1
|
Wang J, Shi X, Wang J, Zheng Q, Shao P, Liu S. Discovery of new covalent inhibitors of monoacylglycerol lipase with the nitrile warhead via SCARdock. Bioorg Chem 2025; 159:108378. [PMID: 40107037 DOI: 10.1016/j.bioorg.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Monoacylglycerol lipase (MAGL) is an important enzyme for endocannabinoid metabolism by converting 2-arachidonoylglycerol (2-AG) into glycerol and free fatty acids. Modulation of the endocannabinoid system by inhibiting MAGL provides a promising therapeutic strategy for various diseases. In this work, we identified five new MAGL inhibitors with the nitrile group by high-throughput screening using SCARdock, a protocol presented by us for covalent drug discovery. Compounds ZQ-4, ZQ-5, ZQ-6, and ZQ-7 inhibit MAGL activity in a time-dependent and concentration-dependent manner. Furthermore, ZQ-7 was confirmed to covalently bind with the residue Ser132 of MAGL. The nitrile group is a new covalent warhead that has never been used in previous covalent MAGL inhibitors. At last, the efficacy of the new MAGL inhibitors on inhibiting breast cancer cells was investigated. Significantly increased 2-AG levels were detected in MDA-MB-231 cells treated with MAGL inhibitor ZQ-5, ZQ-6, ZQ-7, ZQ-19, and KML29, a previously identified MAGL covalent inhibitor. Moreover, these MAGL inhibitors inhibited the proliferation and migration of MDA-MB-231 cells. This work expands the application of SCARdock and provides meaningful clues for developing better MAGL inhibitors.
Collapse
Affiliation(s)
- Juanping Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoyu Shi
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Junlai Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Qiang Zheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Peipei Shao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Wuhan 430068, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Kumari A, Rahaman A, Zeng XA, Baloch Z. Therapeutic potential and microRNA regulating properties of phytochemicals in Alzheimer's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102439. [PMID: 40114707 PMCID: PMC11925107 DOI: 10.1016/j.omtn.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by the aggregation of Aβ (peptide) and neurofibrillary tangles along with inflammatory processes. Aging is a significant driver of these alterations, and dementia is a major cause of disability and mortality. Despite extensive clinical trials over the past two decades, no effective drug has been developed to improve AD symptoms or slow its progression, indicating the inefficiency of current treatment targets. In AD development, the molecular microenvironment plays a significant role. MicroRNAs (miRNAs) are a key component of this microenvironment, regulate post-transcriptional gene expression, and are expressed more abundantly in the brain than in other tissues. Several dysregulated miRNAs in AD have been linked to neuropathological changes, such as plaque and tangle accrual, as well as altered expression of notorious molecules. Preclinical studies have confirmed the efficacy of phytochemicals/food bioactive compounds (PCs/FBCs) in regulating miRNA expression, which makes them immensely beneficial for targeting miRNA-altered expression patterns in neuronal diseases. This review highlights the potential of miRNAs in driving AD pathology and its development. Furthermore, it discusses the therapeutic efficacy of PCs/FBCs and their miRNA-regulatory properties, especially focusing on antiinflammatory and antioxidant capacities for their development as effective AD agents.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Abdul Rahaman
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zulqarnain Baloch
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, Yunan, China
| |
Collapse
|
3
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
4
|
Guida F, Iannotta M, Lauritano A, Infantino R, Salviati E, Verde R, Luongo L, Sommella EM, Iannotti FA, Campiglia P, Maione S, Di Marzo V, Piscitelli F. Early biomarkers in the presymptomatic phase of cognitive impairment: changes in the endocannabinoidome and serotonergic pathways in Alzheimer's-prone mice after mTBI. Acta Neuropathol Commun 2024; 12:113. [PMID: 38992700 PMCID: PMC11241935 DOI: 10.1186/s40478-024-01820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aβ1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Collapse
Affiliation(s)
- Francesca Guida
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Rosmara Infantino
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emanuela Salviati
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Livio Luongo
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Sabatino Maione
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Canada.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
| |
Collapse
|
5
|
Kim JM, Kim WR, Park EG, Lee DH, Lee YJ, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs. Int J Mol Sci 2024; 25:6190. [PMID: 38892378 PMCID: PMC11172830 DOI: 10.3390/ijms25116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Naimi N, Seyedmirzaei H, Hassannejad Z, Soltani Khaboushan A. Advanced nanoparticle strategies for optimizing RNA therapeutic delivery in neurodegenerative disorders. Biomed Pharmacother 2024; 175:116691. [PMID: 38713941 DOI: 10.1016/j.biopha.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Neurodegenerative diseases affect many people worldwide, and as the population ages, the incidence of these conditions increases. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders worldwide. Different medicines are being used to control symptoms related to these conditions, but no treatment has yet been approved. Both genetic and environmental factors are involved in disease pathogenesis, and research on the pathophysiological pathways is still ongoing. The role of subcellular pathways and dysregulation in RNA pathways has been highlighted in pathophysiological studies, and treatment strategies focused on these pathways can be a promising approach. Many experiments have been conducted on delivering RNA cargo to the CNS to modulate various pathways involved. Yet another challenge to be faced is the effective transport of desired molecules to targets, which can be greatly hindered by distinct barriers limiting transport to the CNS, most noticeably the blood-brain barrier (BBB). Nanotechnology and the use of different nano-carriers for the delivery of nucleotides, peptides, proteins, and drug molecules are currently of great interest as these carriers help with better delivery and protection and, as a result, improve the effectiveness of the cargo. Nanocarriers can protect susceptible RNA molecules from possible degradation or destruction and improve their ability to reach the brain by enhancing BBB penetration. Different mechanisms for this process have been hypothesized. This review will go through the therapeutic application of RNA molecules in the treatment of AD and PD and the role of nanocarriers in overcoming delivery challenges and enhancing efficacy.
Collapse
Affiliation(s)
- Narges Naimi
- Departement of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
9
|
Butini S, Grether U, Jung KM, Ligresti A, Allarà M, Postmus AGJ, Maramai S, Brogi S, Papa A, Carullo G, Sykes D, Veprintsev D, Federico S, Grillo A, Di Guglielmo B, Ramunno A, Stevens AF, Heer D, Lamponi S, Gemma S, Benz J, Di Marzo V, van der Stelt M, Piomelli D, Campiani G. Development of Potent and Selective Monoacylglycerol Lipase Inhibitors. SARs, Structural Analysis, and Biological Characterization. J Med Chem 2024; 67:1758-1782. [PMID: 38241614 DOI: 10.1021/acs.jmedchem.3c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.
