1
|
Zhao Y, Song A, Liu G, Chen Q, Wu Q, Gao Z, Li Z, Yu H, Wu Z. Modulation of netrin-1/DCC signaling pathway by Jiawei Kongsheng Zhenzhong Pill improves synaptic structural plasticity in PSD rats. J Pharmacol Sci 2025; 157:242-252. [PMID: 40058944 DOI: 10.1016/j.jphs.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
Jiawei Kongsheng Zhenzhong Pill(JKZP) is based on Kongsheng Zhenzhong Pill contained in the Tang Dynasty's "Thousand Golden Prescriptions," which exhibited good anti-ischemic and antidepressant effects in the previous study. However, its specific effects on post-stroke depression (PSD) and the mechanism are not clear. This study aimed to investigate the effects of JKZP in the treatment of PSD and related mechanisms. The decoction of JKZP was first analyzed for its medicinal chemical composition and screened for representative components of JKZP. The Middle cerebral artery occlusion (MCAO) method combined with solitary rearing and chronic unpredictable mild stress (CUMS) was used to establish a rat model of PSD, and to observe the effects of JKZP on the behavior and synaptic plasticity of PSD rats, and to investigate the mechanism of JKZP in the treatment of PSD by detecting the mRNA level, protein expression and activity of Netrin-1/DCC signaling pathway-related proteins. The results showed that the JKZP decoction contained loganin, β-asarone and other pharmaceutical ingredients, which have been reported to protect against cerebral ischemic injury and antidepressant effects. JKZP significantly improved the depression-like behavior of PSD rats and improved the damage to pyramidal neurons in the medial prefrontal cortex (mPFC) of PSD rats. Moreover, JKZP increased the density of dendritic spines in the mPFC of PSD rats, improved synaptic gap width and thickness of the post-synaptic density, and increased the number of synaptic vesicles. The results of Real-Time quantitative reverse transcription PCR (qRT-PCR), Western blotting, and pull-down assays revealed that JKZP increased netrin-1, deleted in colorectal cancer (DCC), and focal adhesion kinase (FAK) mRNA and protein expression, elevated the p-FAK/FAK ratio, and decreased myosin II protein expression and Ras homolog gene family member A (RhoA-GTP) activity in the mPFC of PSD rats. Taken together, JKZP can affect synaptic structural remodeling and improve depressive manifestations and neuronal damage in PSD rats by regulating the expression and activity of signaling molecules related to the netrin-1/DCC signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Aizhen Song
- College of Medicine, Shandong Xiehe University, Jinan, 250109, Shandong, China
| | - Guowei Liu
- College of Foreign Languages and Literature, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Qiuyue Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Qiaolan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zu Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
2
|
Zhu K, Wang H, Ye K, Chen G, Zhang Z. Netrin-1 signaling pathway mechanisms in neurodegenerative diseases. Neural Regen Res 2025; 20:960-972. [PMID: 38989931 PMCID: PMC11438344 DOI: 10.4103/nrr.nrr-d-23-01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/16/2024] [Indexed: 07/12/2024] Open
Abstract
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development. Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function. Increasing amounts of evidence highlight several key points: (1) Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer's disease and Parkinson's disease, and potentially, similar alterations occur in humans. (2) Genetic mutations of Netrin-1 receptors increase an individuals' susceptibility to neurodegenerative disorders. (3) Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function. (4) Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers. These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases. Through a comprehensive review of Netrin-1 signaling pathways, our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Heibei Province, Shijiazhuang, Hebei Province, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
4
|
Cheng P, Ding K, Chen D, Yang C, Wang J, Yang S, Chen M, Zhu G. mPFC DCC coupling with CaMKII + neuronal excitation participates in behavioral despair in male mice. Transl Psychiatry 2025; 15:52. [PMID: 39952936 PMCID: PMC11829057 DOI: 10.1038/s41398-025-03266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
A longed lack of control over harmful stimuli can lead to learned helplessness (LH), a significant factor in depression. However, the cellular and molecular mechanisms underlying LH, and eventually behavioral despair, remain largely unknown. The deleted in colorectal cancer (dcc) gene is associated with the risk of depression. However, the therapeutic potential and regulation mechanism of DCC in behavioral despair are still uncertain. In this study, we showed that depressive stimulators, including LH, lipopolysaccharide, and unpredictable chronic mild stress, triggered an elevation in DCC expression in the medial prefrontal cortex (mPFC). Additionally, elevated DCC expression in the mPFC was crucial in inducing behavioral despair, as evidenced by the induction of behavioral despair in normal mice and exacerbation of behavioral despair in LH mice upon DCC overexpression. By contrast, neutralizing DCC activity ameliorated LH-induced behavioral despair. Importantly, we elucidated that pathological DCC expression was attributable to the excessive excitation of CaMKII+ neurons in a manner dependent on the calpain-mediated degradation of SCOP and aberrant phosphorylation of the ERK signaling pathway. In addition, the increase in DCC expression led to a decreased excitability threshold in CaMKII+ neurons in the mPFC, which was supported by the observation that the ligand netrin 1 increased the frequency of action potential firing and of spontaneous excitatory postsynaptic currents in CaMKII+ neurons. In conclusion, our data indicate that LH triggers the excessive excitation of CaMKII+ neurons and activation of calpain-SCOP/ERK signaling to promote DCC expression, and DCC represents a crucial target for the treatment of LH-induced behavioral despair in male mice.
Collapse
Affiliation(s)
- Ping Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Keke Ding
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Daokang Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Chen Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Ming Chen
- MOE Frontier Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
She JW, Young CM, Chou SJ, Wu YR, Lin YT, Huang TY, Shen MY, Chen CY, Yang YP, Chien Y, Ayalew H, Liao WH, Tung YC, Shyue JJ, Chiou SH, Yu HH. Gradient conducting polymer surfaces with netrin-1-conjugation promote axon guidance and neuron transmission of human iPSC-derived retinal ganglion cells. Biomaterials 2025; 313:122770. [PMID: 39226653 DOI: 10.1016/j.biomaterials.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.
Collapse
Affiliation(s)
- Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Taiwan International Graduate Program (TIGP), Nano Science & Technology Program, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, 300, Hsinchu City, Taiwan
| | - Chia-Mei Young
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - You-Ren Wu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Yu-Ting Lin
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Tzu-Yang Huang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Mo-Yuan Shen
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
6
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Yu HL, Liu X, Yin Y, Liu XN, Feng YY, Tahir MM, Miao XZ, He XX, He ZX, Zhu XJ. Netrin-1 Is an Important Mediator in Microglia Migration. Int J Mol Sci 2024; 25:7079. [PMID: 39000184 PMCID: PMC11241722 DOI: 10.3390/ijms25137079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3β activity contributed to Netrin-1-mediated microglia migration. Furthermore, Integrin α6/β1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and β1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/β1 and Netrin-1. Importantly, activation of Integrin α6/β1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China; (H.-L.Y.); (X.L.); (Y.Y.); (X.-N.L.); (Y.-Y.F.); (M.M.T.); (X.-Z.M.); (X.-X.H.); (Z.-X.H.)
| |
Collapse
|
8
|
McCormick LE, Evans EB, Barker NK, Herring LE, Diering GH, Gupton SL. The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics in response to netrin-1. Mol Biol Cell 2024; 35:ar67. [PMID: 38507236 PMCID: PMC11151106 DOI: 10.1091/mbc.e23-12-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.
