1
|
Herrera E, Chédotal A, Mason C. Development of the Binocular Circuit. Annu Rev Neurosci 2024; 47:303-322. [PMID: 38635868 DOI: 10.1146/annurev-neuro-111020-093230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.
Collapse
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias (CSIC-UMH), Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain;
| | - Alain Chédotal
- Université Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Institut de la Vision, INSERM, Sorbonne Université, Paris, France;
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Zuckerman Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
2
|
Cang J, Fu J, Tanabe S. Neural circuits for binocular vision: Ocular dominance, interocular matching, and disparity selectivity. Front Neural Circuits 2023; 17:1084027. [PMID: 36874946 PMCID: PMC9975354 DOI: 10.3389/fncir.2023.1084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The brain creates a single visual percept of the world with inputs from two eyes. This means that downstream structures must integrate information from the two eyes coherently. Not only does the brain meet this challenge effortlessly, it also uses small differences between the two eyes' inputs, i.e., binocular disparity, to construct depth information in a perceptual process called stereopsis. Recent studies have advanced our understanding of the neural circuits underlying stereoscopic vision and its development. Here, we review these advances in the context of three binocular properties that have been most commonly studied for visual cortical neurons: ocular dominance of response magnitude, interocular matching of orientation preference, and response selectivity for binocular disparity. By focusing mostly on mouse studies, as well as recent studies using ferrets and tree shrews, we highlight unresolved controversies and significant knowledge gaps regarding the neural circuits underlying binocular vision. We note that in most ocular dominance studies, only monocular stimulations are used, which could lead to a mischaracterization of binocularity. On the other hand, much remains unknown regarding the circuit basis of interocular matching and disparity selectivity and its development. We conclude by outlining opportunities for future studies on the neural circuits and functional development of binocular integration in the early visual system.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jieming Fu
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Godement P. A Stay in Friedrich Bonhoeffer's Lab in Tubingen in the Mid-eighties. Neuroscience 2023; 508:52-61. [PMID: 36464176 DOI: 10.1016/j.neuroscience.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The main focus of research for which Friedrich Bonhoeffer's work is known in the Neuroscience community was pioneer experiments on how axonal projections could organize into "maps", what mechanisms are involved in axon guidance and involve gradients of guiding molecules, and isolation of the first such molecules, e.g. RAGS (ephrin A5) and RGM (repulsive guidance molecule). Other papers have described in detail these contributions as well as Friedrich Bonhoeffer's personality. In the mid-eighties, I made a 2-year stay in his lab and initiated a line of research on development of binocular connections in Mammals, particularly the guidance of retinal fibers to one or the other side of the brain. In this paper I recall these circumstances as they pertain to Neuroscience as it stood at the time, and explain as best as I can how his lab was a conducive setting for the discoveries made there and how Friedrich Bonhoeffer acted for me as a scientist and a tutor.
Collapse
Affiliation(s)
- Pierre Godement
- Centre National de la Recherche Scientifique, Paris, France.
| |
Collapse
|
4
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
5
|
Herrera E, Escalante A. Transcriptional Control of Axon Guidance at Midline Structures. Front Cell Dev Biol 2022; 10:840005. [PMID: 35265625 PMCID: PMC8900194 DOI: 10.3389/fcell.2022.840005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the nervous system is a time-ordered and multi-stepped process that includes neurogenesis and neuronal specification, axonal navigation, and circuits assembly. During axonal navigation, the growth cone, a dynamic structure located at the tip of the axon, senses environmental signals that guide axons towards their final targets. The expression of a specific repertoire of receptors on the cell surface of the growth cone together with the activation of a set of intracellular transducing molecules, outlines the response of each axon to specific guidance cues. This collection of axon guidance molecules is defined by the transcriptome of the cell which, in turn, depends on transcriptional and epigenetic regulators that modify the structure and DNA accessibility to determine what genes will be expressed to elicit specific axonal behaviors. Studies focused on understanding how axons navigate intermediate targets, such as the floor plate of vertebrates or the mammalian optic chiasm, have largely contributed to our knowledge of how neurons wire together during development. In fact, investigations on axon navigation at these midline structures led to the identification of many of the currently known families of proteins that act as guidance cues and their corresponding receptors. Although the transcription factors and the regulatory mechanisms that control the expression of these molecules are not well understood, important advances have been made in recent years in this regard. Here we provide an updated overview on the current knowledge about the transcriptional control of axon guidance and the selection of trajectories at midline structures.
Collapse
|
6
|
Kruijt CC, Gradstein L, Bergen AA, Florijn RJ, Arveiler B, Lasseaux E, Zanlonghi X, Bagdonaite-Bejarano L, Fulton AB, Yahalom C, Blumenfeld A, Perez Y, Birk OS, de Wit GC, Schalij-Delfos NE, van Genderen MM. The Phenotypic and Mutational Spectrum of the FHONDA Syndrome and Oculocutaneous Albinism: Similarities and Differences. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35029636 PMCID: PMC8762694 DOI: 10.1167/iovs.63.1.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this study was to further expand the mutational spectrum of the Foveal Hypoplasia, Optic Nerve Decussation defect, and Anterior segment abnormalities (FHONDA syndrome), to describe the phenotypic spectrum, and to compare it to albinism. Subjects and Methods We retrospectively collected molecular, ophthalmic, and electrophysiological data of 28 patients molecularly confirmed with FHONDA from the Netherlands (9), Israel (13), France (2), and the United States of America (4). We compared the data to that of 133 Dutch patients with the 3 most common types of albinism in the Netherlands: oculocutaneous albinism type 1 (49), type 2 (41), and ocular albinism (43). Results Patients with FHONDA had a total of 15 different mutations in SLC38A8, of which 6 were novel. Excluding missing data, all patients had moderate to severe visual impairment (median visual acuity [VA] = 0.7 logMAR, interquartile range [IQR] = 0.6-0.8), nystagmus (28/28), and grade 4 foveal hypoplasia (17/17). Misrouting was present in all nine tested patients. None of the patients had any signs of hypopigmentation of skin and hair. VA in albinism was better (median = 0.5 logMAR, IQR = 0.3-0.7, P 0.006) and the phenotypes were more variable: 14 of 132 without nystagmus, foveal hypoplasia grades 1 to 4, and misrouting absent in 16 of 74. Conclusions Compared to albinism, the FHONDA syndrome appears to have a more narrow phenotypic spectrum, consisting of nonprogressive moderately to severely reduced VA, nystagmus, severe foveal hypoplasia, and misrouting. The co-occurrence of nystagmus, foveal hypoplasia, and misrouting in the absence of hypopigmentation implies that these abnormalities are not caused by lack of melanin, which has important implications for understanding the pathogenesis of these features.
