cocaine and assessed for toll-like receptor (TLR2) expression by quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, and immunofluorescence staining. The mRNA and protein levels of cytokines (TNFα, IL-6, MCP-1) were detected by qPCR and ELISA, respectively; level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection kit; activation of endoplasmic reticulum (ER)-stress pathways were detected by western blot. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of activating transcription factor 4 (ATF4) with the TLR2 promoter. Immunoprecipitation followed by western blotting with tyrosine antibody was used to determine phosphorylation of TLR2. Cocaine-mediated up-regulation of TLR2 expression and microglial activation was validated in cocaine-injected mice. Results Exposure of microglial cells to cocaine resulted in increased expression of TLR2 with a concomitant induction of microglial activation. Furthermore, this effect was mediated by NADPH oxidase-mediated rapid accumulation of ROS with downstream activation of the ER-stress pathways as evidenced by the fact that cocaine exposure led to up-regulation of pPERK/peIF2α/ATF4 and TLR2. The novel role of ATF4 in the regulation of TLR2 expression was confirmed using genetic and pharmacological approaches. Conclusions xThe current study demonstrates that cocaine-mediated activation of microglia involves up-regulation of TLR2 through the ROS-ER stress-ATF4-TLR2 axis. Understanding the mechanism(s) involved in cocaine-mediated up-regulation of ROS-ER stress/TLR2 expression and microglial activation could have implications for the development of potential therapeutic targets aimed at resolving neuroinflammation in cocaine abusers. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0501-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Minglei Guo
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shannon E Callen
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
27
|
Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death Differ 2015; 23:776-86. [PMID: 26586575 PMCID: PMC4832097 DOI: 10.1038/cdd.2015.138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/14/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022] Open
Abstract
In addition to glial cells, HIV-1 infection occurs in multipotent human neural precursor cells (hNPCs) and induces quiescence in NPCs. HIV-1 infection of the brain alters hNPC stemness, leading to perturbed endogenous neurorestoration of the CNS following brain damage by HIV-1, compounding the severity of dementia in adult neuroAIDS cases. In pediatric neuroAIDS cases, HIV-1 infection of neural stem cell can lead to delayed developmental milestones and impaired cognition. Using primary cultures of human fetal brain-derived hNPCs, we gained novel insights into the role of a neural stem cell determinant, tripartite containing motif 32 (TRIM32), in HIV-1 Tat-induced quiescence of NPCs. Acute HIV-1 Tat treatment of hNPCs resulted in proliferation arrest but did not induce differentiation. Cellular localization and levels of TRIM32 are critical regulators of stemness of NPCs. HIV-1 Tat exposure increased nuclear localization and levels of TRIM32 in hNPCs. The in vitro findings were validated by studying TRIM32 localization and levels in frontal cortex of HIV-1-seropositive adult patients collected at post mortem as well as by infection of hNPCs by HIV-1. We observed increased percentage of cells with nuclear localization of TRIM32 in the subventricular zone (SVZ) as compared with age-matched controls. Our quest for probing into the mechanisms revealed that TRIM32 is targeted by miR-155 as downregulation of miR-155 by HIV-1 Tat resulted in upregulation of TRIM32 levels. Furthermore, miR-155 or siRNA against TRIM32 rescued HIV-1 Tat-induced quiescence in NPCs. Our findings suggest a novel molecular cascade involving miR-155 and TRIM32 leading to HIV-1 Tat-induced attenuated proliferation of hNPCs. The study also uncovered an unidentified role for miR-155 in modulating human neural stem cell proliferation, helping in better understanding of hNPCs and diseased brain.
