1
|
Klingl YE, Petrauskas A, Jaślan D, Grimm C. TPCs: FROM PLANT TO HUMAN. Physiol Rev 2025; 105:1695-1732. [PMID: 40197126 DOI: 10.1152/physrev.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
In 2005, the Arabidopsis thaliana two-pore channel TPC1 channel was identified as a vacuolar Ca2+-release channel. In 2009, three independent groups published studies on mammalian TPCs as nicotinic acid adenine dinucleotide phosphate (NAADP)-activated endolysosomal Ca2+ release channels, results that were eventually challenged by two other groups, claiming mammalian TPCs to be phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]-activated Na+ channels. By now this dispute seems to have been largely reconciled. Lipophilic small molecule agonists of TPC2, mimicking either the NAADP or the PI(3,5)P2 mode of channel activation, revealed, together with structural evidence, that TPC2 can change its selectivity for Ca2+ versus Na+ in a ligand-dependent fashion (N- vs. P-type activation). Furthermore, the NAADP-binding proteins Jupiter microtubule-associated homolog 2 protein (JPT2) and Lsm12 were discovered, corroborating the hypothesis that NAADP activation of TPCs only works in the presence of these auxiliary NAADP-binding proteins. Pathophysiologically, loss or gain of function of TPCs has effects on autophagy, exocytosis, endocytosis, and intracellular trafficking, e.g., LDL cholesterol trafficking leading to fatty liver disease or viral and bacterial toxin trafficking, corroborating the roles of TPCs in infectious diseases such as Ebola or COVID-19. Defects in the trafficking of epidermal growth factor receptor and β1-integrin suggested roles in cancer. In neurodegenerative lysosomal storage disease models, P-type activation of TPC2 was found to have beneficial effects on both in vitro and in vivo hallmarks of Niemann-Pick disease type C1, Batten disease, and mucolipidosis type IV. Here, we cover the latest on the structure, function, physiology, and pathophysiology of these channels with a focus initially on plants followed by mammalian TPCs, and we discuss their potential as drug targets, including currently available pharmacology.
Collapse
Affiliation(s)
- Yvonne Eileen Klingl
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Arnas Petrauskas
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Oettinger D, Yamamoto A. Autophagy dysfunction and neurodegeneration: Where does it go wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Filippini A, Carini G, Barbon A, Gennarelli M, Russo I. Astrocytes carrying LRRK2 G2019S exhibit increased levels of clusterin chaperone via miR-22-5p and reduced ability to take up α-synuclein fibrils. Acta Neuropathol Commun 2025; 13:98. [PMID: 40355981 PMCID: PMC12067912 DOI: 10.1186/s40478-025-02015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Accumulating evidence highlights that dysfunction of astrocyte biology might contribute to Parkinson's disease (PD) onset and progression. Leucine-rich repeat kinase 2 (LRRK2), a gene linked to genetic and familial PD, has been reported to affect astrocytic-related functions, including the ingestion of alpha-synuclein (α-syn) aggregates. In this context, we recently showed that the extracellular chaperone clusterin (Clu) binds to and limits the uptake of alpha-syn fibrils by astrocytes. Thus, starting from these premises, we explored whether LRRK2 G2019S affects aggregated α-syn ingestion through the Clu-related pathway and the underlying molecular mechanisms. We first validated in our LRRK2 G2019S knock-in (KI) mouse strain that primary astrocytes exhibited an impaired ability to ingest fibrillary α-syn. Then, we investigated whether LRRK2 G2019S affects this pathway through the modulation of Clu. In this regard, we collected several results showing that LRRK2 regulates Clu levels in astrocytes. Specifically, brain slices and primary astrocytes from KI mice with the LRRK2 G2019S pathological mutation exhibit increased levels of Clu protein compared to their respective wild-type (WT). Accordingly, we observed an opposite effect in brain slices and primary astrocytes from LRRK2 knock-out (KO) mice in comparison to their respective WT. To gain insights into the molecular mechanism underlying LRRK2-dependent Clu modulation, we found that LRRK2 controls Clu expression at the translation level through the action of miR-22-5p. In addition, we demonstrated that treatment with miR-22-5p mimic improves the ability of LRRK2 G2019S-KI astrocytes to take up α-syn pffs. Taken together, our findings indicate that the LRRK2-Clu pathway is involved in the ingestion of a-syn fibrils and that the impairment of α-syn uptake in LRRK2 G2019S-KI astrocytes is associated to Clu levels. Future studies will allow us to understand whether the modulation of astrocytic LRRK2 G2019S-Clu pathway might attenuate the neuronal spreading of α-syn pathology in PD.
Collapse
Affiliation(s)
- Alice Filippini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giulia Carini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Isabella Russo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Potokar M, Jorgačevski J. Targeting autophagy in astrocytes: a potential for neurodegenerative disease intervention. Front Cell Neurosci 2025; 19:1584767. [PMID: 40357169 PMCID: PMC12066609 DOI: 10.3389/fncel.2025.1584767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Autophagy contributes to cellular homeostasis by regulating the degradation and recycling of damaged organelles and misfolded proteins. In the central nervous system (CNS), impaired autophagy contributes to inflammation, disrupts cellular metabolism, and leads to the accumulation of toxic protein aggregates that accelerate the progression of neurodegenerative diseases. In addition to its role in protein and organelle turnover, autophagy facilitates the elimination of pathogenic bacteria and viruses, whose infections can also lead to neurological diseases and neuroinflammatory processes. Astrocytes, the most abundant glial cells in the CNS, play a crucial role in maintaining neuronal homeostasis by regulating neurotransmitter balance, ion exchange, and metabolic support. During neurodegeneration, they become reactive, actively participating in neuroinflammatory responses by releasing proinflammatory cytokines, activating microglia, and removing toxic aggregates. Cytokine-mediated responses and metabolic changes in astrocytes influence neuronal viability and neurotransmission. Autophagy in astrocytes plays an important role in tuning the astrocyte-dependent activity of neurons under physiological conditions and in pathological activation of astrocytes by disease, injury or pathogenic stimuli. In this review, we highlight the contribution of astrocytes to neurodegeneration from the perspective of changes in their cytoskeleton, the autophagy process in which the cytoskeleton plays a crucial role, and the metabolic support of neurons. The modulation of autophagy at different stages has the potential to serve as an additional therapeutic target in CNS diseases.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
5
|
Zeng J, Indajang J, Pitt D, Lo CH. Lysosomal acidification impairment in astrocyte-mediated neuroinflammation. J Neuroinflammation 2025; 22:72. [PMID: 40065324 PMCID: PMC11892208 DOI: 10.1186/s12974-025-03410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Astrocytes are a major cell type in the central nervous system (CNS) that play a key role in regulating homeostatic functions, responding to injuries, and maintaining the blood-brain barrier. Astrocytes also regulate neuronal functions and survival by modulating myelination and degradation of pathological toxic protein aggregates. Astrocytes have recently been proposed to possess both autophagic activity and active phagocytic capability which largely depend on sufficiently acidified lysosomes for complete degradation of cellular cargos. Defective lysosomal acidification in astrocytes impairs their autophagic and phagocytic functions, resulting in the accumulation of cellular debris, excessive myelin and lipids, and toxic protein aggregates, which ultimately contributes to the propagation of neuroinflammation and neurodegenerative pathology. Restoration of lysosomal acidification in impaired astrocytes represent new neuroprotective strategy and therapeutic direction. In this review, we summarize pathogenic factors, including neuroinflammatory signaling, metabolic stressors, myelin and lipid mediated toxicity, and toxic protein aggregates, that contribute to lysosomal acidification impairment and associated autophagic and phagocytic dysfunction in astrocytes. We discuss the role of lysosomal acidification dysfunction in astrocyte-mediated neuroinflammation primarily in the context of neurodegenerative diseases along with other brain injuries. We then highlight re-acidification of impaired lysosomes as a therapeutic strategy to restore autophagic and phagocytic functions as well as lysosomal degradative capacity in astrocytes. We conclude by providing future perspectives on the role of astrocytes as phagocytes and their crosstalk with other CNS cells to impart neurodegenerative or neuroprotective effects.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
6
|
Nam YR, Kang M, Kim M, Seok MJ, Yang Y, Han YE, Oh SJ, Kim DG, Son H, Chang MY, Lee SH. Preparation of human astrocytes with potent therapeutic functions from human pluripotent stem cells using ventral midbrain patterning. J Adv Res 2025; 69:181-196. [PMID: 38521186 PMCID: PMC11954835 DOI: 10.1016/j.jare.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Astrocytes are glial-type cells that protect neurons from toxic insults and support neuronal functions and metabolism in a healthy brain. Leveraging these physiological functions, transplantation of astrocytes or their derivatives has emerged as a potential therapeutic approach for neurodegenerative disorders. METHODS To substantiate the clinical application of astrocyte-based therapy, we aimed to prepare human astrocytes with potent therapeutic capacities from human pluripotent stem cells (hPSCs). To that end, we used ventral midbrain patterning during the differentiation of hPSCs into astrocytes, based on the roles of midbrain-specific factors in potentiating glial neurotrophic/anti-inflammatory activity. To assess the therapeutic effects of human midbrain-type astrocytes, we transplanted them into mouse models of Parkinson's disease (PD) and Alzheimer's disease (AD). RESULTS Through a comprehensive series of in-vitro and in-vivo experiments, we were able to establish that the midbrain-type astrocytes exhibited the abilities to effectively combat oxidative stress, counter excitotoxic glutamate, and manage pathological protein aggregates. Our strategy for preparing midbrain-type astrocytes yielded promising results, demonstrating the strong therapeutic potential of these cells in various neurotoxic contexts. Particularly noteworthy is their efficacy in PD and AD-specific proteopathic conditions, in which the midbrain-type astrocytes outperformed forebrain-type astrocytes derived by the same organoid-based method. CONCLUSION The enhanced functions of the midbrain-type astrocytes extended to their ability to release signaling molecules that inhibited neuronal deterioration and senescence while steering microglial cells away from a pro-inflammatory state. This success was evident in both in-vitro studies using human cells and in-vivo experiments conducted in mouse models of PD and AD. In the end, our human midbrain-type astrocytes demonstrated remarkable effectiveness in alleviating neurodegeneration, neuroinflammation, and the pathologies associated with the accumulation of α-synuclein and Amyloid β proteins.