Collapse
Affiliation(s)
- Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, United States
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Marco Allarà
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Annemarieke G J Postmus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 56126 Pisa, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, United Kingdom
| | - Dmitry Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Bruno Di Guglielmo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy/DIFARMA, University of Salerno, via Giovanni Paolo II 132, Salerno 84084, Fisciano, Italy
| | - Anna Floor Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Jörg Benz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition Et Les Aliments Fonctionnels (INAF), École de Nutrition, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, PO Box 2325, Quebec G1V 0A6, Canada
- Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, PO Box 2725, Québec G1V 4G5, Canada
- Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et Son Impact Sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu), Université Laval, PO Box 2325, Quebec G1V 0A6, Canada
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, United States
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
10
|
Abdelmaksoud NM, Sallam AAM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Al-Noshokaty TM, Elrebehy MA, Elshaer SS, Mahmoud NA, Fathi D, Rizk NI, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Alzheimer's disease. Pathol Res Pract 2024; 253:155007. [PMID: 38061270 DOI: 10.1016/j.prp.2023.155007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.
Collapse
Affiliation(s)
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Naira Ali Mahmoud
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Adiga D, Eswaran S, Sriharikrishnaa S, Khan NG, Prasada Kabekkodu S, Kumar D. Epigenetics of Alzheimer’s Disease: Past, Present and Future. ENZYMATIC TARGETS FOR DRUG DISCOVERY AGAINST ALZHEIMER'S DISEASE 2023:27-72. [DOI: 10.2174/9789815136142123010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Alzheimer’s disease (AD) exemplifies a looming epidemic lacking effective
treatment and manifests with the accumulation of neurofibrillary tangles, amyloid-β
plaques, neuroinflammation, behavioral changes, and acute cognitive impairments. It is
a complex, multifactorial disorder that arises from the intricate interaction between
environment and genetic factors, restrained via epigenetic machinery. Though the
research progress has improved the understanding of clinical manifestations and
disease advancement, the causal mechanism of detrimental consequences remains
undefined. Despite the substantial improvement in recent diagnostic modalities, it is
challenging to distinguish AD from other forms of dementia. Accurate diagnosis is a
major glitch in AD as it banks on the symptoms and clinical criteria. Several studies are
underway in exploring novel and reliable biomarkers for AD. In this direction,
epigenetic alterations have transpired as key modulators in AD pathogenesis with the
impeding inferences for the management of this neurological disorder. The present
chapter aims to discuss the significance of epigenetic modifications reported in the
pathophysiology of AD such as DNA methylation, hydroxy-methylation, methylation
of mtDNA, histone modifications, and noncoding RNAs. Additionally, the chapter also
describes the possible therapeutic avenues that target epigenetic modifications in AD.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - S. Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Nadeem G. Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth
(Deemed to be University), Erandwane, Pune – 411038, Maharashtra, India
| |
Collapse
|
12
|
Balistreri CR, Monastero R. Neuroinflammation and Neurodegenerative Diseases: How Much Do We Still Not Know? Brain Sci 2023; 14:19. [PMID: 38248234 PMCID: PMC10812964 DOI: 10.3390/brainsci14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The term "neuroinflammation" defines the typical inflammatory response of the brain closely related to the onset of many neurodegenerative diseases (NDs). Neuroinflammation is well known, but its mechanisms and pathways are not entirely comprehended. Some progresses have been achieved through many efforts and research. Consequently, new cellular and molecular mechanisms, diverse and conventional, are emerging. In listing some of those that will be the subject of our description and discussion, essential are the important roles of peripheral and infiltrated monocytes and clonotypic cells, alterations in the gut-brain axis, dysregulation of the apelinergic system, alterations in the endothelial glycocalyx of the endothelial component of neuronal vascular units, variations in expression of some genes and levels of the encoding molecules by the action of microRNAs (miRNAs), or other epigenetic factors and distinctive transcriptional factors, as well as the role of autophagy, ferroptosis, sex differences, and modifications in the circadian cycle. Such mechanisms can add significantly to understanding the complex etiological puzzle of neuroinflammation and ND. In addition, they could represent biomarkers and targets of ND, which is increasing in the elderly.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Roberto Monastero
- Unit of Neurology & Neuro-Physiopathology, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy;
| |
Collapse
|
13
|
Hosseininia M, Rostami F, Delphi L, Ghasemzadeh Z, Kouhkan F, Rezayof A. Memory impairment was ameliorated by corticolimbic microinjections of arachidonylcyclopropylamide (ACPA) and miRNA-regulated lentiviral particles in a streptozotocin-induced Alzheimer's rat model. Exp Neurol 2023; 370:114560. [PMID: 37783412 DOI: 10.1016/j.expneurol.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The present study aimed to investigate the effect of corticolimbic cannabinoid CB1 receptors activity on memory impairment in the intracerebroventricular (ICV)-streptozotocin (STZ) animal model of Alzheimer's like-disease. This study also assessed whether the corticolimbic overexpression of miRNA-137 or -let-7a could increase the endocannabinoids by inhibiting the monoglyceride lipase (MAGL) to ameliorate STZ response. The results showed that ICV microinjection of STZ (3 mg/kg/10 μl) impaired passive avoidance memory retrieval. The chronic microinjection of arachidonylcyclopropylamide (ACPA; 10 ng/0.5 μl), a selective cannabinoid CB1 receptor agonist, into the hippocampal CA1 region, the central amygdala (CeA) or the medial prefrontal cortex (mPFC) ameliorated the amnesic effect of ICV-STZ. Intra-CA1 or -CeA microinjection of ACPA alone did not affect memory retrieval, while its microinjection into the mPFC impaired memory formation. Based on bioinformatics analysis and verification of the MAGL gene, miRNA-137 and -let-7a were chosen to target the expression levels of MAGL in the corticolimbic regions. The chronic corticolimbic microinjection of lentiviral particles containing miRNA-137 or -let-7a ameliorated ICV-STZ-induced memory impairment. The high transfection efficiency was determined for each virus using comparing fluorescent and conventional vision. Corticolimbic overexpression of miRNA-137 or -let-7a decreased the MAGL gene expression that encodes the MAGL enzyme to increase the endocannabinoids. Thus, among the molecular mechanisms and signaling pathways involved in the pathophysiology of Alzheimer's disease (AD), it is worth mentioning the role of endocannabinoids in the corticolimbic regions. CB1 receptor agonists, miRNA-137 or -let-7a, may be potential therapeutic targets against cognitive decline in AD.