Collapse
Affiliation(s)
- Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elliot B. Evans
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie K. Barker
- Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Laura E. Herring
- Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Graham H. Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
10
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 2024; 31:260-274.e7. [PMID: 38306994 PMCID: PMC10883639 DOI: 10.1016/j.stem.2023.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Probing how human neural networks operate is hindered by the lack of reliable human neural tissues amenable to the dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate into neurons and form functional neural circuits within and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents, and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
Affiliation(s)
- Yuanwei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xueyan Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakthikumar Mathivanan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Linghai Kong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yi Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore, Singapore; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815.
| |
Collapse
|
11
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D Bioprinting of Human Neural Tissues with Functional Connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576289. [PMID: 38328181 PMCID: PMC10849546 DOI: 10.1101/2024.01.18.576289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Probing how the human neural networks operate is hindered by the lack of reliable human neural tissues amenable for dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate to neurons and form functional neural circuits in and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
|
12
|
McCormick LE, Evans EB, Barker NK, Herring LE, Diering GH, Gupton SL. The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573790. [PMID: 38260647 PMCID: PMC10802335 DOI: 10.1101/2023.12.31.573790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1 dependent axon guidance and branching. Here we demonstrate TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the post-synaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.
Collapse
Affiliation(s)
- Laura E McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elliot B Evans
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie K Barker
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Graham H Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Cramer TML, Pinan-Lucarre B, Cavaccini A, Damilou A, Tsai YC, Bhat MA, Panzanelli P, Rama N, Mehlen P, Benke D, Karayannis T, Bessereau JL, Tyagarajan SK. Adamtsl3 mediates DCC signaling to selectively promote GABAergic synapse function. Cell Rep 2023; 42:112947. [PMID: 37572323 DOI: 10.1016/j.celrep.2023.112947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023] Open
Abstract
The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.
Collapse
Affiliation(s)
- Teresa M L Cramer
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Anna Cavaccini
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Angeliki Damilou
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yuan-Chen Tsai
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Musadiq A Bhat
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Dietmar Benke
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Theofanis Karayannis
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jean-Louis Bessereau
- University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| | - Shiva K Tyagarajan
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Batra A, Cuesta S, Alves MB, Restrepo JM, Giroux M, Laureano DP, Mucellini Lovato AB, Miguel PM, Machado TD, Molle RD, Flores C, Silveira PP. Relationship between insulin and Netrin-1/DCC guidance cue pathway regulation in the prefrontal cortex of rodents exposed to prenatal dietary restriction. J Dev Orig Health Dis 2023; 14:501-507. [PMID: 37431265 PMCID: PMC10988268 DOI: 10.1017/s204017442300017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Fetal restriction (FR) alters insulin sensitivity, but it is unknown how the metabolic profile associated with restriction affects development of the dopamine (DA) system and DA-related behaviors. The Netrin-1/DCC guidance cue system participates in maturation of the mesocorticolimbic DA circuitry. Therefore, our objective was to identify if FR modifies Netrin-1/DCC receptor protein expression in the prefrontal cortex (PFC) at birth and mRNA in adulthood in rodent males. We used cultured HEK293 cells to assess if levels of miR-218, microRNA regulator of DCC, are sensitive to insulin. To assess this, pregnant dams were subjected to a 50% FR diet from gestational day 10 until birth. Medial PFC (mPFC) DCC/Netrin-1 protein expression was measured at P0 at baseline and Dcc/Netrin-1 mRNA levels were quantified in adults 15 min after a saline/insulin injection. miR-218 levels in HEK-293 cells were measured in response to insulin exposure. At P0, Netrin-1 levels are downregulated in FR animals in comparison to controls. In adult rodents, insulin administration results in an increase in Dcc mRNA levels in control but not FR rats. In HEK293 cells, there is a positive correlation between insulin concentration and miR-218 levels. Since miR-218 is a Dcc gene expression regulator and our in vitro results show that insulin regulates miR-218 levels, we suggest that FR-induced changes in insulin sensitivity could be affecting Dcc expression via miR-218, impacting DA system maturation and organization. As fetal adversity is linked to nonadaptive behaviors later in life, this may contribute to early identification of vulnerability to chronic diseases associated with fetal adversity.
Collapse
Affiliation(s)
- Aashita Batra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marcio Bonesso Alves
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jose Maria Restrepo
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Daniela Pereira Laureano
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Brondani Mucellini Lovato
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tania Diniz Machado
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Stil A, Liberelle B, Guadarrama Bello D, Lacomme L, Arpin L, Parent P, Nanci A, Dumont ÉC, Ould-Bachir T, Vanni MP, De Crescenzo G, Bouchard JF. A simple method for poly-D-lysine coating to enhance adhesion and maturation of primary cortical neuron cultures in vitro. Front Cell Neurosci 2023; 17:1212097. [PMID: 37416506 PMCID: PMC10320290 DOI: 10.3389/fncel.2023.1212097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Glass coverslips are used as a substrate since Harrison's initial nerve cell culture experiments in 1910. In 1974, the first study of brain cells seeded onto polylysine (PL) coated substrate was published. Usually, neurons adhere quickly to PL coating. However, maintaining cortical neurons in culture on PL coating for a prolonged time is challenging. Methods A collaborative study between chemical engineers and neurobiologists was conducted to find a simple method to enhance neuronal maturation on poly-D-lysine (PDL). In this work, a simple protocol to coat PDL efficiently on coverslips is presented, characterized, and compared to a conventional adsorption method. We studied the adhesion and maturation of primary cortical neurons with various morphological and functional approaches, including phase contrast microscopy, immunocytochemistry, scanning electron microscopy, patch clamp recordings, and calcium imaging. Results We observed that several parameters of neuronal maturation are influenced by the substrate: neurons develop more dense and extended networks and synaptic activity is enhanced, when seeded on covalently bound PDL compared to adsorbed PDL. Discussion Hence, we established reproducible and optimal conditions enhancing maturation of primary cortical neurons in vitro. Our method allows higher reliability and yield of results and could also be profitable for laboratories using PL with other cell types.
Collapse
Affiliation(s)
- Aurélie Stil
- École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Benoît Liberelle
- Département de Génie Chimique, Polytechnique Montréal, Montreal, QC, Canada
| | | | - Lucile Lacomme
- École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Laurie Arpin
- École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Pascale Parent
- École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Antonio Nanci
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC, Canada
| | - Éric C. Dumont
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Tarek Ould-Bachir
- Département de Génie Informatique et Génie Logiciel, Polytechnique Montréal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
17
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
18
|
Pan W, Huang X, Yu Z, Ding Q, Xia L, Hua J, Gu B, Xiong Q, Yu H, Wang J, Xu Z, Zeng L, Bai G, Liu H. Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons. Neurosci Bull 2023; 39:745-758. [PMID: 36587114 PMCID: PMC10169969 DOI: 10.1007/s12264-022-01011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/08/2022] [Indexed: 01/02/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is the most common disabling complication of diabetes. Emerging evidence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area; however, the underlying molecular events remain poorly understood. Here we found that an axon guidance molecule, Netrin-3 (Ntn-3), was expressed in the sensory neurons of mouse dorsal root ganglia (DRGs), and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model. Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice. In contrast, the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice. In conclusion, our studies identified Ntn-3 as an important regulator of DNP pathogenesis by gating the aberrant sprouting of sensory axons, indicating that Ntn-3 is a potential druggable target for DNP treatment.