Collapse
Affiliation(s)
- Ye Rim Nam
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Min Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Young Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Do Gyeong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Premedicine, College of Medicine, Hanyang University, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea.
| |
Collapse
|
7
|
Novakovic MM, Prakriya M. Calcium signaling at the interface between astrocytes and brain inflammation. Curr Opin Neurobiol 2025; 90:102940. [PMID: 39673911 PMCID: PMC11839377 DOI: 10.1016/j.conb.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Astrocytes are the most prevalent glial cells of the brain and mediate vital roles in the development and function of the nervous system. Astrocytes, along with microglia, also play key roles in initiating inflammatory immune responses following brain injury, stress, or disease-related triggers. While these glial immune responses help contain and resolve cellular damage to the brain, dysregulation of astrocyte activity can in some cases amplify inflammation and worsen impact on neural tissue. As nonexcitable cells, astrocytes excitability is regulated primarily by Ca2+ signals that control key functions such as gene expression, release of inflammatory mediators, and cell metabolism. In this review, we examine the molecular and functional architecture of Ca2+ signaling networks in astrocytes and their impact on astrocyte effector functions involved in inflammation and immunity.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA.
| |
Collapse
|
8
|
Matveyenka M, Ali A, Mitchell CL, Sholukh M, Kurouski D. Elucidation of cytotoxicity of α-Synuclein fibrils on immune cells. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141061. [PMID: 39694308 DOI: 10.1016/j.bbapap.2024.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Progressive aggregation of α-synuclein (α-Syn), a small cytosolic protein involved in cell vesicle trafficking, in the midbrain, hypothalamus, and thalamus is linked to Parkinson's disease (PD). Amyloid oligomers and fibrils formed as a result of such aggregation are highly toxic to neurons. However, it remains unclear whether amyloid-induced toxicity of neurons is the primary mechanism of the progressive neurodegeneration observed upon PD. In the current study, we investigated cytotoxicity exerted by α-Syn fibrils formed in the lipid-free environment, as well as in the presence of two phospholipids, on macrophages, dendritic cells, and microglia. We found that α-Syn fibrils are far more toxic to dendritic cells and microglia compared to neurons. We also observe low toxicity levels of such amyloids to macrophages. Real-time polymerase chain reaction (RT-PCR) results suggest that toxicity of amyloids aggregates is linked to the levels of autophagy in cells. These results suggest that a strong impairment of the immune system in the brain may be the first stop of neurodegenerative processes that are taking place upon the onset of PD.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Charles L Mitchell
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Mikhail Sholukh
- Department of Biology, Belarussian State University, Minsk, 222000, Belarus
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
9
|
Tsunemi T, Ishiguro Y, Yoroisaka A, Feng D, Hattori N. Altered ATP13A2/PARK9 Levels Influence α-Synuclein Accumulation in Neurons via Phagocytosis and Secretion in Glial Cells. Cells 2025; 14:163. [PMID: 39936955 PMCID: PMC11817767 DOI: 10.3390/cells14030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
(1) Background: Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein (α-syn) containing Lewy bodies (LBs) and Lewy neurites (LNs) within neurons. Growing evidence indicates that α-syn may propagate throughout the nervous system in a manner similar to prion-like transmission. Extracellular vesicles (EVs) may contribute to this pathway. We and others have reported that ATP13A2/PARK9 deficiency results in decreased EVs while its overexpression leads to increased EV generation. For analyzing EV-mediated α-syn secretion in neighboring neurons, we planned to alter Atp13a2 levels in vivo. (2) Methods: Three months after inoculating mouse α-syn fibrils into the striatum of Atp13a2-null and wild-type mice, we stained brain sections with anti-phosphorylated α-syn antibodies and then quantified LBs/LNs. We also examined the effect of increased levels of ATP13A2 by injecting lentivirus carrying human ATP13A2. Finally, we used cultured astrocytes and microglia for α-syn uptake and release, which were mediated by EVs. (3) Results: While LBs/LNs were formed in the entire brains, no significant difference was observed in LB/LN formation between Atp13a2-deficient and wild-type mice. Interestingly, the overexpression of ATP13A2 led to decreased LB/LN formation in the entire brains. Microglia and astrocytes released EVs more than neurons. EVs released from microglia and astrocytes contained more α-syn PFFs than those from neurons. (4) Conclusions: These results suggest that enhanced EV secretion by increased ATP13A2 levels attenuate the spreading of α-syn in brains, suggesting a protective role of ATP13A2 in α-synucleinopathies.
Collapse
Affiliation(s)
- Taiji Tsunemi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (Y.I.); (A.Y.); (D.F.)
| | | | | | | | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (Y.I.); (A.Y.); (D.F.)