Collapse
Affiliation(s)
- Charlotte C Kruijt
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands.,Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Human Genetics, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Benoit Arveiler
- Maladies Rares: Génétique et Métabolisme (MRGM), Inserm U1211, University of Bordeaux, Bordeaux, France.,Department of Medical Genetics, CHU Bordeaux, Bordeaux, France
| | | | - Xavier Zanlonghi
- Centre de Compétence Maladie Rares, Clinique Pluridisciplinaire Jules Verne, Nantes, France
| | | | - Anne B Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Claudia Yahalom
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Anat Blumenfeld
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.,Genetics Institute, Soroka Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Gerard C de Wit
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | | | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Pederick DT, Lui JH, Gingrich EC, Xu C, Wagner MJ, Liu Y, He Z, Quake SR, Luo L. Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. Science 2021; 372:1068-1073. [PMID: 34083484 PMCID: PMC8830376 DOI: 10.1126/science.abg1774] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Mammalian medial and lateral hippocampal networks preferentially process spatial- and object-related information, respectively. However, the mechanisms underlying the assembly of such parallel networks during development remain largely unknown. Our study shows that, in mice, complementary expression of cell surface molecules teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in the medial and lateral hippocampal networks, respectively, guides the precise assembly of CA1-to-subiculum connections in both networks. In the medial network, Ten3-expressing (Ten3+) CA1 axons are repelled by target-derived Lphn2, revealing that Lphn2- and Ten3-mediated heterophilic repulsion and Ten3-mediated homophilic attraction cooperate to control precise target selection of CA1 axons. In the lateral network, Lphn2-expressing (Lphn2+) CA1 axons are confined to Lphn2+ targets via repulsion from Ten3+ targets. Our findings demonstrate that assembly of parallel hippocampal networks follows a "Ten3→Ten3, Lphn2→Lphn2" rule instructed by reciprocal repulsions.
Collapse
Affiliation(s)
- Daniel T Pederick
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jan H Lui
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ellen C Gingrich
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mark J Wagner
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Yuanyuan Liu
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, Stanford, CA, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Bonnefont J, Tiberi L, van den Ameele J, Potier D, Gaber ZB, Lin X, Bilheu A, Herpoel A, Velez Bravo FD, Guillemot F, Aerts S, Vanderhaeghen P. Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways. Neuron 2019; 103:1096-1108.e4. [PMID: 31353074 PMCID: PMC6859502 DOI: 10.1016/j.neuron.2019.06.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.
Collapse
Affiliation(s)
- Jerome Bonnefont
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Luca Tiberi
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Jelle van den Ameele
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Delphine Potier
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Xionghui Lin
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Adèle Herpoel
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Fausto D Velez Bravo
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Welbio, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.
| |
Collapse
|
9
|
Mason C, Guillery R. Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development. Eur J Neurosci 2019; 49:913-927. [PMID: 30801828 DOI: 10.1111/ejn.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.
Collapse
Affiliation(s)
- Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| | - Ray Guillery
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| |
Collapse
|
10
|
Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation. Cell 2018; 173:1370-1384.e16. [PMID: 29856955 PMCID: PMC6092419 DOI: 10.1016/j.cell.2018.03.067] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/03/2022]
Abstract
The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex. Identification of >35 HS protein-coding genes expressed during human corticogenesis NOTCH2NL human-specific paralogs of NOTCH2 expressed in human cortical progenitors NOTCH2NL genes expand human cortical progenitors and their neuronal output NOTCH2NL promotes Notch signaling through cis-inhibition of Delta/Notch interactions
Collapse
|
11
|
Guidance of retinal axons in mammals. Semin Cell Dev Biol 2017; 85:48-59. [PMID: 29174916 DOI: 10.1016/j.semcdb.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.
Collapse
|
12
|
Prieur DS, Rebsam A. Retinal axon guidance at the midline: Chiasmatic misrouting and consequences. Dev Neurobiol 2017; 77:844-860. [PMID: 27907266 DOI: 10.1002/dneu.22473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The visual representation of the outside world relies on the appropriate connectivity between the eyes and the brain. Retinal ganglion cells are the sole neurons that send an axon from the retina to the brain, and thus the guidance decisions of retinal axons en route to their targets in the brain shape the neural circuitry that forms the basis of vision. Here, we focus on the choice made by retinal axons to cross or avoid the midline at the optic chiasm. This decision allows each brain hemisphere to receive inputs from both eyes corresponding to the same visual hemifield, and is thus crucial for binocular vision. In achiasmatic conditions, all retinal axons from one eye project to the ipsilateral brain hemisphere. In albinism, abnormal guidance of retinal axons at the optic chiasm leads to a change in the ratio of contralateral and ipsilateral projections with the consequence that each brain hemisphere receives inputs primarily from the contralateral eye instead of an almost equal distribution from both eyes in humans. In both cases, this misrouting of retinal axons leads to reduced visual acuity and poor depth perception. While this defect has been known for decades, mouse genetics have led to a better understanding of the molecular mechanisms at play in retinal axon guidance and at the origin of the guidance defect in albinism. In addition, fMRI studies on humans have now confirmed the anatomical and functional consequences of axonal misrouting at the chiasm that were previously only assumed from animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 844-860, 2017.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| |
Collapse
|
13
|
Abstract
The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior.
