1
|
Dwortz MF, Curley JP. Capturing dynamic neuronal responses to dominant and subordinate social hierarchy members with catFISH. Neuroscience 2025:S0306-4522(25)00387-2. [PMID: 40414523 DOI: 10.1016/j.neuroscience.2025.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/31/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Dominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for mid-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how mid-ranked mice's brains respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers. We show that distinct neuronal populations in the amygdala and hippocampus respond differentially across social contexts. In the basolateral amygdala and dorsal endopiriform, glutamatergic Slc17a7+ neurons, particularly dopamine-receptive Slc17a7+Drd1+ neurons, show elevated IEG expression in response to social stimuli, with a higher response to dominant over subordinate animals. Similar response patterns are observed among GABAergic Slc32a1+Oxtr+ neurons in the medial amygdala. We also identified distinct neural ensembles selectively active in response to dominant and subordinate animals by examining cell reactivation over repeated stimulus presentations. We find a higher degree of reactivation among Slc17a7+Oxtr+ ensembles in the endopiriform when the same individual was presented twice in succession. A similar pattern was observed among Oxtr+ neurons in the dentate gyrus hilus, while the inverse was observed among Slc17a7+Avrp1b+Oxtr+ neurons in distal CA2CA3, suggesting distinct encoding or recollection mechanisms across hippocampal subregions. We also highlight methodological advances showing that IEG responses are shaped by stimulus duration and the identity of the IEG and timepoint at which expression is measured. This work lays the foundation for further precise, cell type-resolved investigation into how the brain processes social information.
Collapse
Affiliation(s)
- Madeleine F Dwortz
- Interdisciplinary Neuroscience Program, The University of Texas at Austin, Austin, TX 78712, United States; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States; Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Austin, TX 78712, United States
| | - James P Curley
- Interdisciplinary Neuroscience Program, The University of Texas at Austin, Austin, TX 78712, United States; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
2
|
Trives E, Porte C, Nakahara TS, Keller M, Vacher H, Chamero P. Social experience is associated with a differential role of aromatase neurons in sexual behavior and territorial aggression in male mice. Horm Behav 2025; 170:105723. [PMID: 40106849 DOI: 10.1016/j.yhbeh.2025.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Aromatase (Aro+) neurons located in the Bed Nucleus of the Stria Terminalis (BNST) are crucial for the display of both sexual behavior and territorial aggression in naive male mice. The postero-dorsal part of the Medial Amygdala (MeApd) also contains Aro + neurons that are required for territorial aggression, but these neurons seem dispensable for the display of sexual behavior in naive animals. However, little is known about how Aro + neuron circuitry is influenced by social experience. Using a combination of chemogenetics, activity mapping and retrograde viral tracing, we show that social experience modulates Aro + neurons during sexual behavior and territorial aggression. Chemogenetic inhibition of BNST Aro + neurons in socially experienced male mice revealed that these neurons are required for territorial aggression, but not for sexual behavior. Behavior testing in experienced animals showed a specific increase in activation in the vomeronasal organ (VNO) and the Medial Amygdala (MeA) after sexual behavior but not territorial aggression, assessed by Egr1 expression. We also observed an increase of Egr1 cells in the medial Preoptic Area (mPOA), a brain region implicated in the display of sexual behavior. Combined retrograde viral tracing and Egr1 immunodetection showed that a subset of the activated cells in the MeA are Aro + neurons projecting to the mPOA. These results highlight that social experience induces a differential neural activity in the circuitry controlling sexual behavior and aggression, which include MeA Aro + neurons projecting to the mPOA.
Collapse
Affiliation(s)
- Elliott Trives
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Chantal Porte
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Thiago Seike Nakahara
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Hélène Vacher
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
3
|
Ignacio B, Baeza J, Ruiz B, Romero JP, Yañez P, Ramírez C, Caprile T, Farkas C, Recabal-Beyer A. The medial amygdala's neural circuitry: Insights into social processing and sex differences. Front Neuroendocrinol 2025; 77:101190. [PMID: 40294707 DOI: 10.1016/j.yfrne.2025.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The amygdala, a critical part of the limbic system, is essential for processing social stimuli and regulating stress responses. Among its various neuronal nuclei, the medial amygdala (MeA) remains one of the least studied in humans. The MeA plays a key role in receiving inputs from the olfactory system through pheromones, as well as from crucial areas such as the hypothalamus, hippocampus, and reward system. This allows the MeA to integrate external stimuli with the organism's internal state, finetuning social interactions, endocrine responses, and innate behaviors. Recent advances in neuroscience have highlighted the sex differences of the MeA and how they influence behavior and environmental perception. Understanding these sexspecific variations in brain structures, like the MeA in rodents, is vital for applying this knowledge to humans and could help bridge gaps in our understanding and treatment of mental health disorders, which often differ between sexes in both prevalence and presentation.