| |
Collapse
|
10
|
Lian X, Liu Z, Gan Z, Yan Q, Tong L, Qiu L, Liu Y, Chen JF, Li Z. Targeting the glymphatic system to promote α-synuclein clearance: a novel therapeutic strategy for Parkinson's disease. Neural Regen Res 2025; 21:01300535-990000000-00661. [PMID: 39819820 PMCID: PMC12094544 DOI: 10.4103/nrr.nrr-d-24-00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT The excessive buildup of neurotoxic α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease, highlighting the urgent need for innovative therapeutic strategies to promote α-synuclein clearance, particularly given the current lack of disease-modifying treatments. The glymphatic system, a recently identified perivascular fluid transport network, is crucial for clearing neurotoxic proteins. This review aims to synthesize current knowledge on the role of the glymphatic system in α-synuclein clearance and its implications for the pathology of Parkinson's disease while emphasizing potential therapeutic strategies and areas for future research. The review begins with an overview of the glymphatic system and details its anatomical structure and physiological functions that facilitate cerebrospinal fluid circulation and waste clearance. It summarizes emerging evidence from neuroimaging and experimental studies that highlight the close correlation between the glymphatic system and clinical symptom severity in patients with Parkinson's disease, as well as the effect of glymphatic dysfunction on α-synuclein accumulation in Parkinson's disease models. Subsequently, the review summarizes the mechanisms of glymphatic system impairment in Parkinson's disease, including sleep disturbances, aquaporin-4 impairment, and mitochondrial dysfunction, all of which diminish glymphatic system efficiency. This creates a vicious cycle that exacerbates α-synuclein accumulation and worsens Parkinson's disease. The therapeutic perspectives section outlines strategies for enhancing glymphatic activity, such as improving sleep quality and pharmacologically targeting aquaporin-4 or its subcellular localization. Promising interventions include deep brain stimulation, melatonin supplementation, γ-aminobutyric acid modulation, and non-invasive methods (such as exercise and bright-light therapy), multisensory γ stimulation, and ultrasound therapy. Moreover, identifying neuroimaging biomarkers to assess glymphatic flow as an indicator of α-synuclein burden could refine Parkinson's disease diagnosis and track disease progression. In conclusion, the review highlights the critical role of the glymphatic system in α-synuclein clearance and its potential as a therapeutic target in Parkinson's disease. It advocates for further research to elucidate the specific mechanisms by which the glymphatic system clears misfolded α-synuclein and the development of imaging biomarkers to monitor glymphatic activity in patients with Parkinson's disease. Findings from this review suggest that enhancing glymphatic clearance is a promising strategy for reducing α-synuclein deposits and mitigating the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoyue Lian
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenghao Liu
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zuobin Gan
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingshan Yan
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Luyao Tong
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Linan Qiu
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuntao Liu
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiang-fan Chen
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhihui Li
- Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Khodadadi M, Javadi B. A Review of the Protective Effects of Alkaloids against Alpha-synuclein Toxicity in Parkinson's Disease. Mini Rev Med Chem 2025; 25:112-127. [PMID: 38874050 DOI: 10.2174/0113895575306884240604065754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation products may cause neural injury and several neurodegenerative disorders (NDs) known as α-synucleinopathies. Alkaloids are secondary metabolites present in a variety of plant species and may positively affect human health, particularly α-synucleinopathy-associated NDs. AIM To summarize the latest scientific data on the inhibitory properties of alkaloids in α- synucleinopathies, especially in Parkinson's disease. METHODS Literature search was performed using web-based databases including Web of Science, PubMed, and Scopus up to January 2024, in the English language. RESULTS Harmala alkaloids, caffein, lycorine, piperin, acetylcorynoline, berberin, papaverine, squalamine, trodusquemine and nicotin have been found to be the most active natural alkaloids against synucleinopathy. The underlying mechanisms that contribute to this effect would be the inhibition of α-syn aggregation; elimination of formed aggregates; improvement in autophagy activation; promotion of the activity and expression of antioxidative enzymes; and prevention of oxidative injury and apoptosis in dopaminergic neurons. CONCLUSION The findings of the present study highlight the inhibitory activities of alkaloids against synucleinopathy. However, no clinical data supports the reported activities in humans, which calls attention to the need for conducting clinical trials to elucidate the efficacy, safety, proper dosage, unwanted effects and pharmacokinetics aspects of alkaloids in humans.
Collapse
Affiliation(s)
- Mahdi Khodadadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Andromidas F, Mackinnon BE, Myers AJ, Shaffer MM, Brahimi A, Atashpanjeh S, Vazquez TL, Le T, Jellison ER, Staurovsky S, Koob AO. Astrocytes initiate autophagic flux and maintain cell viability after internalizing non-active native extracellular α-synuclein. Mol Cell Neurosci 2024; 131:103975. [PMID: 39368763 DOI: 10.1016/j.mcn.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Astrocytes are tasked with regulating the synaptic environment. Early stages of various neurodegenerative diseases are characterized by synapse loss, and astrocytic atrophy and dysfunction has been proposed as a possible cause. α-Synuclein (αS) is a highly expressed neuronal protein located in the synapse that can be released in the extracellular space. Evidence points to astrocytes as being responsible for uptake and degradation of extracellular αS. Therefore, misfolded active fibrillized αS resulting in protein inclusions and aggregates could be due to astrocytic dysfunction. Despite these pathological hallmarks and lines of evidence, the autophagic function of astrocytes in response to monomeric non-active αS to model healthy conditions has not been investigated. Human primary cortical astrocytes were treated with 100 nM of extracellular monomeric non-active αS alone, and in combination with N-terminal binding monomeric γ-synuclein (γS) as a control. Western blot analysis and super resolution imaging of HiLyte-488 labeled αS confirmed successful internalization of αS at 12, 24 and 48 h after treatment, while αS dimers were only observed at 48 h. Western blot analysis also confirmed αS's ability to induce autophagic flux by 48 h. Annexin V/PI flow cytometry results revealed increased early apoptosis at 24 h, but which resolved itself by 48 h, indicating no cell death in cortical astrocytes at all time points, suggesting astrocytes can manage the protein degradation demand of monomeric αS in healthy physiological conditions. Likewise, astrocytes reduced secretion of apolipoprotein (ApoE), a protein involved in pro-inflammatory pathways, synapse regulation, and autophagy by 12 h. Similarly, total c-JUN protein levels, a transcription factor involved in pro-inflammatory pathways increased by 12 h in the nuclear fraction. Therefore, astrocytes are able to respond and degrade αS in healthy physiological conditions, and astrocyte dysfunction could precede detrimental αS accumulation.
Collapse
Affiliation(s)
- Fotis Andromidas
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Brooke E Mackinnon
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Abigail J Myers
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Melanie M Shaffer
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Saeid Atashpanjeh
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Tiana L Vazquez
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Timmy Le
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America; Department of Neurobiology, UMASS Chan Medical School, Brudnick Neuropsychiatric Research Institute, Worcester, MA 01604, United States of America
| | - Evan R Jellison
- Department of Immunology, UCONN Health, Farmington, CT 06030, United States of America
| | - Susan Staurovsky
- Richard D. Berlin Center for Cell Analysis and Modeling, UCONN Health, Farmington, CT 06030, United States of America
| | - Andrew O Koob
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America.
