1
|
Xun QQ, Zhang J, Feng L, Ma YY, Li Y, Shi XL. Identification of a novel pyrrolo[2,3- b]pyridine compound as a potent glycogen synthase kinase 3β inhibitor for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2025; 40:2466846. [PMID: 39976249 PMCID: PMC11843656 DOI: 10.1080/14756366.2025.2466846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Herein, a novel pyrrolo[2,3-b]pyridine-based glycogen synthase kinase 3β (GSK-3β) inhibitor, S01, was rationally designed and synthesised to target Alzheimer's disease (AD). S01 inhibited GSK-3β, with an IC50 of 0.35 ± 0.06 nM, and had an acceptable kinase selectivity for 24 structurally similar kinases. Western blotting assays indicated that S01 efficiently increased the expression of p-GSK-3β-Ser9 and decreased p-tau-Ser396 levels in a dose-dependent manner. In vitro cell experiments, S01 showed low cytotoxicity to SH-SY5Y cells, significantly upregulated the expression of β-catenin and neurogenesis-related biomarkers, and effectively promoted the outgrowth of differentiated neuronal neurites. Moreover, S01 substantially ameliorated dyskinesia in AlCl3-induced zebrafish AD models at a concentration of 0.12 μM, which was more potent than Donepezil (8 μM) under identical conditions. Acute toxicity experiments further confirmed the safety of S01 in vivo. Our findings suggested that S01 is a prospective GSK-3β inhibitor and can be tested as a candidate for treating AD.
Collapse
Affiliation(s)
- Qing-Qing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Jing Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lei Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yu-Ying Ma
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiao-Long Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Rathod SS, Agrawal YO. β-Caryophyllene (CB2 agonist) mitigates rotenone-induced neurotoxicity and apoptosis in SH-SY5Y neuroblastoma cells via modulation of GSK-3β/NRF2/HO-1 axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04281-x. [PMID: 40410551 DOI: 10.1007/s00210-025-04281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025]
Abstract
Rotenone-induced neurotoxicity in SH-SY5Y cells is an essential hallmark of neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). β-Caryophyllene (BCP), a cannabinoid receptor 2 (CB2) agonist, has anti-inflammatory, antioxidant, and cytoprotective efficacy. The involvement of the GSK-3β/NRF2/HO-1 axis in neuroprotection has garnered attention as a possible mechanism for BCP to exhibit multitargeted neuroprotective effects. Hence, this study investigates the effects of BCP against rotenone-induced neurotoxicity and apoptosis in SH-SY5Y cells, focusing on the involvement of the GSK-3β/NRF2/HO-1 signaling pathway. Initially, we performed the in silico molecular docking of BCP with GSK-3β, NRF2, and HO-1 proteins to ensure the degree of binding affinities. The in vitro MTT assay was performed to evaluate cell viability, followed by the assessment of biomarkers such as LDH leakage, oxidative stress, reactive species, caspase 3 activity, pro-inflammatory markers, and GSK-3β, NRF2, and HO-1 proteins in BCP, as well as specific receptor modulators (chir98023 and quercetin) against the rotenone pre-treated cells. In silico molecular docking studies revealed that BCP exhibits a strong binding affinity for GSK-3β, NRF2, and HO-1 proteins. Also, in vitro studies revealed that BCP (100 µg/ml), as compared to the rotenone-treated group, significantly restored cell viability (72%). Moreover, BCP significantly modulates cell cytotoxicity (LDH leakage), pro-apoptotic, pro-inflammatory, reactive species, and oxidative stress markers. Molecular docking established robust binding affinities of BCP with GSK-3β, NRF2, and HO-1 proteins. Furthermore, protein estimation by ELISA confirmed the BCP-mediated modulation of these pathways. These findings suggest that BCP protects SH-SY5Y cells from rotenone-induced neurotoxicity, offering a potential therapeutic candidate for neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India
| | - Yogeeta O Agrawal
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Shirpur, 425405, Maharashtra, India.
| |
Collapse
|
3
|
Ortiz AA, Murtishaw AS, Beckholt M, Salazar AM, Osse AML, Kinney JW. Impact of chronic hyperglycemia and high-fat diet on Alzheimer's disease-related pathology in CX3CR1 knockout mice. Metab Brain Dis 2025; 40:197. [PMID: 40332622 DOI: 10.1007/s11011-025-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Diabetes mellitus (DM), obesity, and metabolic syndrome are related disorders with wide-ranging and devastating effects that are comorbid with many other diseases. Clinical and epidemiological studies have found that type II diabetes mellitus (T2DM), including chronic hyperglycemia and hyperinsulinemia, significantly increases the risk of Alzheimer's disease (AD) and other forms of dementia in the elderly. Insulin has slightly different functions in the peripheral body than in the central nervous system and the dysregulation of these functions may contribute to the onset and progression of late-life neurodegenerative disease. To investigate cognitive function and AD-related disease pathology, we utilized two different models of key features of diabetes, one model characterized by hyperglycemia resulting from a diabetogenic compound that selectively targets insulin-producing pancreatic β-cells, and the other model based on diet-induced obesity. Additionally, these diabetic models were combined with fractalkine receptor knockout mice (CX3CR1-/-), a genetic mouse model of inflammation, to explore the additive effects of multiple AD risk factors. The CX3CR1 receptor has been implicated in modulating neuroinflammation associated with AD, and its dysregulation can exacerbate metabolic disturbances and neurodegenerative markers. We found that diabetic-status, regardless of whether it was drug- or diet-induced, resulted in profound impairments in learning and memory and AD-related alterations within the hippocampus.
Collapse
Affiliation(s)
- Andrew Adonay Ortiz
- Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA.
| | - Andrew Scott Murtishaw
- Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Monica Beckholt
- Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Arnold Maloles Salazar
- Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Amanda Marie Leisgang Osse
- Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Jefferson William Kinney
- Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| |
Collapse
|
4
|
Van Alstyne M, Pratt J, Parker R. Diverse influences on tau aggregation and implications for disease progression. Genes Dev 2025; 39:555-581. [PMID: 40113250 PMCID: PMC12047666 DOI: 10.1101/gad.352551.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Tau is an intrinsically disordered protein that accumulates in fibrillar aggregates in neurodegenerative diseases. The misfolding of tau can be understood as an equilibrium between different states and their propensity to form higher-order fibers, which is affected by several factors. First, modulation of the biochemical state of tau due to ionic conditions, post-translational modifications, cofactors, and interacting molecules or assemblies can affect the formation and structure of tau fibrils. Second, cellular processes impact tau aggregation through modulating stability, clearance, disaggregation, and transport. Third, through interactions with glial cells, the neuronal microenvironment can affect intraneuronal conditions with impacts on tau fibrilization and toxicity. Importantly, tau fibrils propagate through the brain via a "prion-like" manner, contributing to disease progression. This review highlights the biochemical and cellular pathways that modulate tau aggregation and discusses implications for pathobiology and tau-directed therapeutic approaches.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - James Pratt
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA;
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| |
Collapse
|
5
|
Xun QQ, Zhang J, Li YP, Li Y, Ma YY, Chen ZB, Ding LP, Shi XL. Synthesis and biological evaluation of novel pyrrolo[2,3-b]pyridine derivatives as potent GSK-3β inhibitors for treating Alzheimer's disease. Eur J Med Chem 2025; 285:117236. [PMID: 39798400 DOI: 10.1016/j.ejmech.2025.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC50) of 0.22, 0.26 and 0.24 nM, respectively, and each of them generally possessed GSK-3β selectivity over 24 structurally similar kinases. In addition, further targeting studies at the cellular level revealed that compound 41 increased GSK-3β phosphorylation at Ser9 site dose-dependently for inhibiting GSK-3β activity, therefore inhibiting the hyperphosphorylation of tau protein by decreasing the p-tau-Ser396 abundance. Moreover, 41 up-regulated β-catenin and neurogenesis-related markers (GAP43 and MAP-2), thereby promoting neurite outgrowth of neurons in SH-SY5Y cells. According to the in vitro cells assay, 41 showed the lower cytotoxicity to SH-SY5Y cells with a survival rate of over 70 % at the concentration of 100 μM. In vivo efficacy and acute toxicity experiments showed that, 41 effectively ameliorated the dyskinesia in AlCl3-induced zebrafish AD models and exhibited its low-toxicity nature in C57BL/6 mice. Overall, the pyrrolo[2,3-b]pyridine derivative 41 could serve as a promising GSK-3β inhibitor for treating AD.