Collapse
Affiliation(s)
| | - Janina Baeza
- Faculty of Medicine, Universidad de Concepción, Chile
| | - Bastián Ruiz
- Faculty of Medicine, Universidad de Concepción, Chile
| | | | - Paulina Yañez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Camila Ramírez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Carlos Farkas
- Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Chile
| | - Antonia Recabal-Beyer
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile.
| |
Collapse
|
4
|
Ritger AC, Loh MK, Stickling CP, Padival M, Ferrara NC, Rosenkranz JA. Repeated social stress increases posterior medial amygdala neuronal activity in stress-susceptible adult male rats. J Neurophysiol 2025; 133:582-597. [PMID: 39772896 DOI: 10.1152/jn.00215.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons. The posterior division of the MeA (MeAp) has been implicated in driving social engagement. We hypothesized that repeated social stress would cause parallel changes in in vivo activity of MeAp neurons and social behavior. The resident-intruder paradigm was used to produce repeated social stress in adult male rats. After repeated social stress, MeAp neurons were recorded with in vivo single-unit electrophysiology in anesthetized rats. MeAp neurons, specifically those in the posterodorsal subnucleus (MeApd), fired faster in stressed rats than in controls, and this effect was directly associated with stressor intensity. The MeAp sends dense projections to the posterior bed nucleus of stria terminalis (pBNST) and ventromedial hypothalamus (VMH), and both regions are essential for social engagement and are sensitive to social stressors. MeAp projections to pBNST had higher activity after stress, whereas projections to the VMH were not affected. These effects were significant only in rats that displayed susceptibility to this social stressor, as demonstrated by lower weight gain. Furthermore, the effect of stress on MeApd and MeAp-pBNST neuronal firing was correlated with lower social interaction. These results indicate that heightened MeApd and MeA-pBNST activity may contribute to alterations in social behaviors following social stress.NEW & NOTEWORTHY Social stress contributes to psychiatric disorders and impacts multiple brain regions. However, effects on a crucial area for social function, the medial amygdala (MeA), are unclear. We found that social stress increased firing of posterior MeA neurons, and particularly neurons that project to bed nucleus of the stria terminalis, a region implicated in anxiety. Effects of stress on this circuit were associated with diminished social interaction and help clarify how stress can impact social functions.
Collapse
Affiliation(s)
- Alexandra C Ritger
- Department of Foundational Sciences and Humanities, Discipline of Neuroscience, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Maxine K Loh
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Courtney P Stickling
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| |
Collapse
|
5
|
Prakash N, Abu Irqeba A, Corbin JG. Development and function of the medial amygdala. Trends Neurosci 2025; 48:22-32. [PMID: 39672784 DOI: 10.1016/j.tins.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Across studied vertebrates, the medial amygdala (MeA) is a central hub for relaying sensory information with social and/or survival relevance to downstream nuclei such as the bed nucleus of stria terminalis (BNST) and the hypothalamus. MeA-driven behaviors, such as mating, aggression, parenting, and predator avoidance are processed by different molecularly defined inhibitory and excitatory neuronal output populations. Work over the past two decades has deciphered how diverse MeA neurons arise from embryonic development, revealing contributions from multiple telencephalic and diencephalic progenitor domains. Here, we first provide a brief overview of current findings regarding the role of the MeA in social behaviors, followed by a deeper dive into current knowledge of how this complex structure is specified during development. We outline a conceptual model of MeA formation that has emerged based on these findings. We further postulate how embryonic developmental programming of the MeA may inform later emergence of stereotypical circuitry governing hardwired behaviors.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010
| | - Ameair Abu Irqeba
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA 20010.
| |
Collapse
|
6
|
Dwortz MF, Curley JP. Capturing Dynamic Neuronal Responses to Dominant and Subordinate Social Hierarchy Members with catFISH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629477. [PMID: 39763757 PMCID: PMC11702762 DOI: 10.1101/2024.12.19.629477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Dominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers. We show that distinct neuronal populations in the amygdala and hippocampus respond differentially across social contexts. In the basolateral amygdala, glutamatergic Slc17a7+ neurons, particularly dopamine-receptive Slc17a7+Drd1+ neurons, show elevated IEG expression in response to social stimuli, with a higher response to dominant over subordinate animals. Similar patterns are observed among Slc17a7+Oxtr+ neurons in the dorsal endopiriform nucleus and GABAergic Slc32a+ neurons in the medial amygdala. We also identified distinct neural ensembles selectively active in response to dominant and subordinate hierarchy members. We find a higher degree of reactivation among Slc17a7+Oxtr+ ensembles in the dorsal endopiriform nucleus in animals repeatedly presented with the same hierarchy member, as opposed to those presented with a dominant and subordinate member. We observe a similar pattern among Oxtr+ neurons in the dentate gyrus hilus, while the inverse is observed among Slc17a7+ Avrp1b+Oxtr+ neurons in the distal CA2CA3 region. Collectively, our findings reveal how social context is associated with activity changes in social, olfactory, and memory systems in the brain at the neuronal cell type level. This work lays the foundation for further precise cell-type investigation into how the brain processes social information.