Collapse
Affiliation(s)
- S Ferri
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| | - K Pauwels
- Computer Vision and Active Perception Laboratory, School of Computer Science and Communication, KTH, 10044 Stockholm, Sweden
| | - G Rizzolatti
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| | - G A Orban
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| |
Collapse
|
14
|
Fracasso A, Koenraads Y, Porro GL, Dumoulin SO. Bilateral population receptive fields in congenital hemihydranencephaly. Ophthalmic Physiol Opt 2016; 36:324-334. [PMID: 27112226 DOI: 10.1111/opo.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Congenital hemihydranencephaly (HH) is a very rare disorder characterised by prenatal near-complete unilateral loss of the cerebral cortex. We investigated a patient affected by congenital right HH whose visual field extended significantly into the both visual hemifields, suggesting a reorganisation of the remaining left visual hemisphere. We examined the early visual cortex reorganisation using functional MRI (7T) and population receptive field (pRF) modelling. METHODS Data were acquired by means of a 7T MRI while the patient affected by HH viewed conventional population receptive field mapping stimuli. Two possible pRF reorganisation schemes were evaluated: where every cortical location processed information from either (i) a single region of the visual field or (ii) from two bilateral regions of the visual field. RESULTS In the patient affected by HH, bilateral pRFs in single cortical locations of the remaining hemisphere were found. In addition, using this specific pRF reorganisation scheme, the biologically known relationship between pRF size and eccentricity was found. CONCLUSIONS Bilateral pRFs were found in the remaining left hemisphere of the patient affected by HH, indicating reorganisation of intra-cortical wiring of the early visual cortex and confirming brain plasticity and reorganisation after an early cerebral damage in humans.
Collapse
Affiliation(s)
- Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Department of Radiology, Imaging Division, University Medical Centre, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Yvonne Koenraads
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Giorgio L Porro
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Hoffmann MB, Dumoulin SO. Congenital visual pathway abnormalities: a window onto cortical stability and plasticity. Trends Neurosci 2015; 38:55-65. [PMID: 25448619 DOI: 10.1016/j.tins.2014.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022]
Abstract
Sensory systems project information in a highly organized manner to the brain, where it is preserved in maps of the sensory structures. These sensory projections are altered in congenital abnormalities, such as anophthalmia, albinism, achiasma, and hemihydranencephaly. Consequently, these abnormalities, profoundly affect the organization of the visual system. Surprisingly, visual perception remains largely intact, except for anophthalmia. Recent brain imaging advances shed light on the mechanisms that underlie this phenomenon. In contrast to animal models, in humans the plasticity of thalamocortical connections appears limited, thus demonstrating the importance of cortical adaptations. We suggest that congenital visual pathway abnormalities provide a valuable model to investigate the principles of plasticity that make visual representations available for perception and behavior in humans.
Collapse
Affiliation(s)
- Michael B Hoffmann
- Department of Ophthalmology, Visual Processing Laboratory, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Wei Y, Tsigankov D, Koulakov A. The molecular basis for the development of neural maps. Ann N Y Acad Sci 2014; 1305:44-60. [PMID: 24329485 DOI: 10.1111/nyas.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural development leads to the establishment of precise connectivity in the nervous system. By contrasting the information capacities of cortical connectivity and the genome, we suggest that simplifying rules are necessary in order to create cortical connections from the limited set of instructions contained in the genome. One of these rules may be employed by the visual system, where connections are formed on the basis of the interplay of molecular gradients and activity-dependent synaptic plasticity. We show how a simple model that accounts for such interplay can create both neural topographic maps and more complex patterns of ocular dominance, that is, the segregated binary mixture of projections from two eyes converging in the same visual area. With regard to the ocular dominance patterns, we show that pattern orientation may be instructed by the direction of the gradients of molecular labels. We also show that the periodicity of ocular dominance patterns may result from the interplay of the effects of molecular gradients and correlated neural activity. Overall, we propose that simple mechanisms can account for the formation of apparently complex features of neuronal connections.
Collapse
Affiliation(s)
- Yi Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | |
Collapse
|
17
|
Triplett JW. Molecular guidance of retinotopic map development in the midbrain. Curr Opin Neurobiol 2013; 24:7-12. [PMID: 24492072 DOI: 10.1016/j.conb.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
Topographic maps are utilized in many sensory and motor systems to efficiently transfer information between brain regions. The retina's projection to the superior colliculus has served as a model for the identification of molecular cues and mechanistic strategies by which topographic maps are formed. Evidence from both in vitro and in vivo studies points to graded cell surface cues playing a central role, but support for axon-axon competition and selective degeneration have also been advanced recently. In combination with mathematical models, these studies suggest that topographic maps are established using a complex combination of strategies to ensure precise connectivity.
Collapse
Affiliation(s)
- Jason W Triplett
- Center for Neuroscience Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, United States.
| |
Collapse
|
18
|
Cang J, Feldheim DA. Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 2013; 36:51-77. [PMID: 23642132 DOI: 10.1146/annurev-neuro-062012-170341] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain connections are organized into topographic maps that are precisely aligned both within and across modalities. This alignment facilitates coherent integration of different categories of sensory inputs and allows for proper sensorimotor transformations. Topographic maps are established and aligned by multistep processes during development, including interactions of molecular guidance cues expressed in gradients; spontaneous activity-dependent axonal and dendritic remodeling; and sensory-evoked plasticity driven by experience. By focusing on the superior colliculus, a major site of topographic map alignment for different sensory modalities, this review summarizes current understanding of topographic map development in the mammalian visual system and highlights recent advances in map alignment studies. A major goal looking forward is to reveal the molecular and synaptic mechanisms underlying map alignment and to understand the physiological and behavioral consequences when these mechanisms are disrupted at various scales.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
19
|
Davies-Thompson J, Scheel M, Jane Lanyon L, Sinclair Barton JJ. Functional organisation of visual pathways in a patient with no optic chiasm. Neuropsychologia 2013; 51:1260-72. [PMID: 23563109 DOI: 10.1016/j.neuropsychologia.2013.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
Abstract
Congenital achiasma offers a rare opportunity to study reorganization and inter-hemispheric communication in the face of anomalous inputs to striate cortex. We report neuroimaging studies of a patient with seesaw nystagmus, achiasma, and full visual fields. The subject underwent structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) studies, and functional MRI (fMRI) using monocular stimulation with checkerboards, motion, objects and faces, as well as retinotopic quadrantic mapping. Structural MRI confirmed the absence of an optic chiasm, which was corroborated by DTI tractography. Lack of a functioning decussation was confirmed by fMRI that showed activation of only ipsilateral medial occipital cortex by monocular stimulation. The corpus callosum was normal in size and anterior and posterior commissures were identifiable. In terms of the hierarchy of visual areas, V5 was the lowest level region to be activated binocularly, as were regions in the fusiform gyri responding to faces and objects. The retinotopic organization of striate cortex was studied with quadrantic stimulation. This showed that, in support of recent findings, rather than projecting to an ectopic location contiguous with the normal retinotopic map of the ipsilateral temporal hemi-retina, the nasal hemi-retina's representation overlapped that of the temporal hemi-retina. These findings show that congenital achiasma can be an isolated midline crossing defect, that information transfer does not occur in early occipital cortex but at intermediate and higher levels of the visual hierarchy, and that the functional reorganisation of striate cortex in this condition is consistent with normal axon guidance by a chemoaffinity gradient.