Collapse
Affiliation(s)
- Mohammad Hosseininia
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2023; 24:16259. [PMID: 38003448 PMCID: PMC10671222 DOI: 10.3390/ijms242216259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial disorder that poses a substantial burden on patients, caregivers, and society. Considering the increased aging population and life expectancy, the incidence of AD will continue to rise in the following decades. However, the molecular pathogenesis of AD remains controversial, superior blood-based biomarker candidates for early diagnosis are still lacking, and effective therapeutics to halt or slow disease progression are urgently needed. As powerful genetic regulators, microRNAs (miRNAs) are receiving increasing attention due to their implications in the initiation, development, and theranostics of various diseases, including AD. In this review, we summarize miRNAs that directly target microtubule-associated protein tau (MAPT), amyloid precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) transcripts and regulate the alternative splicing of tau and APP. We also discuss related kinases, such as glycogen synthase kinase (GSK)-3β, cyclin-dependent kinase 5 (CDK5), and death-associated protein kinase 1 (DAPK1), as well as apolipoprotein E, that are directly targeted by miRNAs to control tau phosphorylation and amyloidogenic APP processing leading to Aβ pathologies. Moreover, there is evidence of miRNA-mediated modulation of inflammation. Furthermore, circulating miRNAs in the serum or plasma of AD patients as noninvasive biomarkers with diagnostic potential are reviewed. In addition, miRNA-based therapeutics optimized with nanocarriers or exosomes as potential options for AD treatment are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| |
Collapse
|
15
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Targeting epigenetics: A novel promise for Alzheimer's disease treatment. Ageing Res Rev 2023; 90:102003. [PMID: 37422087 DOI: 10.1016/j.arr.2023.102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
So far, the search for a cure for Alzheimer Disease (AD) has been unsuccessful. The only approved drugs attenuate some symptoms, but do not halt the progress of this disease, which affects 50 million people worldwide and will increase its incidence in the coming decades. Such scenario demands new therapeutic approaches to fight against this devastating dementia. In recent years, multi-omics research and the analysis of differential epigenetic marks in AD subjects have contributed to our understanding of AD; however, the impact of epigenetic research is yet to be seen. This review integrates the most recent data on pathological processes and epigenetic changes relevant for aging and AD, as well as current therapies targeting epigenetic machinery in clinical trials. Evidence shows that epigenetic modifications play a key role in gene expression, which could provide multi-target preventative and therapeutic approaches in AD. Both novel and repurposed drugs are employed in AD clinical trials due to their epigenetic effects, as well as increasing number of natural compounds. Given the reversible nature of epigenetic modifications and the complexity of gene-environment interactions, the combination of epigenetic-based therapies with environmental strategies and drugs with multiple targets might be needed to properly help AD patients.
Collapse
Affiliation(s)
- Danko Jeremic
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| |
Collapse
|
16
|
Guo X. A state-of-the-art review on miRNA in prevention and treatment of Alzheimer 's disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:485-498. [PMID: 37643982 PMCID: PMC10495246 DOI: 10.3724/zdxbyxb-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid β, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Science, Yunnan Normal University, Engineering Research Center, Sustainable Development and Utilization of Biomass Energy of the Ministry of Education, Kunming 650500, China.
| |
Collapse
|
17
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
19
|
Rokeby ACE, Natale BV, Natale DRC. Cannabinoids and the placenta: Receptors, signaling and outcomes. Placenta 2023; 135:51-61. [PMID: 36965349 DOI: 10.1016/j.placenta.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Cannabis use during pregnancy is increasing. The improvement of pregnancy-related symptoms including morning sickness and management of mood and stress are among the most reported reasons for its use. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant cannabinoids found within the cannabis flower. The concentration of these components has drastically increased in the past 20 years. Additionally, many edibles contain only one cannabinoid and are marketed to achieve a specific goal, meaning there are an increasing number of pregnancies that are exposed to isolated cannabinoids. Both Δ9-THC and CBD cross the placenta and can impact the fetus directly, but the receptors through which cannabinoids act are also expressed throughout the placenta, suggesting that the effects of in-utero cannabinoid exposure may include indirect effects from the placenta. In-utero cannabis research focuses on short and long-term fetal health and development; however, these studies include little to no placenta analysis. Prenatal cannabinoid exposure is linked to small for gestational age and fetal growth-restricted babies. Compromised placental development is also associated with fetal growth restriction and the few studies (clinical and animal models) that included placental analysis, identify changes in placental vasculature and function in these cannabinoid-exposed pregnancies. In vitro studies further support cannabinoid impact on cell function in the different populations that comprise the placenta. In this article, we aim to summarize how phytocannabinoids can impact placental development and function. Specifically, the cannabinoids and their actions at the different receptors are described, with receptor localization throughout the human and murine placenta discussed. Findings from studies that included placental analysis and how cannabinoid signaling may modulate critical developmental processing including cell proliferation, angiogenesis and migration are described. Considering the current research, prenatal cannabinoid exposure may significantly impact placental development, and, as such, identifying windows of placental vulnerability for each cannabinoid will be critical to elucidate the etiology of fetal outcome studies.