Collapse
|
7
|
Schkoda S, Horman B, Witchey S, St Armour G, Nelson M, Gaeta E, Scott M, Patisaul HB. Sex-specific effects on elements of the social brain neural network in Wistar rats from perinatal exposure to FireMaster 550 or its components. Neurotoxicology 2024; 105:111-120. [PMID: 39241866 DOI: 10.1016/j.neuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Shannah Witchey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States
| | - Mason Nelson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Emily Gaeta
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Madeline Scott
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
8
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. The human social cognitive network contains multiple regions within the amygdala. SCIENCE ADVANCES 2024; 10:eadp0453. [PMID: 39576857 PMCID: PMC11584017 DOI: 10.1126/sciadv.adp0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Reasoning about someone's thoughts and intentions-i.e., forming a "theory of mind"-is a core aspect of social cognition and relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by social cognitive processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to anterior regions of the medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between internal circuits of the amygdala and a broader distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Rosenkranz JA. Developmental Shifts in Amygdala Function. Curr Top Behav Neurosci 2024. [PMID: 39546164 DOI: 10.1007/7854_2024_538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mammals have evolved with strategies to optimize survival and thrive in their native environment. This includes both physical and behavioral adaptations, and extends to their social environment. However, within a social context, the roles of an animal change across development, and their behavior and biology must update to match these changes. The amygdala has a key role in social and emotional processing and expression, and displays developmental changes in early juvenile, adolescent, and adult transitions. Furthermore, the amygdala is highly sensitive to the social environment. This chapter will describe the primary amygdala developmental changes, how this maps onto major changes in social and emotional domains, and propose a framework where developmental stage of intra-amygdala circuits and its regulation by cortical inputs biases the animal toward developmentally appropriate social and emotional behavior. This developmental plasticity also presents an opportunity for retuning the developmental trajectory in the presence of ongoing challenges during maturation, such as constant threat or resource scarcity, so there can be realignment of behavior to match environmental demands.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
10
|
Wang Y, Xie M, Zheng L, Ma J, Wang M, Zhang L. Associations between parental rearing style and amygdala and hippocampal subfield abnormalities in drug-naive females with anorexia nervosa. BMC Psychiatry 2024; 24:648. [PMID: 39358695 PMCID: PMC11445996 DOI: 10.1186/s12888-024-06120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Altered volumes in the hippocampus and amygdala have been linked to anorexia nervosa (AN). This study aimed to investigate amygdala and hippocampal subfields volume abnormalities in AN patients, and their associations with parental rearing practices and clinical psychological characteristics. METHODS This study included twenty-nine drug-naive females with AN from West China Hospital of Sichuan University, China, and fifty-nine age- and gender-matched healthy controls (HCs) recruited through advertisement. All participants underwent T1-weighted imaging. Amygdala and hippocampal subfields volume was calculated using FreeSurfer 7.0. The Core Self-Evaluation Scale (CSES) and Rosenberg Self-Esteem Scale (RSES) were used to assess the psychological characteristics of AN patients. The Egna Minnen av Barndoms Uppfostran (EMBU) was employed to evaluate parental rearing practices. Group differences in brain volumes were analyzed with covariates like age and total intracranial volume (TIV). Partial correlation analysis explored the correlations between brain region volumes and clinical psychological characteristics. RESULTS AN patients exhibited lower RSES and CSES scores, and more adverse parental rearing style than healthy norms. After adjusting for covariates, AN patients showed decreased gray matter volume (GMV) in the left medial (Me) and cortical (Co) nucleus, as well as in the right hippocampal-amygdala transition area (HATA). GMV in the left Me was correlated with years of education among HCs but not among AN patients. GMV in the right HATA was positively correlated with paternal penalty and severity, as well as maternal overinterference. CONCLUSION This study supports structure abnormalities in amygdala and hippocampus in AN patients and suggests that parental rearing practices may be associated with hippocampal abnormalities, potentially contributing to the pathophysiology of AN. Addressing appropriate parental rearing styles may offer a positive impact on AN.
Collapse
Affiliation(s)
- Yu Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Linli Zheng
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Jing Ma
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Meiou Wang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China
| | - Lan Zhang
- Mental Health Center, West China Hospital of Sichuan University, Dianxin South Street, 28#, Wuhou District, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
11
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Cheng KH, Hung YC, Ling P, Hsu KS. Oxytocin treatment rescues irritability-like behavior in Cc2d1a conditional knockout mice. Neuropsychopharmacology 2024; 49:1792-1802. [PMID: 39014123 PMCID: PMC11399130 DOI: 10.1038/s41386-024-01920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Irritability, a state of excessive reactivity to negative emotional stimuli, is common in individuals with autism spectrum disorder (ASD). Although it has a significant negative impact of patients' disease severity and quality of life, the neural mechanisms underlying irritability in ASD remain largely unclear. We have previously demonstrated that male mice lacking the Coiled-coil and C2 domain containing 1a (Cc2d1a) in forebrain excitatory neurons recapitulate numerous ASD-like behavioral phenotypes, including impaired social behaviors and pronounced repetitive behaviors. Here, using the bottle-brush test (BBT) to trigger and evaluate aggressive and defensive responses, we show that Cc2d1a deletion increases irritability-like behavior in male but not female mice, which is correlated with reduced number of oxytocin (OXT)-expressing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Intranasal OXT administration or chemogenetic activation of OXT neurons in the PVN rescues irritability-like behavior in Cc2d1a conditional knockout (cKO) mice. Administration of a selective melanocortin receptor 4 agonist, RO27-3225, which potentiates endogenous OXT release, also alleviates irritability-like behavior in Cc2d1a cKO mice, an effect blocked by a specific OXT receptor antagonist, L-368,899. We additionally identify a projection connecting the posterior ventral segment of the medial amygdala (MeApv) and ventromedial nucleus of the ventromedial hypothalamus (VMHvl) for governing irritability-like behavior during the BBT. Chemogenetic suppression of the MeApv-VMHvl pathway alleviates irritability-like behavior in Cc2d1a cKO mice. Together, our study uncovers dysregulation of OXT system in irritability-like behavior in Cc2d1a cKO mice during the BBT and provide translatable insights into the development of OXT-based therapeutics for clinical interventions.