| |
Collapse
|
13
|
Liu Y, Wang J, Ning F, Wang G, Xie A. Longitudinal correlation of cerebrospinal fluid GFAP and the progression of cognition decline in different clinical subtypes of Parkinson's disease. Clin Transl Sci 2024; 17:e70111. [PMID: 39676304 DOI: 10.1111/cts.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed mainly in astrocytes of the central nervous system (CNS), a potential biomarker of cognitive decline in Parkinson's disease (PD). The central motor subtypes of PD include tremor-dominant (TD), postural instability and gait disorder (PIGD), and indeterminate subtypes, whose different course of disease requires the development of biomarkers that can predict progression based on motor subtypes. In this study, we aimed to assess the predictive value of cerebrospinal fluid (CSF) GFAP for PD motor subtypes in PD. Two hundred and sixteen PD patients were recruited in our study from the progression markers initiative. Patients were subgrouped into TD, PIGD, and indeterminate subtypes. Longitudinal relationships between baseline CSF GFAP and cognitive function and CSF biomarkers were assessed using linear mixed-effects models. Cox regression was used to detect cognitive progression in TD patients. The baseline and longitudinal increases in CSF GFAP were associated with a greater decline in episodic memory, CSF α-syn, and a greater increase of CSF NfL in TD and TD-male subtypes. Cox regression showed that higher baseline CSF GFAP levels were corrected with a higher risk of developing mild cognitive impairment (MCI) over a 4-year period in the PD with normal cognition (NC) group (adjusted HR = 1.607, 95% CI 1.907-2.354, p = 0.01). CSF GFAP might be a promising predictor of cognition decline in TD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangbo Ning
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Harackiewicz O, Grembecka B. The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson's Disease-Focus on Alpha-Synuclein. J Integr Neurosci 2024; 23:203. [PMID: 39613467 DOI: 10.31083/j.jin2311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024] Open
Abstract
Glial cells, including astrocytes and microglia, are pivotal in maintaining central nervous system (CNS) homeostasis and responding to pathological insults. This review elucidates the complex immunomodulatory functions of glial cells, with a particular focus on their involvement in inflammation cascades initiated by the accumulation of alpha-synuclein (α-syn), a hallmark of Parkinson's disease (PD). Deriving insights from studies on both sporadic and familial forms of PD, as well as animal models of PD, we explore how glial cells contribute to the progression of inflammation triggered by α-syn aggregation. Additionally, we analyze the interplay between glial cells and the blood-brain barrier (BBB), highlighting the role of these cells in maintaining BBB integrity and permeability in the context of PD pathology. Furthermore, we delve into the potential activation of repair and neuroprotective mechanisms mediated by glial cells amidst α-syn-induced neuroinflammation. By integrating information on sporadic and familial PD, as well as BBB dynamics, this review aims to deepen our understanding of the multifaceted interactions between glial cells, α-syn pathology, and CNS inflammation, thereby offering valuable insights into therapeutic strategies for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Oliwia Harackiewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
15
|
Massari CM, Dues DJ, Bergsma A, Sipple K, Frye M, Williams ET, Moore DJ. Neuropathology in an α-synuclein preformed fibril mouse model occurs independent of the Parkinson's disease-linked lysosomal ATP13A2 protein. Neurobiol Dis 2024; 202:106701. [PMID: 39406291 DOI: 10.1016/j.nbd.2024.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P5B-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear. Cellular studies report that ATP13A2 can regulate α-synuclein (α-syn) secretion via exosomes. However, the relationship between ATP13A2 and α-syn in animal models remains inconclusive. ATP13A2 knockout (KO) mice exhibit lysosomal abnormalities and reactive astrogliosis but do not develop PD-related neuropathology. Studies manipulating α-syn levels in mice lacking ATP13A2 indicate minimal effects on pathology. The delivery of α-syn preformed fibrils (PFFs) into the mouse striatum is a well-defined model to study the development and spread of α-syn pathology. In this study we unilaterally injected wild-type (WT) and homozygous ATP13A2 KO mice with mouse α-syn PFFs in the striatum and evaluated mice for neuropathology after 6 months. The distribution, spread and extent of α-syn aggregation in multiple regions of the mouse brain was largely independent of ATP13A2 expression. The loss of nigrostriatal pathway dopaminergic neurons and their nerve terminals induced by PFFs were equivalent in WT and ATP13A2 KO mice. Reactive astrogliosis was induced equivalently by α-syn PFFs in WT and KO mice but was already significantly higher in ATP13A2 KO mice due to pre-existing reactive gliosis. We did not identify asymmetric motor disturbances, microglial activation, or axonal damage induced by α-syn PFFs in WT or KO mice. Although α-syn PFFs induce an increase in lysosomal number in the SNc in general, TH-positive dopaminergic neurons did not exhibit either increased lysosomal area or intensity, regardless of genotype. Our study evaluating the spread of α-syn pathology reveals no exacerbation of α-syn pathology, neuronal loss, astrogliosis or motor deficits in ATP13A2 KO mice, suggesting that selective lysosomal abnormalities resulting from ATP13A2 loss do not play a major role in α-syn clearance or propagation in vivo.
Collapse
Affiliation(s)
- Caio M Massari
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dylan J Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexis Bergsma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kayla Sipple
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Maxwell Frye
- West Michigan Neurodegenerative Diseases (MiND) Program, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin T Williams
- West Michigan Neurodegenerative Diseases (MiND) Program, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
16
|
Li B, Liu T, Shen Y, Qin J, Chang X, Wu M, Guo J, Liu L, Wei C, Lyu Y, Tian F, Yin J, Wang T, Zhang W, Qiu Y. TFEB/LAMP2 contributes to PM 0.2-induced autophagy-lysosome dysfunction and alpha-synuclein dysregulation in astrocytes. J Environ Sci (China) 2024; 145:117-127. [PMID: 38844312 DOI: 10.1016/j.jes.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 06/15/2024]
Abstract
Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.
Collapse
Affiliation(s)
- Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China.
| | - Ting Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yongmei Shen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570100, China
| | - Jiangnan Qin
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Xiaohan Chang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Jianquan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Jinzhu Yin
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030000, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
17
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Ippolito C, Segnani C, Benvenuti L, D'Amati A, Errede M, Virgintino D, Fornai M, Bernardini N. Enteric Glia and Brain Astroglia: Complex Communication in Health and Disease along the Gut-Brain Axis. Neuroscientist 2024; 30:493-510. [PMID: 37052336 DOI: 10.1177/10738584231163460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio D'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
He G, Huang X, Sun H, Xing Y, Gu S, Ren J, Liu W, Lu M. Gray matter volume alterations in de novo Parkinson's disease: A mediational role in the interplay between sleep quality and anxiety. CNS Neurosci Ther 2024; 30:e14867. [PMID: 39031989 PMCID: PMC11259571 DOI: 10.1111/cns.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Parkinson's disease (PD) is increasingly recognized for its non-motor symptoms, among which emotional disturbances and sleep disorders frequently co-occur. The commonality of neuroanatomical underpinnings for these symptoms is not fully understood. This study is intended to investigate the differences in gray matter volume (GMV) between PD patients with anxiety (A-PD) and those without anxiety (NA-PD). Additionally, it seeks to uncover the interplay between GMV variations and the manifestations of anxiety and sleep quality. METHODS A total of 37 A-PD patients, 43 NA-PD patients, and 36 healthy controls (HCs) were recruited, all of whom underwent voxel-based morphometry (VBM) analysis. Group differences in GMV were assessed using analysis of covariance (ANCOVA). Partial correlation between GMV, anxiety symptom, and sleep quality were analyzed. Mediation analysis explored the mediating role of the volume of GMV-distinct brain regions on the relationship between sleep quality and anxiety within the PD patient cohort. RESULTS A-PD patients showed significantly lower GMV in the fusiform gyrus (FG) and right inferior temporal gyrus (ITG) compared to HCs and NA-PD patients. GMV in these regions correlated negatively with Hamilton Anxiety Rating Scale (HAMA) scores (right ITG: r = -0.690, p < 0.001; left FG: r = -0.509, p < 0.001; right FG: r = -0.576, p < 0.001) and positively with sleep quality in PD patients (right ITG: r = 0.592, p < 0.001; left FG: r = 0.356, p = 0.001; right FG: r = 0.470, p < 0.001). Mediation analysis revealed that GMV in the FG and right ITG mediated the relationship between sleep quality and anxiety symptoms, with substantial effect sizes accounted for by the right ITG (25.74%) and FG (left: 11.90%, right: 15.59%). CONCLUSION This study has shed further light on the relationship between sleep disturbances and anxiety symptoms in PD patients. Given the pivotal roles of the FG and the ITG in facial recognition and the recognition of emotion-related facial expressions, our findings indicate that compromised sleep quality, under the pathological conditions of PD, may exacerbate the reduction in GMV within these regions, impairing the recognition of emotional facial expressions and thereby intensifying anxiety symptoms.