Collapse
Affiliation(s)
- Jodie Davies-Thompson
- Departments of Medicine Neurology, and Ophthalmology and Visual Sciences, University of British Columbia, BC, Canada.
| | | | | | | |
Collapse
|
20
|
Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. Prog Retin Eye Res 2013; 35:63-81. [PMID: 23500068 DOI: 10.1016/j.preteyeres.2013.01.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Presence of a fovea centralis is directly linked to molecular specification of an avascular area in central retina, before the fovea (or 'pit') begins to form. Modelling suggests that mechanical forces, generated within the eye, initiate formation of a pit within the avascular area, and its later remodelling in the postnatal period. Within the avascular area the retina is dominated by 'midget' circuitry, in which signals are transferred from a single cone to a single bipolar cell, then a single ganglion cell. Thus in inner, central retina there are relatively few lateral connections between neurons. This renders the region adaptable to tangential forces, that translocate of ganglion cells laterally/centrifugally, to form the fovea. Optical coherence tomography enables live imaging of the retina, and shows that there is greater variation in the morphology of foveae in humans than previously thought. This variation is associated with differences in size of the avascular area and appears to be genetically based, but can be modified by environmental factors, including prematurity. Even when the fovea is absent (foveal hypoplasia), cones in central retina adopt an elongated and narrow morphology, enabling them to pack more densely to increase the sampling rate, and to act as more effective waveguides. Given these findings, what then is the adaptive advantage of a fovea? We suggest that the advantages of having a pit in central retina are relatively few, and minor, but together work to enhance acuity.
Collapse
|
21
|
Teo L, Homman-Ludiye J, Rodger J, Bourne JA. Discrete ephrin-B1 expression by specific layers of the primate retinogeniculostriate system continues throughout postnatal and adult life. J Comp Neurol 2012; 520:2941-56. [PMID: 22778007 DOI: 10.1002/cne.23077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular guidance cue ephrin-B1 has traditionally been associated with the early development of the visual system, encompassing retinocollicular mapping as well as development and maturation of synapses. Although little is known about its role in the visual system during the postnatal period and in adulthood, recent studies have demonstrated the expression of ephrin-B1 in the adult mouse brain, indicating a sustained role beyond early development. Therefore, we explored the spatiotemporal expression of ephrin-B1 in the postnatal and adult nonhuman primate visual system and demonstrated that a modulated expression continued following birth into adulthood in the lateral geniculate nucleus (LGN) and primary visual cortex (V1, striate cortex). This occurred in the layers involved in bidirectional geniculostriate communication: layers 3Bβ, 4, and 6 of V1 and the parvocellular (P) and magnocellular (M) layers of the LGN. Furthermore, discrete gradients between the ipsi- and contralateral inputs of the P and M layers of the LGN evolved between 1 month following birth and the start of the critical period (3 months), and continued into adulthood. We also detected the postsynaptic expression of ephrin-B1 by excitatory cells in adult LGN and V1 and a subset of interneurons in adult V1, suggestive of a more global rather than subtype-specific role. Together these results suggest a possible role for ephrin-B1 in the maturation of the primate retinogeniculostriate pathway throughout postnatal life, extending into adulthood.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, Monash University Clayton, Victoria, 3800, Australia
| | | | | | | |
Collapse
|
22
|
Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 2011; 23:7-15. [PMID: 22044886 DOI: 10.1016/j.semcdb.2011.10.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 10/17/2011] [Indexed: 11/20/2022]
Abstract
The axonal connections between the retina and its midbrain target, the superior colliculus (SC), is mapped topographically, such that the spatial relationships of cell bodies in the retina are maintained when terminating in the SC. Topographic map development uses a Cartesian mapping system such that each axis of the retina is mapped independently. Along the nasal-temporal mapping axis, EphAs and ephrin-As, are graded molecular cues required for topographic mapping while the dorsal-ventral axis is mapped in part via EphB and ephrin-Bs. Because both Ephs and ephrins are cell surface molecules they can signal in the forward and reverse directions. Eph/ephrin signaling leads to changes in cytoskeletal dynamics that lead to actin depolymerization and endocytosis guiding axons via attraction and repulsion.
Collapse
|
23
|
Pietri S, Dimidschstein J, Tiberi L, Sotiropoulou PA, Bilheu A, Goffinet A, Achouri Y, Tissir F, Blanpain C, Jacquemin P, Vanderhaeghen P. Transcriptional mechanisms of EphA7 gene expression in the developing cerebral cortex. ACTA ACUST UNITED AC 2011; 22:1678-89. [PMID: 21940705 DOI: 10.1093/cercor/bhr245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The patterning of cortical areas is controlled by a combination of intrinsic factors that are expressed in the cortex and external signals such as inputs from the thalamus. EphA7 is a guidance receptor that is involved in key aspects of cortical development and is expressed in gradients within developing cortical areas. Here, we identified a regulatory element of the EphA7 promoter, named pA7, that can recapitulate salient features of the pattern of expression of EphA7, including cortical gradients. Using a pA7-Green fluorescent Protein (GFP) mouse reporter line, we isolated cortical neuron populations displaying different levels of EphA7/GFP expression. Transcriptome analysis of these populations enabled to identify many differentially expressed genes, including 26 transcription factors with putative binding sites in the pA7 element. Among these, Pbx1 was found to bind directly to the EphA7 promoter in the developing cortex. All genes validated further were confirmed to be expressed differentially in the developing cortex, similarly to EphA7. Their expression was unchanged in mutant mice defective for thalamocortical projections, indicating a transcriptional control largely intrinsic to the cortex. Our study identifies a novel repertoire of cortical neuron genes that may act upstream of, or together with EphA7, to control the patterning of cortical areas.
Collapse
Affiliation(s)
- Sandra Pietri
- Welbio and Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lambert N, Lambot MA, Bilheu A, Albert V, Englert Y, Libert F, Noel JC, Sotiriou C, Holloway AK, Pollard KS, Detours V, Vanderhaeghen P. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS One 2011; 6:e17753. [PMID: 21445258 PMCID: PMC3060818 DOI: 10.1371/journal.pone.0017753] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/08/2011] [Indexed: 12/27/2022] Open
Abstract
The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.