Collapse
Affiliation(s)
- Weiping Pan
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueyin Huang
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zikai Yu
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiongqiong Ding
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
| | - Liping Xia
- Department of Anesthesiology and Department of Neurobiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jianfeng Hua
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bokai Gu
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qisong Xiong
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hualin Yu
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junbo Wang
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
| | - Zhenzhong Xu
- Department of Anesthesiology and Department of Neurobiology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Linghui Zeng
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
- Institute of Brain and Cognition, Zhejiang University City College School of Medicine, Hangzhou, 310015, China.
| | - Huaqing Liu
- Department of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou, 310015, China.
- Institute of Brain and Cognition, Zhejiang University City College School of Medicine, Hangzhou, 310015, China.
| |
Collapse
|
19
|
Mahmud A, Avramescu RG, Niu Z, Flores C. Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Front Neural Circuits 2023; 17:1113023. [PMID: 37035502 PMCID: PMC10079902 DOI: 10.3389/fncir.2023.1113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic and disabling disorder affecting roughly 280 million people worldwide. While multiple brain areas have been implicated, dysfunction of prefrontal cortex (PFC) circuitry has been consistently documented in MDD, as well as in animal models for stress-induced depression-like behavioral states. During brain development, axonal guidance cues organize neuronal wiring by directing axonal pathfinding and arborization, dendritic growth, and synapse formation. Guidance cue systems continue to be expressed in the adult brain and are emerging as important mediators of synaptic plasticity and fine-tuning of mature neural networks. Dysregulation or interference of guidance cues has been linked to depression-like behavioral abnormalities in rodents and MDD in humans. In this review, we focus on the emerging role of guidance cues in stress-induced changes in adult prefrontal cortex circuitry and in precipitating depression-like behaviors. We discuss how modulating axonal guidance cue systems could be a novel approach for precision medicine and the treatment of depression.
Collapse
Affiliation(s)
- Ashraf Mahmud
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Psychiatry, Neurology, and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
20
|
Diab AM, Wigerius M, Quinn DP, Qi J, Shahin I, Paffile J, Krueger K, Karten B, Krueger SR, Fawcett JP. NCK1 Modulates Neuronal Actin Dynamics and Promotes Dendritic Spine, Synapse, and Memory Formation. J Neurosci 2023; 43:885-901. [PMID: 36535770 PMCID: PMC9908320 DOI: 10.1523/jneurosci.0495-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Memory formation and maintenance is a dynamic process involving the modulation of the actin cytoskeleton at synapses. Understanding the signaling pathways that contribute to actin modulation is important for our understanding of synapse formation and function, as well as learning and memory. Here, we focused on the importance of the actin regulator, noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1), in hippocampal dependent behaviors and development. We report that male mice lacking NCK1 have impairments in both short-term and working memory, as well as spatial learning. Additionally, we report sex differences in memory impairment showing that female mice deficient in NCK1 fail at reversal learning in a spatial learning task. We find that NCK1 is expressed in postmitotic neurons but is dispensable for neuronal proliferation and migration in the developing hippocampus. Morphologically, NCK1 is not necessary for overall neuronal dendrite development. However, neurons lacking NCK1 have lower dendritic spine and synapse densities in vitro and in vivo EM analysis reveal increased postsynaptic density (PSD) thickness in the hippocampal CA1 region of NCK1-deficient mice. Mechanistically, we find the turnover of actin-filaments in dendritic spines is accelerated in neurons that lack NCK1. Together, these findings suggest that NCK1 contributes to hippocampal-dependent memory by stabilizing actin dynamics and dendritic spine formation.SIGNIFICANCE STATEMENT Understanding the molecular signaling pathways that contribute to memory formation, maintenance, and elimination will lead to a better understanding of the genetic influences on cognition and cognitive disorders and will direct future therapeutics. Here, we report that the noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) adaptor protein modulates actin-filament turnover in hippocampal dendritic spines. Mice lacking NCK1 show sex-dependent deficits in hippocampal memory formation tasks, have altered postsynaptic densities, and reduced synaptic density. Together, our work implicates NCK1 in the regulation of actin cytoskeleton dynamics and normal synapse development which is essential for memory formation.
Collapse
Affiliation(s)
- Antonios M Diab
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael Wigerius
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dylan P Quinn
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jiansong Qi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Julia Paffile
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kavita Krueger
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stefan R Krueger
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - James P Fawcett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
21
|
Subramani M, Hook MV, Rajamoorthy M, Qiu F, Ahmad I. Human Retinal Ganglion Cells Respond to Evolutionarily Conserved Chemotropic Cues for Intra Retinal Guidance and Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526677. [PMID: 36778442 PMCID: PMC9915675 DOI: 10.1101/2023.02.01.526677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal ganglion cells (RGCs) connect the retina with the higher centers in the brain for visual perception. Their degeneration leads to irreversible vision loss in glaucoma patients. Since human RGCs (hRGCs) are born during fetal development and connections with the central targets are established before birth, the mechanism underlying their axon growth and guidance remains poorly understood. Here, using RGCs directly generated from human embryonic stem cells, we demonstrate that hRGCs express a battery of guidance receptors. These receptors allow hRGCs to read the spatially arrayed chemotropic cues in the developing rat retina for the centripetal orientation of axons toward the optic disc, suggesting that the mechanism of intra-retinal guidance is conserved in hRGCs. The centripetal orientation of hRGCs axons is not only in response to chemo-repulsion but also involves chemo-attraction, mediated by Netrin-1/DCC interactions. The spatially arrayed chemotropic cues differentially influence hRGCs physiological responses, suggesting that neural activity of hRGCs may facilitate axon growth during inter-retinal guidance. Additionally, we demonstrate that Netrin-1/DCC interactions, besides promoting axon growth, facilitate hRGCs axon regeneration by recruiting the mTOR signaling pathway. The diverse influence of Netrin-1/DCC interactions ranging from axon growth to regeneration may involve recruitment of multiple intracellular signaling pathways as revealed by transcriptome analysis of hRGCs. From the perspective of ex-vivo stem cell approach to glaucomatous degeneration, our findings posit that ex-vivo generated human RGCs are capable of reading the intra-retinal cues for guidance toward the optic disc, the first step toward connecting with the central target to restore vision.
Collapse
|
22
|
Díaz MM, Tsenkina Y, Arizanovska D, Mehlen P, Liebl DJ. DCC/netrin-1 regulates cell death in oligodendrocytes after brain injury. Cell Death Differ 2023; 30:397-406. [PMID: 36456775 PMCID: PMC9950151 DOI: 10.1038/s41418-022-01091-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Hallmark pathological features of brain trauma are axonal degeneration and demyelination because myelin-producing oligodendrocytes (OLs) are particularly vulnerable to injury-induced death signals. To reveal mechanisms responsible for this OL loss, we examined a novel class of "death receptors" called dependence receptors (DepRs). DepRs initiate pro-death signals in the absence of their respective ligand(s), yet little is known about their role after injury. Here, we investigated whether the deleted in colorectal cancer (DCC) DepR contributes to OL loss after brain injury. We found that administration of its netrin-1 ligand is sufficient to block OL cell death. We also show that upon acute injury, DCC is upregulated while netrin-1 is downregulated in perilesional tissues. Moreover, after genetically silencing pro-death activity using DCCD1290N mutant mice, we observed greater OL survival, greater myelin integrity, and improved motor function. Our findings uncover a novel role for the netrin-1/DCC pathway in regulating OL loss in the traumatically injured brain.
