1
|
Nguyen T, Decker AM, Barrus DG, Song CH, Liu J, Gamage TF, Harris DL, Li JX, Zhang Y. Development of Squaramides as Allosteric Modulators of the CB 1 Receptor: Synthesis, Computational Studies, Biological Characterization, and Effects against Cocaine-Induced Behavioral Sensitization and Reinstatement in Rats. J Med Chem 2025; 68:8694-8712. [PMID: 40198119 DOI: 10.1021/acs.jmedchem.5c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cannabinoid receptor type 1 (CB1) negative allosteric modulators have emerged as an alternate approach to CB1 orthosteric antagonists/inverse agonists for cocaine addiction treatment. This study explores aryl-alkyl squaramides as CB1 allosteric modulators, featuring RTICBM-262 (3) with good in vitro potencies in CB1 calcium mobilization, [35S]GTPγS binding, and cAMP assays. Molecular modeling studies suggest 3 bound in a similar pocket as Org27569, forming π-stacking with key residues H1542.41 and W2414.50, and the potential C98-C107 disulfide bond had limited impact on its binding or receptor activation. ADME and in vivo pharmacokinetic studies suggest that 3 had reasonable metabolic stability, brain penetration, and selectivity against a panel of ∼ 50 targets but poor solubility and high protein binding. At 5.6 mg/kg (i.p.), 3 significantly attenuated both cocaine-seeking behavior specific to cue-induced reinstatement and cocaine-induced behavioral sensitization without altering locomotor activity. These results support squaramides as promising candidates for further investigation for cocaine addiction treatment.
Collapse
Affiliation(s)
- Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Daniel G Barrus
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Chi Hyuck Song
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Thomas F Gamage
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York 13210, United States
| | - Danni L Harris
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14203, United States
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27713, United States
| |
Collapse
|
2
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Kahvandi N, Ebrahimi Z, Sharifi M, Karimi SA, Shahidi S, Salehi I, Haddadi R, Sarihi A. S-3,4-DCPG, a potent orthosteric agonist for the mGlu8 receptor, facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats. Pharmacol Biochem Behav 2024; 240:173772. [PMID: 38653345 DOI: 10.1016/j.pbb.2024.173772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The limbic system, particularly the NAc, shows a high concentration of metabotropic glutamate receptors (mGluRs). Recent evidence suggests the significant involvement of mGluRs in mental disorders, including substance abuse and addiction. The objective of this study was to examine the involvement of mGlu8 receptors in the NAc in the mechanisms underlying the extinction and reinstatement of conditioned place preference (CPP) induced by morphine. Male Wistar rats underwent surgical implantation of bilateral cannulas in the NAc and were assessed in a CPP protocol. In study 1 at the same time as the extinction phase, the rats were given varying doses of S-3,4-DCPG (0.03, 0.3, and 3 μg/0.5 μl). In study 2, rats that had undergone CPP extinction were given S-3,4-DCPG (0.03, 0.3, and 3 μg/0.5 μl) five minutes prior to receiving a subthreshold dose of morphine (1 mg/kg) in order to reactivate the previously extinguished morphine response. The findings demonstrated that administering S-3,4-DCPG directly into the accumbens nucleus resulted in a decrease in the duration of the CPP extinction phase. Moreover, dose-dependent administration of S-3,4-DCPG into the NAc inhibited CPP reinstatement. The observations imply that microinjection of S-3,4-DCPG as a potent orthosteric agonist with high selectivity for the mGlu8 receptor into the NAc promotes the process of extinction while concurrently exerting inhibitory effects on the reinstatement of morphine-induced CPP. This effect may be associated with the modulation of glutamate engagement within the NAc and the plasticity of reward pathways at the synaptic level.
Collapse
Affiliation(s)
- Nazanin Kahvandi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sharifi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Gobira PH, Joca SR, Moreira FA. Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses. Acta Neuropsychiatr 2024; 36:67-77. [PMID: 35993329 DOI: 10.1017/neu.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Addiction to psychostimulant drugs, such as cocaine, D-amphetamine, and methamphetamine, is a public health issue that substantially contributes to the global burden of disease. Psychostimulant drugs promote an increase in dopamine levels within the mesocorticolimbic system, which is central to the rewarding properties of such drugs. Cannabinoid receptors (CB1R and CB2R) are expressed in the main areas of this system and implicated in the neuronal mechanisms underlying the rewarding effect of psychostimulant drugs. Here, we reviewed studies focusing on pharmacological intervention targeting cannabinoid CB1R and CB2R and their interaction in the modulation of psychostimulant responses.
Collapse
Affiliation(s)
- P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, Hillard CJ, Mantsch JR. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology 2023; 48:1121-1132. [PMID: 37188846 PMCID: PMC10267161 DOI: 10.1038/s41386-023-01589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Pharmacology & Systems Physiology and Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Colten P Wolf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Dylan M Starck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob C Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Rebecca Schaps
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Leslie A Krause
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Manz KM, Zepeda JC, Zurawski Z, Hamm HE, Grueter BA. SNAP25 differentially contributes to G i/o-coupled receptor function at glutamatergic synapses in the nucleus accumbens. Front Cell Neurosci 2023; 17:1165261. [PMID: 37206665 PMCID: PMC10188356 DOI: 10.3389/fncel.2023.1165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
The nucleus accumbens (NAc) guides reward-related motivated behavior implicated in pathological behavioral states, including addiction and depression. These behaviors depend on the precise neuromodulatory actions of Gi/o-coupled G-protein-coupled receptors (GPCRs) at glutamatergic synapses onto medium spiny projection neurons (MSNs). Previous work has shown that discrete classes of Gi/o-coupled GPCR mobilize Gβγ to inhibit vesicular neurotransmitter release via t-SNARE protein, SNAP25. However, it remains unknown which Gαi/o systems in the NAc utilize Gβγ-SNARE signaling to dampen glutamatergic transmission. Utilizing patch-clamp electrophysiology and pharmacology in a transgenic mouse line with a C-terminal three-residue deletion of SNAP25 (SNAP25Δ3) weaking the Gβγ-SNARE interaction, we surveyed a broad cohort of Gi/o-coupled GPCRs with robust inhibitory actions at glutamatergic synapses in the NAc. We find that basal presynaptic glutamate release probability is reduced in SNAP25Δ3 mice. While κ opioid, CB1, adenosine A1, group II metabotropic glutamate receptors, and histamine H3 receptors inhibit glutamatergic transmission onto MSNs independent of SNAP25, we report that SNAP25 contributes significantly to the actions of GABAB, 5-HT1B/D, and μ opioid receptors. These findings demonstrate that presynaptic Gi/o-coupled GPCRs recruit heterogenous effector mechanisms at glutamatergic synapses in the NAc, with a subset requiring SNA25-dependent Gβγ signaling.
Collapse
Affiliation(s)
- Kevin M. Manz
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C. Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
7
|
Karimi-Haghighi S, Mahmoudi M, Sayehmiri F, Mozafari R, Haghparast A. Endocannabinoid system as a therapeutic target for psychostimulants relapse: A systematic review of preclinical studies. Eur J Pharmacol 2023; 951:175669. [PMID: 36965745 DOI: 10.1016/j.ejphar.2023.175669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
The mechanism behind the reinstament of psychostimulant, as a major obstacle in addiction treatment is not fully understood. Controversial data are available in the literature concerning the role of the endocannabinoid (eCB) system in regulating the relapse to psychostimulant addiction in preclinical studies. The current systematic review aims to evaluate eCB modulators' effect in the reinstatement of commonly abused psychostimulants, including cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. By searching the PubMed, Web of Science, and Scopus databases, studies were selected. Then the studies, quality was evaluated by the SYRCLE risk of bias tool. The results have still been limited to preclinical studies. Thirty-nine articles that employed self-administration and CPP as the most prevalent animal models of addiction were selected. This data indicates that cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists could suppress the reinstatement of cocaine and methamphetamine addiction in a dose-dependent manner. However, only AM251 was efficient to block the reinstatement of 3,4-methylenedioxymethamphetamine. In conclusion, cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists may have curative potential in the relapse of psychostimulant abuse. However, time, dose, and route of administration are crucial factors in their inhibitory impacts.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Mahmoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Li H, Chen R, Zhou Y, Wang H, Sun L, Yang Z, Bai L, Zhang J. Endocannabinoids regulate cocaine-associated memory through brain AEA-CB1R signalling activation. Mol Metab 2022; 65:101597. [PMID: 36096452 PMCID: PMC9508352 DOI: 10.1016/j.molmet.2022.101597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Contextual drug-associated memory precipitates craving and relapse in substance users, and the risk of relapse is a major challenge in the treatment of substance use disorders. Thus, understanding the neurobiological underpinnings of how this association memory is formed and maintained will inform future advances in the treatment of drug addiction. Brain endocannabinoids (eCBs) signalling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate small lipid ligand biosynthesis and metabolism in regulating drug-associated memory has not been examined. Here, we explored how manipulation of the lipase fatty acid amide hydrolase (FAAH), which is involved in mediating the level of the lipid ligand anandamide (AEA), affects cocaine-associated memory formation. Methods We applied behavioural, pharmacological and biochemical methods to detect cocaine-associated memory formation, eCBs in the dorsal dentate gyrus (dDG), and the activity of related enzymes. We further examined the roles of abnormal FAAH activity and AEA–CB1R signalling in the regulation of cocaine-associated memory formation and granule neuron dendritic structure alterations in the dDG through Western blotting, electron microscopy and immunofluorescence. Results In the present study, we found that cocaine induced a decrease in the level of FAAH in the dDG and increased the level of AEA. A high level of AEA activated cannabinoid type 1 receptors (CB1Rs) and further triggered CB1R signalling activation and granule neuron dendritic remodelling, and these effects were reversed by blockade of CB1Rs in the brain. Furthermore, inhibition of FAAH in the dDG markedly increased AEA levels and promoted cocaine-associated memory formation through CB1R signalling activation. Conclusions Together, our findings demonstrate that the lipase FAAH influences CB1R signalling activation and granule neuron dendritic structure alteration in the dDG by regulating AEA levels and that AEA and AEA metabolism play a key role in cocaine-associated memory formation. Manipulation of AEA production may serve as a potential therapeutic strategy for drug addiction and relapse prevention. AEA plays an important role in the cocaine-associated memory formation through triggering CB1Rs. Cocaine decreases FAAH level and leads to AEA increasing, which activate CB1R signaling and remodel dendritic spines structure of granule neurons. Regulating AEA degradation through manipulation of FAAH, governs the cocaine-associated memory formation.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyi Zhou
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Pediatrics, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Yang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Bai
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
The interactions of alcohol and cocaine regulate the expression of genes involved in the GABAergic, glutamatergic and endocannabinoid systems of male and female rats. Neuropharmacology 2021; 206:108937. [PMID: 34965406 DOI: 10.1016/j.neuropharm.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Although the pharmacological and behavioural interactions between cocaine and alcohol are well established, less is known about how polyconsumption of these drugs affects the neurotransmitter systems involved in their psychoactive effects and in particular, in the process of addiction. Here, rats of both sexes at two stages of development were studied under a chronic regime of intravenous cocaine and/or alcohol administration. Brain samples from the medial prefrontal cortex, nucleus accumbens, hippocampus and amygdala were extracted to analyse the mRNA expression of genes encoding subunits of the GABA, NMDA and AMPA receptors, as well as the expression of the CB1 receptor, and that of enzymes related to the biosynthesis and degradation of endocannabinoids. Moreover, two synaptic scaffold proteins related to GABA and NMDA receptors, gephyrin and PSD-95, were quantified in Western blots. Significant interactions between cocaine and alcohol were common, affecting the GABAergic and endocannabinoid systems in the medial prefrontal cortex and amygdala of young adults, whereas such interactions were evident in the glutamatergic and endocannabinoid systems in adults, as well as a more pronounced sex effect. Significant interactions between these drugs affecting the scaffold proteins were evident in the medial prefrontal cortex and nucleus accumbens of young adults, and in the nucleus accumbens and amygdala of adults, but not in the hippocampus. These results highlight the importance of considering the interactions between cocaine and alcohol on neurotransmitter systems in the context of polyconsumption, specifically when treating problems of abuse of these two substances.