Collapse
Affiliation(s)
- Abbey C E Rokeby
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bryony V Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada
| | - David R C Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
20
|
Zhu D, Zhang J, Gao F, Hu M, Hashem J, Chen C. Augmentation of 2-arachidonoylglycerol signaling in astrocytes maintains synaptic functionality by regulation of miRNA-30b. Exp Neurol 2023; 361:114292. [PMID: 36481187 PMCID: PMC9892245 DOI: 10.1016/j.expneurol.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
2-Arachidonoylglycerol (2-AG), the most abundant endocannabinoid, displays anti-inflammatory and neuroprotective properties. Inhibition of 2-AG degradation by inactivation of monoacylglycerol lipase (MAGL), a key enzyme degrading 2-AG in the brain, alleviates neuropathology and improves synaptic and cognitive functions in animal models of neurodegenerative diseases. In particular, global inactivation of MAGL by genetic deletion of mgll enhances hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory. However, our understanding of the molecular mechanisms by which chronic inactivation of MAGL enhances synaptic activity is still limited. Here, we provide evidence that pharmacological inactivation of MAGL suppresses hippocampal expression of miR-30b, a small non-coding microRNA, and upregulates expression of its targets, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2). Importantly, suppression of miR-30b and increase of its targets by inactivation of MAGL result primarily from inhibition of 2-AG metabolism in astrocytes, rather than in neurons. Inactivation of MAGL in astrocytes prevents miR-30b overexpression-induced impairments in synaptic transmission and long-term potentiation (LTP) in the hippocampus. Suppression of miR-30b expression by inactivation of MAGL is apparently associated with augmentation of 2-AG signaling, as 2-AG induces a dose-dependent decrease in expression of miR-30b. 2-AG- or MAGL inactivation-suppressed expression of miR-30b is not mediated via CB1R, but by peroxisome proliferator-activated receptor γ (PPARγ). This is further supported by the results showing that MAGL inactivation-induced downregulation of miR-30b and upregulation of its targets are attenuated by antagonism of PPARγ, but mimicked by PPARγ agonists. In addition, we observed that 2-AG-induced reduction of miR-30b expression is mediated via NF-kB signaling. Our study provides evidence that 2-AG signaling in astrocytes plays an important role in maintaining the functional integrity of synapses in the hippocampus by regulation of miR-30b expression.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Zhu D, Zhang J, Hashem J, Gao F, Chen C. Inhibition of 2-arachidonoylglycerol degradation enhances glial immunity by single-cell transcriptomic analysis. J Neuroinflammation 2023; 20:17. [PMID: 36717883 PMCID: PMC9885699 DOI: 10.1186/s12974-023-02701-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND 2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid. Inhibition of 2-AG metabolism by inactivation of monoacylglycerol lipase (MAGL), the primary enzyme that degrades 2-AG in the brain, produces anti-inflammatory and neuroprotective effects in neurodegenerative diseases. However, the molecular mechanisms underlying these beneficial effects are largely unclear. METHODS Hippocampal and cortical cells were isolated from cell type-specific MAGL knockout (KO) mice. Single-cell RNA sequencing was performed by 10 × Genomics platform. Cell Ranger, Seurat (v3.2) and CellChat (1.1.3) packages were used to carry out data analysis. RESULTS Using single-cell RNA sequencing analysis, we show here that cell type-specific MAGL KO mice display distinct gene expression profiles in the brain. Inactivation of MAGL results in robust changes in expression of immune- and inflammation-related genes in microglia and astrocytes. Remarkably, upregulated expression of chemokines in microglia is more pronounced in mice lacking MAGL in astrocytes. In addition, expression of genes that regulate other cellular functions and Wnt signaling in astrocytes is altered in MAGL KO mice. CONCLUSIONS Our results provide transcriptomic evidence that cell type-specific inactivation of MAGL induces differential expression of immune-related genes and other fundamental cellular pathways in microglia and astrocytes. Upregulation of the immune/inflammatory genes suggests that tonic levels of immune/inflammatory vigilance are enhanced in microglia and astrocytes, particularly in microglia, by inhibition of 2-AG metabolism, which likely contribute to anti-inflammatory and neuroprotective effects produced by inactivation of MAGL in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dexiao Zhu
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jian Zhang
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jack Hashem
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Fei Gao
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Chu Chen
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA ,grid.267309.90000 0001 0629 5880Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
22
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
23
|
Seyedaghamiri F, Rajabi M, Mohaddes G. Targeting Novel microRNAs in Developing Novel Alzheimer's Disease Treatments. Neurochem Res 2023; 48:26-38. [PMID: 36048350 DOI: 10.1007/s11064-022-03734-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is considered a multifactorial disease and a significant cause of dementia during aging. This neurodegenerative disease process is classically divided into two different pathologies cerebral accumulation of amyloid-β and hyperphosphorylated neurofibrillary tau tangles. In recent years, massive efforts have been made to treat AD by decreasing amyloid-β and tau in the brains of patients with AD, with no success. The dysfunction of a wide range of microRNAs promotes the generation and insufficient clearance of amyloid-β (Aβ) and increases tau plaques which are the pathophysiological markers of AD. Disturbance of these microRNAs is associated with mitochondrial dysfunction, oxidative damage, inflammation, apolipoprotein E4 (APOE4) pathogenic process, synaptic loss, and cognitive deficits induced by AD. Targeting a specific microRNA to restore AD-induced impairments at multiple stages might provide a promising approach for developing new drugs and therapeutic strategies for patients with AD. This review focuses on different mechanisms of microRNAs in AD pathophysiology.
Collapse
Affiliation(s)
| | - Mojgan Rajabi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14756, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14756, Iran.
| |
Collapse
|
24
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
25
|
Li Y, Wang H, Chen L, Wei K, Liu Y, Han Y, Xia X. Circ_0003611 regulates apoptosis and oxidative stress injury of Alzheimer's disease via miR-383-5p/KIF1B axis. Metab Brain Dis 2022; 37:2915-2924. [PMID: 35960460 DOI: 10.1007/s11011-022-01051-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) is a high incidence neurodegenerative disease. Emerging evidence suggests that circular RNAs (circRNAs) play an important modulator in the pathogenesis of AD. The aim of this paper was to reconnoiter the effects of circular RNA_0003611 (circ_0003611) on Aβ-triggered neuronal injury in AD. In this work, the abundance of circ_0003611 was augmented in AD patients and SH-SY5Y and SK-N-SH cells treated with Aβ. Aβ-mediated cell proliferation, apoptosis, inflammatory response, oxidative stress, and glycolysis were abolished through circ_0003611 silencing. Circ_0003611 worked as a miR-383-5p sponge, and the protective role of circ_0003611 absence on Aβ-triggered neuronal injury was overturned by releasing miR-383-5p. Meanwhile, miR-383-5p directly targeted KIF1B, and miR-383-5p upregulation might relieve Aβ-triggered neuronal injury by reducing KIF1B expression. Mechanical analysis discovered that circ_0003611 served as a sponge of miR-383-5p to impact KIF1B expression. These findings indicated that circ_0003611 improved Aβ-triggered neuronal injury in AD through targeting the miR-383-5p/KIF1B axis, which might deliver innovative therapy targeting for AD.
Collapse
Affiliation(s)
- Yong Li
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Hongli Wang
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Li Chen
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Kailun Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Yanbai Han
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China.