Collapse
Affiliation(s)
- Qing-Qing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China; School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Jing Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yan-Peng Li
- Department of Spinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yu-Ying Ma
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Zhao-Bin Chen
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Le-Ping Ding
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiao-Long Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
6
|
Zhang KX, Sheng N, Ding PL, Zhang JW, Xu XQ, Wang YH. Danggui Shaoyao San Alleviates Early Cognitive Impairment in Alzheimer's Disease Mice Through IRS1/GSK3β/Wnt3a-β-Catenin Pathway. Brain Behav 2024; 14:e70056. [PMID: 39344343 PMCID: PMC11440033 DOI: 10.1002/brb3.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease characterized by Amyloid plaques and neurofibrillary tangles. We explored the potential mechanism by which Danggui Shaoyao San (DSS) modulates central glucose metabolism via the insulin receptor substrate 1 (IRS1)/glycogen synthase kinase-3β (GSK3β)/Wnt3a-β-catenin pathway, thereby exerting protective effects on cognitive functions. METHODS In vitro, HT22 cells were induced with streptozotocin (STZ) to investigate the impact of GSK3β on pathway transduction. The active components in the DSS stock solution were validated using mass spectrometry. Subsequently, an AD model in C57BL/6J mice was established through STZ injection into both ventricles. The success of the model was validated behaviorally and pathologically. The Morris Water Maze (MWM) test, immunohistochemistry, Western blotting, quantitative reverse transcription-PCR, and 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) were employed to evaluate the influence of DSS on memory and pathological changes in AD. RESULTS The DSS stock solution, rich in active components, ameliorated the memory deficits in AD mice in the MWM. In vitro, GSK3β exhibited regulatory control over Wnt and β-catenin, with GSK3β inhibition mitigating β-amyloid and tau redundancies at protein and gene levels, facilitating signal transduction. In vivo, DSS impacted key targets in the IRS1/GSK3β/Wnt3a-β-catenin pathway, mitigated senile plaques resulting from amyloid β (Aβ) deposition and neurofiber tangles induced by tau hyperphosphorylation, and alleviated the decline in central glucose metabolism observed in FDG-PET. CONCLUSIONS Our findings suggest that DSS potentially confers cognitive protection by alleviating central hypoglycemia through the IRS1/GSK3β/Wnt3a-β-catenin pathway. This may serve as a promising therapeutic avenue for AD.
Collapse
Affiliation(s)
- Kai-Xin Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ning Sheng
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, China
| | - Peng-Li Ding
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Wei Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
8
|
Peng D, Wang L, Fang Y, Lu L, Li Z, Jiang S, Chen J, Aschner M, Li S, Jiang Y. Lead exposure induces neurodysfunction through caspase-1-mediated neuronal pyroptosis. ENVIRONMENTAL RESEARCH 2024; 255:119210. [PMID: 38795947 DOI: 10.1016/j.envres.2024.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic lead (Pb) exposure causes neurodysfunction and contributes to the development of neurodegenerative disease. However, the mechanism of Pb-induced neurological dysfunction have yet to be fully elucidated. This study determined the role pyroptosis plays in Pb-induced neurodysfunction in neurons. We used both in vitro and in vivo approaches to explore whether Pb exposure induces caspase-1-mediated pyroptosis in neurons and its relationship to Pb-induced neurological disorders. Our findings showed that caspase-1-mediated pyroptosis in Pb-exposed neurons activated glycogen synthase kinase 3 protease activity by disrupting Ca2+/calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, leading to neurological disorders. Moreover, the caspase-1 inhibition VX-765 or the non-steroidal anti-inflammatory drug sodium para-aminosalicylic acid (PAS-Na) attenuated the Pb-induced neurological disorders by alleviating caspase-1 mediated neuronal pyroptosis. Our novel studies suggest that caspase-1-mediated pyroptosis in neurons represents a potential mechanism for Pb-induced neurodysfunction, identifying a putative target for attenuating the neurodegenerative effects induced by this metal.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Leilei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Siyang Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
9
|
Wang C, Hei Y, Liu Y, Bajpai AK, Li Y, Guan Y, Xu F, Yao C. Systems genetics identifies methionine as a high risk factor for Alzheimer's disease. Front Neurosci 2024; 18:1381889. [PMID: 39081851 PMCID: PMC11286400 DOI: 10.3389/fnins.2024.1381889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level. Gene enrichment analysis indicated that the genes associated with the concentration of methionine in the midbrain are involved in the dopaminergic synaptic signaling pathway. Protein interaction network analysis revealed that glycogen synthase kinase 3 beta (GSK-3β) was a key regulator of the dopaminergic synaptic pathway and its expression level was significantly correlated with the AD phenotype. Finally, in vitro experiments demonstrated that methionine deprivation could reduce the expression of Aβ and phosphorylated Tau, suggesting that lowering methionine levels in humans may be a preventive or therapeutic strategy for AD. In conclusion, our findings support that methionine is a high risk factor for AD. These findings predict potential regulatory network, theoretically supporting methionine restriction to prevent AD.