Collapse
Affiliation(s)
- Nelle Lambert
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Hôpital Universitaire des Enfants Reine Fabiola, Child Psychiatry Department, Brussels, Belgium
| | - Marie-Alexandra Lambot
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Angéline Bilheu
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valérie Albert
- Department of Obstetrics and Gynaecology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yvon Englert
- Department of Obstetrics and Gynaecology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-Christophe Noel
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christos Sotiriou
- Bordet Cancer Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alisha K. Holloway
- Gladstone Institutes, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, University of California San Francisco, San Francisco, California, United States of America
- Division of Biostatistics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Vincent Detours
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Vanderhaeghen
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail:
| |
Collapse
|
25
|
Reese BE. Development of the retina and optic pathway. Vision Res 2010; 51:613-32. [PMID: 20647017 DOI: 10.1016/j.visres.2010.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/04/2010] [Accepted: 07/13/2010] [Indexed: 12/30/2022]
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
26
|
Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent. J Neurosci 2010; 29:14855-63. [PMID: 19940181 DOI: 10.1523/jneurosci.3462-09.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Partial decussation of sensory pathways allows neural inputs from both sides of the body to project to the same target region where these signals will be integrated. Here, to better understand mechanisms of eye-specific targeting, we studied how retinal ganglion cell (RGC) axons terminate in their thalamic target, the dorsal lateral geniculate nucleus (dLGN), when crossing at the optic chiasm midline is altered. In models with gain- and loss-of-function of EphB1, the receptor that directs the ipsilateral projection at the optic chiasm, misrouted RGCs target the appropriate retinotopic zone in the opposite dLGN. However, in EphB1(-/-) mice, the misrouted axons do not intermingle with normally projecting RGC axons and segregate instead into a distinct patch. We also revisited the role of retinal activity on eye-specific targeting by blocking correlated waves of activity with epibatidine into both eyes. We show that, in wild-type mice, retinal waves are necessary during the first postnatal week for both proper distribution and eye-specific segregation of ipsilateral axons in the mature dLGN. Moreover, in EphB1(-/-) mice, refinement of ipsilateral axons is perturbed in control conditions and is further impaired after epibatidine treatment. Finally, retinal waves are required for the formation of the segregated patch of misrouted axons in EphB1(-/-) mice. These findings implicate molecular determinants for targeting of eye-specific zones that are independent of midline guidance cues and that function in concert with correlated retinal activity to sculpt retinogeniculate projections.
Collapse
|
27
|
Kozulin P, Natoli R, Madigan MC, O’Brien KMB, Provis JM. Gradients of Eph-A6 expression in primate retina suggest roles in both vascular and axon guidance. Mol Vis 2009; 15:2649-62. [PMID: 20011078 PMCID: PMC2791039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 12/02/2009] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Recently we identified high levels of expression of Eph-A6 in the macula of developing human retina and showed localization of Eph-A6 to ganglion cells (GC). In the present study we investigated the expression of some members of the ephrin family in developing primate retina, including the topography of Eph-A6 expression, and its ligands, in developing macaque retinas. METHODS We extracted RNA from human fetal retinas and probed for Eph-A5-A7, Eph-B1, ephrin-B2, and ephrin-A1-A5 by RT-PCR, then prepared riboprobes for Eph-A5-A7, Eph-B1 and ephrin-A1, -A4 and -B2. Paraffin sections of fetal macaque retinas were used to localize expression of Ephs and ephrins by in situ hybridization and immunohistochemistry. RESULTS We identified prominent gradients of Eph-A6 mRNA expression in the ganglion cell layer (GCL) of fetal macaque retinas of different ages. The gradient of Eph-A6 expression was high near the optic disc and low at the developing macula at fetal day (Fd) 55. At Fd 70 and 80, the gradient of Eph-A6 expression was reversed, being higher temporal to the macula, and low at the disc. By Fd 110, when the fovea begins to form, a pattern of expression was established that persisted into the postnatal period, in which the highest levels of expression were detected at the developing fovea, and progressively lower levels of expression were detected at increasing distance from the fovea. Beginning at Fd 70, we also detected a gradient of Eph-A6 expression running perpendicular to the retinal surface within the GCL of central retina that was high in the inner GCL and low in the outer GCL. This second pattern persisted into the neonatal period. We found the two ligands for Eph-A6, ephrin-A1 and ephrin-A4, expressed by Pax2-immunoreactive astrocytes, in the optic nerve head and in the retina, by in situ hybridization and immunohistochemistry. We propose that during development of the retinal vasculature, migration of ligand-bearing astrocytes is slowed along this Eph-A6 expression gradient through repellent Eph-A6 - ephrin-A1 and -A4 signaling. CONCLUSIONS Patterns of Eph-A6 expression in the developing macaque retina suggest that Eph-A6 - ephrin-A1 and -A4 repellent signaling has a role in retinal vascular patterning, and in the postnatal maintenance of projections from macular and foveal GC.
Collapse
Affiliation(s)
- Peter Kozulin
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
| | - Riccardo Natoli
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
| | - Michele C. Madigan
- School of Optometry and Vision Science, The University of New South Wales, Kensington, Australia,Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Keely M. Bumsted O’Brien
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
| | - Jan M. Provis
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia,Australian National University Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
28
|
Abstract
In mammals smooth retinotopic maps of the visual field are formed along the visual processing pathway whereby the left visual field is represented in the right hemisphere and vice versa. The reorganization of retinotopic maps in the lateral geniculate nucleus (LGN) of the thalamus and early visual areas (V1-V3) is studied in a patient who was born with only one cerebral hemisphere. Before the seventh week of embryonic gestation, the development of the patient's right cerebral hemisphere terminated. Despite the complete loss of her right hemisphere (di- and telencephalon) at birth, the patient's remaining hemisphere has not only developed maps of the contralateral (right) visual hemifield but, surprisingly, also maps of the ipsilateral (left) visual hemifield. Retinal ganglion-cells changed their predetermined crossing pattern in the optic chiasm and grew to the ipsilateral LGN. In the visual cortex, islands of ipsilateral visual field representations were located along the representations of the vertical meridian. In V1, smooth and continuous maps from contra- and ipsilateral hemifield overlap each other, whereas in ventral V2 and V3 ipsilateral quarter field representations invaded small distinct cortical patches. This reveals a surprising flexibility of the self-organizing developmental mechanisms responsible for map formation.