Collapse
Affiliation(s)
- Guixiang He
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- The Yancheng School of Clinical Medicine of Nanjing Medical UniversityYancheng Third People's HospitalYanchengChina
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Xiaofang Huang
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Haihua Sun
- The Yancheng School of Clinical Medicine of Nanjing Medical UniversityYancheng Third People's HospitalYanchengChina
| | - Yi Xing
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Siyu Gu
- The Yancheng School of Clinical Medicine of Nanjing Medical UniversityYancheng Third People's HospitalYanchengChina
| | - Jingru Ren
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
19
|
Latham AS, Rocha SM, McDermott CP, Reigan P, Slayden RA, Tjalkens RB. Neuroprotective efficacy of the glucocorticoid receptor modulator PT150 in the rotenone mouse model of Parkinson's disease. Neurotoxicology 2024; 103:320-334. [PMID: 38960072 PMCID: PMC11796432 DOI: 10.1016/j.neuro.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
Collapse
Affiliation(s)
- Amanda S Latham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Savannah M Rocha
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Casey P McDermott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
20
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Zayas-Santiago A, Malpica-Nieves CJ, Ríos DS, Díaz-García A, Vázquez PN, Santiago JM, Rivera-Aponte DE, Veh RW, Méndez-González M, Eaton M, Skatchkov SN. Spermidine Synthase Localization in Retinal Layers: Early Age Changes. Int J Mol Sci 2024; 25:6458. [PMID: 38928162 PMCID: PMC11204015 DOI: 10.3390/ijms25126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | | | - David S. Ríos
- College of Science and Health Professions, Universidad Central de Bayamón, Bayamón, PR 00960, USA;
| | - Amanda Díaz-García
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Paola N. Vázquez
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - José M. Santiago
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - David E. Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Rüdiger W. Veh
- Charité–Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie, Centrum 2, Charitéplatz 1, D-10117 Berlin, Germany;
| | | | - Misty Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| |
Collapse
|
22
|
Karim MR, Gasparini E, Tiegs E, Schlichte R, Vermilyea SC, Lee MK. Internalized α-synuclein fibrils become truncated and resist degradation in neurons while glial cells rapidly degrade α-synuclein fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597615. [PMID: 38895363 PMCID: PMC11185753 DOI: 10.1101/2024.06.05.597615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) and other α-synucleinopathies are characterized by the accumulation of α-synuclein (αS) pathology that can spread via the cell-to-cell transmission of αS aggregates. To better understand how various brain cells contribute to the spreading of αS pathology, we examined the metabolism of αS aggreges or pre-formed fibrils (PFFs) in neuronal and glial cells (microglia, astrocytes, and oligodendrocytes). In neurons, while the full-length αS rapidly disappeared following αS PFF uptake, truncated αS accumulated with a half-life of days rather than hours. Epitope mapping and fractionation studies indicate that αS PFF was truncated at the C-terminal region following uptake and remained insoluble/aggregated. In contrast, microglia and astrocytes rapidly metabolized αS PFF as the half-lives of αS PFF in these glial cells were <6 hours. Differential processing of αS by neurons was recapitulated in cell lines as differentiated CLU neuronal cell lines stably accumulate truncated αS while undifferentiated cells rapidly metabolize αS. Immunolocalization and subcellular fractionation studies show that internalized αS PFF is initially localized to endosomes followed by lysosomes. The lysosome is largely responsible for the degradation of internalized αS PFF as the inhibition of lysosomal function leads to the stabilization of αS in all cell types. Significantly, αS PFF causes lysosomal dysfunction in neurons. In summary, we show that neurons are inefficient in metabolizing internalized αS aggregates, partially because αS aggregates cause lysosomal dysfunction, potentially generating aggregation-prone truncated αS. In contrast, glial cells may protect neurons from αS aggregates by rapidly clearing αS aggregates.
Collapse
Affiliation(s)
- Md. Razaul Karim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Emilie Gasparini
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| | - Elizabeth Tiegs
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Riley Schlichte
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Scott C. Vermilyea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
23
|
Hussain MS, Moglad E, Afzal M, Sharma S, Gupta G, Sivaprasad GV, Deorari M, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Pant K, Ali H, Singh SK, Dua K, Subramaniyan V. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson's disease pathogenesis. CNS Neurosci Ther 2024; 30:e14763. [PMID: 38790149 PMCID: PMC11126788 DOI: 10.1111/cns.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of CollegesMohaliPunjabIndia
| | - Gaurav Gupta
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - G. V. Sivaprasad
- Department of Basic Science & HumanitiesRaghu Engineering CollegeVisakhapatnamIndia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Kumud Pant
- Graphic Era (Deemed to be University)DehradunIndia
- Graphic Era Hill UniversityDehradunIndia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
24
|
Latham AS, Rocha SM, McDermott CP, Reigan P, Slayden RA, Tjalkens RB. Neuroprotective Efficacy of the Glucocorticoid Receptor Modulator PT150 in the Rotenone Mouse Model of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589261. [PMID: 38659796 PMCID: PMC11042181 DOI: 10.1101/2024.04.12.589261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days, immediately followed by oral treatment with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
Collapse
|
25
|
Ishiguro Y, Tsunemi T, Shimada T, Yoroisaka A, Ueno SI, Takeshige-Amano H, Hatano T, Inoue Y, Saiki S, Hattori N. Extracellular vesicles contain filamentous alpha-synuclein and facilitate the propagation of Parkinson's pathology. Biochem Biophys Res Commun 2024; 703:149620. [PMID: 38359614 DOI: 10.1016/j.bbrc.2024.149620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Parkinson's disease (PD) is characterized by the pathological deposition of a-synuclein (a-syn) inclusions, known as Lewy bodies/neurites. Emerging evidence suggests that extracellular vesicles (EVs) play a role in facilitating the spreading of Lewy pathology between the peripheral nervous system and the central nervous system. We analyzed serum EVs obtained from patients with PD (n = 142), multiple system atrophy (MSA) (n = 18), progressive supranuclear palsy (PSP) (n = 28), rapid eye movement sleep behavior disorder (n = 31), and controls (n = 105). While we observed a significant reduction in the number of EVs in PD compared to controls (p = 0.006), we also noted a substantial increase in filamentous α-synuclein within EVs in PD compared to controls (p < 0.0001), MSA (0.012), and PSP (p = 0.03). Further analysis unveiled the role of EVs in facilitating the transmission of filamentous α-synuclein between neurons and from peripheral blood to the CNS. These findings highlight the potential utility of serum α-synuclein filaments within EVs as diagnostic markers for synucleinopathies and underscore the significance of EVs in promoting the dissemination of filamentous α-synuclein throughout the entire body.
Collapse
Affiliation(s)
- Yuta Ishiguro
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Neurology, Koto Hospital, 6-8-5 Ojima, Koto-ku, Tokyo, 136-0072, Japan.
| | - Tomoyo Shimada
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Asako Yoroisaka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Shinji Saiki
- Department of Neurology Faculty of Medicine, University of Tsukuba, 2-1-1 Tenkubo, Tsukuba-shi, Ibaragi, 305-8576, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
26
|
Evans WR, Baskar SS, Costa ARCE, Ravoori S, Arigbe A, Huda R. Functional activation of dorsal striatum astrocytes improves movement deficits in hemi-parkinsonian mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587694. [PMID: 38617230 PMCID: PMC11014576 DOI: 10.1101/2024.04.02.587694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source of striatal network modulation. However, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Unilateral dopamine depletion reduced locomotion-related astrocyte responses. Chemogenetic activation facilitated astrocyte activity, and improved asymmetrical motor deficits and open field exploratory behavior in dopamine lesioned mice. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.
Collapse
Affiliation(s)
- Wesley R. Evans
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Sindhuja S. Baskar
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | | | - Sanya Ravoori
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Abimbola Arigbe
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| |
Collapse
|
27
|
Melachroinou K, Divolis G, Tsafaras G, Karampetsou M, Fortis S, Stratoulias Y, Papadopoulou G, Kriebardis AG, Samiotaki M, Vekrellis K. Endogenous Alpha-Synuclein is Essential for the Transfer of Pathology by Exosome-Enriched Extracellular Vesicles, Following Inoculation with Preformed Fibrils in vivo. Aging Dis 2024; 15:869-892. [PMID: 37548944 PMCID: PMC10917543 DOI: 10.14336/ad.2023.0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
The main pathological hallmark of Parkinson's disease (PD) and related synucleinopathies is the presence of intracellular proteinaceous aggregates, enriched in the presynaptic protein alpha-Synuclein (α-Syn). α-Syn association with exosomes has been previously documented both as a physiological process of secretion and as a pathological process of disease transmission, however, critical information about the mechanisms governing this interplay is still lacking. To address this, we utilized the α-Syn preformed fibril (PFF) mouse model of PD, as a source of brain-derived exosome-enriched extracellular vesicles (ExE-EVs) and assessed their pathogenic capacity following intrastriatal injections in host wild type (WT) mouse brain. We further investigated the impact of the fibrillar α-Syn on the exosomal cargo independent of the endogenous α-Syn, by isolating ExE-EVs from PFF-injected α-Syn knockout mice. Although PFF inoculation does not alter the morphology, size distribution, and quantity of brain-derived ExE-EVs, it triggers changes in the exosomal proteome related to synaptic and mitochondrial function, as well as metabolic processes. Importantly, we showed that the presence of the endogenous α-Syn is essential for the ExE-EVs to acquire a pathogenic capacity, allowing them to mediate disease transmission by inducing phosphorylated-α-Syn pathology. Notably, misfolded α-Syn containing ExE-EVs when injected in WT mice were able to induce astrogliosis and synaptic alterations in the host brain, at very early stages of α-Syn pathology, preceding the formation of the insoluble α-Syn accumulations. Collectively, our data suggest that exosomal cargo defines their ability to spread α-Syn pathology.