Collapse
Affiliation(s)
- Congmin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Hei
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuhe Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yawen Guan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Cuifang Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
Cho SY, Kim EW, Park SJ, Phillips BU, Jeong J, Kim H, Heath CJ, Kim D, Jang Y, López-Cruz L, Saksida LM, Bussey TJ, Lee DY, Kim E. Reconsidering repurposing: long-term metformin treatment impairs cognition in Alzheimer's model mice. Transl Psychiatry 2024; 14:34. [PMID: 38238285 PMCID: PMC10796941 DOI: 10.1038/s41398-024-02755-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Metformin, a primary anti-diabetic medication, has been anticipated to provide benefits for Alzheimer's disease (AD), also known as "type 3 diabetes". Nevertheless, some studies have demonstrated that metformin may trigger AD pathology and even elevate AD risk in humans. Despite this, limited research has elucidated the behavioral outcomes of metformin treatment, which would hold significant translational value. Thus, we aimed to perform thorough behavioral research on the prolonged administration of metformin to mice: We administered metformin (300 mg/kg/day) to transgenic 3xTg-AD and non-transgenic (NT) C57BL/6 mice over 1 and 2 years, respectively, and evaluated their behaviors across multiple domains via touchscreen operant chambers, including motivation, attention, memory, visual discrimination, and cognitive flexibility. We found metformin enhanced attention, inhibitory control, and associative learning in younger NT mice (≤16 months). However, chronic treatment led to impairments in memory retention and discrimination learning at older age. Furthermore, metformin caused learning and memory impairment and increased levels of AMPKα1-subunit, β-amyloid oligomers, plaques, phosphorylated tau, and GSK3β expression in AD mice. No changes in potential confounding factors on cognition, including levels of motivation, locomotion, appetite, body weight, blood glucose, and serum vitamin B12, were observed in metformin-treated AD mice. We also identified an enhanced amyloidogenic pathway in db/db mice, as well as in Neuro2a-APP695 cells and a decrease in synaptic markers, such as PSD-95 and synaptophysin in primary neurons, upon metformin treatment. Our findings collectively suggest that the repurposing of metformin should be carefully reconsidered when this drug is used for individuals with AD.
Collapse
Affiliation(s)
- So Yeon Cho
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun Woo Kim
- Graduate School of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Nursing, Seoyeong University, Gwangju, 61268, Republic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Benjamin U Phillips
- Department of Psychology, The University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jihyeon Jeong
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Daehwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yurim Jang
- Interdisciplinary Program in Agricultural Genomics, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Laura López-Cruz
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, N6A 5K8, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, N6A 5K8, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Agricultural Genomics, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eosu Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Graduate School of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Yu H, Xiong M, Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front Mol Neurosci 2023; 16:1209703. [PMID: 37781096 PMCID: PMC10540228 DOI: 10.3389/fnmol.2023.1209703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose an increasingly prevalent threat to the well-being and survival of elderly individuals worldwide. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and so on. They are characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system and share several cellular and molecular mechanisms, including protein aggregation, mitochondrial dysfunction, gene mutations, and chronic neuroinflammation. Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase that is believed to play a pivotal role in the pathogenesis of NDDs. Here we summarize the structure and physiological functions of GSK3β and explore its involvement in NDDs. We also discussed its potential as a therapeutic target.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer's disease. Ageing Res Rev 2023; 90:102033. [PMID: 37595640 DOI: 10.1016/j.arr.2023.102033] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aβ) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, β-secretase (BACE1), Glycogen synthase kinase 3β (GSK-3β) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aβ production, GSK-3β is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3β and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
14
|
Yan N, Xie F, Tang LQ, Wang DF, Li X, Liu C, Liu ZP. Synthesis and biological evaluation of thieno[3,2-c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for Alzheimer's disease. Bioorg Chem 2023; 138:106663. [PMID: 37329814 DOI: 10.1016/j.bioorg.2023.106663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a potential target for anti-Alzheimer's disease (AD) drug development. In this study, a series of novel thieno[3,2-c]pyrazol-3-amine derivatives was synthesized and evaluated as potential GSK-3β inhibitors by structure-based drug design. The thieno[3,2-c]pyrazol-3-amine derivative 54 with a 4-methylpyrazole moiety which interacted with Arg141 by π-cation interaction was identified as a potent GSK-3β inhibitor with an IC50 of 3.4 nM and an acceptable kinase selectivity profile. In the rat primary cortical neurons, compound 54 showed neuroprotective effects on Aβ-induced neurotoxicity. Western blot analysis indicated that 54 inhibited GSK-3β by up-regulating the expression of phosphorylated GSK-3β at Ser9 and down-regulating the expression of phosphorylated GSK-3β at Tyr216. Meanwhile, 54 decreased tau phosphorylation at Ser396 in a dose-dependent way. In astrocytes and microglia cells, 54 inhibited the expression of inducible nitric oxide synthase (iNOS), indicating that 54 showed an anti-neuroinflammatory effect. In the AlCl3-induced zebrafish AD model, 54 significantly ameliorated the AlCl3-induced dyskinesia, demonstrating its anti-AD activity in vivo.
Collapse
Affiliation(s)
- Ning Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Long-Qian Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - De-Feng Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
15
|
Amaral B, Capacci A, Anderson T, Tezer C, Bajrami B, Lulla M, Lucas B, Chodaparambil JV, Marcotte D, Kumar PR, Murugan P, Spilker K, Cullivan M, Wang T, Peterson AC, Enyedy I, Ma B, Chen T, Yousaf Z, Calhoun M, Golonzhka O, Dillon GM, Koirala S. Elucidation of the GSK3α Structure Informs the Design of Novel, Paralog-Selective Inhibitors. ACS Chem Neurosci 2023; 14:1080-1094. [PMID: 36812145 PMCID: PMC10020971 DOI: 10.1021/acschemneuro.2c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/β-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3β paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3β with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3β and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.
Collapse
Affiliation(s)
- Brenda Amaral
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew Capacci
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Trip Anderson
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ceren Tezer
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Departments of Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mukesh Lulla
- Departments of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian Lucas
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas Marcotte
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kerri Spilker
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mike Cullivan
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ti Wang
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anton C Peterson
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Istvan Enyedy
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bin Ma
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zain Yousaf
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Calhoun
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Olga Golonzhka
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gregory M Dillon
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Samir Koirala
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
16
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
17
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
18
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
19
|
Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, Bolte AC, Lammert CR, Kulas JA, Ulland TK, Lukens JR. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 2022; 185:4135-4152.e22. [PMID: 36257314 PMCID: PMC9617784 DOI: 10.1016/j.cell.2022.09.030] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aβ) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aβ deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3β-signaling, and restrict Aβ phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aβ load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, UVA, Charlottesville, VA 22908, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Daniel A Shapiro
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Coco Holliday
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, UVA, Charlottesville, VA 22908, USA
| | - Gabrielle Voithofer
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Ashley C Bolte
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, UVA, Charlottesville, VA 22908, USA; Medical Scientist Training Program, UVA, Charlottesville, VA 22908, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - Joshua A Kulas
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, UVA, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology and Cancer Biology, UVA, Charlottesville, VA 22908, USA; Medical Scientist Training Program, UVA, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
The Prophylactic and Multimodal Activity of Two Isatin Thiosemicarbazones against Alzheimer's Disease In Vitro. Brain Sci 2022; 12:brainsci12060806. [PMID: 35741690 PMCID: PMC9221192 DOI: 10.3390/brainsci12060806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disorder strongly involving the formation of amyloid-β (Aβ) oligomers, which subsequently aggregate into the disease characteristic insoluble amyloid plaques, in addition to oxidative stress, inflammation and increased acetylcholinesterase activity. Moreover, Aβ oligomers interfere with the expression and activity of Glycogen synthase kinase-3 (GSK3) and Protein kinase B (PKB), also known as AKT. In the present study, the potential multimodal effect of two synthetic isatin thiosemicarbazones (ITSCs), which have been previously shown to prevent Aβ aggregation was evaluated. Both compounds resulted in fully reversing the Aβ-mediated toxicity in SK-NS-H cells treated with exogenous Aβ peptides at various pre-incubation time points and at 1 μM. Cell survival was not recovered when compounds were applied after Aβ cell treatment. The ITSCs were non-toxic against wild type and 5xFAD primary hippocampal cells. They reversed the inhibition of Akt and GSK-3β phosphorylation in 5xFAD cells. Finally, they exhibited good antioxidant potential and moderate lipoxygenase and acetylcholinesterase inhibition activity. Overall, these results suggest that isatin thiosemicarbazone is a suitable scaffold for the development of multimodal anti-AD agents.