Collapse
|
29
|
Leamey CA, Van Wart A, Sur M. Intrinsic patterning and experience-dependent mechanisms that generate eye-specific projections and binocular circuits in the visual pathway. Curr Opin Neurobiol 2009; 19:181-7. [PMID: 19502049 DOI: 10.1016/j.conb.2009.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 01/10/2023]
Abstract
A defining feature of the mammalian nervous system is its complex yet precise circuitry. The mechanisms which underlie the generation of neural connectivity are the topic of intense study in developmental neuroscience. The mammalian visual pathway demonstrates precise retinotopic organization in subcortical and cortical pathways, together with the alignment and matching of eye-specific projections, and sophisticated cortical circuitry that enables the extraction of features underlying vision. New approaches employing molecular-genetic analyses, transgenic mice, novel recombinant probes, and high-resolution imaging are contributing to rapid progress and a new synthesis in the field. These approaches are revealing the ways in which intrinsic patterning mechanisms act in concert with experience-dependent mechanisms to shape visual projections and circuits.
Collapse
Affiliation(s)
- Catherine A Leamey
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
30
|
Ramdya P, Engert F. Emergence of binocular functional properties in a monocular neural circuit. Nat Neurosci 2009; 11:1083-90. [PMID: 19160507 DOI: 10.1038/nn.2166] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature.
Collapse
Affiliation(s)
- Pavan Ramdya
- Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
31
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
32
|
Eglen SJ, Gjorgjieva J. Self-organization in the developing nervous system: theoretical models. HFSP JOURNAL 2009; 3:176-85. [PMID: 19639040 DOI: 10.2976/1.3079539] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/20/2009] [Indexed: 01/07/2023]
Abstract
Sensory maps in the nervous system often connect to each other in a topographic fashion. This is most strikingly seen in the visual system, where neighboring neurons in the retina project to neighboring neurons in the target structure, such as the superior colliculus. This article discusses the developmental mechanisms that are involved in the formation of topographic maps, with an emphasis on the role of theoretical models in helping us to understand these mechanisms. Recent experimental advances in studying the roles of guidance molecules and patterns of spontaneous activity mean that there are new challenges to be addressed by theoretical models. Key questions include understanding what instructional cues are present in the patterns of spontaneous activity, and how activity and guidance molecules might interact. Our discussion concludes by comparing development of visual maps with development of maps in the olfactory system, where the influence of neural activity seems to differ.
Collapse
Affiliation(s)
- Stephen J Eglen
- Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | | |
Collapse
|
33
|
Kozulin P, Natoli R, O’Brien KMB, Madigan MC, Provis JM. Differential expression of anti-angiogenic factors and guidance genes in the developing macula. Mol Vis 2009; 15:45-59. [PMID: 19145251 PMCID: PMC2622716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/22/2008] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. METHODS We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (p<0.01) were then identified in a second round of clustering according to molecular/reaction (KEGG) pathway. Genes of interest were verified by quantitative PCR (QRT-PCR), and 2 genes were localized by in situ hybridization. RESULTS We generated two lists of differentially regulated genes: "macula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by QRT-PCR. Localization of PEDF and Eph-A6 mRNAs in sections of macaque retina shows expression of both genes concentrates in the ganglion cell layer (GCL) at the developing fovea, consistent with an involvement in definition of the foveal avascular area. CONCLUSIONS Because the axons of macular ganglion cells exit the retina from around 8 WG, we suggest that the axon guidance genes highly expressed at the macula at 19-20 WG are also involved in vascular patterning, along with PEDF and NPPB. Localization of both PEDF and Eph-A6 mRNAs to the GCL of the developing fovea supports this idea. It is possible that specialization of the macular vessels, including definition of the foveal avascular area, is mediated by processes that piggyback on axon guidance mechanisms in effect earlier in development. These findings may be useful to understand the vulnerability of the macula to degeneration and to develop new therapeutic strategies to inhibit neovascularization.
Collapse
Affiliation(s)
- Peter Kozulin
- ARC Centre of Excellence in Vision Science and School of Biology, The Australian National University, Canberra, Australia
| | - Riccardo Natoli
- ARC Centre of Excellence in Vision Science and School of Biology, The Australian National University, Canberra, Australia
| | - Keely M. Bumsted O’Brien
- ARC Centre of Excellence in Vision Science and School of Biology, The Australian National University, Canberra, Australia
| | - Michele C. Madigan
- School of Optometry and Vision Science, The University of New South Wales, Kensington, and Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Jan M. Provis
- ARC Centre of Excellence in Vision Science and School of Biology, The Australian National University, Canberra, Australia,Australian National University Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
34
|
|
35
|
Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 2008; 31:295-315. [PMID: 18558857 DOI: 10.1146/annurev.neuro.31.060407.125609] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the optic chiasm, retinal ganglion cell axons from each eye converge and segregate into crossed and uncrossed projections, a pattern critical for binocular vision. Here, we review recent findings on optic chiasm development, highlighting the specific transcription factors and guidance cues that implement retinal axon divergence into crossed and uncrossed pathways. Although mechanisms underlying the formation of the uncrossed projection have been identified, the means by which retinal axons are guided across the midline are still unclear. In addition to directives provided by transcription factors and receptors in the retina, gene expression in the ventral diencephalon influences chiasm formation. Throughout this review, we compare guidance mechanisms at the optic chiasm with those in other midline models and highlight unanswered questions both for retinal axon growth and axon guidance in general.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Pathology and Cell Biology, Department of Neuroscience, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
36
|
Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X, Demel N, Glendining KA, Oohashi T, Sur M, Fässler R. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol 2007; 5:e241. [PMID: 17803360 PMCID: PMC1964777 DOI: 10.1371/journal.pbio.0050241] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 07/09/2007] [Indexed: 11/18/2022] Open
Abstract
Binocular vision requires an exquisite matching of projections from each eye to form a cohesive representation of the visual world. Eye-specific inputs are anatomically segregated, but in register in the visual thalamus, and overlap within the binocular region of primary visual cortex. Here, we show that the transmembrane protein Ten_m3 regulates the alignment of ipsilateral and contralateral projections. It is expressed in a gradient in the developing visual pathway, which is consistently highest in regions that represent dorsal visual field. Mice that lack Ten_m3 show profound abnormalities in mapping of ipsilateral, but not contralateral, projections, and exhibit pronounced deficits when performing visually mediated behavioural tasks. It is likely that the functional deficits arise from the interocular mismatch, because they are reversed by acute monocular inactivation. We conclude that Ten_m3 plays a key regulatory role in the development of aligned binocular maps, which are required for normal vision. The visual world is represented within the brain as a series of maps of visual space. In species with binocular vision, the inputs from the two eyes are aligned to form a cohesive map; little is known about how this organisation is achieved during development. We show that a transmembrane protein, Ten_m3, plays an important role. Ten_m3 is required for the guidance of uncrossed retinal axons: uncrossed projections from the eye to the brain map aberrantly in mice that lack Ten_m3, although crossed projections map normally. Consequently, projections from the two eyes are not aligned in these mice. We show that this mismatch has devastating consequences for vision. Mice lacking Ten_m3 perform very poorly in behavioural tests of visual function. The deficits are a direct result of the mismatch, because acutely silencing inputs from one eye restores visual behaviour. This remarkable and rapid recovery suggests the mismatch of the inputs from the two eyes leads to functional suppression in the brain. We conclude that Ten_m3 acts as an eye-specific guidance cue for retinal axons and is required to produce aligned projections from the two eyes, and further, that this is critical for normal visual function. Ten_m3, a transmembrane protein, has a newly discovered role in guiding retinal axons, aligning projections from the two eyes, and thereby mediating binocular vision.