Collapse
Affiliation(s)
- Madelen M Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yanina Tsenkina
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université de Lyon1, Lyon, France.
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
23
|
Janssen R, Budd GE. Expression of netrin and its receptors uncoordinated-5 and frazzled in arthropods and onychophorans suggests conserved and diverged functions in neuronal pathfinding and synaptogenesis. Dev Dyn 2023; 252:172-185. [PMID: 35112412 DOI: 10.1002/dvdy.459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Development of the nervous system and the correct connection of nerve cells require coordinated axonal pathfinding through an extracellular matrix. Outgrowing axons exhibit directional growth toward or away from external guidance cues such as Netrin. Guidance cues can be detected by growth cones that are located at the end of growing axons through membrane-bound receptors such as Uncoordianted-5 and Frazzled. Binding of Netrin causes reformation of the cytoskeleton and growth of the axon toward (or away from) the source of Netrin production. RESULTS Here, we investigate the embryonic mRNA expression patterns of netrin genes and their potential receptors, uncoordinated-5 and frazzled in arthropod species that cover all main branches of Arthropoda, that is, Pancrustacea, Myriapoda, and Chelicerata. We also studied the expression patterns in a closely related outgroup species, the onychophoran Euperipatoides kanangrensis, and provide data on expression profiles of these genes in larval tissues of the fly Drosophila melanogaster including the brain and the imaginal disks. CONCLUSION Our data reveal conserved and diverged aspects of neuronal guidance in Drosophila with respect to the other investigated species and suggest a conserved function in nervous system patterning of the developing appendages.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Edwards-Faret G, de Vin F, Slezak M, Gollenbeck L, Karaman R, Shinmyo Y, Batiuk MY, Pando CM, Urschitz J, Rincon MY, Moisyadi S, Schnütgen F, Kawasaki H, Schmucker D, Holt MG. A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions. Neuroscience 2023; 508:40-51. [PMID: 36464177 DOI: 10.1016/j.neuroscience.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts. However, functional analysis across species is often hampered by technical limitations, in non-genetic animal systems. Here, we describe a new single plasmid system, misPiggy. The system is based around the hyperactive piggyBac transposon system, which combines stable genomic integration of transgenes (for long-term expression) with large cargo capacity. Taking full advantage of these characteristics, we engineered novel expression modules into misPiggy that allow for cell-type specific loss- and gain-of-gene function. These modules work widely across species from frog to ferret. As a proof of principle, we present a loss-of-function analysis of the neuronal receptor Deleted in Colorectal Cancer (DCC) in retinal ganglion cells (RGCs) of Xenopus tropicalis tadpoles. Single axon tracings of mosaic knock-out cells reveal a specific cell-intrinsic requirement of DCC, specifically in axonal arborization within the frog tectum, rather than retina-to-brain axon guidance. Furthermore, we report additional technical advances that enable temporal control of knock-down or gain-of-function analysis. We applied this to visualize and manipulate labeled neurons, astrocytes and other glial cells in the central nervous system (CNS) of mouse, rat and ferret. We propose that misPiggy will be a valuable tool for rapid, flexible and cost-effective screening of gene function across a variety of animal models.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Filip de Vin
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Michal Slezak
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Lennart Gollenbeck
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Ruçhan Karaman
- VIB Center for Cancer Biology, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Oncology, Herestraat 49, Leuven 3000, Belgium
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Mykhailo Y Batiuk
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Carmen Menacho Pando
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Melvin Y Rincon
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Stefan Moisyadi
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Frank Schnütgen
- Department of Medicine 2, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; LOEWE Center for Cell and Gene Therapy, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; FCI, Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Dietmar Schmucker
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium.
| | - Matthew G Holt
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium; University of Porto, Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
25
|
Rastegar-Pouyani S, Kennedy TE, Kania A. Somatotopy of Mouse Spinothalamic Innervation and the Localization of a Noxious Stimulus Requires Deleted in Colorectal Carcinoma Expression by Phox2a Neurons. J Neurosci 2022; 42:7885-7899. [PMID: 36028316 PMCID: PMC9617615 DOI: 10.1523/jneurosci.1164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Anterolateral system (AS) neurons transmit pain signals from the spinal cord to the brain. Their morphology, anatomy, and physiological properties have been extensively characterized and suggest that specific AS neurons and their brain targets are concerned with the discriminatory aspects of noxious stimuli, such as their location or intensity, and their motivational/emotive dimension. Among the recently unraveled molecular markers of AS neurons is the developmentally expressed transcription factor Phox2a, providing us with the opportunity to selectively disrupt the embryonic wiring of AS neurons to gain insights into the logic of their adult function. As mice with a spinal-cord-specific loss of the netrin-1 receptor deleted in colorectal carcinoma (DCC) have increased AS neuron innervation of ipsilateral brain targets and defective noxious stimulus localization or topognosis, we generated mice of either sex carrying a deletion of Dcc in Phox2a neurons. Such DccPhox2a mice displayed impaired topognosis along the rostrocaudal axis but with little effect on left-right discrimination and normal aversive responses. Anatomical tracing experiments in DccPhox2a mice revealed defective targeting of cervical and lumbar AS axons within the thalamus. Furthermore, genetic labeling of AS axons revealed their expression of DCC on their arrival in the brain, at a time when many of their target neurons are being born and express Ntn1 Our experiments suggest a postcommissural crossing function for netrin-1:DCC signaling during the formation of somatotopically ordered maps and are consistent with a discriminatory function of some of the Phox2a AS neurons.SIGNIFICANCE STATEMENT How nociceptive (pain) signals are relayed from the body to the brain remains an important question relevant to our understanding of the basic physiology of pain perception. Previous studies have demonstrated that the AS is a main effector of this function. It is composed of AS neurons located in the spinal cord that receive signals from nociceptive sensory neurons that detect noxious stimuli. In this study, we generate a genetic miswiring of mouse AS neurons that results in a decreased ability to perceive the location of a painful stimulus. The precise nature of this defect sheds light on the function of different kinds of AS neurons and how pain information may be organized.