Collapse
Affiliation(s)
- Kuan-Hsiang Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pin Ling
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Mulenge F, Gern OL, Busker LM, Aringo A, Ghita L, Waltl I, Pavlou A, Kalinke U. Transcriptomic analysis unveils bona fide molecular signatures of microglia under conditions of homeostasis and viral encephalitis. J Neuroinflammation 2024; 21:203. [PMID: 39153993 PMCID: PMC11330067 DOI: 10.1186/s12974-024-03197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Microglia serve as a front-line defense against neuroinvasive viral infection, however, determination of their actual transcriptional profiles under conditions of health and disease is challenging. Here, we used various experimental approaches to delineate the transcriptional landscape of microglia during viral infection. Intriguingly, multiple activation genes were found to be artificially induced in sorted microglia and we demonstrated that shear stress encountered during cell sorting was one of the key inducers. Post-hoc analysis revealed that publicly available large-scale single-cell RNA sequencing datasets were significantly tainted by aberrant signatures that are associated with cell sorting. By exploiting the ribosomal tagging approach, we developed a strategy to enrich microglia-specific transcripts by comparing immunoprecipitated RNA with total RNA. Such enriched transcripts were instrumental in defining bona fide signatures of microglia under conditions of health and virus infection. These unified microglial signatures may serve as a benchmark to retrospectively assess ex vivo artefacts from available atlases. Leveraging the microglial translatome, we found enrichment of genes implicated in T-cell activation and cytokine production during the course of VSV infection. These data linked microglia with T-cell re-stimulation and further underscored that microglia are involved in shaping antiviral T-cell responses in the brain. Collectively, our study defines the transcriptional landscape of microglia under steady state and during viral encephalitis and highlights cellular interactions between microglia and T cells that contribute to the control of virus dissemination.
Collapse
Affiliation(s)
- Felix Mulenge
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Foundation, Hannover, Germany
| | - Angela Aringo
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- , Genentech, South San Francisco, CA, 94080, USA
| | - Inken Waltl
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Symeonides C, Vacy K, Thomson S, Tanner S, Chua HK, Dixit S, Mansell T, O'Hely M, Novakovic B, Herbstman JB, Wang S, Guo J, Chia J, Tran NT, Hwang SE, Britt K, Chen F, Kim TH, Reid CA, El-Bitar A, Bernasochi GB, Delbridge LMD, Harley VR, Yap YW, Dewey D, Love CJ, Burgner D, Tang MLK, Sly PD, Saffery R, Mueller JF, Rinehart N, Tonge B, Vuillermin P, Ponsonby AL, Boon WC. Male autism spectrum disorder is linked to brain aromatase disruption by prenatal BPA in multimodal investigations and 10HDA ameliorates the related mouse phenotype. Nat Commun 2024; 15:6367. [PMID: 39112449 PMCID: PMC11306638 DOI: 10.1038/s41467-024-48897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/16/2024] [Indexed: 08/10/2024] Open
Abstract
Male sex, early life chemical exposure and the brain aromatase enzyme have been implicated in autism spectrum disorder (ASD). In the Barwon Infant Study birth cohort (n = 1074), higher prenatal maternal bisphenol A (BPA) levels are associated with higher ASD symptoms at age 2 and diagnosis at age 9 only in males with low aromatase genetic pathway activity scores. Higher prenatal BPA levels are predictive of higher cord blood methylation across the CYP19A1 brain promoter I.f region (P = 0.009) and aromatase gene methylation mediates (P = 0.01) the link between higher prenatal BPA and brain-derived neurotrophic factor methylation, with independent cohort replication. BPA suppressed aromatase expression in vitro and in vivo. Male mice exposed to mid-gestation BPA or with aromatase knockout have ASD-like behaviors with structural and functional brain changes. 10-hydroxy-2-decenoic acid (10HDA), an estrogenic fatty acid alleviated these features and reversed detrimental neurodevelopmental gene expression. Here we demonstrate that prenatal BPA exposure is associated with impaired brain aromatase function and ASD-related behaviors and brain abnormalities in males that may be reversible through postnatal 10HDA intervention.
