1
|
Le AA, Lauterborn JC, Jia Y, Cox CD, Lynch G, Gall CM. Metabotropic NMDAR Signaling Contributes to Sex Differences in Synaptic Plasticity and Episodic Memory. J Neurosci 2024; 44:e0438242024. [PMID: 39424366 PMCID: PMC11638816 DOI: 10.1523/jneurosci.0438-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
NMDA receptor (NMDAR)-mediated calcium influx triggers the induction and initial expression of long-term potentiation (LTP). Here we report that in male rodents, ion flux-independent (metabotropic) NMDAR signaling is critical for a third step in the production of enduring LTP, i.e., cytoskeletal changes that stabilize the activity-induced synaptic modifications. Surprisingly, females rely upon estrogen receptor alpha (ERα) for the metabotropic NMDAR operations used by males. Blocking NMDAR channels with MK-801 eliminated LTP expression in hippocampal field CA1 of both sexes but left intact theta burst stimulation (TBS)-induced actin polymerization within dendritic spines. A selective antagonist (Ro25-6981) of the NMDAR GluN2B subunit had minimal effects on synaptic responses but blocked actin polymerization and LTP consolidation in males only. Conversely, an ERα antagonist thoroughly disrupted TBS-induced actin polymerization and LTP in females while having no evident effect in males. In an episodic memory paradigm, Ro25-6981 prevented acquisition of spatial locations by males but not females, whereas an ERα antagonist blocked acquisition in females but not males. Sex differences in LTP consolidation were accompanied by pronounced differences in episodic memory in tasks involving minimal (for learning) cue sampling. Males did better on acquisition of spatial information whereas females had much higher scores than males on tests for acquisition of the identity of cues (episodic "what") and the order in which the cues were sampled (episodic "when"). We propose that sex differences in synaptic processes used to stabilize LTP result in differential encoding of the basic elements of episodic memory.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Julie C Lauterborn
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Yousheng Jia
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Conor D Cox
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Christine M Gall
- Departments of Anatomy and Neurobiology, University of California, Irvine, California 92697
- Neurobiology and Behavior, University of California, Irvine, California 92697
| |
Collapse
|
2
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
3
|
Bemben MA, Sandoval M, Le AA, Won S, Chau VN, Lauterborn JC, Incontro S, Li KH, Burlingame AL, Roche KW, Gall CM, Nicoll RA, Diaz-Alonso J. Contrastsing synaptic roles of MDGA1 and MDGA2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542333. [PMID: 37720016 PMCID: PMC10503827 DOI: 10.1101/2023.05.25.542333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.
Collapse
Affiliation(s)
- Michael A. Bemben
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Matthew Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Vivian N. Chau
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Julie C. Lauterborn
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Present address: Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR1072, INSERM, Aix-Marseille University, Marseille, 13015, France
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Christine M. Gall
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
4
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Le AA, Quintanilla J, Amani M, Piomelli D, Lynch G, Gall CM. Persistent sexually dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and episodic memory in rodents. Neurobiol Dis 2022; 162:105565. [PMID: 34838664 DOI: 10.1016/j.nbd.2021.105565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
There is evidence that cannabis use during adolescence leads to memory and cognitive problems in young adulthood but little is known about effects of early life cannabis exposure on synaptic operations that are critical for encoding and organizing information. We report here that a 14-day course of daily Δ9-tetrahydrocannabinol treatments administered to adolescent rats and mice (aTHC) leads to profound but selective deficits in synaptic plasticity in two axonal systems in female, and to lesser extent male, hippocampus as assessed in adulthood. Adolescent-THC exposure did not alter basic synaptic transmission (input/output curves) and had only modest effects on frequency facilitation. Nevertheless, aTHC severely impaired the endocannabinoid-dependent long-term potentiation in the lateral perforant path in females of both species, and in male mice; this was reliably associated with impaired acquisition of a component of episodic memory that depends on lateral perforant path function. Potentiation in the Schaffer-commissural (S-C) projection to field CA1 was disrupted by aTHC treatment in females only and this was associated with both a deficit in estrogen effects on S-C synaptic responses and impairments to CA1-dependent spatial (object location) memory. In all the results demonstrate sexually dimorphic and projection system-specific effects of aTHC exposure that could underlie discrete effects of early life cannabinoid usage on adult cognitive function. Moreover they suggest that some of the enduring, sexually dimorphic effects of cannabis use reflect changes in synaptic estrogen action.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Julian Quintanilla
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Mohammad Amani
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Daniele Piomelli
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Psychiatry & Human Behavior, University of California, Irvine, CA 92868, United States of America.
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Neurobiology & Behavior, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
6
|
Bach S, Shovlin S, Moriarty M, Bardoni B, Tropea D. Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Front Cell Neurosci 2021; 15:764761. [PMID: 34867203 PMCID: PMC8640214 DOI: 10.3389/fncel.2021.764761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Rett syndrome (RTT) and Fragile X syndrome (FXS) are two monogenetic neurodevelopmental disorders with complex clinical presentations. RTT is caused by mutations in the Methyl-CpG binding protein 2 gene (MECP2) altering the function of its protein product MeCP2. MeCP2 modulates gene expression by binding methylated CpG dinucleotides, and by interacting with transcription factors. FXS is caused by the silencing of the FMR1 gene encoding the Fragile X Mental Retardation Protein (FMRP), a RNA binding protein involved in multiple steps of RNA metabolism, and modulating the translation of thousands of proteins including a large set of synaptic proteins. Despite differences in genetic etiology, there are overlapping features in RTT and FXS, possibly due to interactions between MeCP2 and FMRP, and to the regulation of pathways resulting in dysregulation of common molecular signaling. Furthermore, basic physiological mechanisms are regulated by these proteins and might concur to the pathophysiology of both syndromes. Considering that RTT and FXS are disorders affecting brain development, and that most of the common targets of MeCP2 and FMRP are involved in brain activity, we discuss the mechanisms of synaptic function and plasticity altered in RTT and FXS, and we consider the similarities and the differences between these two disorders.
Collapse
Affiliation(s)
- Snow Bach
- School of Mathematical Sciences, Dublin City University, Dublin, Ireland.,Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Stephen Shovlin
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | | | - Barbara Bardoni
- Inserm, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Université Côte d'Azur, Valbonne, France
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
7
|
Cornelius J, Rottner K, Korte M, Michaelsen-Preusse K. Cortactin Contributes to Activity-Dependent Modulation of Spine Actin Dynamics and Spatial Memory Formation. Cells 2021; 10:cells10071835. [PMID: 34360003 PMCID: PMC8303107 DOI: 10.3390/cells10071835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023] Open
Abstract
Postsynaptic structures on excitatory neurons, dendritic spines, are actin-rich. It is well known that actin-binding proteins regulate actin dynamics and by this means orchestrate structural plasticity during the development of the brain, as well as synaptic plasticity mediating learning and memory processes. The actin-binding protein cortactin is localized to pre- and postsynaptic structures and translocates in a stimulus-dependent manner between spines and the dendritic compartment, thereby indicating a crucial role for synaptic plasticity and neuronal function. While it is known that cortactin directly binds F-actin, the Arp2/3 complex important for actin nucleation and branching as well as other factors involved in synaptic plasticity processes, its precise role in modulating actin remodeling in neurons needs to be deciphered. In this study, we characterized the general neuronal function of cortactin in knockout mice. Interestingly, we found that the loss of cortactin leads to deficits in hippocampus-dependent spatial memory formation. This impairment is correlated with a prominent dysregulation of functional and structural plasticity. Additional evidence shows impaired long-term potentiation in cortactin knockout mice together with a complete absence of structural spine plasticity. These phenotypes might at least in part be explained by alterations in the activity-dependent modulation of synaptic actin in cortactin-deficient neurons.