| |
Collapse
|
26
|
Forte N, Fernández-Rilo AC, Palomba L, Marfella B, Piscitelli F, De Girolamo P, Di Costanzo A, Di Marzo V, Cristino L. Positive association between plasmatic levels of orexin A and the endocannabinoid-derived 2-arachidonoyl lysophosphatidic acid in Alzheimer’s disease. Front Aging Neurosci 2022; 14:1004002. [DOI: 10.3389/fnagi.2022.1004002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A regular sleep-wake cycle plays a positive function that preserves synaptic plasticity and brain activity from neuropathological injuries. The hypothalamic neuropeptide orexin-A (OX-A) is central in sleep-wake regulation and has been found to be over-expressed in the cerebrospinal fluid (CSF) of patients with Alzheimer’s disease (AD) suffering from sleep disturbances. OX-A promotes the biosynthesis of 2-arachidonoylglycerol (2-AG), which, in turn, could be phosphorylated to 2-arachidonoyl lysophosphatidic acid (2-AGP). The reorganization of the actin cytoskeleton during neurite retraction is one of the best-characterized effects of lysophosphatidic acids. However, less information is available regarding the reorganization of the neuronal microtubule network in response to OX-A-induced 2-AG and, possibly consequent, 2-AGP production in AD patients. This is of special relevance also considering that higher 2-AG levels are reported in the CSF of AD patients. Here, we found a positive correlation between OX-A and 2-AGP concentrations in the plasma, and an increase of 2-AGP levels in the CSF of AD patients. Furthermore, a negative correlation between the plasmatic 2-AGP levels and the mini-mental state examination score is also revealed in AD patients. By moving from the human patients to in vitro and in vivo models of AD we investigated the molecular pathway linking OX-A, 2-AG and 2-AGP to the phosphorylation of pT231-Tau, which is a specific early plasma biomarker of this disorder. By LC-MS analysis we show that OX-A, via OX-1R, induces 2-AG biosynthesis via DAGLα, and in turn 2-AG is converted to 2-AGP in primary hippocampal neurons. By confocal microscopy and western blotting assay we found an OX-A- or 2-AGP-mediated phosphorylation of Tau at threonine 231 residue, in a manner prevented by LPA1R (2-AGP receptor) or OX1R (OX-A receptor) antagonism with AM095 or SB334867, respectively. Finally, by patch-clamp recording we documented that 2-AGP-mediated pT231-Tau phosphorylation impairs glutamatergic transmission in the mouse hippocampus. Although further additional research is still required to clarify the potential role of orexin signaling in neurodegeneration, this study provides evidence that counteraction of aberrant OX-A signaling, also via LPA-1R antagonism, may be beneficial in the mild-to-moderate age-related cognitive decline associated with sleep disturbances.
Collapse
|
27
|
Sundaramoorthy TH, Castanho I. The Neuroepigenetic Landscape of Vertebrate and Invertebrate Models of Neurodegenerative Diseases. Epigenet Insights 2022; 15:25168657221135848. [PMID: 36353727 PMCID: PMC9638687 DOI: 10.1177/25168657221135848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Vertebrate and invertebrate models of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, have been paramount to our understanding of the pathophysiology of these conditions; however, the brain epigenetic landscape is less well established in these disease models. DNA methylation, histone modifications, and microRNAs are among commonly studied mechanisms of epigenetic regulation. Genome-wide studies and candidate studies of specific methylation marks, histone marks, and microRNAs have demonstrated the dysregulation of these mechanisms in models of neurodegenerative diseases; however, the studies to date are scarce and inconclusive and the implications of many of these changes are still not fully understood. In this review, we summarize epigenetic changes reported to date in the brain of vertebrate and invertebrate models used to study neurodegenerative diseases, specifically diseases affecting the aging population. We also discuss caveats of epigenetic research so far and the use of disease models to understand neurodegenerative diseases, with the aim of improving the use of model organisms in this context in future studies.
Collapse
Affiliation(s)
| | - Isabel Castanho
- University of Exeter Medical School,
University of Exeter, Exeter, UK
- Beth Israel Deaconess Medical Center,
Boston, MA, USA
- Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
28
|
Chen C. Endocannabinoid control of neuroinflammation in traumatic brain injury by monoacylglycerol lipase in astrocytes. Neural Regen Res 2022; 18:1023-1024. [PMID: 36254984 PMCID: PMC9827788 DOI: 10.4103/1673-5374.355755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chu Chen
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Correspondence to: Chu Chen, or .
| |
Collapse
|
29
|
Liu YH, Liu Y, Zhang X, Fang L, Zhao BL, Wang NP. Activation of the endocannabinoid system mediates cardiac hypertrophy induced by rosiglitazone. Acta Pharmacol Sin 2022; 43:2302-2312. [PMID: 35190698 PMCID: PMC9433383 DOI: 10.1038/s41401-022-00858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022]
Abstract
Rosiglitazone (RSG) is a synthetic agonist of peroxisome proliferator-activated receptor-γ (PPARγ), which plays a central role in the regulation of metabolism. Meta-analyses have suggested that RSG is associated with increased cardiovascular risk. However, the mechanisms underlying such adverse cardiac effects are still poorly understood. Here, we found that activation of PPARγ by RSG stimulated the endocannabinoid system (ECS), a membrane lipid signaling system, which induced cardiac hypertrophy. In neonatal rat cardiomyocytes, RSG increased the level of anandamide (AEA); upregulated the expression of N-acyl phosphatidylethanolamine phospholipase D (NapePLD), a key enzyme for AEA synthesis; and downregulated the expression of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of AEA. Importantly, PPARγ activation increased the expression of cannabinoid receptor type 1 (CB1) through an identified binding site for PPARγ in the CB1 promoter region. Moreover, both the in vitro and in vivo results showed that inhibition of the ECS by rimonabant, an antagonist of CB1, attenuated RSG-induced cardiac hypertrophy, as indicated by decreased expression of cardiac hypertrophy markers (ANP and BNP), deactivation of the mTOR pathway, and decreased cardiomyocyte size. Thus, these results demonstrated that the ECS functions as a novel target of PPARγ and that the AEA/CB1/mTOR axis mediates RSG-induced cardiac remodeling.
Collapse
Affiliation(s)
- Ya-Han Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xu Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Li Fang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bei-Lei Zhao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Nan-Ping Wang
- East China Normal University Health Science Center, Shanghai, 200241, China.
| |
Collapse
|
30
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
31
|
MicroRNAs in Learning and Memory and Their Impact on Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081856. [PMID: 36009403 PMCID: PMC9405363 DOI: 10.3390/biomedicines10081856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
Learning and memory formation rely on the precise spatiotemporal regulation of gene expression, such as microRNA (miRNA)-associated silencing, to fine-tune gene expression for the induction and maintenance of synaptic plasticity. Much progress has been made in presenting direct evidence of miRNA regulation in learning and memory. Here, we summarize studies that have manipulated miRNA expression using various approaches in rodents, with changes in cognitive performance. Some of these are involved in well-known mechanisms, such as the CREB-dependent signaling pathway, and some of their roles are in fear- and stress-related disorders, particularly cognitive impairment. We also summarize extensive studies on miRNAs correlated with pathogenic tau and amyloid-β that drive the processes of Alzheimer’s disease (AD). Although altered miRNA profiles in human patients with AD and in mouse models have been well studied, little is known about their clinical applications and therapeutics. Studies on miRNAs as biomarkers still show inconsistencies, and more challenges need to be confronted in standardizing blood-based biomarkers for use in AD.