Collapse
Grants
- This multimodal project was supported by funding from the Minderoo Foundation. Funding was also provided by the National Health and Medical Research Council of Australia (NHMRC), the NHMRC-EU partnership grant for the ENDpoiNT consortium, the Australian Research Council, the Jack Brockhoff Foundation, the Shane O’Brien Memorial Asthma Foundation, the Our Women’s Our Children’s Fund Raising Committee Barwon Health, The Shepherd Foundation, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, GMHBA Limited, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees, Fred P Archer Fellowship; the Scobie Trust; Philip Bushell Foundation; Pierce Armstrong Foundation; The Canadian Institutes of Health Research; BioAutism, William and Vera Ellen Houston Memorial Trust Fund, Homer Hack Research Small Grants Scheme and the Medical Research Commercialisation Fund. This work was also supported by Ms. Loh Kia Hui. This project received funding from a NHMRC-EU partner grant with the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (ENDpoiNTs project). This work was also supported by NHMRC Investigator Fellowships (GTN1175744 to D.B, APP1197234 to A-L.P, and GRT1193840 to P.S). The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Australia
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sam Tanner
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Hui Kheng Chua
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Hudson Institute of Medical Research, Clayton, Australia
| | - Shilpi Dixit
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jia Guo
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jessalynn Chia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Nhi Thao Tran
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Sang Eun Hwang
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Kara Britt
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Tae Hwan Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Anthony El-Bitar
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Gabriel B Bernasochi
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Lea M Durham Delbridge
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Vincent R Harley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Yann W Yap
- The Hudson Institute of Medical Research, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences, The University of Calgary, Calgary, Canada
| | - Chloe J Love
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
- Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Pediatrics, Monash University, Clayton, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Peter D Sly
- School of Medicine, Deakin University, Geelong, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
- WHO Collaborating Centre for Children's Health and Environment, Brisbane, Australia
| | | | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Nicole Rinehart
- Monash Krongold Clinic, Faculty of Education, Monash University, Clayton, Australia
| | - Bruce Tonge
- Centre for Developmental Psychiatry and Psychology, Monash University, Clayton, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
15
|
Nechyporenko K, Voliotis M, Li XF, Hollings O, Ivanova D, Walker JJ, O'Byrne KT, Tsaneva-Atanasova K. Neuronal network dynamics in the posterodorsal amygdala: shaping reproductive hormone pulsatility. J R Soc Interface 2024; 21:20240143. [PMID: 39193642 DOI: 10.1098/rsif.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown. Here, we employ in silico modelling in order to explore the impact of dynamic inputs on GnRH pulse generator activity. We introduce and analyse a mathematical model representing MePD neuronal circuits composed of GABAergic and glutamatergic neuronal populations, integrating it with our GnRH pulse generator model. Our analysis dissects the influence of excitatory and inhibitory MePD projections' outputs on the GnRH pulse generator's activity and reveals a functionally relevant MePD glutamatergic projection to the GnRH pulse generator, which we probe with in vivo optogenetics. Our study sheds light on how MePD neuronal dynamics affect the GnRH pulse generator activity and offers insights into stress-related dysregulation.
Collapse
Affiliation(s)
- Kateryna Nechyporenko
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Xiao Feng Li
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Owen Hollings
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Deyana Ivanova
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie J Walker
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Kevin T O'Byrne
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| |
Collapse
|
16
|
Bonilla P, Shanks A, Nerella Y, Porcu A. Effects of chronic light cycle disruption during adolescence on circadian clock, neuronal activity rhythms, and behavior in mice. Front Neurosci 2024; 18:1418694. [PMID: 38952923 PMCID: PMC11215055 DOI: 10.3389/fnins.2024.1418694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.
Collapse
Affiliation(s)
| | | | | | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
17
|
Haris EM, Bryant RA, Korgaonkar MS. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. Neuroimage Clin 2024; 42:103619. [PMID: 38744025 PMCID: PMC11108976 DOI: 10.1016/j.nicl.2024.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.
Collapse
Affiliation(s)
- Elizabeth M Haris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia.
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia; Department of Radiology, Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
18
|
Lavoie O, Turmel A, Mattoon P, Desrosiers WJ, Plamondon J, Michael NJ, Caron A. Hypothalamic GABAergic Neurons Expressing Cellular Retinoic Acid Binding Protein 1 (CRABP1) Are Sensitive to Metabolic Status and Liraglutide in Male Mice. Neuroendocrinology 2024; 114:681-697. [PMID: 38631315 PMCID: PMC11232952 DOI: 10.1159/000538716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Audrey Turmel
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Paige Mattoon
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | | | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
19
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Hu JB, Chen F, Pan PL, Li WH. Altered volume of the amygdala subregions in patients with chronic low back pain. Front Neurol 2024; 15:1351335. [PMID: 38606278 PMCID: PMC11007205 DOI: 10.3389/fneur.2024.1351335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Background Neuroimaging studies have suggested a pivotal role for the amygdala involvement in chronic low back pain (CLBP). However, the relationship between the amygdala subregions and CLBP has not yet been delineated. This study aimed to analyze whether the amygdala subregions were linked to the development of CLBP. Methods A total of 45 patients with CLBP and 45 healthy controls (HCs) were included in this study. All subjects were asked to complete a three-dimensional T1-weighted magnetic resonance imaging (3D-T1 MRI) scan. FreeSurfer 7.3.2 was applied to preprocess the structural MRI images and segment the amygdala into nine subregions. Afterwards, comparisons were made between the two groups in terms of the volumes of the amygdala subregions. Correlation analysis is utilized to examine the relationship between the amygdala subregion and the scale scores, as well as the pain duration in patients with CLBP. Additionally, logistic regression was used to explore the risk of the amygdala and its subregions for CLBP. Results In comparison to HCs, patients with CLBP exhibited a significant enlargement of the left central nucleus (Ce) and left cortical nucleus (Co). Furthermore, the increased volume of the left Ce was associated with a higher risk of CLBP. Conclusion Our study suggests that the left Ce and left Co may be involved in the pathophysiological processes of CLBP. Moreover, the volume of the left Ce may be a biomarker for detecting the risk of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
20
|
Huang J, Zhang YY, Qiu YY, Yao S, Qiu WT, Peng JL, Li YQ, You QL, Wu CH, Wu EJ, Wang J, Zhou YL, Ning YP, Wang HS, Chen WB, Hu BJ, Liu Y, Sun XD. NRG1-ErbB4 signaling in the medial amygdala controls mating motivation in adult male mice. Cell Rep 2024; 43:113905. [PMID: 38446660 DOI: 10.1016/j.celrep.2024.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.