Collapse
Affiliation(s)
- Shima Rastegar-Pouyani
- Institut de Recherches Cliniques de Montréal, Montréal Québec H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal Québec H3A 2B4, Canada
| | - Timothy E Kennedy
- Integrated Program in Neuroscience, McGill University, Montréal Québec H3A 2B4, Canada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal Quebéc H3A 2B4, Canada
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, Montréal Québec H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal Québec H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal Québec H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal QC H3A 0C7, Canada
| |
Collapse
|
26
|
Hanuscheck N, Thalman C, Domingues M, Schmaul S, Muthuraman M, Hetsch F, Ecker M, Endle H, Oshaghi M, Martino G, Kuhlmann T, Bozek K, van Beers T, Bittner S, von Engelhardt J, Vogt J, Vogelaar CF, Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med 2022; 219:213227. [PMID: 35587822 PMCID: PMC9123307 DOI: 10.1084/jem.20211887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα–deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα–deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα–deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Ecker
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mohammadsaleh Oshaghi
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne; University of Cologne, Cologne, Germany
| | - Tim van Beers
- Molecular Cell Biology, Institute I of Anatomy, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jakob von Engelhardt
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
27
|
Peltz G, Tan Y. What Have We Learned (or Expect to) From Analysis of Murine Genetic Models Related to Substance Use Disorders? Front Psychiatry 2022; 12:793961. [PMID: 35095607 PMCID: PMC8790171 DOI: 10.3389/fpsyt.2021.793961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The tremendous public health problem created by substance use disorders (SUDs) presents a major opportunity for mouse genetics. Inbred mouse strains exhibit substantial and heritable differences in their responses to drugs of abuse (DOA) and in many of the behaviors associated with susceptibility to SUD. Therefore, genetic discoveries emerging from analysis of murine genetic models can provide critically needed insight into the neurobiological effects of DOA, and they can reveal how genetic factors affect susceptibility drug addiction. There are already indications, emerging from our prior analyses of murine genetic models of responses related to SUDs that mouse genetic models of SUD can provide actionable information, which can lead to new approaches for alleviating SUDs. Lastly, we consider the features of murine genetic models that enable causative genetic factors to be successfully identified; and the methodologies that facilitate genetic discovery.
Collapse
Affiliation(s)
- Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
28
|
Li W, He T, Shi R, Song Y, Wang L, Zhang Z, Tang Y, Yang GY, Wang Y. Oligodendrocyte Precursor Cells Transplantation Improves Stroke Recovery via Oligodendrogenesis, Neurite Growth and Synaptogenesis. Aging Dis 2021; 12:2096-2112. [PMID: 34881088 PMCID: PMC8612617 DOI: 10.14336/ad.2021.0416] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic-induced white matter injury is strongly correlated with the poor neurological outcomes in stroke patients. The transplantation of oligodendrocyte precursor cells (OPCs) is an effective candidate for enhancing re-myelination in congenitally dysmyelinated brain and spinal cord. Nevertheless, mechanisms governing the recovery of white matter and axon after OPCs transplantation are incompletely understood in ischemic stroke. In this study, OPCs were transplanted into the ischemic brain at 7 days after transient middle cerebral artery occlusion (tMCAO). We observed improved behavior recovery and reduced brain atrophy volume at 28 days after OPCs transplantation. Moreover, our results identified that myelin sheath integrity and endogenous OPCs proliferation and migration were promoted after OPCs transplantation. By contrast, AMD3100, an antagonist of C-X-C chemokine receptor type 4, eliminated the beneficial effects of OPCs transplantation on white matter integrity and endogenous oligodendrogenesis. In addition, the improvement of neurite growth and synaptogenesis after OPCs transplantation in ischemic brain or OPC co-cultured neurons, potentially through the upregulation of Netrin-1, was indicated by increased protein levels of synaptophysin and postsynaptic density protein 95. Knockdown of Deleted in Colorectal Carcinoma, a receptor of Netrin-1, prevented increased neurite growth and synaptogenesis in neurons co-cultured with OPCs. In conclusion, our studies suggested that engrafted OPCs promoted the recovery after ischemic stroke by enhancing endogenous oligodendrogenesis, neurite growth, and synaptogenesis; the last two being mediated by the Netrin-1/DCC axis.
Collapse
Affiliation(s)
- Wanlu Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Tingting He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rubing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Correspondence should be addressed to: Drs. Yongting Wang (E-mail:) and Guo-Yuan Yang (E-mail: ), Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,Correspondence should be addressed to: Drs. Yongting Wang (E-mail:) and Guo-Yuan Yang (E-mail: ), Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Spinal caspase-6 regulates AMPA receptor trafficking and dendritic spine plasticity through netrin-1 in postoperative pain after orthopedic surgery for tibial fracture in mice. Pain 2021; 162:124-134. [PMID: 32701657 DOI: 10.1097/j.pain.0000000000002021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic postoperative pain hinders functional recovery after bone fracture and orthopedic surgery. Recently reported evidence indicates that caspase-6 is important in excitatory synaptic plasticity and pathological pain. Meanwhile, netrin-1 controls postsynaptic recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and synaptogenesis. The present work aimed to examine whether caspase-6 and netrin-1 contribute to fracture-induced postoperative allodynia. A mouse model of tibial fracture by intramedullary pinning was generated for inducing postoperative pain. Then, paw withdrawal threshold, spinal caspase-6 activity, netrin-1 secretion, AMPAR trafficking, and spine morphology were examined. Caspase-6 inhibition and netrin-1 knockdown by shRNA were performed to elucidate the pathogenetic mechanism of allodynia and its prevention. Whole-cell patch-clamp recording was performed to assess caspase-6's function in spinal AMPAR-induced current. Tibial fractures after orthopedic operation initiated persistent postsurgical mechanical and cold allodynia, accompanied by increased spinal active caspase-6, netrin-1 release, GluA1-containing AMPAR trafficking, spine density, and AMPAR-induced current in dorsal horn neurons. Caspase-6 inhibition reduced fracture-associated allodynia, netrin-1 secretion, and GluA1 trafficking. Netrin-1 deficiency impaired fracture-caused allodynia, postsynaptic GluA1 recruitment, and spine plasticity. The specific GluA2-lacking AMPAR antagonist NASPM also dose dependently prevented postoperative pain. The reduction of fracture-mediated postoperative excitatory synaptic AMPAR current in the dorsal horn by caspase-6 inhibition was compromised by recombinant netrin-1. Exogenous caspase-6 induced pain hypersensitivity, reversing by netrin-1 knockdown or coapplication of NASPM. Thus, spinal caspase-6 modulation of GluA1-containing AMPAR activation and spine morphology through netrin-1 secretion is important in the development of fracture-related postsurgical pain in the mouse.
Collapse
|
30
|
Torres-Berrío A, Morgunova A, Giroux M, Cuesta S, Nestler EJ, Flores C. miR-218 in Adolescence Predicts and Mediates Vulnerability to Stress. Biol Psychiatry 2021; 89:911-919. [PMID: 33384174 PMCID: PMC8052258 DOI: 10.1016/j.biopsych.2020.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adolescence is a period of increased vulnerability to psychiatric disorders, including depression. Discovering novel biomarkers to identify individuals who are at high risk is very much needed. Our previous work shows that the microRNA miR-218 mediates susceptibility to stress and depression in adulthood by targeting the netrin-1 guidance cue receptor gene Dcc in the medial prefrontal cortex (mPFC). METHODS Here, we investigated whether miR-218 regulates Dcc expression in adolescence and could serve as an early predictor of lifetime stress vulnerability in male mice. RESULTS miR-218 expression in the mPFC increases from early adolescence to adulthood and correlates negatively with Dcc levels. In blood, postnatal miR-218 expression parallels changes occurring in the mPFC. Notably, circulating miR-218 levels in adolescence associate with vulnerability to social defeat stress in adulthood, with high levels associated with social avoidance severity. Indeed, downregulation of miR-218 in the mPFC in adolescence promotes resilience to stress in adulthood. CONCLUSIONS miR-218 expression in adolescence may serve both as a marker of risk and as a target for early interventions.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice Morgunova
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Santiago Cuesta
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
31
|
FEZ1 Forms Complexes with CRMP1 and DCC to Regulate Axon and Dendrite Development. eNeuro 2021; 8:ENEURO.0193-20.2021. [PMID: 33771901 PMCID: PMC8174033 DOI: 10.1523/eneuro.0193-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Elaboration of neuronal processes is an early step in neuronal development. Guidance cues must work closely with intracellular trafficking pathways to direct expanding axons and dendrites to their target neurons during the formation of neuronal networks. However, how such coordination is achieved remains incompletely understood. Here, we characterize an interaction between fasciculation and elongation protein zeta 1 (FEZ1), an adapter involved in synaptic protein transport, and collapsin response mediator protein (CRMP)1, a protein that functions in growth cone guidance, at neuronal growth cones. We show that similar to CRMP1 loss-of-function mutants, FEZ1 deficiency in rat hippocampal neurons causes growth cone collapse and impairs axonal development. Strikingly, FEZ1-deficient neurons also exhibited a reduction in dendritic complexity stronger than that observed in CRMP1-deficient neurons, suggesting that the former could partake in additional developmental signaling pathways. Supporting this, FEZ1 colocalizes with VAMP2 in developing hippocampal neurons and forms a separate complex with deleted in colorectal cancer (DCC) and Syntaxin-1 (Stx1), components of the Netrin-1 signaling pathway that are also involved in regulating axon and dendrite development. Significantly, developing axons and dendrites of FEZ1-deficient neurons fail to respond to Netrin-1 or Netrin-1 and Sema3A treatment, respectively. Taken together, these findings highlight the importance of FEZ1 as a common effector to integrate guidance signaling pathways with intracellular trafficking to mediate axo-dendrite development during neuronal network formation.