Collapse
|
32
|
TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 2022; 144:187-210. [PMID: 35713704 PMCID: PMC9945325 DOI: 10.1007/s00401-022-02449-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Collapse
|
33
|
Khodayi-Shahrak M, Khalaj-Kondori M, Hosseinpour Feizi MA, Talebi M. Insights into the mechanisms of non-coding RNAs' implication in the pathogenesis of Alzheimer's disease. EXCLI JOURNAL 2022; 21:921-940. [PMID: 36110561 PMCID: PMC9441681 DOI: 10.17179/excli2022-5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Non-coding RNAs including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are implicated in the regulation of gene expression at transcriptional, posttranscriptional, and epigenetic levels. Several studies in cell lines, animal models, and humans, have revealed that non-coding RNAs play crucial roles in the pathogenesis of Alzheimer's disease (AD). Detailed knowledge on their mechanism of implication in the AD pathogenesis can help to develop novel therapeutic and disease management strategies. The two main pathological hallmarks of AD are amyloid plaques resulting from the β-amyloid accumulation, and neurofibrillary tangles (NFT) due to the phosphorylated tau accumulation. Several lncRNAs and miRNAs play crucial roles in both these hallmarks of the AD pathogenesis and other AD-related pathological procedures such as neuronal and synaptic plasticity, neuroinflammation, neuronal differentiation and neuronal apoptosis. In this review, we outlined the non-coding RNAs and further discussed how they are implicated in these AD-related pathological procedures.
Collapse
Affiliation(s)
- Majid Khodayi-Shahrak
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran,*To whom correspondence should be addressed: Mohammad Khalaj-Kondori, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran, E-mail:
| | | | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
He WZ, Yang M, Jiang Y, He C, Sun YC, Liu L, Huang M, Jiao YR, Chen KX, Hou J, Huang M, Xu YL, Feng X, Liu Y, Guo Q, Peng H, Huang Y, Su T, Xiao Y, Li Y, Zeng C, Lei G, Luo XH, Li CJ. miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death Dis 2022; 13:494. [PMID: 35610206 PMCID: PMC9130327 DOI: 10.1038/s41419-022-04902-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
A specific bone capillary subtype, namely type H vessels, with high expression of CD31 and endomucin, was shown to couple angiogenesis and osteogenesis recently. The number of type H vessels in bone tissue declines with age, and the underlying mechanism for this reduction is unclear. Here, we report that microRNA-188-3p (miR-188-3p) involves this process. miRNA-188-3p expression is upregulated in skeletal endothelium and negatively regulates the formation of type H vessels during ageing. Mice with depletion of miR-188 showed an alleviated age-related decline in type H vessels. In contrast, endothelial-specific overexpression of miR-188-3p reduced the number of type H vessels, leading to decreased bone mass and delayed bone regeneration. Mechanistically, we found that miR-188 inhibits type H vessel formation by directly targeting integrin β3 in endothelial cells. Our findings indicate that miR-188-3p is a key regulator of type H vessel formation and may be a potential therapeutic target for preventing bone loss and accelerating bone regeneration.
Collapse
Affiliation(s)
- Wen-Zhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yu-Chen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yi-Li Xu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China.
| |
Collapse
|
35
|
Moayedi K, Orandi S, Ebrahimi R, Tanhapour M, Moradi M, Abbastabar M, Golestani A. A novel approach to type 3 diabetes mechanism: The interplay between noncoding RNAs and insulin signaling pathway in Alzheimer's disease. J Cell Physiol 2022; 237:2838-2861. [PMID: 35580144 DOI: 10.1002/jcp.30779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/06/2022]
Abstract
Today, growing evidence indicates that patients with type 2 diabetes (T2D) are at a higher risk of developing Alzheimer's disease (AD). Indeed, AD as one of the main causes of dementia in people aged more than 65 years can be aggravated by insulin resistance (IR) and other metabolic risk factors related to T2D which are also linked to the function of the brain. Remarkably, a new term called "type 3 diabetes" has been suggested for those people who are diagnosed with AD while also showing the symptoms of IR and T2D. In this regard, the role of genetic and epigenetic changes associated with AD has been confirmed by many studies. On the other hand, it should be noted that the insulin signaling pathway is highly regulated by various mechanisms, including epigenetic factors. Among these, the role of noncoding RNAs (ncRNAs), including microRNAs and long noncoding RNAs has been comprehensively studied with respect to the pathology of AD and the most well-known underlying mechanisms. Nevertheless, the number of studies exploring the association between ncRNAs and the downstream targets of the insulin signaling pathway in the development of AD has notably increased in recent years. With this in view, the present study aimed to review the interplay between different ncRNAs and the insulin signaling pathway targets in the pathogenesis of AD to find a new approach in the field of combining biomarkers or therapeutic targets for this disease.
Collapse
Affiliation(s)
- Kiana Moayedi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tanhapour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Moradi
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Abbastabar
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Bajaj S, Zameer S, Jain S, Yadav V, Vohora D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer's Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem Neurosci 2022; 13:920-932. [PMID: 35316021 DOI: 10.1021/acschemneuro.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is identified by pathological hallmarks such as intracellular neurofibrillary tangles (NFTs) and extracellular amyloid β plaques. Several hypotheses exist to define the neurodegeneration including microglial activation associated with neuroinflammatory processes. Recently, pharmacological inhibition of endocannabinoid (eCB)-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), is being investigated to modulate the pathology of Alzheimer's disease. While MAGL inhibitors upregulate 2-acyl glycerol (2-AG) levels and reduce neuroinflammation, FAAH inhibitors elevate anandamide (AEA) levels and prevent the degradation of HSP-70, thereby preventing the phosphorylation of tau protein and formation of NFTs in neural cells. We investigated the possible neuroprotective potential of the dual MAGL/FAAH inhibitor JZL-195 (20 mg/kg) against ICV-STZ-induced sporadic Alzheimer's disease (SAD) in Swiss albino mice using donepezil (5 mg/kg) as the standard. The protective effects of JZL-195 were observed by the reversal of altered levels of Aβ1-42, HSP-70, neuroinflammatory cytokines, and oxidative stress markers. However, JZL-195 expressed no cognitive improvement when assessed by spontaneous alternation behavior and Morris water maze tests and no effects on the AChE enzyme level in the hippocampal tissues of mice. Therefore, the findings of the present study indicate that although JZL-195 exhibited no improvement in cognitive deficits associated with sporadic Alzheimer's disease, it displayed significant reversal of the biochemical anomalies, thereby suggesting its therapeutic potential against the sporadic Alzheimer's disease model.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Zameer
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shreshta Jain
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vaishali Yadav
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
37
|
Molecular Signatures of Mitochondrial Complexes Involved in Alzheimer’s Disease via Oxidative Phosphorylation and Retrograde Endocannabinoid Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9565545. [PMID: 35432724 PMCID: PMC9006080 DOI: 10.1155/2022/9565545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Objective The inability to intervene in Alzheimer's disease (AD) forces the search for promising gene-targeted therapies. This study was aimed at exploring molecular signatures and mechanistic pathways to improve the diagnosis and treatment of AD. Methods Microarray datasets were collected to filter differentially expressed genes (DEGs) between AD and nondementia controls. Weight gene correlation network analysis (WGCNA) was employed to analyze the correlation of coexpression modules with AD phenotype. A global regulatory network was established and then visualized using Cytoscape software to determine hub genes and their mechanistic pathways. Receiver operating characteristic (ROC) analysis was conducted to estimate the diagnostic performance of hub genes in AD prediction. Results A total of 2,163 DEGs from 13,049 background genes were screened in AD relative to nondementia controls. Among the six coexpression modules constructed by WGCNA, DEGs of the key modules with the strongest correlation with AD were extracted to build a global regulatory network. According to the Maximal Clique Centrality (MCC) method, five hub genes associated with mitochondrial complexes were chosen. Further pathway enrichment analysis of hub genes, such as oxidative phosphorylation and retrograde endocannabinoid signaling, was identified. According to the area under the curve (AUC) of about 70%, each hub gene exhibited a good diagnostic performance in predicting AD. Conclusions Our findings highlight the perturbation of mitochondrial complexes underlying AD onset, which is mediated by molecular signatures involved in oxidative phosphorylation (COX5A, NDUFAB1, SDHB, UQCRC2, and UQCRFS1) and retrograde endocannabinoid signaling (NDUFAB1) pathways.