Collapse
|
28
|
Yang L, Chen X, Hu G, Cai Y, Liao K, Buch S. Mechanisms of Platelet-Derived Growth Factor-BB in Restoring HIV Tat-Cocaine-Mediated Impairment of Neuronal Differentiation. Mol Neurobiol 2015; 53:6377-6387. [PMID: 26572642 DOI: 10.1007/s12035-015-9536-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
Diminished adult neurogenesis is known to play a key role in the pathogenesis of diverse neurodegenerative disorders such as HIV-associated neurological disorders (HAND). Cocaine, often abused by HIV-infected patients, has been suggested to worsen HIV-associated CNS disease. Mounting evidence also indicates that HIV infection can lead not only to neuronal dysfunction or loss, but can also negatively impact neurogenesis, resulting in generation of fewer adult neural progenitor cells (NPCs) in the dentate gyrus of the hippocampus, brain area critical for memory and learning. The crucial role of platelet-derived growth factor-BB (PDGF-BB) in providing tropic support for the neurons as well as in promoting NPC proliferation has been demonstrated by us previously. However, whether PDGF-BB regulates neuronal differentiation especially in the context of HAND and drug abuse remains poorly understood. In this study, we demonstrate that pretreatment of rat hippocampal NPCs with PDGF-BB restored neuronal differentiation that had been impaired by HIV Tat and cocaine. To further study the intracellular mechanism(s) involved in this process, we examined the role of transient receptor potential canonical (TRPC) channels in mediating neuronal differentiation in the presence of PDGF-BB. TRPC channels are Ca2+-permeable, nonselective cationic channels that elicit a variety of physiological functions. Parallel but distinct ERK, Akt signaling pathways with downstream activation of CREB were found to be critical for neuronal differentiation. Pharmacological blocking of TRPC channels resulted in suppression of PDGF-mediated differentiation and PDGF-BB-induced activation of ERK and Akt, culminating also to inhibition of PDGF-induced activation of CREB. Taken together, these findings underpin the role of TRPC channel as a novel target regulating cell differentiation mediated by PDGF-BB. This finding could have implications for development of therapeutic interventions aimed at restoration of Tat and cocaine-mediated impairment of neurogenesis in drug abusing HAND patients.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Xufeng Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - S Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
29
|
Dahal S, Chitti SVP, Nair MPN, Saxena SK. Interactive effects of cocaine on HIV infection: implication in HIV-associated neurocognitive disorder and neuroAIDS. Front Microbiol 2015; 6:931. [PMID: 26441868 PMCID: PMC4562305 DOI: 10.3389/fmicb.2015.00931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Substantial epidemiological studies suggest that not only, being one of the reasons for the transmission of the human immunodeficiency virus (HIV), but drug abuse also serves its role in determining the disease progression and severity among the HIV infected population. This article focuses on the drug cocaine, and its role in facilitating entry of HIV into the CNS and mechanisms of development of neurologic complications in infected individuals. Cocaine is a powerfully addictive central nervous system stimulating drug, which increases the level of neurotransmitter dopamine (DA) in the brain, by blocking the dopamine transporters (DAT) which is critical for DA homeostasis and neurocognitive function. Tat protein of HIV acts as an allosteric modulator of DAT, where as cocaine acts as reuptake inhibitor. When macrophages in the CNS are exposed to DA, their number increases. These macrophages release inflammatory mediators and neurotoxins, causing chronic neuroinflammation. Cocaine abuse during HIV infection enhances the production of platelet monocyte complexes (PMCs), which may cross transendothelial barrier, and result in HIV-associated neurocognitive disorder (HAND). HAND is characterized by neuroinflammation, including astrogliosis, multinucleated giant cells, and neuronal apoptosis that is linked to progressive virus infection and immune deterioration. Cocaine and viral proteins are capable of eliciting signaling transduction pathways in neurons, involving in mitochondrial membrane potential loss, oxidative stress, activation of JNK, p38, and ERK/MAPK pathways, and results in downstream activation of NF-κB that leads to HAND. Tat-induced inflammation provokes permeability of the blood brain barrier (BBB) in the platelet dependent manner, which can potentially be the reason for progression to HAND during HIV infection. A better understanding on the role of cocaine in HIV infection can give a clue in developing novel therapeutic strategies against HIV-1 infection in cocaine using HIV infected population.
Collapse
Affiliation(s)
- Santosh Dahal
- CSIR-Centre for Cellular and Molecular Biology , Hyderabad, India
| | - Sai V P Chitti
- CSIR-Centre for Cellular and Molecular Biology , Hyderabad, India
| | - Madhavan P N Nair
- College of Medicine, Florida International University , Miami, FL, USA
| | | |
Collapse
|
30
|
Li PC, Jiao Y, Ding J, Chen YC, Cui Y, Qian C, Yang XY, Ju SH, Yao HH, Teng GJ. Cystamine improves functional recovery via axon remodeling and neuroprotection after stroke in mice. CNS Neurosci Ther 2014; 21:231-40. [PMID: 25430473 DOI: 10.1111/cns.12343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