Collapse
|
10
|
Nguyen T, Gamage TF, Finlay DB, Decker AM, Langston TL, Barrus D, Glass M, Li JX, Kenakin TP, Zhang Y. Development of 3-(4-Chlorophenyl)-1-(phenethyl)urea Analogues as Allosteric Modulators of the Cannabinoid Type-1 Receptor: RTICBM-189 is Brain Penetrant and Attenuates Reinstatement of Cocaine-Seeking Behavior. J Med Chem 2021; 65:257-270. [PMID: 34929081 DOI: 10.1021/acs.jmedchem.1c01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have shown that CB1 receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB1 NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB1 calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB1 potency, whereas 4-position analogues were generally less potent. The 3-chloro analogue (31, RTICBM-189) showed no activity at >50 protein targets and excellent brain permeation but relatively low metabolic stability in rat liver microsomes. Pharmacokinetic studies in rats confirmed the excellent brain exposure of 31 with a brain/plasma ratio Kp of 2.0. Importantly, intraperitoneal administration of 31 significantly and selectively attenuated the reinstatement of the cocaine-seeking behavior in rats without affecting locomotion.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Thomas F Gamage
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Daniel Barrus
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York, Buffalo, New York 14214, United States
| | - Terry P Kenakin
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
11
|
Chang HA, Dai W, Hu SSJ. Sex differences in cocaine-associated memory: The interplay between CB 1, mGluR5, and estradiol. Psychoneuroendocrinology 2021; 133:105366. [PMID: 34419761 DOI: 10.1016/j.psyneuen.2021.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
We know surprisingly little about the sex differences in the neurobiology of cocaine addiction, except females are more susceptible to the rewarding effects of cocaine than their male counterparts. Only a handful of recent studies have examined the neurobiology of cocaine-induced conditioned place preference (CPP) memory among female rodents. We contribute to this emerging line of research by documenting sex differences in cocaine-associated memory and illustrating the underlying signaling pathways in five experiments. Rimonabant (Rim), a cannabinoid CB1 antagonist and inverse agonist, exerted a facilitating effect for low-dose cocaine and an impairing effect for high-dose cocaine CPP memory in male mice, as in our previous study, but not in female mice. Nor did we observe the effect exist among CB1 knockout male mice, which indicated that the CB1 receptors played a mediating role. We also found that the metabotropic glutamate receptor 5 (mGluR5) was located in the same signaling pathway as CB1 in male mice. To clarify the mechanisms behind the sex differences, we used ovariectomized (OVX) female mice with estradiol benzoate (EB) replacement. In the OVX female mice, we showed that Rim-alone and EB-alone, but not Rim-and-EB-combined, facilitated the low-dose cocaine CPP memory. Moreover, 4-hydroxytamoxifen (4-OHT), an estrogen receptor (ER) antagonist, blocked Rim's and EB's facilitating effect. Finally, 2-methyl-6-(phenylethynyl)pyridine (MPEP), an mGluR5 antagonist, partially blocked EB's facilitating effect. In sum, we identified sex-specific effects of Rim on cocaine-induced CPP memory and the respective signaling pathways: mGluR5-CB1 for male mice and ER-mGluR5-CB1 for female mice. These findings may have merits for the development of sex-specific treatment for cocaine addiction.
Collapse
Affiliation(s)
- Heng-Ai Chang
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen Dai
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
12
|
He XH, Galaj E, Bi GH, He Y, Hempel B, Wang YL, Gardner EL, Xi ZX. β-caryophyllene, an FDA-Approved Food Additive, Inhibits Methamphetamine-Taking and Methamphetamine-Seeking Behaviors Possibly via CB2 and Non-CB2 Receptor Mechanisms. Front Pharmacol 2021; 12:722476. [PMID: 34566647 PMCID: PMC8458938 DOI: 10.3389/fphar.2021.722476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023] Open
Abstract
Recent research indicates that brain cannabinoid CB2 receptors are involved in drug reward and addiction. However, it is unclear whether β-caryophyllene (BCP), a natural product with a CB2 receptor agonist profile, has therapeutic effects on methamphetamine (METH) abuse and dependence. In this study, we used animal models of self-administration, electrical brain-stimulation reward (BSR) and in vivo microdialysis to explore the effects of BCP on METH-taking and METH-seeking behavior. We found that systemic administration of BCP dose-dependently inhibited METH self-administration under both fixed-ratio and progressive-ratio reinforcement schedules in rats, indicating that BCP reduces METH reward, METH intake, and incentive motivation to seek and take METH. The attenuating effects of BCP were partially blocked by AM 630, a selective CB2 receptor antagonist. Genetic deletion of CB2 receptors in CB2-knockout (CB2-KO) mice also blocked low dose BCP-induced reduction in METH self-administration, suggesting possible involvement of a CB2 receptor mechanism. However, at high doses, BCP produced a reduction in METH self-administration in CB2-KO mice in a manner similar as in WT mice, suggesting that non-CB2 receptor mechanisms underlie high dose BCP-produced effects. In addition, BCP dose-dependently attenuated METH-enhanced electrical BSR and inhibited METH-primed and cue-induced reinstatement of drug-seeking in rats. In vivo microdialysis assays indicated that BCP alone did not produce a significant reduction in extracellular dopamine (DA) in the nucleus accumbens (NAc), while BCP pretreatment significantly reduced METH-induced increases in extracellular NAc DA in a dose-dependent manner, suggesting a DA-dependent mechanism involved in BCP action. Together, the present findings suggest that BCP might be a promising therapeutic candidate for the treatment of METH use disorder.
Collapse
Affiliation(s)
- Xiang-Hu He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Hubei, China
| | - Ewa Galaj
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Yi He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Briana Hempel
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Hubei, China
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
13
|
Mitra S, Gobira PH, Werner CT, Martin JA, Iida M, Thomas SA, Erias K, Miracle S, Lafargue C, An C, Dietz DM. A role for the endocannabinoid enzymes monoacylglycerol and diacylglycerol lipases in cue-induced cocaine craving following prolonged abstinence. Addict Biol 2021; 26:e13007. [PMID: 33496035 PMCID: PMC11000690 DOI: 10.1111/adb.13007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Following exposure to drugs of abuse, long-term neuroadaptations underlie persistent risk to relapse. Endocannabinoid signaling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate endocannabinoid biosynthesis and metabolism in regulating relapse behaviors following prolonged periods of drug abstinence has not been examined. Here, we investigated how pharmacological manipulation of lipases involved in regulating the expression of the endocannabinoid 2-AG in the nucleus accumbens (NAc) influence cocaine relapse via discrete neuroadaptations. At prolonged abstinence (30 days) from cocaine self-administration, there is an increase in the NAc levels of diacylglycerol lipase (DAGL), the enzyme responsible for the synthesis of the endocannabinoid 2-AG, along with decreased levels of monoacylglycerol lipase (MAGL), which hydrolyzes 2-AG. Since endocannabinoid-mediated behavioral plasticity involves phosphatase dysregulation, we examined the phosphatase calcineurin after 30 days of abstinence and found decreased expression in the NAc, which we demonstrate is regulated through the transcription factor EGR1. Intra-NAc pharmacological manipulation of DAGL and MAGL with inhibitors DO-34 and URB-602, respectively, bidirectionally regulated cue-induced cocaine seeking and altered the phosphostatus of translational initiation factor, eIF2α. Finally, we found that cocaine seeking 30 days after abstinence leads to decreased phosphorylation of eIF2α and reduced expression of its downstream target NPAS4, a protein involved in experience-dependent neuronal plasticity. Together, our findings demonstrate that lipases that regulate 2-AG expression influence transcriptional and translational changes in the NAc related to drug relapse vulnerability.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Pedro H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- These authors contributed equally to this work
| | - Craig T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Madoka Iida
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shruthi A. Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sophia Miracle
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Charles Lafargue
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
14
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
15
|
Guzman AS, Avalos MP, De Giovanni LN, Euliarte PV, Sanchez MA, Mongi-Bragato B, Rigoni D, Bollati FA, Virgolini MB, Cancela LM. CB1R activation in nucleus accumbens core promotes stress-induced reinstatement of cocaine seeking by elevating extracellular glutamate in a drug-paired context. Sci Rep 2021; 11:12964. [PMID: 34155271 PMCID: PMC8217548 DOI: 10.1038/s41598-021-92389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats. CB1R blockade by the antagonist/inverse agonist AM251 (5 nmol/0.5 μl/side) or CB1R activation by the agonist ACEA (0.01 fmol/0.5 μl/side), prevented or potentiated restraint stress-induced reinstatement of cocaine-CPP, respectively, after local administration into NAcore, but not NAshell. In addition, microdialysis experiments demonstrated that restraint stress elicited a significant increase in extracellular glutamate in NAcore under reinstatement conditions, with the local administration of AM251 or ACEA inhibiting or potentiating this, respectively. Interestingly, this rise specifically corresponded to the cocaine-associated CPP compartment. We also showed that this context-dependent change in glutamate paralleled the expression of cocaine-CPP, and disappeared after the extinction of this response. Taken together, these findings demonstrated the key role played by CB1R in mediating reinstatement of cocaine-CPP after restraint stress, through modulation of the context-specific glutamate release within NAcore. Additionally, CB1R regulation of basal extracellular glutamate was demonstrated and proposed as the underlying mechanism.