Collapse
|
21
|
Thapak P, Khare P, Bishnoi M, Sharma SS. Neuroprotective Effect of 2-Aminoethoxydiphenyl Borate (2-APB) in Amyloid β-Induced Memory Dysfunction: A Mechanistic Study. Cell Mol Neurobiol 2022; 42:1211-1223. [PMID: 33219878 PMCID: PMC11441215 DOI: 10.1007/s10571-020-01012-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
β-Amyloid (Aβ) peptide is a characteristic feature of Alzheimer's disease (AD) and accumulation of Aβ is associated with loss of synaptic plasticity and neuronal cell death. Aggregation of Aβ initiates numerous molecular signalling pathways leading to oxidative stress, mitochondrial dysfunction as well as an imbalance of calcium ion influx homeostasis. Recently, it has been shown that transient receptor potential melastatin 2 (TRPM2), a non-selective calcium-permeable cation channel has been postulated to play a vital role in the neuronal death, indicating the potential of TRPM2 inhibition in CNS disease. In this study, neuroprotective potential of 2-aminoethoxydiphenyl borate (2-APB), a broad-spectrum calcium channels blocker was investigated in Aβ-induced memory deficits in rats. In addition, effect of 2-APB on TRPM2 channels gene and protein expressions and also on calcium and memory related proteins was investigated in the hippocampus. Intracerebroventricular (I.C.V.) administration of Aβ (Aβ25-35, 10 μg) markedly induced cognitive impairment and upregulation of mRNA and protein expression of TRPM2 in the hippocampus. In addition, AChE activity was also increased in the cortex of the Aβ administered animals. Three-week treatment with 2-APB led to the down-regulation of TRPM2 mRNA and protein expression in the hippocampus and also improved the cognitive functions which was evident from the behavioral parameters. Moreover, 2-APB treatment also increased the calcium and memory associated proteins namely p-CaMKII, p-GSK-3β, p-CREB and PSD-95 in the hippocampus and reduced the mRNA level of calcium buffering proteins and calcineurin A (PPP3CA) in the hippocampus. Furthermore, 2-APB treatment significantly reduced the AChE activity in the cortex. Thus, our findings suggest the neuroprotective effect of 2-APB in Aβ-induced cognitive impairment.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
22
|
Lee Y, Bortolotto ZA, Bradley CA, Sanderson TM, Zhuo M, Kaang BK, Collingridge GL. The GSK-3 Inhibitor CT99021 Enhances the Acquisition of Spatial Learning and the Accuracy of Spatial Memory. Front Mol Neurosci 2022; 14:804130. [PMID: 35153671 PMCID: PMC8829050 DOI: 10.3389/fnmol.2021.804130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a Ser/Thr protein kinase that regulates many cellular processes, including synaptic plasticity. Previously, we reported that inhibition of GSK-3 prevents the induction of one of the major forms of synaptic plasticity, N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD), in hippocampal slices. In the present study, we have investigated the effects of inhibiting GSK-3 on learning and memory in healthy naïve animals. Systemic administration of a highly selective GSK-3 inhibitor, CT99021, reversibly blocked NMDAR-dependent LTD in the CA1 region of the hippocampus in anesthetized adult mice. In behavioral tasks, CT99021 had no effect on locomotor activity, anxiety, hippocampus-dependent contextual fear memory, and hippocampus-dependent reversal learning. However, CT99021 facilitated the rate of learning in the Morris water maze (MWM) and T-maze and enhanced the accuracy of long-term spatial memory in the MWM. These findings suggest that GSK-3 regulates the accuracy of spatial memory acquisition and recall.
Collapse
Affiliation(s)
- Yeseul Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zuner A. Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clarrisa A. Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Genes and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Thomas M. Sanderson
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Bong-Kiun Kaang,
| | - Graham L. Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Graham L. Collingridge,
| |
Collapse
|
23
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
24
|
Gupta S, Singh V, Ganesh S, Singhal NK, Sandhir R. siRNA Mediated GSK3β Knockdown Targets Insulin Signaling Pathway and Rescues Alzheimer's Disease Pathology: Evidence from In Vitro and In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:69-93. [PMID: 34967205 DOI: 10.1021/acsami.1c15305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sporadic Alzheimer's disease (sAD) is a progressive neurodegenerative disorder with dysfunctional insulin signaling and energy metabolism. Emerging evidence suggests impairments in brain insulin responsiveness, glucose utilization, and energy metabolism may be major causes of amyloid precursor protein mishandling. The support for this notion comes from the studies wherein streptozotocin (STZ) induced brain insulin resistance in rodent model resulted in sAD-like neuropathology with cognitive decline. Our previous study showed a compromised insulin signaling pathway, glucose uptake, glucose metabolism, and energy homeostasis in STZ-induced glial-neuronal coculture and in vivo model of sAD. Various components of insulin signaling pathway were examined to understand the metabolic correlation, and GSK3β was selected for gene knockdown strategy to reverse sAD pathology based on the data. In the present study, we have synthesized carboxylated graphene oxide (GO) nanosheets functionalized with PEG and subsequently with polyethylenimine (PEI) to provide attachment sites for GSK3β siRNA. Our results showed that siRNA mediated knockdown of the GSK3β gene reduced expression of amyloid pathway genes (APP and BACE1), which was further confirmed by reduced amyloid beta (Aβ) levels in the in vitro STZ-induced sAD model. GSK3β knockdown also restored insulin signaling, AMPK and Mapk3 pathway by restoring the expression of corresponding candidate genes in these pathways (IR, Glut1/3, Prkaa1/2, Mapk3, BDNF) that reflected improved cellular energy homeostasis, neuronal proliferation, differentiation, maturation, and repair. Behavioral data from Morris water maze (MWM), open field (OF), novel object recognition (NOR), Y maze, and radial arm maze (RAM) tests showed that 0.5 μg nanoformulation (GOc-PP-siRNAGSK3β) intranasally for 7 days improved spatial memory, rescued anxiety like behavior, improved visual and working memory, and rescued exploratory behavior in STZ-induced sAD rats. GSK3β silencing resulted in decreased BACE1 expression and prevented accumulation of Aβ in the cortex and hippocampus. These molecular findings with improved behavioral performances were further correlated with reduced amyloid beta (Aβ) and neurofibrillary tangle (NFTs) formation in the cortex and hippocampus of GOc-PP-siRNAGSK3β administered sAD rats. Therefore, it is conceivable from the present study that nanoparticle-mediated targeting of GSK3β in the sAD appears to be a promising strategy to reverse sAD pathology.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Subramaniam Ganesh
- Department of Biological Science and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Nitin K Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
25
|
Wang V, Kuo TT, Huang EYK, Ma KH, Chou YC, Fu ZY, Lai LW, Jung J, Choi HI, Choi DS, Li Y, Olson L, Greig NH, Hoffer BJ, Chen YH. Sustained Release GLP-1 Agonist PT320 Delays Disease Progression in a Mouse Model of Parkinson's Disease. ACS Pharmacol Transl Sci 2021; 4:858-869. [PMID: 33860208 DOI: 10.1021/acsptsci.1c00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/16/2022]
Abstract
GLP-1 agonists have become increasingly interesting as a new Parkinson's disease (PD) clinical treatment strategy. Additional preclinical studies are important to validate this approach and define the disease stage when they are most effective. We hence characterized the efficacy of PT320, a sustained release formulation of the long acting GLP-1 agonist, exenatide, in a progressive PD (MitoPark) mouse model. A clinically translatable biweekly PT320 dose was administered starting at 5 weeks of age and longitudinally evaluated to 24 weeks, and multiple behavioral/cellular parameters were measured. PT320 significantly improved spontaneous locomotor activity and rearing in MitoPark PD mice. "Motivated" behavior also improved, evaluated by accelerating rotarod performance. Behavioral improvement was correlated with enhanced cellular and molecular indices of dopamine (DA) midbrain function. Fast scan cyclic voltammetry demonstrated protection of striatal and nucleus accumbens DA release and reuptake in PT320 treated MitoPark mice. Positron emission tomography showed protection of striatal DA fibers and tyrosine hydroxylase protein expression was augmented by PT320 administration. Early PT320 treatment may hence provide an important neuroprotective therapeutic strategy in PD.