AIMS Stroke is a leading cause of disability. However, there is no pharmacological therapy available for promoting recovery. Although treatment of stroke with cystamine has gained increasing interest, the detailed mechanisms underlying this process remain elusive. Thus, our aim is to examine the effect of cystamine on the function recovery after stroke and investigate further cystamine mechanisms. METHODS Adult male C57BL/6J mice were subjected to photothrombotic model of focal stroke or sham operation. Cystamine or saline was administered intraperitoneally at 24 h after stroke. Functional recovery was analyzed using behavioral tests; axon remodeling was analyzed using magnetic resonance diffusion tensor imaging (DTI) and histological assessment. ANA-12, an antagonist of tropomyosin-related kinase B (TrkB), was administrated to examine the mechanisms underlying the neuroprotection mediated by cystamine. RESULTS Treatment with cystamine resulted in amelioration of impaired function with concomitant enhancement of axonal remodeling. Cystamine treatment significantly increased brain-derived neurotrophic factor (BDNF) levels and phosphorylation of TrkB in brain after stroke. Cystamine significantly enhanced neuronal progenitor cell proliferation, neuronal survival, and plasticity through BDNF/TrkB pathway. CONCLUSIONS These data provide evidence to investigate the promising utility of cystamine for therapy of stroke in a variety of ways, acting principally through BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Pei-Cheng Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ferrell D, Giunta B. The impact of HIV-1 on neurogenesis: implications for HAND. Cell Mol Life Sci 2014; 71:4387-92. [PMID: 25134912 DOI: 10.1007/s00018-014-1702-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Abstract
HIV-1 infection, in addition to its destructive effects on the immune system, plays a role in the development of neurocognitive deficits. Indeed up to 50% of long-term HIV infected patients suffer from HIV-associated neurocognitive disorders (HAND). These deficits have been well characterized and defined clinically according to a number of cognitive parameters. HAND is often accompanied by atrophy of the brain including inhibition of neurogenesis, especially in the hippocampus. Many mechanisms have been proposed as contributing factors to HAND including induction of oxidative stress in the central nervous system (CNS), chronic microglial-mediated neuroinflammation, amyloid-beta (Aβ) deposition, hyperphosphorylated tau protein, and toxic effects of combination antiretroviral therapy (cART). In these review we focus solely on recent experimental evidence suggesting that disturbance by HIV-1 results in impairment of neurogenesis as one contributing factor to HAND. Impaired neurogenesis has been linked to cognitive deficits and other neurodegenerative disorders. This article will highlight recently identified pathological mechanisms which potentially contribute to the development of impaired neurogenesis by HIV-1 or HIV-1-associated proteins from both animal and human studies.
Collapse
Affiliation(s)
- Darren Ferrell
- Laboratory of Neuroimmunology, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA,
| | | |
Collapse
|
32
|
Chao J, Yang L, Yao H, Buch S. Platelet-derived growth factor-BB restores HIV Tat -mediated impairment of neurogenesis: role of GSK-3β/β-catenin. J Neuroimmune Pharmacol 2014; 9:259-68. [PMID: 24248537 PMCID: PMC4183349 DOI: 10.1007/s11481-013-9509-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022]
Abstract
Our previous study demonstrated that platelet-derived growth factor-BB (PDGF-BB) increased the cell proliferation of primary rat neuronal progenitor cells (NPCs). However, whether PDGF-BB regulates neurogenesis in HIV-associated neurological disorder (HAND) remains largely unknown. In this study we demonstrated that pre-treatment of NPCs with PDGF-BB restored Tat-mediated impairment of cell proliferation via activation of p38 and JNK MAPK pathways. Moreover, treatment with PDGF-BB induced inactivation of glycogen synthase kinase-3β (GSK-3β), evidenced by its phosphorylation at Ser9, this effect was significantly inhibited by the p38 and JNK inhibitors. Level of nuclear β-catenin, the primary substrate of GSK-3β, was also concomitantly increased following PDGF-BB treatment, suggesting that PDGF-BB stimulates NPC proliferation via acting on GSK-3β to promote nuclear accumulation of β-catenin. This was further validated by gain and loss of function studies using cells transfected with either the wild type or mutant GSK-3β constructs. Together these data underpin the role of GSK-3β/β-catenin as a novel target that regulates NPC proliferation mediated by PDGF-BB with implications for therapeutic intervention for reversal of impaired neurogenesis inflicted by Tat.
Collapse
Affiliation(s)
- Jie Chao
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Honghong Yao
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
33
|
Choi S, Maleth J, Jha A, Lee KP, Kim MS, So I, Ahuja M, Muallem S. The TRPCs-STIM1-Orai interaction. Handb Exp Pharmacol 2014; 223:1035-54. [PMID: 24961979 DOI: 10.1007/978-3-319-05161-1_13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ca(2+) signaling entails receptor-stimulated Ca(2+) release from the ER stores that serves as a signal to activate Ca(2+) influx channels present at the plasma membrane, the store-operated Ca(2+) channels (SOCs). The two known SOCs are the Orai and TRPC channels. The SOC-dependent Ca(2+) influx mediates and sustains virtually all Ca(2+)-dependent regulatory functions. The signal that transmits the Ca(2+) content of the ER stores to the plasma membrane is the ER resident, Ca(2+)-binding protein STIM1. STIM1 is a multidomain protein that clusters and dimerizes in response to Ca(2+) store depletion leading to activation of Orai and TRPC channels. Activation of the Orais by STIM1 is obligatory for their function as SOCs, while TRPC channels can function as both STIM1-dependent and STIM1-independent channels. Here we discuss the different mechanisms by which STIM1 activates the Orai and TRPC channels, the emerging specific and non-overlapping physiological functions of Ca(2+) influx mediated by the two channel types, and argue that the TRPC channels should be the preferred therapeutic target to control the toxic effect of excess Ca(2+) influx.