Collapse
Affiliation(s)
- Jonas Cornelius
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
| | - Klemens Rottner
- Research Group Molecular Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
- Correspondence:
| |
Collapse
|
8
|
Lauterborn JC, Scaduto P, Cox CD, Schulmann A, Lynch G, Gall CM, Keene CD, Limon A. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer's disease. Nat Commun 2021; 12:2603. [PMID: 33972518 PMCID: PMC8110554 DOI: 10.1038/s41467-021-22742-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA.
| | - Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Anton Schulmann
- National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
- Department of Psychiatry & Human Behavior, University of California at Irvine, Irvine, CA, 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
9
|
Amani M, Lauterborn JC, Le AA, Cox BM, Wang W, Quintanilla J, Cox CD, Gall CM, Lynch G. Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus. J Neurosci 2021; 41:2301-2312. [PMID: 33514675 PMCID: PMC8018768 DOI: 10.1523/jneurosci.2376-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Why layers II/III of entorhinal cortex (EC) deteriorate in advance of other regions during the earliest stages of Alzheimer's disease is poorly understood. Failure of retrograde trophic support from synapses to cell bodies is a common cause of neuronal atrophy, and we accordingly tested for early-life deterioration in projections of rodent layer II EC neurons. Using electrophysiology and quantitative imaging, changes in EC terminals during young adulthood were evaluated in male rats and mice. Field excitatory postsynaptic potentials, input/output curves, and frequency following capacity by lateral perforant path (LPP) projections from lateral EC to dentate gyrus were unchanged from 3 to 8-10 months of age. In contrast, the unusual presynaptic form of long-term potentiation (LTP) expressed by the LPP was profoundly impaired by 8 months in rats and mice. This impairment was accompanied by a reduction in the spine to terminal endocannabinoid signaling needed for LPP-LTP induction and was offset by an agent that enhances signaling. There was a pronounced age-related increase in synaptophysin within LPP terminals, an effect suggestive of incipient pathology. Relatedly, presynaptic levels of TrkB-receptors mediating retrograde trophic signaling-were reduced in the LPP terminal field. LTP and TrkB content were also reduced in the medial perforant path of 8- to 10-month-old rats. As predicted, performance on an LPP-dependent episodic memory task declined by late adulthood. We propose that memory-related synaptic plasticity in EC projections is unusually sensitive to aging, which predisposes EC neurons to pathogenesis later in life.SIGNIFICANCE STATEMENT Neurons within human superficial entorhinal cortex are particularly vulnerable to effects of aging and Alzheimer's disease, although why this is the case is not understood. Here we report that perforant path projections from layer II entorhinal cortex to the dentate gyrus exhibit rapid aging in rodents, including reduced synaptic plasticity and abnormal protein content by 8-10 months of age. Moreover, there was a substantial decline in the performance of an episodic memory task that depends on entorhinal cortical projections at the same ages. Overall, the results suggest that the loss of plasticity and related trophic signaling predispose the entorhinal neurons to functional decline in relatively young adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary Lynch
- Departments of Anatomy & Neurobiology
- Psychiatry & Human Behavior, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
10
|
Tanaka S, Masuda Y, Harada A, Okabe S. Impaired actin dynamics and suppression of Shank2-mediated spine enlargement in cortactin knockout mice. ACTA ACUST UNITED AC 2020; 69:44-52. [PMID: 31990031 DOI: 10.1093/jmicro/dfaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasutaka Masuda
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Seese RR. Working Memory Impairments in Cerebellar Disorders of Childhood. Pediatr Neurol 2020; 107:16-23. [PMID: 32276741 DOI: 10.1016/j.pediatrneurol.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum is a crucial center for motor control and integration. Increasing evidence supports the notion that the cerebellum is also involved in nonmotor functions. Along these lines, multiple cerebellar disorders of childhood and adulthood are associated with behavioral and cognitive symptoms, including impairments in memory. One form of memory commonly affected in cerebellar disorders is working memory, which uses attention to manipulate information that is immediately available to execute cognitive tasks. This article reviews the literature illustrating that working memory impairments are frequently observed in acquired, congenital, and genetic/developmental cerebellar disorders of childhood. Functional neuroimaging studies demonstrate that working memory tasks engage many posterior regions of the cerebellar hemispheres and vermis. Thus, the cerebellum acts as one important node in the working memory circuit, and when the cerebellum is involved in childhood disorders, deficits in working memory commonly occur.
Collapse
Affiliation(s)
- Ronald R Seese
- Division of Child Neurology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Morè L, Lauterborn JC, Papaleo F, Brambilla R. Enhancing cognition through pharmacological and environmental interventions: Examples from preclinical models of neurodevelopmental disorders. Neurosci Biobehav Rev 2020; 110:28-45. [PMID: 30981451 DOI: 10.1016/j.neubiorev.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
In this review we discuss the role of environmental and pharmacological treatments to enhance cognition with special regards to neurodevelopmental related disorders and aging. How the environment influences brain structure and function, and the interactions between rearing conditions and gene expression, are fundamental questions that are still poorly understood. We propose a model that can explain some of the discrepancies in findings for effects of environmental enrichment on outcome measures. Evidence of a direct causal correlation of nootropics and treatments that enhanced cognition also will be presented, and possible molecular mechanisms that include neurotrophin signaling and downstream pathways underlying these processes are discussed. Finally we review recent findings achieved with a wide set of behavioral and cognitive tasks that have translational validity to humans, and should be useful for future work on devising appropriate therapies. As will be discussed, the collective findings suggest that a combinational therapeutic approach of environmental enrichment and nootropics could be particularly successful for improving learning and memory in both developmental disorders and normal aging.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2XT, Preston, UK.
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92617, USA.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy.
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff University, CF24 4HQ, Cardiff, UK.
| |
Collapse
|
13
|
Seese RR, Le AA, Wang K, Cox CD, Lynch G, Gall CM. A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability. Neurobiol Dis 2020; 134:104604. [PMID: 31494285 PMCID: PMC7258745 DOI: 10.1016/j.nbd.2019.104604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is associated with deficits in various types of learning, including those that require the hippocampus. Relatedly, hippocampal long-term potentiation (LTP) is impaired in the Fmr1 knockout (KO) mouse model of FXS. Prior research found that infusion of brain-derived neurotrophic factor (BDNF) rescues LTP in the KOs. Here, we tested if, in Fmr1 KO mice, up-regulating BDNF production or treatment with an agonist for BDNF's TrkB receptor restores synaptic plasticity and improves learning. In hippocampal slices, bath infusion of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) completely restored otherwise impaired hippocampal field CA1 LTP of Fmr1 KOs without effect in wild types (WTs). Similarly, acute, semi-chronic, or chronic treatments with 7,8-DHF rescued a simple hippocampus-dependent form of spatial learning (object location memory: OLM) in Fmr1 KOs without effect in WTs. The agonist also restored object recognition memory, which depends on cortical regions. Semi-chronic, but not acute, treatment with the ampakine CX929, which up-regulates BDNF expression, lowered the training threshold for OLM in WT mice and rescued learning in the KOs. Positive results were also obtained in a test for social recognition. An mGluR5 antagonist did not improve learning. Quantification of synaptic immunolabeling demonstrated that 7,8-DHF and CX929 increase levels of activated TrkB at excitatory synapses. Moreover, CX929 induced a robust synaptic activation of the TrkB effector ERK1/2. These results suggest that enhanced synaptic BDNF signaling constitutes a plausible strategy for treating certain aspects of the cognitive disabilities associated with FXS.