Collapse
Affiliation(s)
- Andrea S Guzman
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Laura N De Giovanni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Pia V Euliarte
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Marianela A Sanchez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Bethania Mongi-Bragato
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Daiana Rigoni
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Flavia A Bollati
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Miriam B Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina. .,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina.
| |
Collapse
|
16
|
Restoring glutamate homeostasis in the nucleus accumbens via endocannabinoid-mimetic drug prevents relapse to cocaine seeking behavior in rats. Neuropsychopharmacology 2021; 46:970-981. [PMID: 33514875 PMCID: PMC8115336 DOI: 10.1038/s41386-021-00955-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Impaired glutamate homeostasis is a key characteristic of the neurobiology of drug addiction in rodent models and contributes to the vulnerability to relapse to drug seeking. Although disrupted astrocytic and presynaptic regulation of glutamate release has been considered to constitute with impaired glutamate homeostasis in rodent model of drug relapse, the involvement of endocannabinoids (eCBs) in this neurobiological process has remained largely unknown. Here, using cocaine self-administration in rats, we investigated the role of endocannabinoids in impaired glutamate homeostasis in the core of nucleus accumbens (NAcore), which was indicated by augmentation of spontaneous synaptic glutamate release, downregulation of metabotropic glutamate receptor 2/3 (mGluR2/3), and mGluR5-mediated astrocytic glutamate release. We found that the endocannabinoid, anandamide (AEA), rather than 2-arachidonoylglycerol elicited glutamate release through presynaptic transient receptor potential vanilloid 1 (TRPV1) and astrocytic cannabinoid type-1 receptors (CB1Rs) in the NAcore of saline-yoked rats. In rats with a history of cocaine self-administration and extinction training, AEA failed to alter synaptic glutamate release in the NAcore, whereas CB1R-mediated astrocytic glutamate release by AEA remained functional. In order to induce increased astrocytic glutamate release via exogenous AEA, (R)-methanandamide (methAEA, a metabolically stable form of AEA) was chronically infused in the NAcore via osmotic pumps during extinction training. Restoration of mGluR2/3 function and mGluR5-mediated astrocytic glutamate release was observed after chronic methAEA infusion. Additionally, priming or cue-induced reinstatement of cocaine seeking was inhibited in methAEA-infused rats. These results demonstrate that enhancing endocannabinoid signaling is a potential pathway to restore glutamate homeostasis and may represent a promising therapeutic strategy for preventing cocaine relapse.
Collapse
|
17
|
Galaj E, Bi GH, Moore A, Chen K, He Y, Gardner E, Xi ZX. Beta-caryophyllene inhibits cocaine addiction-related behavior by activation of PPARα and PPARγ: repurposing a FDA-approved food additive for cocaine use disorder. Neuropsychopharmacology 2021; 46:860-870. [PMID: 33069159 PMCID: PMC8026612 DOI: 10.1038/s41386-020-00885-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
Cocaine abuse continues to be a serious health problem worldwide. Despite intense research, there is still no FDA-approved medication to treat cocaine use disorder (CUD). In this report, we explored the potential utility of beta-caryophyllene (BCP), an FDA-approved food additive for the treatment of CUD. We found that BCP, when administered intraperitoneally or intragastrically, dose-dependently attenuated cocaine self-administration, cocaine-conditioned place preference, and cocaine-primed reinstatement of drug seeking in rats. In contrast, BCP failed to alter food self-administration or cocaine-induced hyperactivity. It also failed to maintain self-administration in a drug substitution test, suggesting that BCP has no abuse potential. BCP was previously reported to be a selective CB2 receptor agonist. Unexpectedly, pharmacological blockade or genetic deletion of CB1, CB2, or GPR55 receptors in gene-knockout mice failed to alter BCP's action against cocaine self-administration, suggesting the involvement of non-CB1, non-CB2, and non-GPR55 receptor mechanisms. Furthermore, pharmacological blockade of μ opioid receptor or Toll-like receptors complex failed to alter, while blockade of peroxisome proliferator-activated receptors (PPARα, PPARγ) reversed BCP-induced reduction in cocaine self-administration, suggesting the involvement of PPARα and PPARγ in BCP's action. Finally, we used electrical and optogenetic intracranial self-stimulation (eICSS, oICSS) paradigms to study the underlying neural substrate mechanisms. We found that BCP is more effective in attenuation of cocaine-enhanced oICSS than eICSS, the former driven by optical activation of midbrain dopamine neurons in DAT-cre mice. These findings indicate that BCP may be useful for the treatment of CUD, likely by stimulation of PPARα and PPARγ in the mesolimbic system.
Collapse
Affiliation(s)
- Ewa Galaj
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Guo-Hua Bi
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Allamar Moore
- grid.420090.f0000 0004 0533 7147Neuropychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Kai Chen
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA ,grid.413247.7Present Address: Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071 China
| | - Yi He
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA ,grid.21925.3d0000 0004 1936 9000Present Address: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Eliot Gardner
- grid.420090.f0000 0004 0533 7147Neuropychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
18
|
Li X, Hempel BJ, Yang HJ, Han X, Bi GH, Gardner EL, Xi ZX. Dissecting the role of CB 1 and CB 2 receptors in cannabinoid reward versus aversion using transgenic CB 1- and CB 2-knockout mice. Eur Neuropsychopharmacol 2021; 43:38-51. [PMID: 33334652 PMCID: PMC7854511 DOI: 10.1016/j.euroneuro.2020.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Cannabinoids produce both rewarding and aversive effects in humans and experimental animals. However, the mechanisms underlying these conflicting findings are unclear. Here we examined the potential involvement of CB1 and CB2 receptors in cannabinoid action using transgenic CB1-knockout (CB1-KO) and CB2-knockout (CB2-KO) mice. We found that Δ9-tetrahydrocannabinol (Δ9-THC) induced conditioned place preference at a low dose (1 mg/kg) in WT mice that was attenuated by deletion of the CB1 receptor. At 5 mg/kg, no subjective effects of Δ9-THC were detected in WT mice, but CB1-KO mice exhibited a trend towards place aversion and CB2-KO mice developed significant place preferences. This data suggests that activation of the CB1 receptor is rewarding, while CB2R activation is aversive. We then examined the nucleus accumbens (NAc) dopamine (DA) response to Δ9-THC using in vivo microdialysis. Unexpectedly, Δ9-THC produced a dose-dependent decrease in extracellular DA in WT mice, that was potentiated in CB1-KO mice. However, in CB2-KO mice Δ9-THC produced a dose-dependent increase in extracellular DA, suggesting that activation of the CB2R inhibits DA release in the NAc. In contrast, Δ9-THC, when administered systemically or locally into the NAc, failed to alter extracellular DA in rats. Lastly, we examined the locomotor response to Δ9-THC. Both CB1 and CB2 receptor mechanisms were shown to underlie Δ9-THC-induced hypolocomotion. These findings indicate that Δ9-THC's variable subjective effects reflect differential activation of cannabinoid receptors. Specifically, the opposing actions of CB1 and CB2 receptors regulate cannabis reward and aversion, with CB2-mediated effects predominant in mice.
Collapse
Affiliation(s)
- Xia Li
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Briana J Hempel
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Hong-Ju Yang
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Xiao Han
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Eliot L Gardner
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, NIDA IRP, BRC Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
19
|
Doncheck EM, Liddiard GT, Konrath CD, Liu X, Yu L, Urbanik LA, Herbst MR, DeBaker MC, Raddatz N, Van Newenhizen EC, Mathy J, Gilmartin MR, Liu QS, Hillard CJ, Mantsch JR. Sex, stress, and prefrontal cortex: influence of biological sex on stress-promoted cocaine seeking. Neuropsychopharmacology 2020; 45:1974-1985. [PMID: 32303052 PMCID: PMC7547655 DOI: 10.1038/s41386-020-0674-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Clinical reports suggest that females diagnosed with substance use disorder experience enhanced relapse vulnerability compared with males, particularly during stress. We previously demonstrated that a stressor (footshock) can potentiate cocaine seeking in male rats via glucocorticoid-dependent cannabinoid type-1 receptor (CB1R)-mediated actions in the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the influence of biological sex on stress-potentiated cocaine seeking. Despite comparable self-administration and extinction, females displayed a lower threshold for cocaine-primed reinstatement than males. Unlike males, footshock, tested across a range of intensities, failed to potentiate cocaine-primed reinstatement in females. However, restraint potentiated reinstatement in both sexes. While sex differences in stressor-induced plasma corticosterone (CORT) elevations and defensive behaviors were not observed, differences were evident in footshock-elicited ultrasonic vocalizations. CORT administration, at a dose which recapitulates stressor-induced plasma levels, reproduced stress-potentiated cocaine-primed reinstatement in both sexes. In females, CORT effects varied across the estrous cycle; CORT-potentiated reinstatement was only observed during diestrus and proestrus. As in males, CORT-potentiated cocaine seeking in females was localized to the PrL-PFC and both CORT- and restraint-potentiated cocaine seeking required PrL-PFC CB1R activation. In addition, ex vivo whole-cell electrophysiological recordings from female layer V PrL-PFC pyramidal neurons revealed CB1R-dependent CORT-induced suppression of inhibitory synaptic activity, as previously observed in males. These findings demonstrate that, while stress potentiates cocaine seeking via PrL-PFC CB1R in both sexes, sensitivity to cocaine priming injections is greater in females, CORT-potentiating effects vary with the estrous cycle, and whether reactivity to specific stressors may manifest as drug seeking depends on biological sex.