Collapse
Affiliation(s)
- Vicki Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tung-Tai Kuo
- Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yu-Ching Chou
- National Defense Medical Center School of Public Health, Min-Chuan East Road, Sec. 6, Nei-Hu District, Taipei City, 114, Taiwan
| | - Zhao-Yang Fu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Li-Wen Lai
- Graduate Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Jin Jung
- Peptron, Inc., Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hoi-Ii Choi
- Peptron, Inc., Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Doo-Sup Choi
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine & Science, Rochester, Minnesota 55905-0001, United States
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, United States
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, United States
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4915, United States
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
26
|
Yoon JH, Lee N, Youn K, Jo MR, Kim HR, Lee DS, Ho CT, Jun M. Dieckol Ameliorates Aβ Production via PI3K/Akt/GSK-3β Regulated APP Processing in SweAPP N2a Cell. Mar Drugs 2021; 19:md19030152. [PMID: 33804171 PMCID: PMC8001366 DOI: 10.3390/md19030152] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
The proteolytic processing of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase releases amyloid-β peptide (Aβ), which deposits in amyloid plaques and contributes to the initial causative events of Alzheimer’s disease (AD). In the present study, the regulatory mechanism of APP processing of three phlorotannins was elucidated in Swedish mutant APP overexpressed N2a (SweAPP N2a) cells. Among the tested compounds, dieckol exhibited the highest inhibitory effect on both intra- and extracellular Aβ accumulation. In addition, dieckol regulated the APP processing enzymes, such as α-secretase (ADAM10), β-secretase, and γ-secretase, presenilin-1 (PS1), and their proteolytic products, sAPPα and sAPPβ, implying that the compound acts on both the amyloidogenic and non-amyloidogenic pathways. In addition, dieckol increased the phosphorylation of protein kinase B (Akt) at Ser473 and GSK-3β at Ser9, suggesting dieckol induced the activation of Akt, which phosphorylated GSK-3β. The specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 triggered GSK-3β activation and Aβ expression. In addition, co-treatment with LY294002 noticeably blocked the effect of dieckol on Aβ production, demonstrating that dieckol promoted the PI3K/Akt signaling pathway, which in turn inactivated GSK-3β, resulting in the reduction in Aβ levels.
Collapse
Affiliation(s)
- Jeong-Hyun Yoon
- Department of Health Sciences, The graduate School of Dong-A University, Busan 49315, Korea; (J.-H.Y.); (N.L.)
| | - Nayoung Lee
- Department of Health Sciences, The graduate School of Dong-A University, Busan 49315, Korea; (J.-H.Y.); (N.L.)
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea;
| | - Mi Ra Jo
- Division of Food Safety and Processing Research, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Mira Jun
- Department of Health Sciences, The graduate School of Dong-A University, Busan 49315, Korea; (J.-H.Y.); (N.L.)
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea;
- Correspondence: ; Tel.: +82-51-200-7323
| |
Collapse
|
27
|
Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021; 10:cells10020262. [PMID: 33572709 PMCID: PMC7911291 DOI: 10.3390/cells10020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is now acknowledged to be a central player in regulating mood behavior, cognitive functions, and neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron deterioration and disease pathogenesis. In this review, we focus on three pathways that represent prominent mechanisms linking GSK-3 with neurodegenerative disorders: cytoskeleton organization, the mammalian target of rapamycin (mTOR)/autophagy axis, and mitochondria. We also consider the challenges and opportunities in the development of GSK-3 inhibitors for treating neurodegeneration.
Collapse
|
28
|
Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience 2021; 24:102058. [PMID: 33554064 PMCID: PMC7848608 DOI: 10.1016/j.isci.2021.102058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
It has been suggested that aberrant activation of glycogen synthase kinase-3-beta (GSK-3β) can trigger abnormal tau hyperphosphorylation and aggregation, which ultimately leads to neuronal/synaptic damage and impaired cognition in Alzheimer disease (AD). We examined if isoform-selective partial reduction of GSK-3β can decrease pathological tau changes, including hyperphosphorylation, aggregation, and spreading, in mice with localized human wild-type tau (hTau) expression in the brain. We used adeno-associated viruses (AAVs) to express hTau locally in the entorhinal cortex of wild-type and GSK-3β hemi-knockout (GSK-3β-HK) mice. GSK-3β-HK mice had significantly less accumulation of hyperphosphorylated tau in synapses and showed a significant decrease of tau protein spread between neurons. In primary neuronal cultures from GSK-3β-HK mice, the aggregation of exogenous FTD-mutant tau was also significantly reduced. These results show that a partial decrease of GSK-3β significantly represses tau-initiated neurodegenerative changes in the brain, and therefore is a promising therapeutic target for AD and other tauopathies. Genetic reduction of GSK-3β decreases synaptic accrual of GSK-3β and p-Tau in mice Reduction of GSK-3β lowers the trans-cellular spread of tau in vivo and in vitro Reduction of GSK-3β diminishes the formation of tau aggregates in vitro
Collapse
|
29
|
|
30
|
Silva-García O, Cortés-Vieyra R, Mendoza-Ambrosio FN, Ramírez-Galicia G, Baizabal-Aguirre VM. GSK3α: An Important Paralog in Neurodegenerative Disorders and Cancer. Biomolecules 2020; 10:E1683. [PMID: 33339170 PMCID: PMC7765659 DOI: 10.3390/biom10121683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The biological activity of the enzyme glycogen synthase kinase-3 (GSK3) is fulfilled by two paralogs named GSK3α and GSK3β, which possess both redundancy and specific functions. The upregulated activity of these proteins is linked to the development of disorders such as neurodegenerative disorders (ND) and cancer. Although various chemical inhibitors of these enzymes restore the brain functions in models of ND such as Alzheimer's disease (AD), and reduce the proliferation and survival of cancer cells, the particular contribution of each paralog to these effects remains unclear as these molecules downregulate the activity of both paralogs with a similar efficacy. Moreover, given that GSK3 paralogs phosphorylate more than 100 substrates, the simultaneous inhibition of both enzymes has detrimental effects during long-term inhibition. Although the GSK3β kinase function has usually been taken as the global GSK3 activity, in the last few years, a growing interest in the study of GSK3α has emerged because several studies have recognized it as the main GSK3 paralog involved in a variety of diseases. This review summarizes the current biological evidence on the role of GSK3α in AD and various types of cancer. We also provide a discussion on some strategies that may lead to the design of the paralog-specific inhibition of GSK3α.