Collapse
Affiliation(s)
- Ronald R Seese
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Aliza A Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Kathleen Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States of America.
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States of America.
| |
Collapse
|
14
|
Wang W, Jia Y, Pham DT, Palmer LC, Jung KM, Cox CD, Rumbaugh G, Piomelli D, Gall CM, Lynch G. Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus. Cereb Cortex 2019; 28:2253-2266. [PMID: 28520937 DOI: 10.1093/cercor/bhx126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023] Open
Abstract
Endocannabinoids (ECBs) depress transmitter release at sites throughout the brain. Here, we describe another form of ECB signaling that triggers a novel form of long-term potentiation (LTP) localized to the lateral perforant path (LPP) which conveys semantic information from cortex to hippocampus. Two cannabinoid CB1 receptor (CB1R) signaling cascades were identified in hippocampus. The first is pregnenolone sensitive, targets vesicular protein Munc18-1 and depresses transmitter release; this cascade is engaged by CB1Rs in Schaffer-Commissural afferents to CA1 but not in the LPP, and it does not contribute to LTP. The second cascade is pregnenolone insensitive and LPP specific; it entails co-operative CB1R/β1-integrin signaling to effect synaptic potentiation via stable enhancement of transmitter release. The latter cascade is engaged during LPP-dependent learning. These results link atypical ECB signaling to the encoding of a fundamental component of episodic memory and suggest a novel route whereby endogenous and exogenous cannabinoids affect cognition.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Danielle T Pham
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Linda C Palmer
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Pharmacology, University of California, Irvine, CA, USA.,Department of Biological Chemistry, University of California, Irvine, CA, USA.,Drug Discovery and Development, Instituto Italiano di Tecnologia, Genoa, Italy
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Lauterborn JC, Cox CD, Chan SW, Vanderklish PW, Lynch G, Gall CM. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease. Brain Pathol 2019; 30:319-331. [PMID: 31410926 DOI: 10.1111/bpa.12779] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 01/20/2023] Open
Abstract
Reduced spine densities and age-dependent accumulation of amyloid β and tau pathology are shared features of Down syndrome (DS) and Alzheimer's disease (AD). Both spine morphology and the synaptic plasticity that supports learning depend upon the actin cytoskeleton, suggesting that disturbances in actin regulatory signaling might underlie spine defects in both disorders. The present study evaluated the synaptic levels of two proteins that promote filamentous actin stabilization, the Rho GTPase effector p21-activated kinase 3 (PAK3) and Arp2, in DS vs. AD. Fluorescent deconvolution tomography was used to determine postsynaptic PAK3 and Arp2 levels for large numbers of excitatory synapses in the parietal cortex of individuals with DS plus AD pathology (DS + AD) or AD alone relative to age-matched controls. Though numbers of excitatory synapses were not different between groups, synaptic PAK3 levels were greatly reduced in DS + AD and AD individuals vs. controls. Synaptic Arp2 levels also were reduced in both disorders, but to a greater degree in AD. Western blotting detected reduced Arp2 levels in the AD group, but there was no correlation with phosphorylated tau levels suggesting that the Arp2 loss does not contribute to mechanisms that drive tau pathology progression. Overall, the results demonstrate marked synaptic disturbances in two actin regulatory proteins in adult DS and AD brains, with greater effects in individuals with AD alone. As both PAK and the Arp2/3 complex play roles in the actin stabilization that supports synaptic plasticity, reductions in these proteins at synapses may be early events in spine dysfunction that contribute to cognitive impairment in these disorders.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA, 92697-1275
| | - Conor D Cox
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA, 92697-1275
| | - See Wing Chan
- Department Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037
| | - Peter W Vanderklish
- Department Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037
| | - Gary Lynch
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA, 92697-1275.,Department of Psychiatry & Human Behavior, University of California at Irvine, Irvine, CA, 92697-1275
| | - Christine M Gall
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA, 92697-1275.,Department of Neurobiology & Behavior, University of California at Irvine, Irvine, CA, 92697-1275
| |
Collapse
|
16
|
Lauterborn JC, Schultz MN, Le AA, Amani M, Friedman AE, Leach PT, Gall CM, Lynch GS, Crawley JN. Spaced training improves learning in Ts65Dn and Ube3a mouse models of intellectual disabilities. Transl Psychiatry 2019; 9:166. [PMID: 31182707 PMCID: PMC6557858 DOI: 10.1038/s41398-019-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Benefits of distributed learning strategies have been extensively described in the human literature, but minimally investigated in intellectual disability syndromes. We tested the hypothesis that training trials spaced apart in time could improve learning in two distinct genetic mouse models of neurodevelopmental disorders characterized by intellectual impairments. As compared to training with massed trials, spaced training significantly improved learning in both the Ts65Dn trisomy mouse model of Down syndrome and the maternally inherited Ube3a mutant mouse model of Angelman syndrome. Spacing the training trials at 1 h intervals accelerated acquisition of three cognitive tasks by Ts65Dn mice: (1) object location memory, (2) novel object recognition, (3) water maze spatial learning. Further, (4) spaced training improved water maze spatial learning by Ube3a mice. In contrast, (5) cerebellar-mediated rotarod motor learning was not improved by spaced training. Corroborations in three assays, conducted in two model systems, replicated within and across two laboratories, confirm the strength of the findings. Our results indicate strong translational relevance of a behavioral intervention strategy for improving the standard of care in treating the learning difficulties that are characteristic and clinically intractable features of many neurodevelopmental disorders.
Collapse
Affiliation(s)
- J C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - A A Le
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Amani
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - A E Friedman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Harvard University, Cambridge, MA, USA
| | - P T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Biogen Inc., Cambridge, MA, USA
| | - C M Gall
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - G S Lynch
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - J N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
17
|
Whyte AJ, Kietzman HW, Swanson AM, Butkovich LM, Barbee BR, Bassell GJ, Gross C, Gourley SL. Reward-Related Expectations Trigger Dendritic Spine Plasticity in the Mouse Ventrolateral Orbitofrontal Cortex. J Neurosci 2019; 39:4595-4605. [PMID: 30940719 PMCID: PMC6554633 DOI: 10.1523/jneurosci.2031-18.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
An essential aspect of goal-directed decision-making is selecting actions based on anticipated consequences, a process that involves the orbitofrontal cortex (OFC) and potentially, the plasticity of dendritic spines in this region. To investigate this possibility, we trained male and female mice to nose poke for food reinforcers, or we delivered the same number of food reinforcers non-contingently to separate mice. We then decreased the likelihood of reinforcement for trained mice, requiring them to modify action-outcome expectations. In a separate experiment, we blocked action-outcome updating via chemogenetic inactivation of the OFC. In both cases, successfully selecting actions based on their likely consequences was associated with fewer immature, thin-shaped dendritic spines and a greater proportion of mature, mushroom-shaped spines in the ventrolateral OFC. This pattern was distinct from spine loss associated with aging, and we identified no effects on hippocampal CA1 neurons. Given that the OFC is involved in prospective calculations of likely outcomes, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for solidifying durable expectations. To investigate causal relationships, we inhibited the RNA-binding protein fragile X mental retardation protein (encoded by Fmr1), which constrains dendritic spine turnover. Ventrolateral OFC-selective Fmr1 knockdown recapitulated the behavioral effects of inducible OFC inactivation (and lesions; also shown here), impairing action-outcome conditioning, and caused dendritic spine excess. Our findings suggest that a proper balance of dendritic spine plasticity within the OFC is necessary for one's ability to select actions based on anticipated consequences.SIGNIFICANCE STATEMENT Navigating a changing environment requires associating actions with their likely outcomes and updating these associations when they change. Dendritic spine plasticity is likely involved, yet relationships are unconfirmed. Using behavioral, chemogenetic, and viral-mediated gene silencing strategies and high-resolution microscopy, we find that modifying action-outcome expectations is associated with fewer immature spines and a greater proportion of mature spines in the ventrolateral orbitofrontal cortex (OFC). Given that the OFC is involved in prospectively calculating the likely outcomes of one's behavior, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for maintaining durable expectations.