Collapse
|
32
|
Bowie D. Neurotransmitter-gated ion channels, still front and centre stage. J Physiol 2021; 599:389-395. [PMID: 33448020 DOI: 10.1113/jp280800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, H3G 1Y6, Canada
| |
Collapse
|
33
|
Morgunova A, Pokhvisneva I, Nolvi S, Entringer S, Wadhwa P, Gilmore J, Styner M, Buss C, Sassi RB, Hall GBC, O'Donnell KJ, Meaney MJ, Silveira PP, Flores CA. DCC gene network in the prefrontal cortex is associated with total brain volume in childhood. J Psychiatry Neurosci 2021; 46:E154-E163. [PMID: 33206040 PMCID: PMC7955849 DOI: 10.1503/jpn.200081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genetic variation in the guidance cue DCC gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. We created an expression-based polygenic risk score (ePRS) based on the DCC coexpression gene network in the prefrontal cortex, hypothesizing that it would be associated with individual differences in total brain volume. METHODS We filtered single nucleotide polymorphisms (SNPs) from genes coexpressed with DCC in the prefrontal cortex obtained from an adult postmortem donors database (BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting gene expression in the prefrontal cortex, multiplied by their allele number based on an individual's genotype data, and then summarized into an ePRS. We evaluated associations between the DCC ePRS and total brain volume in children in 2 community-based cohorts: the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we calculated a conventional PRS based on a genome-wide association study of total brain volume. RESULTS Higher ePRS was associated with higher total brain volume in children 8 to 10 years old (β = 0.212, p = 0.043; n = 88). The conventional PRS at several different thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI study showed an association between the ePRS and newborn total brain volume (β = 0.101, p = 0.048; n = 80). The genes included in the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function. LIMITATIONS The relatively small sample size and age differences between the main and replication cohorts were limitations. CONCLUSION Our findings suggest that the DCC coexpression network in the prefrontal cortex is critically involved in whole brain development during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment.
Collapse
Affiliation(s)
- Alice Morgunova
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Irina Pokhvisneva
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Saara Nolvi
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Sonja Entringer
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Pathik Wadhwa
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - John Gilmore
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Martin Styner
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Claudia Buss
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Roberto Britto Sassi
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Geoffrey B C Hall
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Kieran J O'Donnell
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Michael J Meaney
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Patricia P Silveira
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Cecilia A Flores
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| |
Collapse
|
34
|
Evans LM, Johnson EC, Melroy-Greif WE, Hewitt JK, Hoeffer CA, Keller MC, Saba LM, Stitzel JA, Ehringer MA. The Role of A Priori-Identified Addiction and Smoking Gene Sets in Smoking Behaviors. Nicotine Tob Res 2020; 22:1310-1315. [PMID: 31930296 DOI: 10.1093/ntr/ntaa006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine. METHODS We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics. We assessed smoking initiation, cigarettes per day, smoking cessation, and age of smoking initiation. RESULTS Individual genes within each gene set were significantly associated with smoking behaviors. Both sets of genes were significantly associated with cigarettes per day, smoking initiation, and smoking cessation. Age of initiation was only associated with the Smokescreen gene set. Although both sets of genes were enriched for trait heritability, each accounts for only a small proportion of the single nucleotide polymorphism-based heritability (2%-12%). CONCLUSIONS These two gene sets are associated with smoking behaviors, but collectively account for a limited amount of the genetic and phenotypic variation of these complex traits, consistent with high polygenicity. IMPLICATIONS We evaluated evidence for the association and heritable contribution of expert-curated and bioinformatically identified sets of genes related to smoking. Although they impact smoking behaviors, these specifically targeted genes do not account for much of the heritability in smoking and will be of limited use for predictive purposes. Advanced genome-wide approaches and integration of other 'omics data will be needed to fully account for the genetic variation in smoking phenotypes.
Collapse
Affiliation(s)
- Luke M Evans
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO.,Department of Integrative Physiology, University of Colorado, Boulder, CO
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO.,Department of Integrative Physiology, University of Colorado, Boulder, CO
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO.,Department of Integrative Physiology, University of Colorado, Boulder, CO
| |
Collapse
|
35
|
Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biol Psychiatry 2020; 88:611-624. [PMID: 32593422 PMCID: PMC7529861 DOI: 10.1016/j.biopsych.2020.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montreal, Quebec, Canada; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Nakamura DS, Lin YH, Khan D, Gothié JDM, de Faria O, Dixon JA, McBride HM, Antel JP, Kennedy TE. Mitochondrial dynamics and bioenergetics regulated by netrin-1 in oligodendrocytes. Glia 2020; 69:392-412. [PMID: 32910475 DOI: 10.1002/glia.23905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic organelles that produce energy and molecular precursors that are essential for myelin synthesis. Unlike in neurons, mitochondria in oligodendrocytes increase intracellular movement in response to glutamatergic activation and are more susceptible to oxidative stress than in astrocytes or microglia. The signaling pathways that regulate these cell type-specific mitochondrial responses in oligodendrocytes are not understood. Here, we visualized mitochondria migrating through thin cytoplasmic channels crossing myelin basic protein-positive compacted membranes and localized within paranodal loop cytoplasm. We hypothesized that local extracellular enrichment of netrin-1 might regulate the recruitment and function of paranodal proteins and organelles, including mitochondria. We identified rapid recruitment of mitochondria and paranodal proteins, including neurofascin 155 (NF155) and the netrin receptor deleted in colorectal carcinoma (DCC), to sites of contact between oligodendrocytes and netrin-1-coated microbeads in vitro. We provide evidence that Src-family kinase activation and Rho-associated protein kinase (ROCK) inhibition downstream of netrin-1 induces mitochondrial elongation, hyperpolarization of the mitochondrial inner membrane, and increases glycolysis. Our findings identify a signaling mechanism in oligodendrocytes that is sufficient to locally recruit paranodal proteins and regulate the subcellular localization, morphology, and function of mitochondria.