Collapse
Affiliation(s)
- Jie Huang
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan-Yan Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yu-Yang Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shan Yao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wan-Ting Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jin-Lin Peng
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- Department of Neurology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Cui-Hong Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Er-Jian Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jin Wang
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, China
| | - Yan-Ling Zhou
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Ping Ning
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Sheng Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bing Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Bing-Jie Hu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Xiang-Dong Sun
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Agus S, Yavuz Y, Atasoy D, Yilmaz B. Postweaning Social Isolation Alters Puberty Onset by Suppressing Electrical Activity of Arcuate Kisspeptin Neurons. Neuroendocrinology 2024; 114:439-452. [PMID: 38271999 PMCID: PMC11098025 DOI: 10.1159/000535721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Postweaning social isolation (PWSI) in rodents is an advanced psychosocial stress model in early life. Some psychosocial stress, such as restrain and isolation, disrupts reproductive physiology in young and adult periods. Mechanisms of early-life stress effects on central regulation of reproduction need to be elucidated. We have investigated the effects of PWSI on function of arcuate kisspeptin (ARCKISS1) neurons by using electrophysiological techniques combining with monitoring of puberty onset and estrous cycle in male and female Kiss1-Cre mice. METHODS Female mice were monitored for puberty onset with vaginal opening examination during social isolation. After isolation, the estrous cycle of female mice was monitored with vaginal cytology. Anxiety-like behavior of mice was determined by an elevated plus maze test. Effects of PWSI on electrophysiology of ARCKISS1 neurons were investigated by the patch clamp method after intracranial injection of AAV-GFP virus into arcuate nucleus of Kiss1-Cre mice after the isolation period. RESULTS We found that both male and female isolated mice showed anxiety-like behavior. PWSI caused delay in vaginal opening and extension in estrous cycle length. Spontaneous-firing rates of ARCKISS1 neurons were significantly lower in the isolated male and female mice. The peak amplitude of inhibitory postsynaptic currents to ARCKISS1 neurons was higher in the isolated mice, while frequency of excitatory postsynaptic currents was higher in group-housed mice. CONCLUSION These findings demonstrate that PWSI alters pre- and postpubertal reproductive physiology through metabolic and electrophysiological pathways.
Collapse
Affiliation(s)
- Sami Agus
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, IA, USA
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
22
|
Fleischer AW, Fox LC, Davies DR, Vinzant NJ, Scholl JL, Forster GL. Sub-region expression of brain-derived neurotrophic factor in the dorsal hippocampus and amygdala is Affected by mild traumatic brain injury and stress in male rats. Heliyon 2024; 10:e23339. [PMID: 38169784 PMCID: PMC10758828 DOI: 10.1016/j.heliyon.2023.e23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The US population suffers 1.5 million head injuries annually, of which mild traumatic brain injuries (mTBI) comprise 75%. Many individuals subsequently experience long-lasting negative symptoms, including anxiety. Previous rat-based work in our laboratory has shown that mTBI changes neuronal counts in the hippocampus and amygdala, regions associated with anxiety. Specifically, mTBI increased neuronal death in the dorsal CA1 sub-region of the hippocampus, but attenuated it in the medial (MeA) and the basolateral nuclei of the amygdala nine days following injury, which was associated with greater anxiety. We have also shown that glucocorticoid receptor (GR) antagonism prior to concomitant stress and mTBI extinguishes anxiety-like behaviors. Using immunohistochemistry, this study examines the expression of brain-derived neurotrophic factor (BDNF) following social defeat and mTBI, and whether this is affected by prior glucocorticoid receptor antagonism as a potential mechanism behind these anxiety and neuronal differences. Here, stress and mTBI upregulate BDNF in the MeA, and both GR and mineralocorticoid receptor antagonism downregulate BDNF in the dorsal hippocampal CA1 and dentate gyrus, as well as the central nucleus of the amygdala. These findings suggest BDNF plays a role in the mechanism underlying neuronal changes following mTBI in amygdalar and hippocampal subregions, and may participate in stress elicited changes to neural plasticity in these regions. Taken together, these results suggest an essential role for BDNF in the development of anxiety behaviors following concurrent stress and mTBI.