Collapse
Affiliation(s)
- Octavio Silva-García
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Ricarda Cortés-Vieyra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Michoacán 58000, Mexico;
| | | | - Guillermo Ramírez-Galicia
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Víctor M. Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán 58893, Mexico
| |
Collapse
|
31
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
32
|
Drug Repurposing in Dentistry; towards Application of Small Molecules in Dentin Repair. Int J Mol Sci 2020; 21:ijms21176394. [PMID: 32887519 PMCID: PMC7503843 DOI: 10.3390/ijms21176394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
One of the main goals of dentistry is the natural preservation of the tooth structure following damage. This is particularly implicated in deep dental cavities affecting dentin and pulp, where odontoblast survival is jeopardized. This activates pulp stem cells and differentiation of new odontoblast-like cells, accompanied by increased Wnt signaling. Our group has shown that delivery of small molecule inhibitors of GSK3 stimulates Wnt/β-catenin signaling in the tooth cavity with pulp exposure and results in effective promotion of dentin repair. Small molecules are a good therapeutic option due to their ability to pass across cell membranes and reach target. Here, we investigate a range of non-GSK3 target small molecules that are currently used for treatment of various medical conditions based on other kinase inhibitory properties. We analyzed the ability of these drugs to stimulate Wnt signaling activity by off-target inhibition of GSK3. Our results show that a c-Met inhibitor, has the ability to stimulate Wnt/β-catenin pathway in dental pulp cells in vitro at low concentrations. This work is an example of drug repurposing for dentistry and suggests a candidate drug to be tested in vivo for natural dentin repair. This approach bypasses the high level of economical and time investment that are usually required in novel drug discoveries.
Collapse
|
33
|
Korona D, Nightingale D, Fabre B, Nelson M, Fischer B, Johnson G, Lees J, Hubbard S, Lilley K, Russell S. Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy. PLoS One 2020; 15:e0236679. [PMID: 32760087 PMCID: PMC7410302 DOI: 10.1371/journal.pone.0236679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3β proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions.
Collapse
Affiliation(s)
- Dagmara Korona
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Nightingale
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Bertrand Fabre
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Michael Nelson
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre Manchester, University of Manchester, Manchester, United Kingdom
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Glynnis Johnson
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Lees
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Simon Hubbard
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre Manchester, University of Manchester, Manchester, United Kingdom
| | - Kathryn Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Li J, Ma S, Chen J, Hu K, Li Y, Zhang Z, Su Z, Woodgett JR, Li M, Huang Q. GSK-3β Contributes to Parkinsonian Dopaminergic Neuron Death: Evidence From Conditional Knockout Mice and Tideglusib. Front Mol Neurosci 2020; 13:81. [PMID: 32581704 PMCID: PMC7283909 DOI: 10.3389/fnmol.2020.00081] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) dysregulation has been implicated in nigral dopaminergic neurodegeneration, one of the main pathological features of Parkinson’s disease (PD). The two isoforms, GSK-3α and GSK-3β, have both been suggested to play a detrimental role in neuronal death. To date, several studies have focused on the role of GSK-3β on PD pathogenesis, while the role of GSK-3α has been largely overlooked. Here, we report in situ observations that both GSK-3α and GSK-3β are dephosphorylated at a negatively acting regulatory serine, indicating kinase activation, selectively in nigral dopaminergic neurons following exposure of mice to 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP). To identify whether GSK-3α and GSK-3β display functional redundancy in regulating parkinsonian dopaminergic cell death, we analysed dopaminergic neuron-specific Gsk3a null (Gsk3aΔDat) and Gsk3b null (Gsk3bΔDat) mice, respectively. We found that Gsk3bΔDat, but not Gsk3aΔDat, showed significant resistance to MPTP insult, revealing non-redundancy of GSK-3α and GSK-3β in PD pathogenesis. In addition, we tested the neuroprotective effect of tideglusib, the most clinically advanced inhibitor of GSK-3, in the MPTP model of PD. Administration of higher doses (200 mg/kg and 500 mg/kg) of tideglusib exhibited significant neuroprotection, whereas 50 mg/kg tideglusib failed to prevent dopaminergic neurodegeneration from MPTP toxicity. Administration of 200 mg/kg tideglusib improved motor symptoms of MPTP-treated mice. Together, these data demonstrate GSK-3β and not GSK-3α is critical for parkinsonian neurodegeneration. Our data support the view that GSK-3β acts as a potential therapeutic target in PD and tideglusib would be a candidate drug for PD neuroprotective therapy.
Collapse
Affiliation(s)
- Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zixiang Su
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Wang L, Zhou Y, Chen D, Lee TH. Peptidyl-Prolyl Cis/Trans Isomerase Pin1 and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:355. [PMID: 32500074 PMCID: PMC7243138 DOI: 10.3389/fcell.2020.00355] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia with cognitive decline. The neuropathology of AD is characterized by intracellular aggregation of neurofibrillary tangles consisting of hyperphosphorylated tau and extracellular deposition of senile plaques composed of beta-amyloid peptides derived from amyloid precursor protein (APP). The peptidyl-prolyl cis/trans isomerase Pin1 binds to phosphorylated serine or threonine residues preceding proline and regulates the biological functions of its substrates. Although Pin1 is tightly regulated under physiological conditions, Pin1 deregulation in the brain contributes to the development of neurodegenerative diseases, including AD. In this review, we discuss the expression and regulatory mechanisms of Pin1 in AD. We also focus on the molecular mechanisms by which Pin1 controls two major proteins, tau and APP, after phosphorylation and their signaling cascades. Moreover, the major impact of Pin1 deregulation on the progression of AD in animal models is discussed. This information will lead to a better understanding of Pin1 signaling pathways in the brain and may provide therapeutic options for the treatment of AD.