Collapse
Affiliation(s)
- Elizabeth M Doncheck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gage T Liddiard
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Chaz D Konrath
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Laikang Yu
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Luke A Urbanik
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Matthew R Herbst
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Margot C DeBaker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Nicholas Raddatz
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | | | - Jacob Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| |
Collapse
|
20
|
Jordan CJ, Feng ZW, Galaj E, Bi GH, Xue Y, Liang Y, McGuire T, Xie XQ, Xi ZX. Xie2-64, a novel CB 2 receptor inverse agonist, reduces cocaine abuse-related behaviors in rodents. Neuropharmacology 2020; 176:108241. [PMID: 32712273 DOI: 10.1016/j.neuropharm.2020.108241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Cocaine abuse remains a public health threat around the world. There are no pharmacological treatments approved for cocaine use disorder. Cannabis has received growing attention as a treatment for many conditions, including addiction. Most cannabis-based medication development has focused on cannabinoid CB1 receptor (CB1R) antagonists (and also inverse agonists) such as rimonabant, but clinical trials with rimonabant have failed due to its significant side-effects. Here we sought to determine whether a novel and selective CB2R inverse agonist, Xie2-64, has similar therapeutic potential for cocaine use disorder. Computational modeling indicated that Xie2-64 binds to CB2R in a way similar to SR144528, another well-characterized but less selective CB2R antagonist/inverse agonist, suggesting that Xie2-64 may also have CB2R antagonist profiles. Unexpectedly, systemic administration of Xie2-64 or SR144528 dose-dependently inhibited intravenous cocaine self-administration and shifted cocaine dose-response curves downward in rats and wild-type, but not in CB2R-knockout, mice. Xie2-64 also dose-dependently attenuated cocaine-enhanced brain-stimulation reward maintained by optical stimulation of ventral tegmental area dopamine (DA) neurons in DAT-Cre mice, while Xie2-64 or SR144528 alone inhibited optical brain-stimulation reward. In vivo microdialysis revealed that systemic or local administration of Xie2-64 into the nucleus accumbens reduced extracellular dopamine levels in a dose-dependent manner in rats. Together, these results suggest that Xie2-64 has significant anti-cocaine reward effects likely through a dopamine-dependent mechanism, and therefore, deserves further study as a new pharmacotherapy for cocaine use disorder.
Collapse
Affiliation(s)
- Chloe J Jordan
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zhi-Wei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Dept of Pharmaceutical Sciences, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research (CDAR), University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Dept of Pharmaceutical Sciences, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research (CDAR), University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ying Liang
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Terence McGuire
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Dept of Pharmaceutical Sciences, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research (CDAR), University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen (CCGS) Center and Dept of Pharmaceutical Sciences, School of Pharmacy; NIDA National Center of Excellence for Computational Drug Abuse Research (CDAR), University of Pittsburgh, Pittsburgh, PA, 15261, USA; Drug Discovery Institute; Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Incerta-thalamic Circuit Controls Nocifensive Behavior via Cannabinoid Type 1 Receptors. Neuron 2020; 107:538-551.e7. [PMID: 32502461 DOI: 10.1016/j.neuron.2020.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Pain is a source of substantial discomfort. Abnormal activity in both the zona incerta (ZI) and posterior complex of the thalamus (Po) are implicated in neuropathic pain, but their exact roles remain unclear. In particular, the precise cell types and molecular mechanisms of the ZI-Po circuit that regulate nociception are largely uncharacterized. Here, we found that parvalbumin (PV)-positive neuronal projections from the ventral ZI (ZIv) to the Po (ZIv-Po) are critical for promoting nocifensive behaviors, whereas selectively inhibiting ZIv-Po activity reduces nocifensive withdrawal responses. Furthermore, cannabinoid type 1 receptors (CB1Rs) are expressed specifically at ZIv-Po axon terminals in this circuit, and cannabinoids attenuate nocifensive responses through presynaptic inhibition. Selective inhibition of the ZIv-Po circuit or administration of cannabinoids into the Po are sufficient to ameliorate pathological pain. These findings identify the critical role of the ZIv-Po circuit and its modulation by endocannabinoids in controlling nocifensive behaviors.
Collapse
|
22
|
Galaj E, Bi GH, Yang HJ, Xi ZX. Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT 1A and TRPV1 receptor mechanisms. Neuropharmacology 2020; 167:107740. [PMID: 31437433 PMCID: PMC7493134 DOI: 10.1016/j.neuropharm.2019.107740] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Cocaine abuse continues to be a serious health problem worldwide. Despite intense research there is currently no FDA-approved medication to treat cocaine use disorder. The recent search has been focused on agents targeting primarily the dopamine system, while limited success has been achieved at the clinical level. Cannabidiol (CBD) is a U.S. FDA-approved cannabinoid for the treatment of epilepsy and recently was reported to have therapeutic potential for other disorders. Here we systemically evaluated its potential utility for the treatment of cocaine use disorder and explored the underlying receptor mechanisms in experimental animals. Systemic administration (10-40 mg/kg) of CBD dose-dependently inhibited cocaine self-administration, shifted a cocaine dose-response curve downward, and lowered break-points for cocaine self-administration under a progressive-ratio schedule of reinforcement. CBD inhibited cocaine self-administration maintained by low, but not high, doses of cocaine. In addition, CBD (3-20 mg/kg) dose-dependently attenuated cocaine-enhanced brain-stimulation reward (BSR) in rats. Strikingly, this reduction in both cocaine self-administration and BSR was blocked by AM630 (a cannabinoid CB2 receptor antagonist), WAY100135 (a 5-HT1A receptor antagonist), or capsazepine (a TRPV1 channel blocker), but not by AM251 (a CB1 receptor antagonist), CID16020046 (a GPR55 antagonist), or naloxone (an opioid receptor antagonist), suggesting the involvement of CB2, 5-HT1A, and TRPV1 receptors in CBD action. In vivo microdialysis indicated that pretreatment with CBD (10-20 mg/kg) attenuated cocaine-induced increases in extracellular dopamine (DA) in the nucleus accumbens, while CBD alone failed to alter extracellular DA. These findings suggest that CBD may have certain therapeutic utility by blunting the acute rewarding effects of cocaine via a DA-dependent mechanism.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hong-Ju Yang
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
23
|
John WS, Martin TJ, Nader MA. Cannabinoid Modulation of Food-Cocaine Choice in Male Rhesus Monkeys. J Pharmacol Exp Ther 2020; 373:44-50. [PMID: 31941717 PMCID: PMC7076528 DOI: 10.1124/jpet.119.263707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Marijuana and other cannabinoid compounds are widely used by cocaine users. Preclinical animal studies suggest that these compounds can increase the reinforcing effects of cocaine under some schedules of cocaine self-administration and reinstatement, but not in all cases. To date, no studies have used a food-cocaine concurrent choice procedure, which allows for assessment of drug effects on response allocation, not just changes in cocaine self-administration. The goal of the present study was to examine the effects of compounds differing in their efficacy at the cannabinoid receptor (CBR) on cocaine self-administration using a food-drug choice procedure in monkeys. Four adult male rhesus monkeys were trained to self-administer cocaine in the context of an alternative food (1.0-g banana-flavored pellets) reinforcer, such that complete cocaine dose-response curves (0, 0.003-0.1 mg/kg per injection) were determined each session. Monkeys were tested acutely with the CBR full agonist CP 55,940 (0.001-0.01 mg/kg); the CBR partial agonist Δ9-tetrahydrocannabinol (THC; 0.03-0.3 mg/kg), which is also the primary active ingredient in marijuana and the CBR antagonist rimonabant (0.3-3.0 mg/kg). Cocaine choice increased in a dose-dependent manner. Acute treatment with CP 55,940 decreased cocaine choice, whereas THC and rimonabant enhanced the reinforcing effects of cocaine. Chronic (7-day) treatment with CP 55,940 resulted in tolerance to the decreases in cocaine choice. These findings with Δ9-THC provide support for a potential mechanism for co-abuse of marijuana and cocaine. Additional research with chronic treatment with full CBR agonists on attenuating the reinforcing strength of cocaine is warranted. SIGNIFICANCE STATEMENT: Co-abuse of tetrahydrocannabinol and cocaine is a significant public health problem. The use of animal models allows for the determination of how cannabinoid receptor stimulation or blockade influences the reinforcing strength of cocaine.