Collapse
Affiliation(s)
- Katerina Melachroinou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - George Tsafaras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Mantia Karampetsou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Sotirios Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece.
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece.
| | - Yannis Stratoulias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Gina Papadopoulou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece.
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
28
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
29
|
Morrone Parfitt G, Coccia E, Goldman C, Whitney K, Reyes R, Sarrafha L, Nam KH, Sohail S, Jones DR, Crary JF, Ordureau A, Blanchard J, Ahfeldt T. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson's disease model. Nat Commun 2024; 15:447. [PMID: 38200091 PMCID: PMC10781970 DOI: 10.1038/s41467-024-44732-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate. We demonstrated these processes are at least partly driven by astrocytes, as DJ1 loss reduces their capacity to provide metabolic support and triggers acquisition of a pro-inflammatory phenotype. Consistently, in co-cultures, we find that DJ1-expressing astrocytes are able to reverse the proteolysis deficits of DJ1 knockout midbrain neurons. In conclusion, astrocytes' capacity to clear toxic damaged proteins is critical to preserve neuronal function and their dysfunction contributes to the neurodegeneration observed in a DJ1 loss-of-function PD model.
Collapse
Affiliation(s)
- Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| | - Elena Coccia
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Camille Goldman
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell-Based Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo Reyes
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soha Sohail
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, USA
| | - John F Crary
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell-Based Medicine at Mount Sinai, New York, NY, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Blanchard
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Recursion Pharmaceuticals, Salt Lake City, UT, USA.
| |
Collapse
|
30
|
Garcia R, Zarate S, Srinivasan R. The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:319-343. [PMID: 39190081 DOI: 10.1007/978-3-031-64839-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.
Collapse
Affiliation(s)
- Roger Garcia
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sara Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Saramowicz K, Siwecka N, Galita G, Kucharska-Lusina A, Rozpędek-Kamińska W, Majsterek I. Alpha-Synuclein Contribution to Neuronal and Glial Damage in Parkinson's Disease. Int J Mol Sci 2023; 25:360. [PMID: 38203531 PMCID: PMC10778752 DOI: 10.3390/ijms25010360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (K.S.); (N.S.); (G.G.); (A.K.-L.); (W.R.-K.)
| |
Collapse
|
32
|
Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson's Disease. Biomolecules 2023; 13:1435. [PMID: 37892117 PMCID: PMC10604695 DOI: 10.3390/biom13101435] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a devastating disease associated with accumulation of α-synuclein (α-Syn) within dopaminergic neurons, leading to neuronal death. PD is characterized by both motor and non-motor clinical symptoms. Several studies indicate that autophagy, an important intracellular degradation pathway, may be involved in different neurodegenerative diseases including PD. The autophagic process mediates the degradation of protein aggregates, damaged and unneeded proteins, and organelles, allowing their clearance, and thereby maintaining cell homeostasis. Impaired autophagy may cause the accumulation of abnormal proteins. Incomplete or impaired autophagy may explain the neurotoxic accumulation of protein aggregates in several neurodegenerative diseases including PD. Indeed, studies have suggested the contribution of impaired autophagy to α-Syn accumulation, the death of dopaminergic neurons, and neuroinflammation. In this review, we summarize the recent literature on the involvement of autophagy in PD pathogenesis.
Collapse
Affiliation(s)
| | | | - Ronit Pinkas-Kramarski
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (L.N.); (D.F.)
| |
Collapse
|
33
|
Ueda J, Uemura N, Ishimoto T, Taguchi T, Sawamura M, Nakanishi E, Ikuno M, Matsuzawa S, Yamakado H, Takahashi R. Ca 2+ -Calmodulin-Calcineurin Signaling Modulates α-Synuclein Transmission. Mov Disord 2023; 38:1056-1067. [PMID: 37066491 DOI: 10.1002/mds.29401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND The intercellular transmission of pathogenic proteins plays a crucial role in the progression of neurodegenerative diseases. Previous research has shown that the neuronal uptake of such proteins is activity-dependent; however, the detailed mechanisms underlying activity-dependent α-synuclein transmission in Parkinson's disease remain unclear. OBJECTIVE To examine whether α-synuclein transmission is affected by Ca2+ -calmodulin-calcineurin signaling in cultured cells and mouse models of Parkinson's disease. METHODS Mouse primary hippocampal neurons were used to examine the effects of the modulation of Ca2+ -calmodulin-calcineurin signaling on the neuronal uptake of α-synuclein preformed fibrils. The effects of modulating Ca2+ -calmodulin-calcineurin signaling on the development of α-synuclein pathology were examined using a mouse model injected with α-synuclein preformed fibrils. RESULTS Modulation of Ca2+ -calmodulin-calcineurin signaling by inhibiting voltage-gated Ca2+ channels, calmodulin, and calcineurin blocked the neuronal uptake of α-synuclein preformed fibrils via macropinocytosis. Different subtypes of voltage-gated Ca2+ channel differentially contributed to the neuronal uptake of α-synuclein preformed fibrils. In wild-type mice inoculated with α-synuclein preformed fibrils, we found that inhibiting calcineurin ameliorated the development of α-synuclein pathology. CONCLUSION Our data suggest that Ca2+ -calmodulin-calcineurin signaling modulates α-synuclein transmission and has potential as a therapeutic target for Parkinson's disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jun Ueda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Ishimoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Ikuno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuzawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Zhang W, Ding L, Chen H, Zhang M, Ma R, Zheng S, Gong J, Zhang Z, Xu H, Xu P, Zhang Y. Cntnap4 partial deficiency exacerbates α-synuclein pathology through astrocyte-microglia C3-C3aR pathway. Cell Death Dis 2023; 14:285. [PMID: 37087484 PMCID: PMC10122675 DOI: 10.1038/s41419-023-05807-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder, which is characterized by dopaminergic (DA) neuron death and the aggregation of neurotoxic α-synuclein. Cntnap4, a risk gene of autism, has been implicated to participate in PD pathogenesis. Here we showed Cntnap4 lacking exacerbates α-synuclein pathology, nigrostriatal DA neuron degeneration and motor impairment, induced by injection of adeno-associated viral vector (AAV)-mediated human α-synuclein overexpression (AAV-hα-Syn). This scenario was further validated in A53T α-synuclein transgenic mice injected with AAV-Cntnap4 shRNA. Mechanistically, α-synuclein derived from damaged DA neuron stimulates astrocytes to release complement C3, activating microglial C3a receptor (C3aR), which in turn triggers microglia to secrete complement C1q and pro-inflammatory cytokines. Thus, the astrocyte-microglia crosstalk further drives DA neuron death and motor dysfunction in PD. Furthermore, we showed that in vivo depletion of microglia and microglial targeted delivery of a novel C3aR antagonist (SB290157) rescue the aggravated α-synuclein pathology resulting from Cntnap4 lacking. Together, our results indicate that Cntnap4 plays a key role in α-synuclein pathogenesis by regulating glial crosstalk and may be a potential target for PD treatment.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huaqing Chen
- Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Mengran Zhang
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China
| | - Runfang Ma
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China
| | - Shaohui Zheng
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China
| | - Junwei Gong
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huaxi Xu
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yunlong Zhang
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Life Sciences, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
35
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
36
|
Kim S, Pajarillo E, Nyarko-Danquah I, Aschner M, Lee E. Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants. Cells 2023; 12:622. [PMID: 36831289 PMCID: PMC9953822 DOI: 10.3390/cells12040622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the aggregation of Lewy bodies in the basal ganglia, resulting in movement impairment referred to as parkinsonism. However, the etiology of PD is not well known, with genetic factors accounting only for 10-15% of all PD cases. The pathogenetic mechanism of PD is not completely understood, although several mechanisms, such as oxidative stress and inflammation, have been suggested. Understanding the mechanisms of PD pathogenesis is critical for developing highly efficacious therapeutics. In the PD brain, dopaminergic neurons degenerate mainly in the basal ganglia, but recently emerging evidence has shown that astrocytes also significantly contribute to dopaminergic neuronal death. In this review, we discuss the role of astrocytes in PD pathogenesis due to mutations in α-synuclein (PARK1), DJ-1 (PARK7), parkin (PARK2), leucine-rich repeat kinase 2 (LRRK2, PARK8), and PTEN-induced kinase 1 (PINK1, PARK6). We also discuss PD experimental models using neurotoxins, such as paraquat, rotenone, 6-hydroxydopamine, and MPTP/MPP+. A more precise and comprehensive understanding of astrocytes' modulatory roles in dopaminergic neurodegeneration in PD will help develop novel strategies for effective PD therapeutics.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
37
|
Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 2023; 14:1016053. [PMID: 36778591 PMCID: PMC9911465 DOI: 10.3389/fnagi.2022.1016053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.