Collapse
Affiliation(s)
- Alonzo J Whyte
- Departments of Cell Biology
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
| | - Henry W Kietzman
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
| | - Andrew M Swanson
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
| | - Laura M Butkovich
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
| | - Britton R Barbee
- Pediatrics, Emory School of Medicine
- Yerkes National Primate Research Center
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| | - Gary J Bassell
- Departments of Cell Biology
- Graduate Program in Neuroscience
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, and
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267
| | - Shannon L Gourley
- Pediatrics, Emory School of Medicine,
- Yerkes National Primate Research Center
- Graduate Program in Neuroscience
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
18
|
Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Mol Psychiatry 2018; 23:1798-1806. [PMID: 29133950 PMCID: PMC5951717 DOI: 10.1038/mp.2017.221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/02/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022]
Abstract
Episodic memory, a fundamental component of human cognition, is significantly impaired in autism. We believe we report the first evidence for this problem in the Fmr1-knockout (KO) mouse model of Fragile X syndrome and describe potentially treatable underlying causes. The hippocampus is critical for the formation and use of episodes, with semantic (cue identity) information relayed to the structure via the lateral perforant path (LPP). The unusual form of synaptic plasticity expressed by the LPP (lppLTP) was profoundly impaired in Fmr1-KOs relative to wild-type mice. Two factors contributed to this defect: (i) reduced GluN1 subunit levels in synaptic NMDA receptors and related currents, and (ii) impaired retrograde synaptic signaling by the endocannabinoid 2-arachidonoylglycerol (2-AG). Studies using a novel serial cue paradigm showed that episodic encoding is dependent on both the LPP and the endocannabinoid receptor CB1, and is strikingly impaired in Fmr1-KOs. Enhancing 2-AG signaling rescued both lppLTP and learning in the mutants. Thus, two consequences of the Fragile-X mutation converge on plasticity at one site in hippocampus to prevent encoding of a basic element of cognitive memory. Collectively, the results suggest a clinically plausible approach to treatment.
Collapse
|
19
|
Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. J Neurosci 2018; 38:7935-7951. [PMID: 30209204 DOI: 10.1523/jneurosci.0801-18.2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 07/15/2018] [Indexed: 12/22/2022] Open
Abstract
Men are generally superior to women in remembering spatial relationships, whereas the reverse holds for semantic information, but the neurobiological bases for these differences are not understood. Here we describe striking sexual dimorphism in synaptic mechanisms of memory encoding in hippocampal field CA1, a region critical for spatial learning. Studies of acute hippocampal slices from adult rats and mice show that for excitatory Schaffer-commissural projections, the memory-related long-term potentiation (LTP) effect depends upon endogenous estrogen and membrane estrogen receptor α (ERα) in females but not in males; there was no evident involvement of nuclear ERα in females, or of ERβ or GPER1 (G-protein-coupled estrogen receptor 1) in either sex. Quantitative immunofluorescence showed that stimulation-induced activation of two LTP-related kinases (Src, ERK1/2), and of postsynaptic TrkB, required ERα in females only, and that postsynaptic ERα levels are higher in females than in males. Several downstream signaling events involved in LTP were comparable between the sexes. In contrast to endogenous estrogen effects, infused estradiol facilitated LTP and synaptic signaling in females via both ERα and ERβ. The estrogen dependence of LTP in females was associated with a higher threshold for both inducing potentiation and acquiring spatial information. These results indicate that the observed sexual dimorphism in hippocampal LTP reflects differences in synaptic kinase activation, including both a weaker association with NMDA receptors and a greater ERα-mediated kinase activation in response to locally produced estrogen in females. We propose that male/female differences in mechanisms and threshold for field CA1 LTP contribute to differences in encoding specific types of memories.SIGNIFICANCE STATEMENT There is good evidence for male/female differences in memory-related cognitive function, but the neurobiological basis for this sexual dimorphism is not understood. Here we describe sex differences in synaptic function in a brain area that is critical for learning spatial cues. Our results show that female rodents have higher synaptic levels of estrogen receptor α (ERα) and, in contrast to males, require membrane ERα for the activation of signaling kinases that support long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. The additional requirement of estrogen signaling in females resulted in a higher threshold for both LTP and hippocampal field CA1-dependent spatial learning. These results describe a synaptic basis for sexual dimorphism in encoding spatial information.
Collapse
|
20
|
Schätzle P, Esteves da Silva M, Tas RP, Katrukha EA, Hu HY, Wierenga CJ, Kapitein LC, Hoogenraad CC. Activity-Dependent Actin Remodeling at the Base of Dendritic Spines Promotes Microtubule Entry. Curr Biol 2018; 28:2081-2093.e6. [PMID: 29910073 DOI: 10.1016/j.cub.2018.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/17/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
Abstract
In neurons, microtubules form dense bundles and run along the length of axons and dendrites. Occasionally, dendritic microtubules can grow from the shaft directly into dendritic spines. Microtubules target dendritic spines that are undergoing activity-dependent changes, but the mechanism by which microtubules enter spines has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and local glutamate uncaging, we show that local actin remodeling at the base of a spine promotes microtubule spine targeting. Microtubule spine entry is triggered by activation of N-Methyl-D-aspartic acid (NMDA) receptors and calcium influx and requires dynamic actin remodeling. Activity-dependent translocation of the actin remodeling protein cortactin out of the spine correlates with increased microtubule targeting at a single spine level. Our data show that the structural changes in the actin cytoskeleton at the base of the spine are directly involved in microtubule entry and emphasize the importance of actin-microtubule crosstalk in orchestrating synapse function and plasticity.
Collapse
Affiliation(s)
- Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Marta Esteves da Silva
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Hai Yin Hu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
21
|
Faundez V, De Toma I, Bardoni B, Bartesaghi R, Nizetic D, de la Torre R, Cohen Kadosh R, Herault Y, Dierssen M, Potier MC. Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. Eur Neuropsychopharmacol 2018; 28:675-690. [PMID: 29887288 DOI: 10.1016/j.euroneuro.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Ongoing treatments for genetic developmental disorders of the central nervous system are mostly symptomatic and do not correct the genetic cause. Recent identification of common mechanisms between diseases has suggested that new therapeutic targets could be applied across intellectual disabilities with potential disease-modifying properties. The European Down syndrome and other genetic developmental disorders (DSG2D) network joined basic and clinical scientists to foster this research and carry out clinical trials. Here we discuss common mechanisms between several intellectual disabilities from genetic origin including Down's and Fragile X syndromes: i) how to model these complex diseases using neuronal cells and brain organoids derived from induced pluripotent stem cells; ii) how to integrate genomic, proteomic and interactome data to help defining common mechanisms and boundaries between diseases; iii) how to target common pathways for designing clinical trials and assessing their efficacy; iv) how to bring new neuro-therapies, such as noninvasive brain stimulations and cognitive training to clinical research. The basic and translational research efforts of the last years have utterly transformed our understanding of the molecular pathology of these diseases but much is left to be done to bring them to newborn babies and children to improve their quality of life.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Ilario De Toma
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| | - Renata Bartesaghi
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Barts and The London School of Medicine, Queen Mary University of London, United Kingdom
| | - Rafael de la Torre
- Integrated Pharmacology and Neurosciences Systems Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; CIBEROBN, Madrid, Spain
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red CIBERER, Spain.