Collapse
Affiliation(s)
- William S John
- Departments of Physiology and Pharmacology (W.S.J., M.A.N.) and Anesthesiology (T.J.M.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas J Martin
- Departments of Physiology and Pharmacology (W.S.J., M.A.N.) and Anesthesiology (T.J.M.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael A Nader
- Departments of Physiology and Pharmacology (W.S.J., M.A.N.) and Anesthesiology (T.J.M.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
24
|
Bilbao A, Neuhofer D, Sepers M, Wei SP, Eisenhardt M, Hertle S, Lassalle O, Ramos-Uriarte A, Puente N, Lerner R, Thomazeau A, Grandes P, Lutz B, Manzoni OJ, Spanagel R. Endocannabinoid LTD in Accumbal D1 Neurons Mediates Reward-Seeking Behavior. iScience 2020; 23:100951. [PMID: 32179475 PMCID: PMC7068121 DOI: 10.1016/j.isci.2020.100951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
The nucleus accumbens (NAc) plays a key role in drug-related behavior and natural reward learning. Synaptic plasticity in dopamine D1 and D2 receptor medium spiny neurons (MSNs) of the NAc and the endogenous cannabinoid (eCB) system have been implicated in reward seeking. However, the precise molecular and physiological basis of reward-seeking behavior remains unknown. We found that the specific deletion of metabotropic glutamate receptor 5 (mGluR5) in D1-expressing MSNs (D1miRmGluR5 mice) abolishes eCB-mediated long-term depression (LTD) and prevents the expression of drug (cocaine and ethanol), natural reward (saccharin), and brain-stimulation-seeking behavior. In vivo enhancement of 2-arachidonoylglycerol (2-AG) eCB signaling within the NAc core restores both eCB-LTD and reward-seeking behavior in D1miRmGluR5 mice. The data suggest a model where the eCB and glutamatergic systems of the NAc act in concert to mediate reward-seeking responses. mGluR5-D1-CB1-induced eCB-LTD mediates drugs of abuse and natural reward seeking eCB-LTD in D2-MSNs plays no important role in processing of reward-seeking responses Loss of eCB-LTD is a consequence of higher MAGL activity and lower CB1R expression Acute drug administration stops craving for alternative rewards on following days
Collapse
Affiliation(s)
- Ainhoa Bilbao
- Behavioral Genetics Research Group, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany.
| | - Daniela Neuhofer
- INSERM U1249, Parc Scientifique de Luminy - BP 13 - 13273, Marseille Cedex 09, France; Aix-Marseille University, Jardindu Pharo, 58 Boulevard Charles Livon, Marseille, 13007, France
| | - Marja Sepers
- INSERM U1249, Parc Scientifique de Luminy - BP 13 - 13273, Marseille Cedex 09, France; Aix-Marseille University, Jardindu Pharo, 58 Boulevard Charles Livon, Marseille, 13007, France
| | - Shou-Peng Wei
- Behavioral Genetics Research Group, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Manuela Eisenhardt
- Behavioral Genetics Research Group, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Sarah Hertle
- Behavioral Genetics Research Group, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Olivier Lassalle
- INSERM U1249, Parc Scientifique de Luminy - BP 13 - 13273, Marseille Cedex 09, France; Aix-Marseille University, Jardindu Pharo, 58 Boulevard Charles Livon, Marseille, 13007, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, 107 S Indiana Avenue, Bloomington, IN 47405, USA
| | - Almudena Ramos-Uriarte
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Aurore Thomazeau
- INSERM U1249, Parc Scientifique de Luminy - BP 13 - 13273, Marseille Cedex 09, France; Aix-Marseille University, Jardindu Pharo, 58 Boulevard Charles Livon, Marseille, 13007, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Olivier J Manzoni
- INSERM U1249, Parc Scientifique de Luminy - BP 13 - 13273, Marseille Cedex 09, France; Aix-Marseille University, Jardindu Pharo, 58 Boulevard Charles Livon, Marseille, 13007, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, 107 S Indiana Avenue, Bloomington, IN 47405, USA.
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, 68159 Mannheim, Germany.
| |
Collapse
|
25
|
Xi Z, Muldoon P, Wang X, Bi G, Damaj MI, Lichtman AH, Pertwee RG, Gardner EL. Δ 8 -Tetrahydrocannabivarin has potent anti-nicotine effects in several rodent models of nicotine dependence. Br J Pharmacol 2019; 176:4773-4784. [PMID: 31454413 PMCID: PMC6965695 DOI: 10.1111/bph.14844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties. EXPERIMENTAL APPROACH We tested Δ8 -THCV in seven different rodent models relevant to nicotine dependence-nicotine self-administration, cue-triggered nicotine-seeking behaviour following forced abstinence, nicotine-triggered reinstatement of nicotine-seeking behaviour, acquisition of nicotine-induced conditioned place preference, anxiety-like behaviour induced by nicotine withdrawal, somatic withdrawal signs induced by nicotine withdrawal, and hyperalgesia induced by nicotine withdrawal. KEY RESULTS Δ8 -THCV significantly attenuated intravenous nicotine self-administration and both cue-induced and nicotine-induced relapse to nicotine-seeking behaviour in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice. CONCLUSIONS AND IMPLICATIONS We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.
Collapse
Affiliation(s)
- Zheng‐Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - Pretal Muldoon
- Department of Anatomy and NeurobiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Xiao‐Fei Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Guo‐Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - M. Imad Damaj
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Aron H. Lichtman
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research ProgramNational Institute on Drug AbuseBaltimoreMarylandUSA
| |
Collapse
|
26
|
Spiller KJ, Bi GH, He Y, Galaj E, Gardner EL, Xi ZX. Cannabinoid CB 1 and CB 2 receptor mechanisms underlie cannabis reward and aversion in rats. Br J Pharmacol 2019; 176:1268-1281. [PMID: 30767215 DOI: 10.1111/bph.14625] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/11/2018] [Accepted: 01/30/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids are critically involved in brain reward functions, mediated by activation of CB1 receptors, reflecting their high density in the brain. However, the recent discovery of CB2 receptors in the brain, particularly in the midbrain dopamine neurons, has challenged this view and inspired us to re-examine the roles of both CB1 and CB2 receptors in the effects of cannabis. EXPERIMENTAL APPROACH In the present study, we used the electrical intracranial self-stimulation paradigm to evaluate the effects of various cannabinoid drugs on brain reward in laboratory rats and the roles of CB1 and CB2 receptors activation in brain reward function(s). KEY RESULTS Two mixed CB1 / CB2 receptor agonists, Δ9 -tetrahydrocannabinol (Δ9 -THC) and WIN55,212-2, produced biphasic effects-mild enhancement of brain-stimulation reward (BSR) at low doses but inhibition at higher doses. Pretreatment with a CB1 receptor antagonist (AM251) attenuated the low dose-enhanced BSR, while a CB2 receptor antagonist (AM630) attenuated high dose-inhibited BSR. To confirm these opposing effects, rats were treated with selective CB1 and CB2 receptor agonists. These compounds produced significant BSR enhancement and inhibition, respectively. CONCLUSIONS AND IMPLICATIONS CB1 receptor activation produced reinforcing effects, whereas CB2 receptor activation was aversive. The subjective effects of cannabis depend on the balance of these opposing effects. These findings not only explain previous conflicting results in animal models of addiction but also explain why cannabis can be either rewarding or aversive in humans, as expression of CB1 and CB2 receptors may differ in the brains of different subjects.
Collapse
Affiliation(s)
- Krista J Spiller
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Yi He
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Ewa Galaj
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Bystrowska B, Frankowska M, Smaga I, Niedzielska-Andres E, Pomierny-Chamioło L, Filip M. Cocaine-Induced Reinstatement of Cocaine Seeking Provokes Changes in the Endocannabinoid and N-Acylethanolamine Levels in Rat Brain Structures. Molecules 2019; 24:molecules24061125. [PMID: 30901889 PMCID: PMC6470884 DOI: 10.3390/molecules24061125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
There is strong support for the role of the endocannabinoid system and the noncannabinoid lipid signaling molecules, N-acylethanolamines (NAEs), in cocaine reward and withdrawal. In the latest study, we investigated the changes in the levels of the above molecules and expression of cannabinoid receptors (CB1 and CB2) in several brain regions during cocaine-induced reinstatement in rats. By using intravenous cocaine self-administration and extinction procedures linked with yoked triad controls, we found that a priming dose of cocaine (10 mg/kg, i.p.) evoked an increase of the anadamide (AEA) level in the hippocampus and prefrontal cortex only in animals that had previously self-administered cocaine. In the same animals, the level of 2-arachidonoylglycerol (2-AG) increased in the hippocampus and nucleus accumbens. Moreover, the drug-induced relapse resulted in a potent increase in NAEs levels in the cortical areas and striatum and, at the same time, a decrease in the tissue levels of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) was noted in the nucleus accumbens, cerebellum, and/or hippocampus. At the level of cannabinoid receptors, a priming dose of cocaine evoked either upregulation of the CB1 and CB2 receptors in the prefrontal cortex and lateral septal nuclei or downregulation of the CB1 receptors in the ventral tegmental area. In the medial globus pallidus we observed the upregulation of the CB2 receptor only after yoked chronic cocaine treatment. Our findings support that in the rat brain, the endocannabinoid system and NAEs are involved in cocaine induced-reinstatement where these molecules changed in a region-specific manner and may represent brain molecular signatures for the development of new treatments for cocaine addiction.