Collapse
|
38
|
Ozoran H, Srinivasan R. Astrocytes and Alpha-Synuclein: Friend or Foe? JOURNAL OF PARKINSON'S DISEASE 2023; 13:1289-1301. [PMID: 38007674 PMCID: PMC10741342 DOI: 10.3233/jpd-230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/27/2023]
Abstract
Despite its devastating disease burden and alarming prevalence, the etiology of Parkinson's disease (PD) remains to be completely elucidated. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta and this correlates with the accumulation of misfolded α-synuclein. While the aggregation of α-synuclein in the form of Lewy bodies or Lewy neurites is a well-established intraneuronal hallmark of the disease process, our understanding of the glial contribution to aberrant α-synuclein proteostasis is lacking. In this regard, restoring astrocyte function during early PD could offer a promising therapeutic avenue and understanding the involvement of astrocytes in handling/mishandling of α-synuclein is of particular interest. Here, we explore the growing body of scientific literature implicating aberrant astrocytic α-synuclein proteostasis with the seemingly inexorable pathological sequelae typifying PD. We also provide a perspective on how heterogeneity in the morphological relationship between astrocytes and neurons will need to be considered in the context of PD pathogenesis.
Collapse
Affiliation(s)
- Hakan Ozoran
- Clinical Medical School, University of Oxford, Oxford, UK
- Green Templeton College, University of Oxford, Oxford, UK
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| |
Collapse
|
39
|
Wang Y, LeDue JM, Murphy TH. Multiscale imaging informs translational mouse modeling of neurological disease. Neuron 2022; 110:3688-3710. [PMID: 36198319 DOI: 10.1016/j.neuron.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.
Collapse
Affiliation(s)
- Yundi Wang
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey M LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
40
|
Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease. Neurosci Bull 2022; 39:479-490. [PMID: 36229715 PMCID: PMC10043108 DOI: 10.1007/s12264-022-00957-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022] Open
Abstract
The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.
Collapse
|
41
|
Therapeutic functions of astrocytes to treat α-synuclein pathology in Parkinson’s disease. Proc Natl Acad Sci U S A 2022; 119:e2110746119. [PMID: 35858361 PMCID: PMC9304026 DOI: 10.1073/pnas.2110746119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intraneuronal inclusions of misfolded α-synuclein (α-syn) and prion-like spread of the pathologic α-syn contribute to progressive neuronal death in Parkinson’s disease (PD). Despite the pathologic significance, no efficient therapeutic intervention targeting α-synucleinopathy has been developed. In this study, we provide evidence that astrocytes, especially those cultured from the ventral midbrain (VM), show therapeutic potential to alleviate α-syn pathology in multiple in vitro and in vivo α-synucleinopathic models. Regulation of neuronal α-syn proteostasis underlies the therapeutic function of astrocytes. Specifically, VM-derived astrocytes inhibited neuronal α-syn aggregation and transmission in a paracrine manner by correcting not only intraneuronal oxidative and mitochondrial stresses but also extracellular inflammatory environments, in which α-syn proteins are prone to pathologic misfolding. The astrocyte-derived paracrine factors also promoted disassembly of extracellular α-syn aggregates. In addition to the aggregated form of α-syn, VM astrocytes reduced total α-syn protein loads both by actively scavenging extracellular α-syn fibrils and by a paracrine stimulation of neuronal autophagic clearance of α-syn. Transplantation of VM astrocytes into the midbrain of PD model mice alleviated α-syn pathology and protected the midbrain dopamine neurons from neurodegeneration. We further showed that cografting of VM astrocytes could be exploited in stem cell–based therapy for PD, in which host-to-graft transmission of α-syn pathology remains a critical concern for long-term cell therapeutic effects.
Collapse
|
42
|
Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, Lin C. The Roles of ATP13A2 Gene Mutations Leading to Abnormal Aggregation of α-Synuclein in Parkinson’s Disease. Front Cell Neurosci 2022; 16:927682. [PMID: 35875356 PMCID: PMC9296842 DOI: 10.3389/fncel.2022.927682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PARK9 (also known as ATP13A2) is recognized as one of the key genes that cause PD, and a mutation in this gene was first discovered in a rare case of PD in an adolescent. Lewy bodies (LBs) formed by abnormal aggregation of α-synuclein, which is encoded by the SNCA gene, are one of the pathological diagnostic criteria for PD. LBs are also recognized as one of the most important features of PD pathogenesis. In this article, we first summarize the types of mutations in the ATP13A2 gene and their effects on ATP13A2 mRNA and protein structure; then, we discuss lysosomal autophagy inhibition and the molecular mechanism of abnormal α-synuclein accumulation caused by decreased levels and dysfunction of the ATP13A2 protein in lysosomes. Finally, this article provides a new direction for future research on the pathogenesis and therapeutic targets for ATP13A2 gene-related PD from the perspective of ATP13A2 gene mutations and abnormal aggregation of α-synuclein.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Molecular Precision Medicine of Hunan Province, Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Changwei Lin, orcid.org/0000-0003-1676-0912
| |
Collapse
|
43
|
Yang QY, Li XW, Yang R, Qin TY, Long H, Zhang SB, Zhang F. Effects of intraperitoneal injection of lipopolysaccharide-induced peripheral inflammation on dopamine neuron damage in rat midbrain. CNS Neurosci Ther 2022; 28:1624-1636. [PMID: 35789066 PMCID: PMC9437226 DOI: 10.1111/cns.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Current studies have documented neuroinflammation is implicated in Parkinson's disease. Recently, growing evidence indicated peripheral inflammation plays an important role in regulation of neuroinflammation and thus conferring protection against dopamine (DA) neuronal damage. However, the underlying mechanisms are not clearly illuminated. Methods The effects of intraperitoneal injection of LPS (LPS[i.p.])‐induced peripheral inflammation on substantia nigra (SN) injection of LPS (LPS[SN])‐elicited DA neuronal damage in rat midbrain were investigated. Rats were intraperitoneally injected with LPS (0.5 mg/kg) daily for 4 consecutive days and then given single injection of LPS (8 μg) into SN with an interval of 0 (LPS(i.p.) 0 day ± LPS(SN)), 30 (LPS(i.p.) 30 days ± LPS(SN)), and 90 (LPS(i.p.) 90 days ± LPS(SN)) days after LPS(i.p.) administration. Results LPS(i.p.) increased the levels of inflammatory factors in peripheral blood in (LPS(i.p.) 0 day ± LPS(SN)). Importantly, in (LPS(i.p.) 0 day ± LPS(SN)) and (LPS(i.p.) 30 days ± LPS(SN)), LPS(i.p.) attenuated LPS(SN)‐induced DA neuronal loss in SN. Besides, LPS(i.p.) reduced LPS(SN)‐induced microglia and astrocytes activation in SN. Furtherly, LPS(i.p.) reduced pro‐inflammatory M1 microglia markers mRNA levels and increased anti‐inflammatory M2 microglia markers mRNA levels. In addition, the increased T‐cell marker expression and the decreased M1 microglia marker expression and more DA neuronal survival were discerned at the same area of rat midbrain in LPS(SN)‐induced DA neuronal damage 30 days after LPS(i.p.) application. Conclusion This study suggested LPS(i.p.)‐induced peripheral inflammation might cause T cells to infiltrate the brain to regulate microglia‐mediated neuroinflammation, thereby protecting DA neurons.