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France.
| |
Collapse
|
22
|
Mikhaylova M, Bär J, van Bommel B, Schätzle P, YuanXiang P, Raman R, Hradsky J, Konietzny A, Loktionov EY, Reddy PP, Lopez-Rojas J, Spilker C, Kobler O, Raza SA, Stork O, Hoogenraad CC, Kreutz MR. Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron 2018; 97:1110-1125.e14. [PMID: 29478916 DOI: 10.1016/j.neuron.2018.01.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
Abstract
Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.
Collapse
Affiliation(s)
- Marina Mikhaylova
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany; RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany; Cell Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands.
| | - Julia Bär
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany; RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Bas van Bommel
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Philipp Schätzle
- Cell Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - PingAn YuanXiang
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Rajeev Raman
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Johannes Hradsky
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Anja Konietzny
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Egor Y Loktionov
- State Lab for Photon Energetics, Bauman Moscow State University, Moscow 105005, Russia
| | | | - Jeffrey Lopez-Rojas
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Christina Spilker
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology, Magdeburg 39118, Germany
| | - Syed Ahsan Raza
- Institute of Biology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Oliver Stork
- Institute of Biology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
23
|
Castagnola S, Bardoni B, Maurin T. The Search for an Effective Therapy to Treat Fragile X Syndrome: Dream or Reality? Front Synaptic Neurosci 2017; 9:15. [PMID: 29163124 PMCID: PMC5681520 DOI: 10.3389/fnsyn.2017.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of intellectual disability and a primary cause of autism. It originates from the lack of the Fragile X Mental Retardation Protein (FMRP), which is an RNA-binding protein encoded by the Fragile X Mental Retardation Gene 1 (FMR1) gene. Multiple roles have been attributed to this protein, ranging from RNA transport (from the nucleus to the cytoplasm, but also along neurites) to translational control of mRNAs. Over the last 20 years many studies have found a large number of FMRP mRNA targets, but it is still not clear which are those playing a critical role in the etiology of FXS. So far, no therapy for FXS has been found, making the quest for novel targets of considerable importance. Several pharmacological approaches have been attempted, but, despite some promising preclinical results, no strategy gave successful outcomes, due either to the induction of major side effects or to the lack of improvement of the phenotypes. However, these studies suggested that, in order to measure the effectiveness of a specific treatment, trials should be redesigned and new endpoints defined in FXS patients. Nevertheless, the search for new therapeutic targets for FXS is very active. In this context, the advances in animal modeling, coupled with better understanding of neurobiology and physiopathology of FXS, are of crucial importance in developing new selected treatments. Here, we discuss the pathways that were recently linked to the physiopathology of FXS (mGluR, GABAR, insulin, Insulin-like Growth Factor 1 (IGF-1), MPP-9, serotonin, oxytocin and endocannabinoid signaling) and that suggest new approaches to find an effective therapy for this disorder. Our goal with this review article is to summarize some recent relevant findings on FXS treatment strategies in order to have a clearer view of the different pathways analyzed to date emphasizing those shared with other synaptic disorders.
Collapse
Affiliation(s)
- Sara Castagnola
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
24
|
Yin M, Ma W, An L. Cortactin in cancer cell migration and invasion. Oncotarget 2017; 8:88232-88243. [PMID: 29152154 PMCID: PMC5675706 DOI: 10.18632/oncotarget.21088] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cortactin, a substrate of sarcoma (Src) kinases, is an actin-binding protein that is involved in cytoskeletal regulation, and is frequently overexpressed in cancer cells. Binding to the actin related protein 2/3 (Arp2/3) complex stimulates cortactin activity, which promotes F-actin nucleation and assembly. Cortactin promotes cancer cell migration and invasion, and plays a pivotal role in invadopodia formation and extra cellular matrix degradation. Overexpression of cortactin, by amplification of the chromosomal band 11q13, increases tumor aggressiveness. In this review, we report on the current knowledge and potential mechanisms of action of cortactin as a critical mediator of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wenqing Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
25
|
Lauterborn JC, Kramár EA, Rice JD, Babayan AH, Cox CD, Karsten CA, Gall CM, Lynch G. Cofilin Activation Is Temporally Associated with the Cessation of Growth in the Developing Hippocampus. Cereb Cortex 2017; 27:2640-2651. [PMID: 27073215 PMCID: PMC5964364 DOI: 10.1093/cercor/bhw088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic extension and synaptogenesis proceed at high rates in rat hippocampus during early postnatal life but markedly slow during the third week of development. The reasons for the latter, fundamental event are poorly understood. Here, we report that levels of phosphorylated (inactive) cofilin, an actin depolymerizing factor, decrease by 90% from postnatal days (pnds) 10 to 21. During the same period, levels of total and phosphorylated Arp2, which nucleates actin branches, increase. A search for elements that could explain the switch from inactive to active cofilin identified reductions in β1 integrin, TrkB, and LIM domain kinase 2b, upstream proteins that promote cofilin phosphorylation. Moreover, levels of slingshot 3, which dephosphorylates cofilin, increase during the period in which growth slows. Consistent with the cofilin results, in situ phalloidin labeling of F-actin demonstrated that spines and dendrites contained high levels of dynamic actin filaments during Week 2, but these fell dramatically by pnd 21. The results suggest that the change from inactive to constitutively active cofilin leads to a loss of dynamic actin filaments needed for process extension and thus the termination of spine formation and synaptogenesis. The relevance of these events to the emergence of memory-related synaptic plasticity is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine M. Gall
- Department of Anatomy and Neurobiology
- Department of Neurobiology and Behavior
| | - Gary Lynch
- Department of Anatomy and Neurobiology
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Rigoulot S, Knoth IS, Lafontaine M, Vannasing P, Major P, Jacquemont S, Michaud JL, Jerbi K, Lippé S. Altered visual repetition suppression in Fragile X Syndrome: New evidence from ERPs and oscillatory activity. Int J Dev Neurosci 2017; 59:52-59. [DOI: 10.1016/j.ijdevneu.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/31/2016] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Simon Rigoulot
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
| | - Inga S. Knoth
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Marc‐Philippe Lafontaine
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Phetsamone Vannasing
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Philippe Major
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Sébastien Jacquemont
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Jacques L. Michaud
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
| | - Karim Jerbi
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal (CRIUSMM)
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)
| | - Sarah Lippé
- Departement de PsychologieUniversité de MontréalMontrealCanada
- Neuroscience of Early Development (NED)MontrealCanada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC)MontrealCanada
- Research Center of the CHU Ste‐Justine Mother and Child University Hospital Center, Université de MontrealQuebecCanada
- International Laboratory for Brain, Music and Sound Research (BRAMS)MontrealQuebecCanada
| |
Collapse
|
27
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
28
|
Wang W, Kantorovich S, Babayan AH, Hou B, Gall CM, Lynch G. Estrogen's Effects on Excitatory Synaptic Transmission Entail Integrin and TrkB Transactivation and Depend Upon β1-integrin function. Neuropsychopharmacology 2016; 41:2723-32. [PMID: 27272766 PMCID: PMC5026741 DOI: 10.1038/npp.2016.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 01/19/2023]
Abstract
Estradiol (E2) perfusion rapidly increases the strength of fast excitatory transmission and facilitates long-term potentiation in the hippocampus, two effects likely related to its memory-enhancing properties. Past studies showed that E2's facilitation of transmission involves activation of RhoA signaling leading to actin polymerization in dendritic spines. Here we report that brief exposure of adult male hippocampal slices to 1 nM E2 increases the percentage of postsynaptic densities associated with high levels of immunoreactivity for activated forms of the BDNF receptor TrkB and β1-integrins, two synaptic receptors that engage actin regulatory RhoA signaling. The effects of E2 on baseline synaptic responses were unaffected by pretreatment with the TrkB-Fc scavenger for extracellular BDNF or TrkB antagonism, but were eliminated by neutralizing antisera for β1-integrins. E2 effects on synaptic responses were also absent in conditional β1-integrin knockouts, and with inhibition of matrix metalloproteinases, extracellular enzymes that generate integrin ligands. We propose that E2, acting through estrogen receptor-β, transactivates synaptic TrkB and β1-integrin, and via mechanisms dependent on integrin activation and signaling, reversibly reorganizes the spine cytoskeleton and thereby enhances synaptic responses in adult hippocampus.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Svetlana Kantorovich
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Alex H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Bowen Hou
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA,Department of Anatomy and Neurobiology, Gillespie Neuroscience Research Facility, University of California at Irvine, 837 Health Science Road, Irvine, CA 92697, USA, Tel: +1 949 824 8652, Fax: +1 949 824 0276, E-mail: or
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA,Department of Anatomy and Neurobiology, Gillespie Neuroscience Research Facility, University of California at Irvine, 837 Health Science Road, Irvine, CA 92697, USA, Tel: +1 949 824 8652, Fax: +1 949 824 0276, E-mail: or
| |
Collapse
|
29
|
A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. eNeuro 2016; 3:eN-NWR-0160-16. [PMID: 27517090 PMCID: PMC4976302 DOI: 10.1523/eneuro.0160-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/03/2023] Open
Abstract
The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity.