Collapse
Affiliation(s)
- Seok Choi
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
35
|
Mocchetti I, Bachis A, Esposito G, Turner SR, Taraballi F, Tasciotti E, Paige M, Avdoshina V. Human immunodeficiency virus-associated dementia: a link between accumulation of viral proteins and neuronal degeneration. CURRENT TRENDS IN NEUROLOGY 2014; 8:71-85. [PMID: 26069421 PMCID: PMC4461001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the late stage of human immunodeficiency virus-1 (HIV) infection, a subset of individuals develops HIV associated neurocognitive disorders (HAND), which in its severe form, is characterized by motor and cognitive dysfunction. Dendritic pruning, synaptic abnormalities and neuronal apoptosis are observed in these patients. There are numerous advances in our understanding of HIV interactions with cells of the central nervous system. However, the underlying causes of neurological symptoms and pathological alterations observed in HIV positive subjects are poorly understood. Moreover, little is still known about the molecular mechanisms by which HIV induces synaptic dysfunction and degeneration. HAND resembles other common neurological diseases such as Alzheimer's and Huntington's diseases. These neurodegenerative disorders are characterized by accumulation of toxic proteins such as tau and huntingtin, respectively, which promote axonal degeneration by impairing axonal transport. Axonal degeneration precedes neuronal death. Therefore, a better understanding of the mechanisms whereby HIV triggers axonal degeneration has potential implications for developing therapeutic compounds to prevent synaptic failure in HAND. This article highlights and reviews evidence showing that neuronal accumulation of viral proteins promotes axonal damage.
Collapse
Affiliation(s)
- Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Alessia Bachis
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Giuseppe Esposito
- Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Scott R. Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, USA
| | - Valeriya Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
36
|
Yang L, Chao J, Kook YH, Gao Y, Yao H, Buch SJ. Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells. Cell Death Dis 2013; 4:e960. [PMID: 24336080 PMCID: PMC3877557 DOI: 10.1038/cddis.2013.486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022]
Abstract
Highly conserved microRNA-9 (miR-9) has a critical role in various cellular processes including neurogenesis. However, its regulation by neurotropins that are known to mediate neurogenesis remains poorly defined. In this study, we identify platelet-derived growth factor-BB (PDGF-BB)-mediated upregulation of miR-9, which in turn downregulates its target gene monocyte chemotactic protein-induced protein 1 (MCPIP1), as a key player in modulating proliferation, neuronal differentiation as well as migration of neuronal progenitor cells (NPCs). Results indicate that miR-9-mediated NPC proliferation and neuronal differentiation involves signaling via the nuclear factor-kappa B (NF-κB) and cAMP response element-binding protein (CREB) pathways, and that NPC migration involves CREB but not the NF-κB signaling. These findings thus suggest that miR-9-mediated downregulation of MCPIP1 acts as a molecular switch regulation of neurogenesis.
Collapse
Affiliation(s)
- L Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - J Chao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Y H Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Y Gao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - H Yao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - S J Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
37
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2013. [DOI: 10.1097/bco.0b013e3182a6a18b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Implementing neuronal plasticity in NeuroAIDS: the experience of brain-derived neurotrophic factor and other neurotrophic factors. J Neuroimmune Pharmacol 2013; 9:80-91. [PMID: 23832285 DOI: 10.1007/s11481-013-9488-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus type-1 (HIV) causes mild or severe neurological problems, termed HIV-associated neurocognitive disorder (HAND), even when HIV patients receive antiretroviral therapy. Thus, novel adjunctive therapies are necessary to reduce or abolish the neurotoxic effect of HIV. However, new therapies require a better understanding of the molecular and cellular mechanisms of HIV-induced neurotoxicity. HAND subjects are characterized by being profoundly depressed, and they experience deficits in memory, learning and movements. Experimental evidence has also shown that HIV reduces neurogenesis. These deficits resemble those occurring in premature brain aging or in a brain with impaired neural repair properties. Thus, it appears that HIV diminishes neuronal survival, along with reduced neuronal connections. These two phenomena should not occur in the adult and developing brain when synaptic plasticity is promoted by neurotrophic factors, polypeptides that are present in adult synapses. This review will outline experimental evidence as well as present emerging concepts for the use of neurotrophic factors and in particular brain-derived neurotrophic factor as an adjunct therapy to prevent HIV-mediated neuronal degeneration and restore the loss of synaptic connections.
Collapse
|