Collapse
MESH Headings
- Animals
- Biomarkers
- Brain/drug effects
- Brain/metabolism
- Chromatography, Liquid
- Cocaine/pharmacology
- Cocaine-Related Disorders/etiology
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Endocannabinoids/metabolism
- Ethanolamines/metabolism
- Gene Expression
- Immunohistochemistry
- Male
- Rats
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, PL 31-066 Kraków, Poland.
| | - Ewa Niedzielska-Andres
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Lucyna Pomierny-Chamioło
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
28
|
Antonazzo M, Gutierrez-Ceballos A, Bustinza I, Ugedo L, Morera-Herreras T. Cannabinoids differentially modulate cortical information transmission through the sensorimotor or medial prefrontal basal ganglia circuits. Br J Pharmacol 2019; 176:1156-1169. [PMID: 30735570 PMCID: PMC6451076 DOI: 10.1111/bph.14613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In the sensorimotor (SM) and medial prefrontal (mPF) basal ganglia (BG) circuits, the cortical information is transferred to the substantia nigra pars reticulata (SNr) through the hyperdirect trans-subthalamic pathway and through the direct and indirect trans-striatal pathways. The cannabinoid CB1 receptor, which is highly expressed in both BG circuits, may participate in the regulation of motor and motivational behaviours. Here, we investigated the modulation of cortico-nigral information transmission through the BG circuits by cannabinoids. EXPERIMENTAL APPROACH We used single-unit recordings of SNr neurons along with simultaneous electrical stimulation of motor or mPF cortex in anaesthetized rats. KEY RESULTS Cortical stimulation elicited a triphasic response in the SNr neurons from both SM and mPF-BG circuits, which consisted of an early excitation (hyperdirect transmission pathway), an inhibition (direct transmission pathway), and a late excitation (indirect transmission pathway). In the SM circuit, after Δ9 -tetrahydrocannabinol or WIN 55,212-2 administration, the inhibition and the late excitation were decreased or completely lost, whereas the early excitation response remained unaltered. However, cannabinoid administration dramatically decreased all the responses in the mPF circuit. The CB1 receptor antagonist AM251 (2 mg·kg-1 , i.v.) did not modify the triphasic response, but blocked the effects induced by cannabinoid agonists. CONCLUSIONS AND IMPLICATIONS CB1 receptor activation modulates the SM information transmission through the trans-striatal pathways and profoundly decreases the cortico-BG transmission through the mPF circuit. These results may be relevant for elucidating the involvement of the cannabinoid system in motor performance and in decision making or goal-directed behaviour.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Amaia Gutierrez-Ceballos
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Irati Bustinza
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
29
|
Cannabinoid CB 1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin 2019; 40:365-373. [PMID: 29967454 DOI: 10.1038/s41401-018-0059-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.
Collapse
|
30
|
Nawata Y, Yamaguchi T, Fukumori R, Yamamoto T. Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats. Int J Neuropsychopharmacol 2018; 22:165-172. [PMID: 30481332 PMCID: PMC6368370 DOI: 10.1093/ijnp/pyy086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine-seeking behavior. The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats. METHODS Rats were tested for the reinstatement of methamphetamine-seeking behavior following methamphetamine self-administration and extinction. The elevated plus-maze test was performed in methamphetamine self-administered rats during withdrawal. We investigated the effects of JZL184 and URB597, 2 inhibitors of endocannabinoid hydrolysis, on the reinstatement of methamphetamine-seeking and anxiety-like behaviors. RESULTS JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597. Neither JZL184 nor URB597 reinstated methamphetamine-seeking behavior when administered alone. In the elevated plus-maze test, rats that were in withdrawal from methamphetamine self-administration spent less time in the open arms. JZL184 ameliorated the decrease in time spent in the open arms. CONCLUSION We showed that JZL184 reduced both the cue- and stress-induced reinstatement of methamphetamine-seeking and anxiety-like behaviors in rats that had self-administered methamphetamine. It was suggested that a decrease in 2-arachidonoylglycerol in the brain could drive the reinstatement of methamphetamine-seeking and anxiety-like behaviors.
Collapse
Affiliation(s)
- Yoko Nawata
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan
| | - Taku Yamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan
| | - Ryo Fukumori
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan
| | - Tsuneyuki Yamamoto
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan,Correspondence: Tsuneyuki Yamamoto, PhD, Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825–7 Huis Ten Bosch Sasebo, Nagasaki 859–3298, Japan ()
| |
Collapse
|
31
|
Ghasemzadeh Z, Rezayof A. Medial Prefrontal Cortical Cannabinoid CB1 Receptors Mediate Morphine–Dextromethorphan Cross State-Dependent Memory: The Involvement of BDNF/cFOS Signaling Pathways. Neuroscience 2018; 393:295-304. [DOI: 10.1016/j.neuroscience.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
32
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. The role of CA1 CB1 receptors on lithium-induced spatial memory impairment in rats. EXCLI JOURNAL 2018; 17:916-934. [PMID: 30564071 PMCID: PMC6295625 DOI: 10.17179/excli2018-1511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Lithium, a glycogen synthase kinase-3β (GSK-3β) inhibitor, prevents cannabinoid withdrawal syndrome, but there is limited data exploring the interaction between lithium and cannabinoid system on memory processes. The present study aimed to test the interaction between dorsal hippocampal (CA1 region) cannabinoid system and lithium on spatial memory in rats. Spatial memory was assessed in Morris Water Maze (MWM) apparatus by a single training session of eight trials. The results showed that pre-training intra-CA1 microinjection of ACPA, the cannabinoid type 1 receptor (CB1r) agonist, at doses of 0.001, 0.01 or 1 µg/rat, or AM251, the cannabinoid type 1 receptor (CB1r) antagonist, at doses of 1, 10 or 100 ng/rat, increased escape latency and traveled distance to the platform, suggesting a spatial learning impairment, whereas intraperitoneal administration of lithium (0.5, 1 or 5 mg/kg) had no effect on spatial learning. Also, rats that received lithium plus a lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) had successful performance in the MWM. In the probe test, the results showed that pre-training administration of lithium (5 mg/kg) and ACPA (0.01 or 1 µg/rat) but not AM251 (at all doses used) impaired spatial memory retrieval. Also, lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) potentiated the effect of ineffective doses of lithium (0.5 and 1 mg/kg) on spatial memory retrieval, while restored the effect of effective dose of lithium (5 mg/kg). In conclusion, cannabinoids may have a dual effect on lithium-induced spatial memory impairment in rats.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018; 157:108-121. [PMID: 30217570 DOI: 10.1016/j.bcp.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches. The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction. Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction. The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction. However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped. Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors. Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.
Collapse
|
34
|
Ramani VC, Shah RD, Jotani MM, Tiekink ERT. N-(6-Meth-oxy-pyridin-2-yl)-1-(pyridin-2-ylmeth-yl)-1 H-pyrazole-3-carboxamide: crystal structure and Hirshfeld surface analysis. Acta Crystallogr E Crystallogr Commun 2018; 74:1254-1258. [PMID: 30225111 PMCID: PMC6127692 DOI: 10.1107/s2056989018011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/12/2018] [Indexed: 11/10/2022]
Abstract
The title compound, C16H15N5O2, adopts the shape of the letter L with the dihedral angle between the outer pyridyl rings being 78.37 (5)°; the dihedral angles between the central pyrazolyl ring (r.m.s. deviation = 0.0023 Å) and the methyl-ene-bound pyridyl and methyoxypyridyl rings are 77.68 (5) and 7.84 (10)°, respectively. Intra-molecular amide-N-H⋯N(pyrazol-yl) and pyridyl-C-H⋯O(amide) inter-actions are evident and these preclude the participation of the amide-N-H and O atoms in inter-molecular inter-actions. The most notable feature of the mol-ecular packing is the formation of linear supra-molecular chains aligned along the b-axis direction mediated by weak carbonyl-C=O⋯π(triazol-yl) inter-actions. An analysis of the calculated Hirshfeld surfaces point to the importance of H⋯H (46.4%), C⋯H (22.4%), O⋯H (11.9%) and N⋯H (11.1%) contacts in the crystal.
Collapse
Affiliation(s)
- Vivek C. Ramani
- Department of Chemistry, M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 38009, India
| | - Rina D. Shah
- Department of Chemistry, M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 38009, India
| | - Mukesh M. Jotani
- Department of Physics, Bhavan’s Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
35
|
Bystrowska B, Frankowska M, Smaga I, Pomierny-Chamioło L, Filip M. Effects of Cocaine Self-Administration and Its Extinction on the Rat Brain Cannabinoid CB1 and CB2 Receptors. Neurotox Res 2018; 34:547-558. [PMID: 29754307 PMCID: PMC6154179 DOI: 10.1007/s12640-018-9910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate changes in the expression of cannabinoid type 1 (CB1) and 2 (CB2) receptor proteins in several brain regions in rats undergoing cocaine self-administration and extinction training. We used a triad-yoked procedure to distinguish between the motivational and pharmacological effects of cocaine. Using immunohistochemistry, we observed a significant decrease in CB1 receptor expression in the prefrontal cortex, dorsal striatum, and the basolateral and basomedial amygdala following cocaine (0.5 mg/kg/infusion) self-administration. Increased CB1 receptor expression in the ventral tegmental area in rats with previous cocaine exposure was also found. Following cocaine abstinence after 10 days of extinction training, we detected increases in the expression of CB1 receptors in the substantia nigra in both cocaine groups and in the subregions of the amygdala for only the yoked cocaine controls, while any method of cocaine exposure resulted in a decrease in CB2 receptor expression in the prefrontal cortex (p < 0.01), nucleus accumbens (p < 0.01), and medial globus pallidus (p < 0.01). Our findings further support the idea that the eCB system and CB1 receptors are involved in cocaine-reinforced behaviors. Moreover, we detected a cocaine-evoked adaptation in CB2 receptors in the amygdala, prefrontal cortex, and globus pallidus.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Lucyna Pomierny-Chamioło
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
36
|
Yang HJ, Zhang HY, Bi GH, He Y, Gao JT, Xi ZX. Deletion of Type 2 Metabotropic Glutamate Receptor Decreases Sensitivity to Cocaine Reward in Rats. Cell Rep 2018; 20:319-332. [PMID: 28700935 DOI: 10.1016/j.celrep.2017.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Cocaine users show reduced expression of the metabotropic glutamate receptor (mGluR2), but it is not clear whether this is a predisposing trait for addiction or a consequence of drug exposure. In this study, we found that a nonsense mutation at the mGluR2 gene decreased mGluR2 expression and altered the seeking and taking of cocaine. mGluR2 mutant rats show reduced sensitivity to cocaine reward, requiring more cocaine to reach satiation when it was freely available and ceasing their drug-seeking behavior sooner than controls when the response requirement was increased. mGluR2 mutant rats also show a lower propensity to relapse after a period of cocaine abstinence, an effect associated with reduced cocaine-induced dopamine and glutamate overflow in the nucleus accumbens. These findings suggest that mGluR2 polymorphisms or reduced availability of mGluR2 might be risk factors for the initial development of cocaine use but could actually protect against addiction by reducing sensitivity to cocaine reward.