Collapse
|
30
|
Abstract
Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.
Collapse
Affiliation(s)
- Victor Briz
- 1 KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease, Leuven, Belgium
- 2 VIB Center for the Biology of Disease, Leuven, Belgium
| | - Michel Baudry
- 3 Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
31
|
Sato A. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2016; 15:533-43. [PMID: 27071790 PMCID: PMC5070418 DOI: 10.2174/1871527315666160413120638] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator in various cellular processes, including cell growth, gene expression, and synaptic functions. Autism spectrum disorder (ASD) is frequently accompanied by monogenic disorders, such as tuberous sclerosis complex, phosphatase and tensin homolog tumor hamartoma syndrome, neurofibromatosis 1, and fragile X syndrome, in which mTOR is hyperactive. Mutations in the genes involved in the mTOR-mediated signaling pathway have been identified in some cases of syndromic ASD. Evidences indicate a pathogenic role for hyperactive mTOR-mediated signaling in ASD associated with these monogenic disorders, and mTOR inhibitors are a potential pharmacotherapy for ASD. Abnormal synaptic transmission through metabotropic glutamate receptor 5 may underlie in a part of ASD associated with hyperactive mTOR-mediated signaling. In this review, the relationship between mTOR and ASD is discussed.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113- 8655, Japan.
| |
Collapse
|
32
|
MacGillavry HD, Kerr JM, Kassner J, Frost NA, Blanpied TA. Shank-cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses. Eur J Neurosci 2015; 43:179-93. [PMID: 26547831 DOI: 10.1111/ejn.13129] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
The family of Shank scaffolding molecules (comprising Shank1, 2 and 3) are core components of the postsynaptic density (PSD) in neuronal synapses. Shanks link surface receptors to other scaffolding molecules within the PSD, as well as to the actin cytoskeleton. However, determining the function of Shank proteins in neurons has been complicated because the different Shank isoforms share a very high degree of sequence and domain homology. Therefore, to control Shank content while minimizing potential compensatory effects, a miRNA-based knockdown strategy was developed to reduce the expression of all synaptically targeted Shank isoforms simultaneously in rat hippocampal neurons. Using this approach, a strong (>75%) reduction in total Shank protein levels was achieved at individual dendritic spines, prompting an approximately 40% decrease in mushroom spine density. Furthermore, Shank knockdown reduced spine actin levels and increased sensitivity to the actin depolymerizing agent Latrunculin A. A SHANK2 mutant lacking the proline-rich cortactin-binding motif (SHANK2-ΔPRO) was unable to rescue these defects. Furthermore, Shank knockdown reduced cortactin levels in spines and increased the mobility of spine cortactin as measured by single-molecule tracking photoactivated localization microscopy, suggesting that Shank proteins recruit and stabilize cortactin at the synapse. Furthermore, it was found that Shank knockdown significantly reduced spontaneous remodelling of synapse morphology that could not be rescued by the SHANK2-ΔPRO mutant. It was concluded that Shank proteins are key intermediates between the synapse and the spine interior that, via cortactin, permit the actin cytoskeleton to dynamically regulate synapse morphology and function.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584, CH Utrecht, the Netherlands
| | - Justin M Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Josh Kassner
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas A Frost
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
33
|
Hjelm BE, Rollins B, Mamdani F, Lauterborn JC, Kirov G, Lynch G, Gall CM, Sequeira A, Vawter MP. Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2015; 1:201-19. [PMID: 26550561 DOI: 10.1159/000441252] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
Genetic evidence has supported the hypothesis that schizophrenia (SZ) is a polygenic disorder caused by the disruption in function of several or many genes. The most common and reproducible cellular phenotype associated with SZ is a reduction in dendritic spines within the neocortex, suggesting alterations in dendritic architecture may cause aberrant cortical circuitry and SZ symptoms. Here, we review evidence supporting a multifactorial model of mitochondrial dysfunction in SZ etiology and discuss how these multiple paths to mitochondrial dysfunction may contribute to dendritic spine loss and/or underdevelopment in some SZ subjects. The pathophysiological role of mitochondrial dysfunction in SZ is based upon genomic analyses of both the mitochondrial genome and nuclear genes involved in mitochondrial function. Previous studies and preliminary data suggest SZ is associated with specific alleles and haplogroups of the mitochondrial genome, and also correlates with a reduction in mitochondrial copy number and an increase in synonymous and nonsynonymous substitutions of mitochondrial DNA. Mitochondrial dysfunction has also been widely implicated in SZ by genome-wide association, exome sequencing, altered gene expression, proteomics, microscopy analyses, and induced pluripotent stem cell studies. Together, these data support the hypothesis that SZ is a polygenic disorder with an enrichment of mitochondrial targets.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Brandi Rollins
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Firoza Mamdani
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Julie C Lauterborn
- Departments of Anatomy & Neurobiology, University of California, Irvine, Calif., USA
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Gary Lynch
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA; Departments of Anatomy & Neurobiology, University of California, Irvine, Calif., USA
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, Calif., USA; Departments of Neurobiology & Behavior, University of California, Irvine, Calif., USA
| | - Adolfo Sequeira
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Marquis P Vawter
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| |
Collapse
|
34
|
Hippocampal Cortactin Levels are Reduced Following Spatial Working Memory Formation, an Effect Blocked by Chronic Calpain Inhibition. Brain Sci 2015; 5:241-57. [PMID: 26103422 PMCID: PMC4493467 DOI: 10.3390/brainsci5020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which the hippocampus facilitates declarative memory formation appears to involve, among other things, restructuring of the actin cytoskeleton within neuronal dendrites. One protein involved in this process is cortactin, which is an important link between extracellular signaling and cytoskeletal reorganization. In this paper, we demonstrate that total hippocampal cortactin, as well as Y421-phosphorylated cortactin are transiently reduced following spatial working memory formation in the radial arm maze (RAM). Because cortactin is a substrate of the cysteine protease calpain, we also assessed the effect of chronic calpain inhibition on RAM performance and cortactin expression. Calpain inhibition impaired spatial working memory and blocked the reduction in hippocampal cortactin levels following RAM training. These findings add to a growing body of research implicating cortactin and calpain in hippocampus-dependent memory formation.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This work reviews recent research regarding treatment of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder. The phenotype includes anxiety linked to sensory hyperarousal, hyperactivity, and attentional problems consistent with attention deficit hyperactivity disorder and social deficits leading to autism spectrum disorder in 60% of boys and 25% of girls with FXS. RECENT FINDINGS Multiple targeted treatments for FXS have rescued the phenotype of the fmr1 knockout mouse, but few have been beneficial to patients with FXS. The failure of the metabotropic glutamate receptor 5 antagonists falls on the heels of the failure of Arbaclofen's efficacy in children and adults with autism or FXS. In contrast, efficacy has been demonstrated in a controlled trial of minocycline in children with FXS. Minocycline lowers the abnormally elevated levels of matrix metalloproteinase 9 in FXS. Acamprosate and lovastatin have been beneficial in open-label trials in FXS. The first 5 years of life may be the most efficacious time for intervention when combined with behavioral and/or educational interventions. SUMMARY Minocycline, acamprosate, lovastatin, and sertraline are treatments that can be currently prescribed and have shown benefit in children with FXS. Use of combined medical and behavioral interventions will likely be most efficacious for the treatment of FXS.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
36
|
Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology 2015; 89:43-53. [DOI: 10.1016/j.neuropharm.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023]
|
37
|
Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice. Proc Natl Acad Sci U S A 2014; 111:16907-12. [PMID: 25385607 DOI: 10.1073/pnas.1413335111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.