Collapse
Affiliation(s)
- Catherine A Leamey
- Department of Physiology, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Two qualitatively different kinds of neural map have been described: continuous maps exemplified by the visual retinotopic map, and discrete maps exemplified by the olfactory glomerular map. Here, we review developmental mechanisms of retinotopic and olfactory glomerular mapping and discuss underlying commonalities that have emerged from recent studies. These include the use of molecular gradients, axon-axon interactions, and the interplay between labeling molecules and neuronal activity in establishing these maps. Since visual retinotopic and olfactory glomerular maps represent two ends of a continuum that includes many other types of neural map in between, these emerging general principles may be widely applicable to map formation throughout the nervous system.
Collapse
|
38
|
Sun SW, Liang HF, Cross AH, Song SK. Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 2007; 40:1-10. [PMID: 18187343 DOI: 10.1016/j.neuroimage.2007.11.049] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 11/28/2022] Open
Abstract
Wallerian degeneration plays a significant role in many central nervous system (CNS) diseases. Tracking the progression of Wallerian degeneration may provide better understanding of the evolution of many CNS diseases. In this study, a 28-day longitudinal in vivo DTI of optic nerve (ON) and optic tract (OT) was conducted to evaluate the temporal and spatial evolution of Wallerian degeneration resulting from the transient retinal ischemia. At 3-28 days after ischemia, ipsilateral ON and contralateral OT showed significant reduction in axial diffusivity (32-40% and 21-29% respectively) suggestive of axonal damage. Both ON and OT showed significant increase in radial diffusivity, 200-290% and 58-65% respectively, at 9-28 days suggestive of myelin damage. Immunohistochemistry of phosphorylated neurofilament (pNF) and myelin basic protein (MBP) was performed to assess axonal and myelin integrities validating the DTI findings. Both DTI and immunohistochemistry detected that transient retinal ischemia caused more severe damage to ON than to OT. The current results suggest that axial and radial diffusivities are capable of reflecting the severity of axonal and myelin damage in mice as assessed using immunohistochemistry.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
39
|
Trevelyan AJ, Upton AL, Cordery PM, Thompson ID. An experimentally induced duplication of retinotopic mapping within the hamster primary visual cortex. Eur J Neurosci 2007; 26:3277-90. [PMID: 18005057 DOI: 10.1111/j.1460-9568.2007.05941.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary cortical areas normally have a single mapping of the receptor array arising from a 'point-to-point' projection from the thalamus. We show that, for the visual cortex, this simple mapping rule breaks down when retinal input to the thalamus is altered. We utilize the monocular enucleation paradigm, which alters subcortical mappings ipsilateral to the remaining eye. We show that this manipulation produces an altered visuotopic map in area 17 with two separated, mirror-imaged representations of the central visual field. Furthermore, thalamic point-to-point connectivity is dramatically changed. There are now two overlapping geniculocortical projections: the predominant projection maps with apparently normal topography, and a second projection maps with the opposite polarity. The plane of symmetry of the duplicated anatomical projection coincides precisely with the functional map reversal and, notably, geniculocortical magnification factors are identical in the two projections. We suggest that the duplicated, abnormal geniculocortical projection is retinotopically matched to the normal projection. We speculate that aberrant geniculocortical terminals are stabilized because they have coherent activity patterns with topographically normal terminals.
Collapse
|
40
|
Abstract
Albinism is associated with a misrouting of fibers at the optic chiasm where the majority of fibers cross to the contralateral side. The cause of this abnormal decussation pattern reflects a disturbance of cell cycle regulation in the development of the retina which is in part controlled by melanin. Growing axons from retinal ganglion cells therefore arrive later than usual at the optic chiasm and are misrouted contralaterally. This atypical decussation leads to morphological changes of the optic chiasm including a reduced chiasm width with larger angles between optic nerves and tracts which can be shown by magnetic resonance imaging.
Collapse
Affiliation(s)
- B Schmitz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätskliniken Ulm, Steinhövelstrasse 9, 89075, Ulm, Deutschland.
| | | | | |
Collapse
|
41
|
Lin L, Isacson O. Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits. Stem Cells 2006; 24:2504-13. [PMID: 16840550 PMCID: PMC2613222 DOI: 10.1634/stemcells.2006-0119] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The physical restoration of dopamine circuits damaged or lost in Parkinson disease by implanting embryonic stem (ES)-derived cells may become a treatment. It is critical to understand responses of ES-derived dopamine (DA) neurons to guidance signals that determine axonal path and targeting. Using a collagen gel culture system, we examined effects of secreted molecules Netrin-1 and Slits on neurite outgrowth of fetal DA neurons and murine ES-differentiated DA neurons. We have previously shown that fetal DA neurons express DCC and Robo1/2 receptors and that Netrin-1 and Slit2 function as an attractant and a repellent for DA neurite outgrowth. In the present study, we observe that both Slit1 and Slit3 repel and inhibit neurite growth of fetal DA neurons. Here, we also demonstrate that ES-differentiated neurons including DA neurons express the Netrin receptor DCC and Slit receptor Robo proteins. In the gel culture system of ES cells, Netrin-1 promoted neurite outgrowth mediated by DCC receptor, and Slit1 and Slit3 were inhibitory for neurite outgrowth through Robo receptors. Slit2 appeared to exert inhibitory as well as repulsive effects in the coculture assay. However, unlike fetal DA neurites, no directed neurite outgrowth was observed in the cocultures of ES-derived DA neurons with Netrin-1-, Slit1-, and Slit3-producing cells. The findings suggest that ES-derived DA neurons generated by current protocols can respond to guidance cues in vitro in a similar manner to fetal cells but also exhibit distinct responses. This may result from developmental differences generated by present in vitro methods of cell patterning or conditioning during ES cell differentiation.