Collapse
Affiliation(s)
- Aaron W. Fleischer
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 East Hartford Ave., Milwaukee, WI, USA
| | - Laura C. Fox
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Daniel R. Davies
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Mayo Clinic School of Graduate Education, Rochester, MN, USA
| | - Nathan J. Vinzant
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jamie L. Scholl
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Gina L. Forster
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Ambrozio-Marques D, Gagnon M, Radcliff AB, Meza AL, Baker TL, Watters JJ, Kinkead R. Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats. Exp Physiol 2023; 108:1376-1385. [PMID: 37642495 PMCID: PMC10841242 DOI: 10.1113/ep091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.
Collapse
Affiliation(s)
- Danuzia Ambrozio-Marques
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Marianne Gagnon
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Abigail B Radcliff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Armand L Meza
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Kinkead
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
25
|
Aloni E, Tibi M, Hochgerner H, Zeisel A. Sexual dimorphism in synaptic inputs to the mouse amygdala and orbital cortex. Front Neurosci 2023; 17:1258284. [PMID: 37901417 PMCID: PMC10601666 DOI: 10.3389/fnins.2023.1258284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
The medial amygdala (MeA) is a sexually dimorphic brain region that regulates fear responses, emotional memories, and social behaviors. It is known to be larger and contains more cells in males. The MeA integrates information through input connections from olfactory regions, bed nucleus of the stria terminalis, ventral hippocampus, and thalamic and hypothalamic structures. We hypothesize that in addition to the size differences, there are differences in regional connectivity between the sexes. In this study, we utilized G-deleted rabies monosynaptic retrograde tracing to compare amygdala presynaptic cells in male and female whole mouse brains. We report differences in connection patterns to the amygdala, with higher overall connectivity (presynaptic per starter) in males and a larger fraction of inputs originating from the bed nucleus of the stria terminalis, lateral septum, and medial preoptic area. Furthermore, we examined input connections to the orbital cortex (ORB), a brain region shown to be larger in volume in females, and found the opposite trend, where females had more total inputs. Together, our findings extend the evidence for sexual dimorphism in the brain to the neuronal wiring pattern, with likely impacts on behavior and disease susceptibility.
Collapse
Affiliation(s)
| | | | | | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Cooper MA, Hooker MK, Whitten CJ, Kelly JR, Jenkins MS, Mahometano SC, Scarbrough MC. Dominance status modulates activity in medial amygdala cells with projections to the bed nucleus of the stria terminalis. Behav Brain Res 2023; 453:114628. [PMID: 37579818 PMCID: PMC10496856 DOI: 10.1016/j.bbr.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, USA.
| | | | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, USA
| | - Jeff R Kelly
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | | | | |
Collapse
|
27
|
Kirstein CF, Güntürkün O, Ocklenburg S. Ultra-high field imaging of the amygdala - A narrative review. Neurosci Biobehav Rev 2023; 152:105245. [PMID: 37230235 DOI: 10.1016/j.neubiorev.2023.105245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The amygdala is an evolutionarily conserved core structure in emotion processing and one of the key regions of interest in affective neuroscience. Results of neuroimaging studies focusing on the amygdala are, however, often heterogeneous since it is composed of functionally and neuroanatomically distinct subnuclei. Fortunately, ultra-high-field imaging offers several advances for amygdala research, most importantly more accurate representation of functional and structural properties of subnuclei and their connectivity. Most clinical studies using ultra-high-field imaging focused on major depression, suggesting either overall rightward amygdala atrophy or distinct bilateral patterns of subnuclear atrophy and hypertrophy. Other pathologies are only sparsely covered. Connectivity analyses identified widespread networks for learning and memory, stimulus processing, cognition, and social processes. They provide evidence for distinct roles of the central, basal, and basolateral nucleus, and the extended amygdala in fear and emotion processing. Amid largely sparse and ambiguous evidence, we propose theoretical and methodological considerations that will guide ultra-high-field imaging in comprehensive investigations to help disentangle the ambiguity of the amygdala's function, structure, connectivity, and clinical relevance.
Collapse
Affiliation(s)
- Cedric Fabian Kirstein
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Department of Psychology, MSH Medical School Hamburg, Germany; Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Germany
| |
Collapse
|
28
|
Li C, Kühn NK, Alkislar I, Sans-Dublanc A, Zemmouri F, Paesmans S, Calzoni A, Ooms F, Reinhard K, Farrow K. Pathway-specific inputs to the superior colliculus support flexible responses to visual threat. SCIENCE ADVANCES 2023; 9:eade3874. [PMID: 37647395 PMCID: PMC10468139 DOI: 10.1126/sciadv.ade3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Behavioral flexibility requires directing feedforward sensory information to appropriate targets. In the superior colliculus, divergent outputs orchestrate different responses to visual threats, but the circuit organization enabling the flexible routing of sensory information remains unknown. To determine this structure, we focused on inhibitory projection (Gad2) neurons. Trans-synaptic tracing and neuronal recordings revealed that Gad2 neurons projecting to the lateral geniculate nucleus (LGN) and the parabigeminal nucleus (PBG) form two separate populations, each receiving a different set of non-retinal inputs. Inhibiting the LGN- or PBG-projecting Gad2 neurons resulted in opposing effects on behavior; increasing freezing or escape probability to visual looming, respectively. Optogenetic activation of selected inputs to the LGN- and PBG-projecting Gad2 cells predictably regulated responses to visual threat. These data suggest that projection-specific sampling of brain-wide inputs provides a circuit design principle that enables visual inputs to be selectively routed to produce context-specific behavior.