Collapse
|
38
|
Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 2014; 3:118-33. [PMID: 25606362 PMCID: PMC4298642 DOI: 10.5582/irdr.2014.01024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 11/05/2022] Open
Abstract
Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS.
Collapse
Affiliation(s)
- Tatiana M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
- Address correspondence to: Dr. Tatiana M. Kazdoba, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, Research II Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA. E-mail:
| | - Prescott T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jacqueline N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
39
|
Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 2014; 39:1664-73. [PMID: 24448645 PMCID: PMC4023139 DOI: 10.1038/npp.2014.13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T(+) Itpr3(tf)/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory, whereas the remainder did not. Fluorescence deconvolution tomography was used to test whether synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared with C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested whether treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology.
Collapse
|
40
|
Lynch G, Cox CD, Gall CM. Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 2014; 8:90. [PMID: 24904313 PMCID: PMC4033242 DOI: 10.3389/fnsys.2014.00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
The possibility of expanding memory or cognitive capabilities above the levels in high functioning individuals is a topic of intense discussion among scientists and in society at large. The majority of animal studies use behavioral endpoint measures; this has produced valuable information but limited predictability for human outcomes. Accordingly, several groups are pursuing a complementary strategy with treatments targeting synaptic events associated with memory encoding or forebrain network operations. Transcription and translation figure prominently in substrate work directed at enhancement. Notably, the question of why new proteins would be needed for a now-forming memory given that learning-driven synthesis presumably occurred throughout the immediate past has been largely ignored. Despite this conceptual problem, and some controversy, recent studies have reinvigorated the idea that selective gene manipulation is a plausible route to enhancement. Efforts to improve memory by facilitating synaptic encoding of information have also progressed, in part due of breakthroughs on mechanisms that stabilize learning-related, long-term potentiation (LTP). These advances point to a reductionistic hypothesis for a diversity of experimental results on enhancement, and identify under-explored possibilities. Cognitive enhancement remains an elusive goal, in part due to the difficulty of defining the target. The popular view of cognition as a collection of definable computations seems to miss the fluid, integrative process experienced by high functioning individuals. The neurobiological approach obviates these psychological issues to directly test the consequences of improving throughput in networks underlying higher order behaviors. The few relevant studies testing drugs that selectively promote excitatory transmission indicate that it is possible to expand cortical networks engaged by complex tasks and that this is accompanied by capabilities not found in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| |
Collapse
|
41
|
Abstract
Recent work showed that unsupervised learning of a complex environment activates synaptic proteins essential for the stabilization of long-term potentiation (LTP). The present study used automated methods to construct maps of excitatory synapses associated with high concentrations of one of these LTP-related proteins [CaMKII phosphorylated at T286/287, (pCaMKII)]. Labeling patterns across 42 sampling zones covering entire cross sections through rostral hippocampus were assessed for two groups of rats that explored a novel two-room arena for 30 min, with or without a response contingency involving mildly aversive cues. The number of pCaMKII-immunopositive (+) synapses was highly correlated between the two groups for the 21 sampling zones covering the dentate gyrus, CA3c/hilus, and apical dendrites of field CA1, but not for the remainder of the cross section. The distribution of pCaMKII+ synapses in the large uncorrelated segment differed markedly between the groups. Subtracting home-cage values removed high scores (i.e., sampling zones with a high percentage of pCaMKII+ contacts) in the negative contingency group, but not in the free-exploration animals. Three sites in the latter had values that were markedly elevated above other fields. These mapping results suggest that encoding of a form of memory that is dependent upon rostral hippocampus reliably occurs at high levels in discrete anatomical zones, and that this regionally differentiated response is blocked when animals are inhibited from freely exploring the environment by the introduction of a mildly aversive stimulus.
Collapse
|
42
|
Boda B, Mendez P, Boury-Jamot B, Magara F, Muller D. Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur J Neurosci 2014; 39:1130-7. [DOI: 10.1111/ejn.12488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Bernadett Boda
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| | - Pablo Mendez
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| | | | - Fulvio Magara
- Center for Psychiatric Neurosciences; Cery; Prilly-Lausanne Switzerland
| | - Dominique Muller
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| |
Collapse
|
43
|
Lim CS, Hoang ET, Viar KE, Stornetta RL, Scott MM, Zhu JJ. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev 2014; 28:273-89. [PMID: 24493647 PMCID: PMC3923969 DOI: 10.1101/gad.232470.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation. Lim et al. find that compounds activating serotonin (5HT) subtype 2B receptors or dopamine (DA) subtype 1-like receptors and those inhibiting 5HT2A-Rs or D2-Rs enhance Ras signaling, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Combining 5HT and DA compounds at low doses synergistically restored normal learning. This suggests that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome. Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras–PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras–PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.
Collapse
|
44
|
Yoo J, Bakes J, Bradley C, Collingridge GL, Kaang BK. Shank mutant mice as an animal model of autism. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130143. [PMID: 24298145 PMCID: PMC3843875 DOI: 10.1098/rstb.2013.0143] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review, we focus on the role of the Shank family of proteins in autism. In recent years, autism research has been flourishing. With genetic, molecular, imaging and electrophysiological studies being supported by behavioural studies using animal models, there is real hope that we may soon understand the fundamental pathology of autism. There is also genuine potential to develop a molecular-level pharmacological treatment that may be able to deal with the most severe symptoms of autism, and clinical trials are already underway. The Shank family of proteins has been strongly implicated as a contributing factor in autism in certain individuals and sits at the core of the alleged autistic pathway. Here, we analyse studies that relate Shank to autism and discuss what light this sheds on the possible causes of autism.