Collapse
|
38
|
Zhou S, Chen R, She Y, Liu X, Zhao H, Li C, Jia Y. A new perspective on depression and neuroinflammation: Non-coding RNA. J Psychiatr Res 2022; 148:293-306. [PMID: 35193033 DOI: 10.1016/j.jpsychires.2022.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022]
Abstract
The high incidence and relapse rate of depression, as well comorbidity with other diseases, has made depression one of the primary causes of years of life lived with disability. Moreover, the unknown biological mechanism of depression has made treatment difficult. Neuroinflammation is important in the pathogenesis of depression. Neuroinflammation may affect depression by regulating the production of immune factors, immune cell activation, neuron generation, synaptic plasticity, and neurotransmission. Non-coding RNAs (ncRNAs) may be a breakthrough link between depression and neuroinflammation, as ncRNAs participate in these biological changes. We summarize the functions and mechanisms of ncRNAs in neuroinflammation and depression, and predict ncRNAs that may regulate the occurrence and progression of depression through neuritis. These findings not only broaden our understanding of the genetic regulation of depression and neuroinflammation but also provide a new perspective of the underlying mechanism and aid in the design of novel prevention, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China.
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China
| | - Xuanjun Liu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
39
|
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics. Genes (Basel) 2022; 13:genes13030425. [PMID: 35327979 PMCID: PMC8951370 DOI: 10.3390/genes13030425] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science’s 2021 annual report suggests around 6.2 million Americans are living with Alzheimer’s disease, and there is a possibility that there will be 1.2 million Parkinson’s disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA
- Correspondence:
| | - Erica Lee
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Teresa Li
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Maria Rampersaud
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| |
Collapse
|
40
|
Chen C. Endocannabinoid metabolism and Alzheimer's disease. Neural Regen Res 2022; 17:1987-1988. [PMID: 35142686 PMCID: PMC8848605 DOI: 10.4103/1673-5374.335153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chu Chen
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
41
|
Hu M, Zhu D, Zhang J, Gao F, Hashem J, Kingsley P, Marnett LJ, Mackie K, Chen C. Enhancing endocannabinoid signalling in astrocytes promotes recovery from traumatic brain injury. Brain 2022; 145:179-193. [PMID: 35136958 PMCID: PMC8967103 DOI: 10.1093/brain/awab310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury is an important risk factor for development of Alzheimer's disease and dementia. Unfortunately, no effective therapies are currently available for prevention and treatment of the traumatic brain injury-induced Alzheimer's disease-like neurodegenerative disease. This is largely due to our limited understanding of the mechanisms underlying traumatic brain injury-induced neuropathology. Previous studies showed that pharmacological inhibition of monoacylglycerol lipase, a key enzyme degrading the endocannabinoid 2-arachidonoylglycerol, attenuates traumatic brain injury-induced neuropathology. However, the mechanism responsible for the neuroprotective effects produced by inhibition of monoacylglycerol lipase in traumatic brain injury remains unclear. Here we first show that genetic deletion of monoacylglycerol lipase reduces neuropathology and averts synaptic and cognitive declines in mice exposed to repeated mild closed head injury. Surprisingly, these neuroprotective effects result primarily from inhibition of 2-arachidonoylglycerol metabolism in astrocytes, rather than in neurons. Single-cell RNA-sequencing data reveal that astrocytic monoacylglycerol lipase knockout mice display greater resilience to traumatic brain injury-induced changes in expression of genes associated with inflammation or maintenance of brain homeostasis in astrocytes and microglia. The monoacylglycerol lipase inactivation-produced neuroprotection is abrogated by deletion of the cannabinoid receptor-1 or by adeno-associated virus vector-mediated silencing of astrocytic peroxisome proliferator-activated receptor-γ. This is further supported by the fact that overexpression of peroxisome proliferator-activated receptor-γ in astrocytes prevents traumatic brain injury-induced neuropathology and impairments in spatial learning and memory. Our results reveal a previously undefined cell type-specific role of 2-arachidonoylglycerol metabolism and signalling pathways in traumatic brain injury-induced neuropathology, suggesting that enhanced 2-arachidonoylglycerol signalling in astrocytes is responsible for the monoacylglycerol lipase inactivation-produced alleviation of neuropathology and deficits in synaptic and cognitive functions in traumatic brain injury.
Collapse
Affiliation(s)
- Mei Hu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dexiao Zhu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Philip Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lawrence J Marnett
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Correspondence to: Chu Chen, PhD Department of Cellular and Integrative Physiology, School of Medicine University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive, San Antonio, TX 78229, USA E-mail: or
| |
Collapse
|
42
|
Co-Expression Analysis of microRNAs and Proteins in Brain of Alzheimer's Disease Patients. Cells 2022; 11:cells11010163. [PMID: 35011725 PMCID: PMC8750061 DOI: 10.3390/cells11010163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally; however, the aetiology of AD remains elusive hindering the development of effective therapeutics. MicroRNAs (miRNAs) are regulators of gene expression and have been of growing interest in recent studies in many pathologies including AD not only for their use as biomarkers but also for their implications in the therapeutic field. In this study, miRNA and protein profiles were obtained from brain tissues of different stage (Braak III-IV and Braak V-VI) of AD patients and compared to matched controls. The aim of the study was to identify in the late stage of AD, the key dysregulated pathways that may contribute to pathogenesis and then to evaluate whether any of these pathways could be detected in the early phase of AD, opening new opportunity for early treatment that could stop or delay the pathology. Six common pathways were found regulated by miRNAs and proteins in the late stage of AD, with one of them (Rap1 signalling) activated since the early phase. MiRNAs and proteins were also compared to explore an inverse trend of expression which could lead to the identification of new therapeutic targets. These results suggest that specific miRNA changes could represent molecular fingerprint of neurodegenerative processes and potential therapeutic targets for early intervention.