Collapse
Affiliation(s)
- Ling Lin
- Udall Parkinson's Disease Research Center of Excellence and Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, Massachusetts 02478, USA.
| | | |
Collapse
|
42
|
Neveu MM, Holder GE, Ragge NK, Sloper JJ, Collin JRO, Jeffery G. Early midline interactions are important in mouse optic chiasm formation but are not critical in man: a significant distinction between man and mouse. Eur J Neurosci 2006; 23:3034-42. [PMID: 16819992 DOI: 10.1111/j.1460-9568.2006.04827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optic chiasm is one of the most popular models for studying axon guidance. Here axons make a key binary decision either to cross the midline to innervate the contralateral hemisphere or to remain uncrossed. In rodents, midline interactions between axons from the two eyes are critical for normal development, as early removal of one eye systematically disrupts hemispheric projections from the remaining eye, increasing the crossed projection at the expense of the uncrossed. This is similar to the abnormal decussation pattern seen in albinos. This pattern is markedly different in marsupials where early eye removal has no impact on projections from the remaining eye. These differences are related to the location of the uncrossed projection through the chiasm. In rodents these axons approach the midline whereas in marsupials they remain segregated laterally. We provide anatomical evidence in man suggesting that, unlike in rodents, uncrossed axons are confined laterally and do not mix in each hemi-chiasm, which is a pattern similar to that found in marsupials. Further, we demonstrate electrophysiologically, using visual cortical evoked potentials, that the failure of one eye to develop in man has no impact on the hemispheric projections from the remaining eye. These data demonstrate that the mechanisms regulating chiasmal development in man differ from those in rodents but may be similar to those in marsupials. We suggest that mouse models of the organization and development of the optic chiasm are not common to placental mammals in general.
Collapse
Affiliation(s)
- Magella M Neveu
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|
43
|
Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, Kern AD, Dehay C, Igel H, Ares M, Vanderhaeghen P, Haussler D. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006; 443:167-72. [PMID: 16915236 DOI: 10.1038/nature05113] [Citation(s) in RCA: 661] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/25/2006] [Indexed: 12/21/2022]
Abstract
The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions provide new candidates in the search for uniquely human biology.
Collapse
Affiliation(s)
- Katherine S Pollard
- Center for Biomolecular Science & Engineering, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Williams SE, Grumet M, Colman DR, Henkemeyer M, Mason CA, Sakurai T. A role for Nr-CAM in the patterning of binocular visual pathways. Neuron 2006; 50:535-47. [PMID: 16701205 DOI: 10.1016/j.neuron.2006.03.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/23/2006] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.
Collapse
Affiliation(s)
- Scott E Williams
- Center for Neurobiology and Behavior and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
45
|
Warland DK, Huberman AD, Chalupa LM. Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. J Neurosci 2006; 26:5190-7. [PMID: 16687510 PMCID: PMC6674245 DOI: 10.1523/jneurosci.0328-06.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Correlated spontaneous activity in the form of retinal "waves" has been observed in a wide variety of developing animals, but whether retinal waves occur in the primate has not been determined previously. To address this issue, we recorded from isolated retinas using multielectrode arrays at six fetal ages: embryonic day 51 (E51), E55, E60, E67, E71, and E76. These recordings revealed that the fetal monkey retina is essentially silent at E51 and E55, with only few cells firing on rare occasions and without any obvious spatial or temporal order. Because previous work has shown that the magnocellular and parvocellular subdivisions of the dorsal lateral geniculate are selectively innervated during this early period, our results suggest that this process is unlikely to be regulated by retinal activity. Highly structured retinal waves were first observed at E60, >1 week before the segregation of eye-specific retinal dorsal lateral geniculate nucleus projections commences. The incidence of such waves decreased rapidly and progressively during the developmental period (E67-E76) when segregated eye-specific projections become established. Our findings indicate that retinal waves first occur in the fetal monkey at a remarkably early stage of development, >100 d before birth, and that this activity undergoes rapid changes in salient properties when eye-specific retinogeniculate projections are being formed.
Collapse
Affiliation(s)
- David K Warland
- Department of Ophthalmology and Visual Science, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
46
|
Flanagan JG. Neural map specification by gradients. Curr Opin Neurobiol 2006; 16:59-66. [PMID: 16417998 DOI: 10.1016/j.conb.2006.01.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Topographic maps, in which the spatial order of neurons maps smoothly onto their axonal target, are a central feature of neural wiring. Ephrins and Eph receptors are well accepted as graded labels for map development, enabling current studies into molecular principles of mapping. Ephrins regulate axon growth either positively or negatively, leading to models in which axons terminate at a neutral or optimum point in the gradient. Axonal competition ensures the target is filled. Ephrins and Ephs are typically expressed in complex overlapping patterns, with implications for signaling mechanisms, scale of internal map features, and coordinated interconnection of multiple mapping modules. Recent studies of Wnt3 and En-2 show that topographic axon guidance cues may be as diverse as molecules previously regarded as morphogens and transcription factors.
Collapse
Affiliation(s)
- John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Speer CM, Chapman B. Grading the thalamus: how can an 'Eph' be excellent? THALAMUS & RELATED SYSTEMS 2005; 3:235-244. [PMID: 19081805 PMCID: PMC2600440 DOI: 10.1017/s1472928807000234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Eph family of receptor tyrosine kinases and their partner ligands, the ephrins, mediate cell-cell interactions in the developing nervous system. Signaling events between Eph receptors and ephrin ligands on interacting cells affect the growth, maturation, migration and connectivity of individual neurons and neural networks. Here we review the known roles of Eph-ephrin signaling in the development of the thalamus and its connections, and pose new questions for experimental study.
Collapse
Affiliation(s)
- Colenso M Speer
- Center for Neuroscience, University of California, Davis, USA
| | | |
Collapse
|