Collapse
Affiliation(s)
- Juyoun Yoo
- Department of Biological Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| | - Joseph Bakes
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| | - Clarrisa Bradley
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| | - Graham L. Collingridge
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
- Centre for Synaptic Plasticity, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Bong-Kiun Kaang
- Department of Biological Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-gu, Seoul 151-747, SouthKorea
| |
Collapse
|
45
|
Cohen OS, Varlinskaya EI, Wilson CA, Glatt SJ, Mooney SM. Acute prenatal exposure to a moderate dose of valproic acid increases social behavior and alters gene expression in rats. Int J Dev Neurosci 2013; 31:740-50. [PMID: 24055786 DOI: 10.1016/j.ijdevneu.2013.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022] Open
Abstract
Prenatal exposure to moderate doses of valproic acid (VPA) produces brainstem abnormalities, while higher doses of this teratogen elicit social deficits in the rat. In this pilot study, we examined effects of prenatal exposure to a moderate dose of VPA on behavior and on transcriptomic expression in three brain regions that mediate social behavior. Pregnant Long Evans rats were injected with 350 mg/kg VPA or saline on gestational day 13. A modified social interaction test was used to assess social behavior and social preference/avoidance during early and late adolescence and in adulthood. VPA-exposed animals demonstrated more social investigation and play fighting than control animals. Social investigation, play fighting, and contact behavior also differed as a function of age; the frequency of these behaviors increased in late adolescence. Social preference and locomotor activity under social circumstances were unaffected by treatment or age. Thus, a moderate prenatal dose of VPA produces behavioral alterations that are substantially different from the outcomes that occur following exposure to a higher dose. At adulthood, VPA-exposed subjects exhibited transcriptomic abnormalities in three brain regions: anterior amygdala, cerebellar vermis, and orbitofrontal cortex. A common feature among the proteins encoded by the dysregulated genes was their ability to be modulated by acetylation. Analysis of the expression of individual exons also revealed that genes involved in post-translational modification and epigenetic regulation had particular isoforms that were ubiquitously dysregulated across brain regions. The vulnerability of these genes to the epigenetic effects of VPA may highlight potential mechanisms by which prenatal VPA exposure alters the development of social behavior.
Collapse
Affiliation(s)
- Ori S Cohen
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | | | | | | |
Collapse
|
46
|
Lauterborn JC, Jafari M, Babayan AH, Gall CM. Environmental enrichment reveals effects of genotype on hippocampal spine morphologies in the mouse model of Fragile X Syndrome. ACTA ACUST UNITED AC 2013; 25:516-27. [PMID: 24046080 DOI: 10.1093/cercor/bht249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Fragile X Syndrome (FXS) and the Fmr1 knockout (KO) mouse model of this disorder exhibit abnormal dendritic spines in neocortex, but the degree of spine disturbances in hippocampus is not clear. The present studies tested if the mutation influences dendritic branching and spine measures for CA1 pyramidal cells in Fmr1 KO and wild-type (WT) mice provided standard or enriched environment (EE) housing. Automated measures from 3D reconstructions of green fluorescent protein (GFP)-labeled cells showed that spine head volumes were ∼ 40% lower in KOs when compared with WTs in both housing conditions. With standard housing, average spine length was greater in KOs versus WTs but there was no genotype difference in dendritic branching, numbers of spines, or spine length distribution. However, with EE rearing, significant effects of genotype emerged including greater dendritic branching in WTs, greater spine density in KOs, and greater numbers of short thin spines in KOs when compared with WTs. Thus, EE rearing revealed greater effects of the Fmr1 mutation on hippocampal pyramidal cell morphology than was evident with standard housing, suggesting that environmental enrichment allows for fuller appreciation of the impact of the mutation and better representation of abnormalities likely to be present in human FXS.
Collapse
Affiliation(s)
| | | | | | - Christine M Gall
- Departments of Anatomy and Neurobiology Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
47
|
Lynch G, Gall CM. Mechanism based approaches for rescuing and enhancing cognition. Front Neurosci 2013; 7:143. [PMID: 23966908 PMCID: PMC3744010 DOI: 10.3389/fnins.2013.00143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023] Open
Abstract
Progress toward pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a “substrate map”) that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: (1) enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; (2) serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; (3) a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | | |
Collapse
|
48
|
Seese RR, Chen LY, Cox CD, Schulz D, Babayan AH, Bunney WE, Henn FA, Gall CM, Lynch G. Synaptic abnormalities in the infralimbic cortex of a model of congenital depression. J Neurosci 2013; 33:13441-8. [PMID: 23946402 PMCID: PMC3742930 DOI: 10.1523/jneurosci.2434-13.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/07/2013] [Accepted: 07/13/2013] [Indexed: 01/17/2023] Open
Abstract
Multiple lines of evidence suggest that disturbances in excitatory transmission contribute to depression. Whether these defects involve the number, size, or composition of glutamatergic contacts is unclear. This study used recently introduced procedures for fluorescence deconvolution tomography in a well-studied rat model of congenital depression to characterize excitatory synapses in layer I of infralimbic cortex, a region involved in mood disorders, and of primary somatosensory cortex. Three groups were studied: (1) rats bred for learned helplessness (cLH); (2) rats resistant to learned helplessness (cNLH); and (3) control Sprague Dawley rats. In fields within infralimbic cortex, cLH rats had the same numerical density of synapses, immunolabeled for either the postsynaptic density (PSD) marker PSD95 or the presynaptic protein synaptophysin, as controls. However, PSD95 immunolabeling intensities were substantially lower in cLH rats, as were numerical densities of synapse-sized clusters of the AMPA receptor subunit GluA1. Similar but less pronounced differences (comparable numerical densities but reduced immunolabeling intensity for PSD95) were found in the somatosensory cortex. In contrast, non-helpless rats had 25% more PSDs than either cLH or control rats without any increase in synaptophysin-labeled terminal frequency. Compared with controls, both cLH and cNLH rats had fewer GABAergic contacts. These results indicate that congenital tendencies that increase or decrease depression-like behavior differentially affect excitatory synapses.
Collapse
Affiliation(s)
| | | | | | - Daniela Schulz
- Brookhaven National Laboratory, Upton, New York 11973, and
| | | | | | - Fritz A. Henn
- Brookhaven National Laboratory, Upton, New York 11973, and
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology
- Psychiatry and Human Behavior, and
| |
Collapse
|
49
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
50
|
Rácz B, Weinberg RJ. Microdomains in forebrain spines: an ultrastructural perspective. Mol Neurobiol 2013; 47:77-89. [PMID: 22983912 PMCID: PMC3538892 DOI: 10.1007/s12035-012-8345-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Glutamatergic axons in the mammalian forebrain terminate predominantly onto dendritic spines. Long-term changes in the efficacy of these excitatory synapses are tightly coupled to changes in spine morphology. The reorganization of the actin cytoskeleton underlying this spine "morphing" involves numerous proteins that provide the machinery needed for adaptive cytoskeletal remodeling. Here, we review recent literature addressing the chemical architecture of the spine, focusing mainly on actin-binding proteins (ABPs). Accumulating evidence suggests that ABPs are organized into functionally distinct microdomains within the spine cytoplasm. This functional compartmentalization provides a structural basis for regulation of the spinoskeleton, offering a novel window into mechanisms underlying synaptic plasticity.
Collapse
Affiliation(s)
- Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, 1078, Budapest, Hungary.
| | | |
Collapse
|