Collapse
Affiliation(s)
- Diane S Nakamura
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James A Dixon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Li J, Wang G, Weng Y, Ding M, Yu W. Netrin-1 contributes to peripheral nerve injury induced neuropathic pain via regulating phosphatidylinositol 4-kinase IIa in the spinal cord dorsal horn in mice. Neurosci Lett 2020; 735:135161. [PMID: 32553804 DOI: 10.1016/j.neulet.2020.135161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/14/2020] [Indexed: 12/29/2022]
|
38
|
Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Curr Biol 2020; 30:4128-4141.e5. [PMID: 32857970 PMCID: PMC7658809 DOI: 10.1016/j.cub.2020.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Sexually dimorphic circuits underlie behavioral differences between the sexes, yet the molecular mechanisms involved in their formation are poorly understood. We show here that sexually dimorphic connectivity patterns arise in C. elegans through local ubiquitin-mediated protein degradation in selected synapses of one sex but not the other. Specifically, synaptic degradation occurs via binding of the evolutionary conserved E3 ligase SEL-10/FBW7 to a phosphodegron binding site of the netrin receptor UNC-40/DCC (Deleted in Colorectal Cancer), resulting in degradation of UNC-40. In animals carrying an undegradable unc-40 gain-of-function allele, synapses were retained in both sexes, compromising the activity of the circuit without affecting neurite guidance. Thus, by decoupling the synaptic and guidance functions of the netrin pathway, we reveal a critical role for dimorphic protein degradation in controlling neuronal connectivity and activity. Additionally, the interaction between SEL-10 and UNC-40 is necessary not only for sex-specific synapse pruning, but also for other synaptic functions. These findings provide insight into the mechanisms that generate sex-specific differences in neuronal connectivity, activity, and function. Sex-specific synapse pruning during development is regulated by the ubiquitin pathway The E3 ligase SEL-10 targets the UNC-40 netrin receptor via binding to a CPD motif UNC-40 degradation leads to synapse removal only in hermaphrodites, not males CPD mutations disrupt synaptic functions of UNC-40, leaving axon guidance intact
Collapse
|
39
|
Cuesta S, Restrepo-Lozano JM, Popescu C, He S, Reynolds LM, Israel S, Hernandez G, Rais R, Slusher BS, Flores C. DCC-related developmental effects of abused- versus therapeutic-like amphetamine doses in adolescence. Addict Biol 2020; 25:e12791. [PMID: 31192517 PMCID: PMC8301742 DOI: 10.1111/adb.12791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/11/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
The guidance cue receptor DCC controls mesocortical dopamine development in adolescence. Repeated exposure to an amphetamine regimen of 4 mg/kg during early adolescence induces, in male mice, downregulation of DCC expression in dopamine neurons by recruiting the Dcc microRNA repressor, microRNA-218 (miR-218). This adolescent amphetamine regimen also disrupts mesocortical dopamine connectivity and behavioral control in adulthood. Whether low doses of amphetamine in adolescence induce similar molecular and developmental effects needs to be established. Here, we quantified plasma amphetamine concentrations in early adolescent mice following a 4 or 0.5 mg/kg dose and found peak levels corresponding to those seen in humans following recreational and therapeutic settings, respectively. In contrast to the high doses, the low amphetamine regimen does not alter Dcc mRNA or miR-218 expression; instead, it upregulates DCC protein levels. Furthermore, high, but not low, drug doses downregulate the expression of the DCC receptor ligand, Netrin-1, in the nucleus accumbens and prefrontal cortex. Exposure to the low-dose regimen did not alter the expanse of mesocortical dopamine axons or their number/density of presynaptic sites in adulthood. Strikingly, adolescent exposure to the low-dose drug regimen does not impair behavioral inhibition in adulthood; instead, it induces an overall increase in performance in a go/no-go task. These results show that developmental consequences of exposure to therapeutic- versus abused-like doses of amphetamine in adolescence have dissimilar molecular signatures and opposite behavioral effects. These findings have important clinical relevance since amphetamines are widely used for therapeutic purposes in youth.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - José Maria Restrepo-Lozano
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Christina Popescu
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Susan He
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Lauren M. Reynolds
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sonia Israel
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Giovanni Hernandez
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Front Cell Dev Biol 2020; 8:487. [PMID: 32714924 PMCID: PMC7344302 DOI: 10.3389/fcell.2020.00487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The fine arrangement of neuronal connectivity during development involves the coordinated action of guidance cues and their receptors. In adolescence, the dopamine circuitry is still developing, with mesolimbic dopamine axons undergoing target-recognition events in the nucleus accumbens (NAcc), while mesocortical projections continue to grow toward the prefrontal cortex (PFC) until adulthood. This segregation of mesolimbic versus mesocortical dopamine pathways is mediated by the guidance cue receptor DCC, which signals dopamine axons intended to innervate the NAcc to recognize this region as their final target. Whether DCC-dependent mesolimbic dopamine axon targeting in adolescence requires the action of its ligand, Netrin-1, is unknown. Here we combined shRNA strategies, quantitative analysis of pre- and post-synaptic markers of neuronal connectivity, and pharmacological manipulations to address this question. Similar to DCC levels in the ventral tegmental area, Netrin-1 expression in the NAcc is dynamic across postnatal life, transitioning from high to low expression across adolescence. Silencing Netrin-1 in the NAcc in adolescence results in an increase in the expanse of the dopamine input to the PFC in adulthood, with a corresponding increase in the number of presynaptic dopamine sites. This manipulation also results in altered dendritic spine density and morphology of medium spiny neurons in the NAcc in adulthood and in reduced sensitivity to the behavioral activating effects of the stimulant drug of abuse, amphetamine. These cellular and behavioral effects mirror those induced by Dcc haploinsufficiency within dopamine neurons in adolescence. Dopamine targeting in adolescence requires the complementary interaction between DCC receptors in mesolimbic dopamine axons and Netrin-1 in the NAcc. Factors regulating either DCC or Netrin-1 in adolescence can disrupt mesocorticolimbic dopamine development, rendering vulnerability or protection to phenotypes associated with psychiatric disorders.
Collapse
Affiliation(s)
- Santiago Cuesta
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Dominique Nouel
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Lauren M Reynolds
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alice Morgunova
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Angélica Torres-Berrío
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Amanda White
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Giovanni Hernandez
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
The netrin receptor UNC-40/DCC assembles a postsynaptic scaffold and sets the synaptic content of GABA A receptors. Nat Commun 2020; 11:2674. [PMID: 32471987 PMCID: PMC7260190 DOI: 10.1038/s41467-020-16473-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/28/2020] [Indexed: 01/11/2023] Open
Abstract
Increasing evidence indicates that guidance molecules used during development for cellular and axonal navigation also play roles in synapse maturation and homeostasis. In C. elegans the netrin receptor UNC-40/DCC controls the growth of dendritic-like muscle cell extensions towards motoneurons and is required to recruit type A GABA receptors (GABAARs) at inhibitory neuromuscular junctions. Here we show that activation of UNC-40 assembles an intracellular synaptic scaffold by physically interacting with FRM-3, a FERM protein orthologous to FARP1/2. FRM-3 then recruits LIN-2, the ortholog of CASK, that binds the synaptic adhesion molecule NLG-1/Neuroligin and physically connects GABAARs to prepositioned NLG-1 clusters. These processes are orchestrated by the synaptic organizer CePunctin/MADD-4, which controls the localization of GABAARs by positioning NLG-1/neuroligin at synapses and regulates the synaptic content of GABAARs through the UNC-40-dependent intracellular scaffold. Since DCC is detected at GABA synapses in mammals, DCC might also tune inhibitory neurotransmission in the mammalian brain. The netrin receptor UNC-40/DCC is required to recruit GABAAR at neuromuscular junctions in C. elegans. Here, the authors show that UNC-40/DCC assembles an intracellular synaptic scaffold, regulating the content of GABAAR and inhibitory neurotransmission.