Collapse
Affiliation(s)
- Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
37
|
Chen H, Liang L, Xu H, Xu J, Yao L, Li Y, Tan Y, Li X, Huang Q, Yang Z, Wu J, Chen J, Huang H, Wang X, Zhang CE, Liu J. Short Term Exposure to Bilirubin Induces Encephalopathy Similar to Alzheimer’s Disease in Late Life. J Alzheimers Dis 2020; 73:277-295. [DOI: 10.3233/jad-190945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Haoyu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Hua Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jia Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Yanling Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Yufan Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Xiaofen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Qingtian Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Zhenjun Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Hongbiao Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Chang-E. Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| |
Collapse
|
38
|
McGauran G, Linse S, O'Connell DJ. Single Step Purification of Glycogen Synthase Kinase Isoforms from Small Scale Transient Expression in HEK293 Cells with a Calcium-Dependent Fragment Complementation System. Methods Mol Biol 2020; 2095:385-396. [PMID: 31858480 DOI: 10.1007/978-1-0716-0191-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purification of proteins for the biophysical analysis of protein interactions occurring in human cells can benefit from methods that facilitate the capture of small amounts of natively processed protein obtained using transient mammalian expression systems. We have used a novel calcium-dependent fragment complementation-based affinity method to effectively purify full length glycogen synthase kinase 3 (GSK3) α and β isoforms to study their interaction with amyloid β peptide (Aβ42). Using these proteins, purified from 1 mg of total cell lysate, we measured an apparent KD of ≤100 pM between GSK3α/β and immobilized Aβ42 with surface plasmon resonance technology. This approach can be used to retrieve useful quantities of protein for biophysical experiments with small scale mammalian cell culture.
Collapse
Affiliation(s)
- Gavin McGauran
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - David J O'Connell
- School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland.
- BEACON Bioeconomy Research Centre, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
39
|
Ahmad F, Woodgett JR. Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118616. [PMID: 31785335 DOI: 10.1016/j.bbamcr.2019.118616] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
40
|
Tan R, Cheng H, Li H, Tu Y. Clinical Chemistry Route for Investigation of Alzheimer's Disease: A Label-Free Electrochemiluminescent Biosensor for Glycogen Synthase Kinase-3 Beta. ACS Chem Neurosci 2019; 10:3758-3768. [PMID: 31322849 DOI: 10.1021/acschemneuro.9b00278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herein, we report a novel label-free electrochemiluminescent (ECL) biosensor for the detection of glycogen synthase kinase-3 beta (GSK-3β). A simple and feasible sensor was prepared by a two-step process. A polymeric coordination layer of phosphorylated poly vinyl with Zr4+ was used as the sensory hosting matrix because it efficiently formed a complex. The exterior Zr4+ can further combine with another phosphate through coordination, and GSK-3β catalyzes the phosphorylation of protein molecules. Thus, the biosensor can detect GSK-3β using luminol as an ECL probe. The ECL intensity of the proposed sensor responded proportionally to the concentration of GSK-3β under direct immersion mode with a linear response in a logarithmic scale over the wide range from 0.5 to 91.5 ng L-1 and a detection limit of 0.055 ng L-1. Excellent selectivity, stability, and reproducibility were achieved using the prepared biosensor, which has a simple preparation, low cost, and disposable suitability. This work aims to provide a novel tool for early diagnosis and pathological mechanism exploration about AD by detecting inchoate change of GSK-3β content in body fluid, thus to precaution the risk of Alzheimer's disease. It is of great importance for clinical chemistry for the investigation of Alzheimer's disease.
Collapse
Affiliation(s)
- Rong Tan
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Hongying Cheng
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Huiling Li
- College of Nursing, Soochow University, Suzhou, 215006, P. R. China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
41
|
An expanding GSK3 network: implications for aging research. GeroScience 2019; 41:369-382. [PMID: 31313216 DOI: 10.1007/s11357-019-00085-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
Abstract
The last few decades of longevity research have been very exciting. We now know that longevity and healthspan can be manipulated across species, from unicellular eukaryotes to nonhuman primates, and that while aging itself is inevitable, how we age is malleable. Numerous dietary, genetic, and pharmacological studies now point to links between metabolism and growth regulation as a central aspect in determining longevity and, perhaps more importantly, health with advancing age. Here, we focus on a relatively new player in aging studies GSK3, glycogen synthase kinase, a key factor in growth and metabolism whose name fails to convey the extensive breadth of its role in cellular adaptation. First, we provide a brief overview of GSK3, touching on those aspects that are likely relevant to aging. Then, we outline the role of GSK3 in cellular functions including growth signaling, cell fate, and metabolism. Next, we describe evidence demonstrating a direct role for GSK3 in a range of age-related diseases, despite the fact that they differ considerably in their etiology and pathology. Finally, we discuss the role that GSK3 may play in normative aging and how GSK3 might be a suitable target to oppose age-related disease vulnerability.
Collapse
|
42
|
Hurcombe JA, Lay AC, Ni L, Barrington AF, Woodgett JR, Quaggin SE, Welsh GI, Coward RJ. Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB Bioadv 2019; 1:498-510. [PMID: 31825015 PMCID: PMC6902909 DOI: 10.1096/fba.2019-00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and β). In the podocyte it has previously been reported that inhibition of the β isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.
Collapse
Affiliation(s)
| | - A C Lay
- Bristol Renal, University of Bristol
| | - L Ni
- Bristol Renal, University of Bristol
| | | | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - G I Welsh
- Bristol Renal, University of Bristol
| | | |
Collapse
|
43
|
Zolezzi JM, Lindsay CB, Serrano FG, Ureta RC, Theoduloz C, Schmeda-Hirschmann G, Inestrosa NC. Neuroprotective Effects of Ferruginol, Jatrophone, and Junicedric Acid Against Amyloid-β Injury in Hippocampal Neurons. J Alzheimers Dis 2019; 63:705-723. [PMID: 29660932 DOI: 10.3233/jad-170701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Soluble amyloid-β (Aβ) oligomers have been recognized as early neurotoxic intermediates with a key role in the synaptic dysfunction observed in Alzheimer's disease (AD). Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Additionally, the presence of Aβ oligomers is associated with imbalanced intracellular calcium levels and apoptosis in neurons. In this context, we evaluated the effects of three diterpenes (ferruginol, jatrophone, and junicedric acid) that are found in medicinal plants and have several forms of biological activity. The intracellular calcium levels in hippocampal neurons increased in the presence of ferruginol, jatrophone, and junicedric acid, a result that was consistent with the observed increase in CA1 synaptic transmission in mouse hippocampal slices. Additionally, assays using Aβ peptide demonstrated that diterpenes, particularly ferruginol, restore LTP and reduce apoptosis. Recovery of the Aβ oligomer-induced loss of the synaptic proteins PSD-95, synapsin, VGlut, and NMDA receptor subunit 2A was observed in mouse hippocampal slices treated with junicedric acid. This cascade of events may be associated with the regulation of kinases, e.g., protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII), in addition to the activation of the canonical Wnt signaling pathway and could thus provide protection against Aβ oligomers, which trigger synaptic dysfunction. Our results suggest a potential neuroprotective role for diterpenes against the Aβ oligomers-induced neurodegenerative alterations, which make them interesting molecules to be further studied in the context of AD.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Carolina B Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe G Serrano
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roxana C Ureta
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
44
|
Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur J Med Chem 2019; 168:58-77. [DOI: 10.1016/j.ejmech.2018.12.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
|
45
|