Collapse
|
43
|
Yuen SC, Lee SMY, Leung SW. Putative Factors Interfering Cell Cycle Re-Entry in Alzheimer's Disease: An Omics Study with Differential Expression Meta-Analytics and Co-Expression Profiling. J Alzheimers Dis 2021; 85:1373-1398. [PMID: 34924393 DOI: 10.3233/jad-215349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
44
|
Sokolik VV, Berchenko OH, Kolyada OK, Shulga SM. Direct and Indirect Action of Liposomal Form of MIR-101 on Cells in the Experimental Model of Alzheimer’s Disease. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Zhu D, Gao F, Chen C. Endocannabinoid Metabolism and Traumatic Brain Injury. Cells 2021; 10:cells10112979. [PMID: 34831202 PMCID: PMC8616221 DOI: 10.3390/cells10112979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of morbidity and disability and is a risk factor for developing neurodegenerative diseases, including Alzheimer’s disease (AD). However, no effective therapies are currently available for TBI-induced AD-like disease. Endocannabinoids are endogenous lipid mediators involved in a variety of physiological and pathological processes. The compound 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid with profound anti-inflammatory and neuroprotective properties. This molecule is predominantly metabolized by monoacylglycerol lipase (MAGL), a key enzyme degrading about 85% of 2-AG in the brain. Studies using animal models of inflammation, AD, and TBI provide evidence that inactivation of MAGL, which augments 2-AG signaling and reduces its metabolites, exerts neuroprotective effects, suggesting that MAGL is a promising therapeutic target for neurodegenerative diseases. In this short review, we provide an overview of the inhibition of 2-AG metabolism for the alleviation of neuropathology and the improvement of synaptic and cognitive functions after TBI.
Collapse
|
46
|
The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res Rev 2021; 71:101425. [PMID: 34384901 DOI: 10.1016/j.arr.2021.101425] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
In the past two decades, advances in sequencing technology and analysis of the human and mouse genome have led to the discovery of many non-protein-coding RNAs (ncRNAs) including: microRNA, small-interfering RNAs, piwi-associated small RNAs, transfer RNA-derived small RNAs, long-non-coding RNAs and circular RNAs. Compared with healthy controls, levels of some ncRNAs are significantly altered in the central nervous system and blood of patients affected by neurodegenerative disorders like Alzheimer's disease (AD). Although the mechanisms are still not fully elucidated, studies have revealed that these highly conserved ncRNAs are important modulators of gene expression, amyloid-β production, tau phosphorylation, inflammation, synaptic plasticity and neuronal survival, all features considered central to AD pathogenesis. Despite considerable difficulties due to their large heterogeneity, and the complexity of their regulatory pathways, research in this rapidly growing field suggests that ncRNAs hold great potential as biomarkers and therapeutic targets against AD. Herein, we summarize the current knowledge regarding the neurobiology of ncRNA in the context of AD pathophysiology.
Collapse
|
47
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021; 13:654978. [PMID: 34276336 PMCID: PMC8283767 DOI: 10.3389/fnagi.2021.654978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. AD is characterized by the production and aggregation of beta-amyloid (Aβ) peptides, hyperphosphorylated tau proteins that form neurofibrillary tangles (NFTs), and subsequent neuroinflammation, synaptic dysfunction, autophagy and oxidative stress. Non-coding RNAs (ncRNAs) can be used as potential therapeutic targets and biomarkers due to their vital regulatory roles in multiple biological processes involved in disease development. The involvement of ncRNAs in the pathogenesis of AD has been increasingly recognized. Here, we review the ncRNAs implicated in AD and elaborate on their main regulatory pathways, which might have contributions for discovering novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- Institute of Biomedical Research, School for Life Science, Shandong University of Technology, Zibo, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Xiong F, Ding X, Zhang H, Luo X, Chen K, Jiang H, Luo C, Xu H. Discovery of novel reversible monoacylglycerol lipase inhibitors via docking-based virtual screening. Bioorg Med Chem Lett 2021; 41:127986. [PMID: 33766770 DOI: 10.1016/j.bmcl.2021.127986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Monoacylglycerol lipase (MAGL) is the major enzyme that catalyzes the hydrolysis of monoacylglycerols (MAGs). MAGL is responsible for degrading 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain and specific tissues. The inhibition of MAGL could attenuate the inflammatory response. Here, we report a series of reversible non-covalent MAGL inhibitors via virtual screening combined with biochemical analysis. The hit, DC630-8 showed low-micromolar activity against MAGL in vitro, and exhibited significant anti-inflammatory effects.
Collapse
Affiliation(s)
- Fengmin Xiong
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Heng Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
49
|
Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:4122-4133. [PMID: 33939165 DOI: 10.1007/s12035-021-02400-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic models of AD. While inhibition of 2-AG metabolism mitigates β-amyloid (Aβ) neuropathology, it is still not clear whether inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau protein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced proinflammatory cytokines, astrogliosis, phosphorylated GSK3β and tau, cleaved caspase-3, and phosphorylated NF-kB while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a promising therapeutic target for AD.
Collapse
|
50
|
Liu X, Wang K, Wei X, Xie T, Lv B, Zhou Q, Wang X. Interaction of NF-κB and Wnt/β-catenin Signaling Pathways in Alzheimer's Disease and Potential Active Drug Treatments. Neurochem Res 2021; 46:711-731. [PMID: 33523396 DOI: 10.1007/s11064-021-03227-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
The most important neuropathological features of Alzheimer's disease (AD) are extracellular amyloid-β protein (Aβ) deposition, tau protein hyperphosphorylation and activation of neurometabolic reaction in the brain accompanied by neuronal and synaptic damage, and impaired learning and memory function. According to the amyloid cascade hypothesis, increased Aβ deposits in the brain to form the core of the senile plaques that initiate cascade reactions, affecting the synapses and stimulating activation of microglia, resulting in neuroinflammation. A growing number of studies has shown that NF-κB and Wnt/β-catenin pathways play important roles in neurodegenerative diseases, especially AD. In this review, we briefly introduce the connection between neuroinflammation-mediated synaptic dysfunction in AD and elaborated on the mechanism of these two signaling pathways in AD-related pathological changes, as well as their interaction. Based on our interest in natural compounds, we also briefly introduce and conduct preliminary screening of potential therapeutics for AD.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaiyue Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xing Wei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tian Xie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Lv
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|