Collapse
|
42
|
miRNAs-dependent regulation of synapse formation and function. Genes Genomics 2020; 42:837-845. [DOI: 10.1007/s13258-020-00940-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
|
43
|
Torres-Berrío A, Nouel D, Cuesta S, Parise EM, Restrepo-Lozano JM, Larochelle P, Nestler EJ, Flores C. MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Mol Psychiatry 2020; 25:951-964. [PMID: 30980043 PMCID: PMC6790160 DOI: 10.1038/s41380-019-0421-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 01/22/2023]
Abstract
Low miR-218 expression in the medial prefrontal cortex (mPFC) is a consistent trait of depression. Here we assessed whether miR-218 in the mPFC confers resilience or susceptibility to depression-like behaviors in adult mice, using the chronic social defeat stress (CSDS) model of depression. We also investigated whether stress-induced variations of miR-218 expression in the mPFC can be detected in blood. We find that downregulation of miR-218 in the mPFC increases susceptibility to a single session of social defeat, whereas overexpression of miR-218 selectively in mPFC pyramidal neurons promotes resilience to CSDS and prevents stress-induced morphological alterations to those neurons. After CSDS, susceptible mice have low levels of miR-218 in blood, as compared with control or resilient groups. We show further that upregulation and downregulation of miR-218 levels specifically in the mPFC correlate with miR-218 expression in blood. Our results suggest that miR-218 in the adult mPFC might function as a molecular switch that determines susceptibility vs. resilience to chronic stress, and that stress-induced variations in mPFC levels of miR-218 could be detected in blood. We propose that blood expression of miR-218 might serve as potential readout of vulnerability to stress and as a proxy of mPFC function.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Santiago Cuesta
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José María Restrepo-Lozano
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Pier Larochelle
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, Québec, Canada.
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
44
|
Chai D, Yan J, Li C, Sun Y, Jiang H. Sevoflurane inhibits neuronal migration and axon growth in the developing mouse cerebral cortex. Aging (Albany NY) 2020; 12:6436-6455. [PMID: 32271715 PMCID: PMC7185136 DOI: 10.18632/aging.103041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022]
Abstract
The highly organized laminar structure of the mammalian brain is dependent on successful neuronal migration, and migration deficits can cause lissencephaly and behavioral and cognitive defects. Here, we investigated the contribution of neuronal migration dysregulation to anesthesia-induced neurotoxicity in the fetal brain. Pregnant C57BL/6 mice at embryonic day 14.5 received 2.5% sevoflurane daily for two days. Cortical neuron migration and axon lengths were evaluated using GFP immunostaining. Morris water maze tests were performed to assess the effects of sevoflurane exposure on spatial memory in offspring. We found that sevoflurane exposure decreased axon length and caused cognitive defects in young mice. RNA sequencing revealed that these defects were associated with reduced neuro-oncological ventral antigen 2 (Nova2) expression. In utero electroporation experiments using Nova2 shRNA recapitulated this finding. Nova2 shRNA inhibited neuronal migration and decreased axon lengths. Finally, we found that Netrin-1/Deleted in Colorectal Cancer (Dcc) proteins acted downstream of Nova2 to suppresses neuronal migration. These findings describe a novel mechanism by which prenatal anesthesia exposure affects embryonic neural development and postnatal behavior.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunzhu Li
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Glasgow SD, Wong EW, Thompson-Steckel G, Marcal N, Séguéla P, Ruthazer ES, Kennedy TE. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol Brain 2020; 13:56. [PMID: 32264905 PMCID: PMC7137442 DOI: 10.1186/s13041-020-00597-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada
| | - Edwin W Wong
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Greta Thompson-Steckel
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Nathalie Marcal
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Edward S Ruthazer
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Timothy E Kennedy
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada. .,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada. .,Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
46
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
47
|
Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, Zhang SF, Chen J, Xia B, Wang L, Jia QF, Li W, Chang H, Xiao X, Li M, Li Y. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl Psychiatry 2020; 10:98. [PMID: 32184385 PMCID: PMC7078234 DOI: 10.1038/s41398-020-0777-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently. Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector (iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by independent replications across distinct populations. These integrative analyses identify multiple high-confidence depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and might be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: Novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J Physiol 2020; 599:493-505. [PMID: 32017127 DOI: 10.1113/jp278704] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
| |
Collapse
|
49
|
Vigouroux RJ, Cesar Q, Chédotal A, Nguyen-Ba-Charvet KT. Revisiting the role of Dcc in visual system development with a novel eye clearing method. eLife 2020; 9:51275. [PMID: 32096760 PMCID: PMC7062470 DOI: 10.7554/elife.51275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The Deleted in Colorectal Carcinoma (Dcc) receptor plays a critical role in optic nerve development. Whilst Dcc is expressed postnatally in the eye, its function remains unknown as Dcc knockouts die at birth. To circumvent this drawback, we generated an eye-specific Dcc mutant. To study the organization of the retina and visual projections in these mice, we also established EyeDISCO, a novel tissue clearing protocol that removes melanin allowing 3D imaging of whole eyes and visual pathways. We show that in the absence of Dcc, some ganglion cell axons stalled at the optic disc, whereas others perforated the retina, separating photoreceptors from the retinal pigment epithelium. A subset of visual axons entered the CNS, but these projections are perturbed. Moreover, Dcc-deficient retinas displayed a massive postnatal loss of retinal ganglion cells and a large fraction of photoreceptors. Thus, Dcc is essential for the development and maintenance of the retina.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Quénol Cesar
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | |
Collapse
|
50
|
Regulation of Synaptic Development by Astrocyte Signaling Factors and Their Emerging Roles in Substance Abuse. Cells 2020; 9:cells9020297. [PMID: 31991879 PMCID: PMC7072591 DOI: 10.3390/cells9020297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes have critical functions throughout the central nervous system (CNS) and have emerged as regulators of synaptic development and function. With their highly complex morphologies, they are able to interact with thousands of synapses via peripheral astrocytic processes (PAPs), ensheathing neuronal axons and dendrites to form the tripartite synapse. In this way, astrocytes engage in crosstalk with neurons to mediate a variety of CNS processes including the regulation of extracellular matrix protein signaling, formation and maintenance of the blood-brain barrier (BBB), axon growth and guidance, homeostasis of the synaptic microenvironment, synaptogenesis, and the promotion of synaptic diversity. In this review, we discuss several key astrocyte signaling factors (thrombospondins, netrins, apolipoproteins, neuregulins, bone morphogenetic proteins, and neuroligins) in the maintenance and regulation of synapse formation. We also explore how these astrocyte signaling factors are impacted by and contribute to substance abuse, particularly alcohol and cocaine use.
Collapse
|