Collapse
Affiliation(s)
- Hong-Ju Yang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Hai-Ying Zhang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Yi He
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jun-Tao Gao
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
37
|
Ingebretson AE, Hearing MC, Huffington ED, Thomas MJ. Endogenous dopamine and endocannabinoid signaling mediate cocaine-induced reversal of AMPAR synaptic potentiation in the nucleus accumbens shell. Neuropharmacology 2018; 131:154-165. [PMID: 29225042 PMCID: PMC11552549 DOI: 10.1016/j.neuropharm.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
Repeated exposure to drugs of abuse alters the structure and function of neural circuits mediating reward, generating maladaptive plasticity in circuits critical for motivated behavior. Within meso-corticolimbic dopamine circuitry, repeated exposure to cocaine induces progressive alterations in AMPAR-mediated glutamatergic synaptic transmission. During a 10-14 day period of abstinence from cocaine, AMPAR signaling is potentiated at synapses on nucleus accumbens (NAc) medium spiny neurons (MSNs), promoting a state of heightened synaptic excitability. Re-exposure to cocaine during abstinence, however, rapidly reverses and depotentiates enhanced AMPAR signaling. To understand how re-exposure to cocaine alters AMPAR synaptic transmission, we investigated the roles of dopamine and endocannabinoid (eCB) signaling in modifying synaptic strength in the NAc shell. Using patch-clamp recordings from NAc slices prepared after 10-14 days of abstinence from repeated cocaine, we found that AMPAR-mediated depotentiation is rapidly induced in the NAc shell within 20 min of cocaine re-exposure ex vivo, and persists for up to five days before synapses return to levels of potentiation observed during abstinence. In cocaine-treated animals, global dopamine receptor activation was both necessary and sufficient for the cocaine-evoked depotentiation of AMPAR synaptic function. Additionally, we identified that CB1 receptors are engaged by endogenous endocannabinoids (eCBs) during re-exposure to cocaine ex vivo. Overall, these results indicate the central role that dopamine and eCB signaling mechanisms play in modulating cocaine-induced AMPAR plasticity in the NAc shell.
Collapse
Affiliation(s)
- Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Matthew C Hearing
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Ethan D Huffington
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA; Department of Psychology, University of Minnesota, 75 E River Road, Minneapolis, MN 55455, USA.
| |
Collapse
|
38
|
Kirson D, Oleata CS, Parsons LH, Ciccocioppo R, Roberto M. CB 1 and ethanol effects on glutamatergic transmission in the central amygdala of male and female msP and Wistar rats. Addict Biol 2018; 23:676-688. [PMID: 28656627 DOI: 10.1111/adb.12525] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
The central amygdala (CeA) is involved in the processing of anxiety and stress and plays a role in ethanol consumption. Chronic ethanol recruits stress systems in the CeA, leading to aversive withdrawal symptoms. Although primarily GABAergic, CeA contains glutamatergic afferents, and we have reported inhibitory effects of ethanol on locally evoked glutamatergic responses in CeA of Wistar and Marchigian Sardinian alcohol-preferring (msP) rats. Notably, msP rats display enhanced anxiety, stress and alcohol drinking, simulating the alcohol-dependent phenotype. Endocannabinoids are also involved in regulation of stress, and we previously demonstrated that cannabinoid receptor type 1 (CB1 ) activation decreases CeA GABAergic signaling and blocks ethanol enhancement of GABAergic signaling. Here, we sought to investigate the effects of CB1 activation (WIN 55,212-2; Win) and antagonism (AM251) with and without acute ethanol on glutamatergic synapses in CeA of female and male Wistar and msP rats. Using intracellular sharp pipette electrophysiology, we examined the effects of CB1 compounds on locally evoked excitatory postsynaptic potentials (EPSPs) in CeA and compared effects between strains, gender and estrous cycle. Acute ethanol decreased EPSP amplitudes in Wistars, and in male but not female msPs. Win decreased EPSP amplitudes in msPs, and in male but not female Wistars. Combined application of Win and ethanol resulted in strain-specific effects in female rats. We found no tonic CB1 signaling at glutamatergic synapses in CeA of any groups, and no interaction with ethanol. Collectively, these observations demonstrate sex-strain-specific differences in ethanol and endocannabinoid effects on CeA glutamatergic signaling.
Collapse
Affiliation(s)
- Dean Kirson
- Department of Neuroscience; The Scripps Research Institute; La Jolla California USA
| | | | - Loren Howell Parsons
- Department of Neuroscience; The Scripps Research Institute; La Jolla California USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit; University of Camerino; Camerino Italy
| | - Marisa Roberto
- Department of Neuroscience; The Scripps Research Institute; La Jolla California USA
| |
Collapse
|
39
|
Li X, Peng XQ, Jordan CJ, Li J, Bi GH, He Y, Yang HJ, Zhang HY, Gardner EL, Xi ZX. mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism. Sci Rep 2018; 8:3686. [PMID: 29487381 PMCID: PMC5829076 DOI: 10.1038/s41598-018-22087-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/16/2018] [Indexed: 12/02/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism.
Collapse
Affiliation(s)
- Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA. .,Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| | - Xiao-Qing Peng
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.,Psychiatry Residency Training Program, Department of Behavioral Health, Saint Elizabeths Hospital, 1100 Alabama Ave. SE, Washington, DC, 20032, USA
| | - Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Jie Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Yi He
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hong-Ju Yang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Hai-Ying Zhang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Eliot L Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
40
|
Wośko S, Serefko A, Szopa A, Wlaź P, Wróbel A, Wlaź A, Górska J, Poleszak E. CB 1 cannabinoid receptor ligands augment the antidepressant-like activity of biometals (magnesium and zinc) in the behavioural tests. ACTA ACUST UNITED AC 2018; 70:566-575. [PMID: 29380383 DOI: 10.1111/jphp.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE During the last few decades, endocannabinoid system has emerged as a novel possible target for antidepressant treatment. Although the medical literature provides information on the mood-changing effects of CB1 ligands, little is known about the possible interaction between the simultaneous activation or inhibition of the CB1 receptor and administration of other agents that possess antidepressant potential. The main goal of our study was to evaluate the influence of the CB1 cannabinoid receptor ligands (oleamide - an endogenous agonist and AM251 - an inverse agonist/antagonist) on the antidepressant-like activity of biometals (i.e. magnesium and zinc). METHODS The forced swim test and the tail suspension test in mice were used to determine the antidepressant-like activity. KEY FINDINGS Concomitant intraperitoneal administration of per se inactive doses of oleamide (5 mg/kg) or AM251 (0.25 mg/kg) and the tested biometals (i.e. magnesium, 10 mg/kg or zinc, 5 mg/kg) shortened the immobility time of animals in the forced swim test and the tail suspension test. The observed effect was not associated with an increase in spontaneous locomotor activity of mice. CONCLUSIONS The simultaneous modulation of the cannabinoid system and supplementation of magnesium or zinc produce at least additive antidepressant-like effect.
Collapse
Affiliation(s)
- Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Jolanta Górska
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
41
|
Liu X, Zhong P, Vickstrom C, Li Y, Liu QS. PDE4 Inhibition Restores the Balance Between Excitation and Inhibition in VTA Dopamine Neurons Disrupted by Repeated In Vivo Cocaine Exposure. Neuropsychopharmacology 2017; 42:1991-1999. [PMID: 28497801 PMCID: PMC5561351 DOI: 10.1038/npp.2017.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Phosphodiesterase type 4 (PDE4) is a family of enzymes that selectively degrade intracellular cAMP. PDE4 inhibitors have been shown to regulate the rewarding and reinforcing effects of cocaine, but the underlying mechanisms remain poorly understood. Here we show that pretreatments with the PDE4 inhibitor rolipram attenuated cocaine-induced locomotor sensitization in mice. Repeated cocaine exposure in vivo caused a decrease in inhibitory postsynaptic currents (IPSCs) and an increase in the AMPAR/NMDAR ratio in ventral tegmental area (VTA) dopamine neurons in midbrain slices ex vivo. Cocaine exposure disrupted the balance between excitation and inhibition as shown by an increase in the excitation to inhibition (E/I) ratio. Rolipram pretreatments in vivo prevented cocaine-induced reductions in GABAergic inhibition but did not further increase cocaine-induced potentiation of excitation, leading to the restoration of a balance between excitation and inhibition and normalization of the E/I ratio. In support of this idea, we found that repeated cocaine exposure led to an increase in the single-unit action potential firing rate in vivo in VTA dopamine neurons, which was blocked by rolipram pretreatments. These results suggest that repeated cocaine exposure in vivo disrupts the balance between excitation and inhibition in VTA dopamine neurons, while PDE4 inhibition reestablishes the balance between excitation and inhibition through distinct mechanisms.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peng Zhong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Casey Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yan Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA, Tel: +(414) 955-8877, Fax: +(414) 955-6545, E-mail:
| |
Collapse
|
42
|
Nguyen T, German N, Decker AM, Langston TL, Gamage TF, Farquhar CE, Li JX, Wiley JL, Thomas BF, Zhang Y. Novel Diarylurea Based Allosteric Modulators of the Cannabinoid CB1 Receptor: Evaluation of Importance of 6-Pyrrolidinylpyridinyl Substitution. J Med Chem 2017; 60:7410-7424. [PMID: 28792219 DOI: 10.1021/acs.jmedchem.7b00707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulators of the cannabinoid CB1 receptor have recently been reported as an alternative approach to modulate the CB1 receptor for therapeutic benefits. In this study, we report the design and synthesis of a series of diarylureas derived from PSNCBAM-1 (2). Similar to 2, these diarylureas dose-dependently inhibited CP55,940-induced intracellular calcium mobilization and [35S]GTP-γ-S binding while enhancing [3H]CP55,940 binding to the CB1 receptor. Structure-activity relationship studies revealed that the pyridinyl ring of 2 could be replaced by other aromatic rings and the pyrrolidinyl ring is not required for CB1 allosteric modulation. 34 (RTICBM-74) had similar potencies as 2 in all in vitro assays but showed significantly improved metabolic stability to rat liver microsomes. More importantly, 34 was more effective than 2 in attenuating the reinstatement of extinguished cocaine-seeking behavior in rats, demonstrating the potential of this diarylurea series as promising candidates for the development of relapse treatment of cocaine addiction.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Nadezhda German
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Thomas F Gamage
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Charlotte E Farquhar
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York , Buffalo, New York 14214, United States
| | - Jenny L Wiley
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Brian F Thomas
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
43
|
Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA, Sebastião AM. Chronic and acute adenosine A 2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB 1 receptor activation. Neuropharmacology 2017; 117:316-327. [PMID: 28235548 DOI: 10.1016/j.neuropharm.2017.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Abstract
Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/administration & dosage
- Animals
- Benzoxazines/pharmacology
- Calcium Channel Blockers/pharmacology
- Cannabinoid Receptor Agonists/toxicity
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory Disorders/chemically induced
- Memory Disorders/metabolism
- Memory Disorders/prevention & control
- Memory, Episodic
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Purines/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Adenosine A2A/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Triazoles/administration & dosage
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Christa E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
44
|
Delis F, Polissidis A, Poulia N, Justinova Z, Nomikos GG, Goldberg SR, Antoniou K. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats. Int J Neuropsychopharmacol 2016; 20:269-278. [PMID: 27994006 PMCID: PMC5408977 DOI: 10.1093/ijnp/pyw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. METHODS The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. RESULTS The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. CONCLUSIONS Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine's reinforcing and psychomotor effects.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Alexia Polissidis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou);,Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece (Dr Polissidis)
| | - Nafsika Poulia
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - George G. Nomikos
- Global Clinical Science, Takeda Development Center Americas, Inc, Deerfield, IL (Dr Nomikos)
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| |
Collapse
|
45
|
The Influence of the CB1 Receptor Ligands on the Schizophrenia-Like Effects in Mice Induced by MK-801. Neurotox Res 2016; 30:658-676. [PMID: 27577742 PMCID: PMC5047950 DOI: 10.1007/s12640-016-9662-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/20/2022]
Abstract
A growing body of psychiatric research has emerged, focusing on the role of endocannabinoid system in psychiatric disorders. For example, the endocannabinoid system, via cannabinoid CB (CB1 and CB2) receptors, is able to control the function of many receptors, such as N-methyl-d-aspartate (NMDA) receptors connected strictly with psychosis or other schizophrenia-associated symptoms. The aim of the present research was to investigate the impact of the CB1 receptor ligands on the symptoms typical for schizophrenia. We provoked psychosis-like effects in mice by an acute administration of NMDA receptor antagonist, MK-801 (0.1–0.6 mg/kg). An acute administration of MK-801 induced psychotic symptoms, manifested in the increase in locomotor activity (hyperactivity), measured in actimeters, as well as the memory impairment, assessed in the passive avoidance task. We revealed that an acute injection of CB1 receptor agonist, oleamide (5–20 mg/kg), had no influence on the short- and long-term memory-related disturbances, as well as on the hyperlocomotion in mice, provoking by an acute MK-801. In turn, an amnestic effects or hyperactivity induced by an acute MK-801 was attenuated by an acute administration of AM 251 (0.25–3 mg/kg), a CB1 receptor antagonist. The present findings confirm that endocannabinoid system is able to modify a variety of schizophrenia-like responses, including the cognitive disturbances and hyperlocomotion in mice. Antipsychotic-like effects induced by CB1 receptor antagonist, obtained in our research, confirm the potential effect of CB1 receptor blockade and could have important therapeutic implications on clinical settings, in the future.
Collapse
|
46
|
Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys. Neuropsychopharmacology 2016; 41:2283-93. [PMID: 26888056 PMCID: PMC4946059 DOI: 10.1038/npp.2016.27] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.
Collapse
|
47
|
Martín-García E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutiérrez-Rodriguez A, Reguero L, Fiancette JF, Grandes P, Spampinato U, Maldonado R, Piazza PV, Marsicano G, Deroche-Gamonet V. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. Neuropsychopharmacology 2016; 41:2192-205. [PMID: 26612422 PMCID: PMC4946049 DOI: 10.1038/npp.2015.351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.
Collapse
Affiliation(s)
- Elena Martín-García
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Lucie Bourgoin
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Adeline Cathala
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Fernando Kasanetz
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Miguel Mondesir
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Ana Gutiérrez-Rodriguez
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Jean- François Fiancette
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Umberto Spampinato
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Pier Vincenzo Piazza
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, Bordeaux, France,INSERM U862, Endocannabinoids and Neuroadaptation, NeuroCentre Magendie, Bordeaux, France
| | - Véronique Deroche-Gamonet
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,CRI U862, Pathophysiology of Addiction, Neurocentre Magendie, 146 rue Léo Saignat, Bordeaux 33077, France, Tel: +33 5 57 57 36 80, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
48
|
Zhang H, Li L, Sun Y, Zhang X, Zhang Y, Xu S, Zhao P, Liu T. Sevoflurane prevents stroke-induced depressive and anxiety behaviors by promoting cannabinoid receptor subtype I-dependent interaction between β-arrestin 2 and extracellular signal-regulated kinases 1/2 in the rat hippocampus. J Neurochem 2016; 137:618-29. [PMID: 26991409 DOI: 10.1111/jnc.13613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 01/19/2023]
Abstract
One of the most frequent psychological consequences of stroke is depression. Previous animal studies have demonstrated that post-conditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury. Thus, we hypothesized that repeated exposure to sevoflurane after transient ischemia can prevent the development of depressive-like behavior. To test this hypothesis, we induced transient cerebral ischemia via transient occlusion of bilateral common carotid arteries and examined the effects of subsequent repeated exposure to sevoflurane on sucrose preference, locomotor activity, and rearing activity in rats. To explore the putative neurobiological mechanisms, we further investigated the roles of hippocampal CB1 receptor in the behavioral effects of sevoflurane. We found that repeated sevoflurane exposures reversed ischemia-induced depressive-like behaviors. Furthermore, CB1 receptor inhibition in the dorsal hippocampus (DH) abolished the effects of sevoflurane exposures on ischemia-induced depressive-like behaviors. In addition, repeated sevoflurane exposures increased CB1 receptor expression and endocannabinoids levels in the DH of ischemic rats. Moreover, repeated sevoflurane exposures enhanced the expression of β-arrestin 2, increased the activation of extracellular signal-regulated kinases (ERK)1/2, and promoted the interaction of β-arrestin 2 and ERK1/2 in the DH, and such effects were reversed by CB1 receptor antagonism in the DH. Finally, β-arrestin 2 expression and ERK1/2 activation in the DH were critical for the preventative effects of sevoflurane exposures on ischemia-induced depressive-like behaviors. Taken together, our results suggested that sevoflurane exposure after brain ischemia may prevent the development of depression, and such preventative effects of sevoflurane are likely ascribed to the activation of CB1 receptor-mediated β-arrestin 2-ERK1/2 signaling pathways. We propose that the following mechanisms are critical for the preventative effects of sevoflurane against post-stroke depressive and anxiety behaviors: repeated sevoflurane exposure after transient brain ischemia enhances N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) levels and normalize cannabinoid receptor type 1 (CB1) receptor expression in the dorsal hippocampus, which results in enhanced interaction of β-arrestin 2 and extracellular signal-regulated kinases (ERK1/2) and increased ERK1/2 activation, leading to decreased depressive and anxiety behaviors. We think these findings should provide a new strategy for treatment of post-stroke depression.
Collapse
Affiliation(s)
- Houzhong Zhang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Li
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Changchun, Changchun, China
| | - Yanli Sun
- Department of Anesthesiology, The People's Hospital of Changchun City, Changchun, China
| | - Xingyi Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yifan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Peng Zhao
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Tiecheng Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Nawata Y, Kitaichi K, Yamamoto T. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251. Drug Alcohol Depend 2016; 160:76-81. [PMID: 26796595 DOI: 10.1016/j.drugalcdep.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/10/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND 3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. METHODS Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. RESULTS In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. CONCLUSIONS These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence.
Collapse
Affiliation(s)
- Yoko Nawata
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch Sasebo, Nagasaki 859-3298, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Drug Metabolism and Pharmacokinetics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuneyuki Yamamoto
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
50
|
CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2016; 233:99-109. [PMID: 26455361 PMCID: PMC4703460 DOI: 10.1007/s00213-015-4092-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023]
Abstract
RATIONALE Under some conditions, stress, rather than directly triggering cocaine seeking, potentiates reinstatement to other stimuli, including a subthreshold cocaine dose. The mechanisms responsible for stress-potentiated reinstatement are not well defined. Endocannabinoid signaling is increased by stress and regulates synaptic transmission in brain regions implicated in motivated behavior. OBJECTIVES The objective of this study was to test the hypothesis that cannabinoid type 1 receptor (CB1R) signaling is required for stress-potentiated reinstatement of cocaine seeking in rats. METHODS Following i.v. cocaine self-administration (2 h access/day) and extinction in male rats, footshock stress alone does not reinstate cocaine seeking but reinstatement is observed when footshock is followed by an injection of an otherwise subthreshold dose of cocaine (2.5 mg/kg, i.p.). CB1R involvement was tested by systemic administration of the CB1R antagonist AM251 (0, 1, or 3 mg/kg, i.p.) prior to testing for stress-potentiated reinstatement. RESULTS Stress-potentiated reinstatement was blocked by both 1 and 3 mg/kg AM251. By contrast, AM251 only attenuated food-reinforced lever pressing at the higher dose (i.e., 3 mg/kg) and did not affect locomotor activity at either dose tested. Neither high-dose cocaine-primed reinstatement (10 mg/kg, i.p.) nor footshock stress-triggered reinstatement following long-access cocaine self-administration (6 h access/day) was affected by AM251 pretreatment. Footshock stress increased concentrations of both endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, in regions of the prefrontal cortex. CONCLUSIONS These findings demonstrate that footshock stress increases prefrontal cortical endocannabinoids and stress-potentiated reinstatement is CB1R-dependent, suggesting that CB1R is a potential therapeutic target for relapse prevention, particularly in individuals whose cocaine use is stress-related.
Collapse
|