Collapse
Affiliation(s)
- Qiu-Yu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Xian-Wei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Ting-Yang Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Hong Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Shi-Bin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| |
Collapse
|
44
|
Zhang X, Zhang R, Nisa Awan MU, Bai J. The Mechanism and Function of Glia in Parkinson's Disease. Front Cell Neurosci 2022; 16:903469. [PMID: 35722618 PMCID: PMC9205200 DOI: 10.3389/fncel.2022.903469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that primarily affects elderly people. The mechanism on onset and progression of PD is unknown. Currently, there are no effective treatment strategies for PD. PD is thought to be the loss of midbrain dopaminergic neurons, but it has recently been discovered that glia also affects brain tissue homeostasis, defense, and repair in PD. The neurodegenerative process is linked to both losses of glial supportive-defensive functions and toxic gain of glial functions. In this article, we reviewed the roles of microglia, astrocytes, and oligodendrocytes in the development of PD, as well as the potential use of glia-related medications in PD treatment.
Collapse
|
45
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
46
|
Chavarría C, Ivagnes R, Souza JM. Extracellular Alpha-Synuclein: Mechanisms for Glial Cell Internalization and Activation. Biomolecules 2022; 12:655. [PMID: 35625583 PMCID: PMC9138387 DOI: 10.3390/biom12050655] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies. This review article focuses on the mechanism associated with extracellular α-syn uptake in glial cells and the consequent glial cell activation that contributes to the neuronal death associated with synucleinopathies.
Collapse
Affiliation(s)
| | | | - José M. Souza
- Departamento de Bioquímica, Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11400 Montevideo, Uruguay; (C.C.); (R.I.)
| |
Collapse
|
47
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
48
|
Hlushchuk I, Barut J, Airavaara M, Luk K, Domanskyi A, Chmielarz P. Cell Culture Media, Unlike the Presence of Insulin, Affect α-Synuclein Aggregation in Dopaminergic Neurons. Biomolecules 2022; 12:biom12040563. [PMID: 35454152 PMCID: PMC9024760 DOI: 10.3390/biom12040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
There are several links between insulin resistance and neurodegenerative disorders such as Parkinson’s disease. However, the direct influence of insulin signaling on abnormal α-synuclein accumulation—a hallmark of Parkinson’s disease—remains poorly explored. To our best knowledge, this work is the first attempt to investigate the direct effects of insulin signaling on pathological α-synuclein accumulation induced by the addition of α-synuclein preformed fibrils in primary dopaminergic neurons. We found that modifying insulin signaling through (1) insulin receptor inhibitor GSK1904529A, (2) SHIP2 inhibitor AS1949490 or (3) PTEN inhibitor VO-OHpic failed to significantly affect α-synuclein aggregation in dopaminergic neurons, in contrast to the aggregation-reducing effects observed after the addition of glial cell line-derived neurotrophic factor. Subsequently, we tested different media formulations, with and without insulin. Again, removal of insulin from cell culturing media showed no effect on α-synuclein accumulation. We observed, however, a reduced α-synuclein aggregation in neurons cultured in neurobasal medium with a B27 supplement, regardless of the presence of insulin, in contrast to DMEM/F12 medium with an N2 supplement. The effects of culture conditions were present only in dopaminergic but not in primary cortical or hippocampal cells, indicating the unique sensitivity of the former. Altogether, our data contravene the direct involvement of insulin signaling in the modulation of α-synuclein aggregation in dopamine neurons. Moreover, we show that the choice of culturing media can significantly affect preformed fibril-induced α-synuclein phosphorylation in a primary dopaminergic cell culture.
Collapse
Affiliation(s)
- Irena Hlushchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland;
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 Helsinki, Finland;
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| | - Mikko Airavaara
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014 Helsinki, Finland;
- Neuroscience Center, HiLIFE, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland;
- Correspondence: (A.D.); (P.C.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
- Correspondence: (A.D.); (P.C.)
| |
Collapse
|
49
|
Dang T, Cao WJ, Zhao R, Lu M, Hu G, Qiao C. ATP13A2 protects dopaminergic neurons in Parkinson's disease: from biology to pathology. J Biomed Res 2022; 36:98-108. [PMID: 35387901 PMCID: PMC9002154 DOI: 10.7555/jbr.36.20220001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central nervous system. Furthermore, ATP13A2 regulates the normal function of several organelles such as lysosomes, endoplasmic reticulum (ER) and mitochondria, and maintains the normal physiological activity of neural cells. Especially, ATP13A2 protects dopaminergic (DA) neurons against environmental or genetically induced Parkinson's disease (PD). As we all know, PD is a neurodegenerative disease characterized by the loss of DA neurons in the substantia nigra pars compacta. An increasing number of studies have reported that the loss-of-function of ATP13A2 affects normal physiological processes of various organelles, leading to abnormalities and the death of DA neurons. Previous studies in our laboratory have also shown that ATP13A2 deletion intensifies the neuroinflammatory response induced by astrocytes, thus inducing DA neuronal injury. In addition to elucidating the normal structure and function of ATP13A2, this review summarized the pathological mechanisms of ATP13A2 mutations leading to PD in existing literature studies, deepening the understanding of ATP13A2 in the pathological process of PD and other related neurodegenerative diseases. This review provides inspiration for investigators to explore the essential regulatory role of ATP13A2 in PD in the future.
Collapse
Affiliation(s)
- Tao Dang
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.,College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen-Jing Cao
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China
| | - Rong Zhao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chen Qiao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.,College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
50
|
Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity. Cancers (Basel) 2022; 14:cancers14061382. [PMID: 35326535 PMCID: PMC8946689 DOI: 10.3390/cancers14061382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The accumulation of alpha-synuclein (α-syn) is considered a pathological hallmark of the neurodegenerative disorders known as synucleinopathies. The clearance of α-syn depends on autophagy activity, which is inhibited by the mechanistic target of rapamycin (mTOR). Thus, it is likely that α-syn accumulation may occur whenever mTOR is overactive and autophagy is suppressed. In fact, the lack of effective autophagy increases the amount of α-syn and may produce protein aggregation. Therefore, in the present study, we questioned whether cells from glioblastoma multiforme (GBM), a lethal brain neoplasm, wherein mTOR is upregulated and autophagy is suppressed, may overexpress α-syn. In fact, a large quantity of α-syn is measured in GBM cells compared with astrocytes, which includes proteinase K-resistant α-syn. Rapamycin, while inhibiting mTOR activity, significantly reduces the amount of α-syn and allocates α-syn within autophagy-like vacuoles. Abstract Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of rapamycin (mTOR). Thus, the overexpression of mTOR and severe autophagy suppression may produce α-syn accumulation, including the proteinase K-resistant protein isoform. Glioblastoma multiforme (GBM) is a lethal brain tumor that features mTOR overexpression and severe autophagy inhibition. Cell pathology in GBM is reminiscent of a fast, progressive degenerative disorder. Therefore, the present work questions whether, as is analogous to neurons during degenerative disorders, an overexpression of α-syn occurs within GBM cells. A high amount of α-syn was documented in GBM cells via real-time PCR (RT-PCR), Western blotting, immunohistochemistry, immuno-fluorescence, and ultrastructural stoichiometry, compared with the amount of β- and γ-synucleins and compared with the amount of α-syn counted within astrocytes. The present study indicates that (i) α-syn is overexpressed in GBM cells, (ii) α-syn expression includes a proteinase-K resistant isoform, (iii) α-syn is dispersed from autophagy-like vacuoles to the cytosol, (iv) α-syn overexpression and cytosol dispersion are mitigated by rapamycin, and (v) the α-syn-related GBM-like phenotype is mitigated by silencing the SNCA gene.
Collapse
|