Hurcombe JA, Hartley P, Lay AC, Ni L, Bedford JJ, Leader JP, Singh S, Murphy A, Scudamore CL, Marquez E, Barrington AF, Pinto V, Marchetti M, Wong LF, Uney J, Saleem MA, Mathieson PW, Patel S, Walker RJ, Woodgett JR, Quaggin SE, Welsh GI, Coward RJM. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat Commun 2019; 10:403. [PMID: 30679422 PMCID: PMC6345761 DOI: 10.1038/s41467-018-08235-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/21/2018] [Indexed: 01/18/2023] Open
Abstract
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
Collapse
Affiliation(s)
- J A Hurcombe
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P Hartley
- Bournemouth University, Bournemouth, BH12 5BB, UK
| | - A C Lay
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L Ni
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - J J Bedford
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J P Leader
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - S Singh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A Murphy
- Department of Pathology, Southern General Hospital, Glasgow, G51 4TF, UK
| | - C L Scudamore
- Mary Lyon Centre, MRC Harwell, Didcot, Oxford, OX11 0RD, UK
| | - E Marquez
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - A F Barrington
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - V Pinto
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - M Marchetti
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - L-F Wong
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - J Uney
- Translational Health Sciences, University of Bristol, Bristol, BS2 8DZ, UK
| | - M A Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - P W Mathieson
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
- The University of Hong Kong, Pokfulam, Hong Kong
| | - S Patel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R J Walker
- Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Toronto, M5G 1X5, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - G I Welsh
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - R J M Coward
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
46
|
Morroni F, Sita G, Graziosi A, Turrini E, Fimognari C, Tarozzi A, Hrelia P. Protective Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate on Aβ 1-42-Induced Cognitive Deficit, Oxidative Stress, Inflammation, and Apoptosis in Mice. Int J Mol Sci 2018; 19:E2083. [PMID: 30021941 PMCID: PMC6073905 DOI: 10.3390/ijms19072083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Although soluble amyloid species are recognized triggers of the disease, no therapeutic approach is able to stop it. 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabia japonica, which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties. The aim of the present study was to investigate the neuroprotective activity of 6-MSITC in a murine AD model, induced by intracerebroventricular injection of β-amyloid oligomers (Aβ1-42O). The treatment with 6-MSITC started 1 h after the surgery for the next 10 days. Behavioral analysis showed that 6-MSITC ameliorated Aβ1-42O-induced memory impairments. The decrease of glutathione levels and increase of reactive oxygen species in hippocampal tissues following Aβ1-42O injection were reduced by 6-MSITC. Moreover, activation of caspases, increase of inflammatory factors, and phosphorylation of ERK and GSK3 were inhibited by 6-MSITC. These results highlighted an interesting neuroprotective activity of 6-MSITC, which was able to restore a physiological oxidative status, interfere positively with Nrf2-pathway, decrease apoptosis and neuroinflammation and contribute to behavioral recovery. Taken together, these findings demonstrated that 6-MSITC could be a promising complement for AD therapy.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
47
|
Shoeibi A, Olfati N, Litvan I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin Investig Drugs 2018; 27:349-361. [PMID: 29602288 DOI: 10.1080/13543784.2018.1460356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Our understanding of the pathological basis of progressive supranuclear palsy (PSP), as the most common atypical parkinsonian syndrome, has greatly increased in recent years and a number of disease-modifying therapies are under evaluation as a result of these advances. AREAS COVERED In this review, we discuss disease-modifying therapeutic options which are currently under evaluation or have been evaluated in preclinical or clinical trials based on their targeted pathophysiologic process. The pathophysiologic mechanisms are broadly divided into three main categories: genetic mechanisms, abnormal post-translational modifications of tau protein, and transcellular tau spread. EXPERT OPINION Once the best therapeutic approaches are identified, it is likely that some combination of interventions will need to be evaluated, but this will take time. It is critical to treat patients at early stages, and development of the Movement Disorder Society PSP diagnostic criteria is an important step in this direction. In addition, development of biological biomarkers such as tau PET and further refinement of tau ligands may help both diagnose early and measure disease progression. In the meantime, a comprehensive, personalized interdisciplinary approach to this disease is absolutely necessary.
Collapse
Affiliation(s)
- Ali Shoeibi
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Nahid Olfati
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Irene Litvan
- b UC San Diego Department of Neurosciences , Parkinson and Other Movement Disorder Center , La Jolla , CA , USA
| |
Collapse
|
48
|
Zhuang S, Hua X, He K, Zhou T, Zhang J, Wu H, Ma X, Xia Q, Zhang J. Inhibition of GSK‐3β induces AP‐1‐mediated osteopontin expression to promote cholestatic liver fibrosis. FASEB J 2018. [DOI: 10.1096/fj.201701137r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shaoyong Zhuang
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Xiangwei Hua
- Division of Gastroenterology and HepatologyShanghai Institute of Digestive DiseaseRen Ji HospitalSchool of MedicineShanghai Jiao‐Tong UniversityShanghaiChina
| | - Kang He
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Tao Zhou
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Jiang Zhang
- Key Laboratory of Gastroenterology and HepatologyMinistry of HealthShanghai Jiao‐Tong UniversityShanghaiChina
| | - Haoyu Wu
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Xiong Ma
- Institute of Transplantation ScienceThe Affiliated Hospital of Qingdao UniversityShandongChina
- Department of Medicine IIUniversity of Munich‐Campus GrosshadernMunichGermany
| | - Qiang Xia
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| | - Jianjun Zhang
- Department of Liver SurgeryShanghai Jiao‐Tong UniversityShanghaiChina
- Liver Transplantation CenterShanghai Jiao‐Tong UniversityShanghaiChina
| |
Collapse
|
49
|
Chen X, Wang R, Liu X, Wu Y, Zhou T, Yang Y, Perez A, Chen YC, Hu L, Chadarevian JP, Assadieskandar A, Zhang C, Ying QL. A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3α and GSK3β in Regulating Embryonic Stem Cell Fate. Dev Cell 2018; 43:563-576.e4. [PMID: 29207259 DOI: 10.1016/j.devcel.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) plays a central role in diverse cellular processes. GSK3 has two mammalian isozymes, GSK3α and GSK3β, whose functions remain ill-defined because of a lack of inhibitors that can distinguish between the two highly homologous isozymes. Here, we show that GSK3α and GSK3β can be selectively inhibited in mouse embryonic stem cells (ESCs) using a chemical-genetic approach. Selective inhibition of GSK3β is sufficient to maintain mouse ESC self-renewal, whereas GSK3α inhibition promotes mouse ESC differentiation toward neural lineages. Genome-wide transcriptional analysis reveals that GSK3α and GSK3β have distinct sets of downstream targets. Furthermore, selective inhibition of individual GSK3 isozymes yields distinct phenotypes from gene deletion, highlighting the power of the chemical-genetic approach in dissecting kinase catalytic functions from the protein's scaffolding functions. Our study opens new avenues for defining GSK3 isozyme-specific functions in various cellular processes.
Collapse
Affiliation(s)
- Xi Chen
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruizhe Wang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xu Liu
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongming Wu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Zhou
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yujia Yang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew Perez
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ying-Chu Chen
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Liang Hu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jean Paul Chadarevian
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amir Assadieskandar
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Chao Zhang
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
50
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|