Collapse
Affiliation(s)
- Chen Li
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Norma K. Kühn
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Alkislar
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Northeastern University, Boston, MA, USA
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Firdaouss Zemmouri
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Soraya Paesmans
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alex Calzoni
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frédérique Ooms
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Imec, Leuven, Belgium
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Imec, Leuven, Belgium
| |
Collapse
|
29
|
Haris EM, Bryant RA, Williamson T, Korgaonkar MS. Functional connectivity of amygdala subnuclei in PTSD: a narrative review. Mol Psychiatry 2023; 28:3581-3594. [PMID: 37845498 PMCID: PMC10730419 DOI: 10.1038/s41380-023-02291-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
While the amygdala is often implicated in the neurobiology of posttraumatic stress disorder (PTSD), the pattern of results remains mixed. One reason for this may be the heterogeneity of amygdala subnuclei and their functional connections. This review used PRISMA guidelines to synthesize research exploring the functional connectivity of three primary amygdala subnuclei, basolateral (BLA), centromedial (CMA), and superficial nuclei (SFA), in PTSD (N = 331) relative to trauma-exposed (N = 155) and non-trauma-exposed controls (N = 210). Although studies were limited (N = 11), preliminary evidence suggests that in PTSD compared to trauma-exposed controls, the BLA shows greater connectivity with the dorsal anterior cingulate, an area involved in salience detection. In PTSD compared to non-trauma-exposed controls, the BLA shows greater connectivity with the middle frontal gyrus, an area involved in attention. No other connections were replicated across studies. A secondary aim of this review was to outline the limitations of this field to better shape future research. Importantly, the results from this review indicate the need to consider potential mediators of amygdala subnuclei connectivity, such as trauma type and sex, when conducting such studies. They also highlight the need to be aware of the limited inferences we can make with such small samples that investigate small subcortical structures on low field strength magnetic resonance imaging scanners. Collectively, this review demonstrates the importance of exploring the differential connectivity of amygdala subnuclei to understand the pathophysiology of PTSD and stresses the need for future research to harness the strength of ultra-high field imaging to gain a more sensitive picture of the neural connectivity underlying PTSD.
Collapse
Affiliation(s)
- Elizabeth M Haris
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Thomas Williamson
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
- Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia.
- Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
30
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
31
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
32
|
Yardimci A, Ulker Ertugrul N, Ozgen A, Ozbeg G, Ridvan Ozdede M, Ercan EC, Canpolat S. Effects of chronic irisin treatment on brain monoamine levels in the hypothalamic and subcortical nuclei of adult male and female rats: An HPLC-ECD study. Neurosci Lett 2023; 806:137245. [PMID: 37061025 DOI: 10.1016/j.neulet.2023.137245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Monoaminergic systems are known to be involved in the pathophysiology of neuropsychiatric disorders and vegetative functions due to their established influence on hypothalamic and subcortical areas. These systems can be modulated by lifestyle factors, especially exercise, which is known to produce several beneficial effects on reproduction, brain health, and mental disorders. The fact that exercise is sensed by the brain shows that muscle-stimulated secretion of myokines allows direct crosstalk between the muscles and the brain. One of such exercise-induced beneficial effects on the brain is exhibited by irisin-a recently discovered PGC-1α-dependent adipo-myokine mainly secreted from skeletal muscle during exercise. Thus, we hypothesized that irisin may affect central monoamine levels and thus play an important role in the muscle-brain endocrine loop. To test this assertion, for 10 weeks, vehicle (deionized water) or 100 ng/kg irisin was injected intraperitoneally once a day to 12 male and 12 female rats after which the levels of monoamines and their metabolites were determined by HPLC-ECD. In the hypothalamic nuclei, irisin significantly decreased dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) (p<0.05), DOPAC/DA ratio (p<0.01) and noradrenaline (NA, p<0.05) levels in the anteroventral periventricular nucleus (AVPV), and DOPAC and NA levels in the medial preoptic area (mPOA) (p<0.05), having a crucial role in reproduction and sexual motivation, respectively. On the other hand, irisin significantly increased DOPAC levels in the lateral hypothalamic area (LHA) (p<0.05), which acts as a hunger center, while it significantly decreased the levels of DA, NA, and its metabolite 3,4-dihydroxyphenylglycol (DHPG) in the ventromedial hypothalamic nucleus (VMH) as a known satiety center (p<0.05). In nucleus accumbens (NaC), irisin significantly reduced 5-hydroxyindoleacetic acid (5-HIAA) levels (p<0.05), which are implicated in autism spectrum disorder (ASD) physiopathology. It also significantly increased DA levels in this area, thus exhibiting positive effects on depression and sexual dysfunction in men. On the other hand, it significantly decreased serotonin (5-HT) (p<0.01) and its metabolite 5-HIAA levels in the medial amygdala (MeA) (p<0.05), indicating that it may play a role in social behaviors. Moreover, it significantly attenuated NA levels in the same hypothalamic area, which is directly involved in stress-induced activation of the central noradrenergic system. These findings demonstrate for the first time that irisin induces significant changes in monoamine levels in many hypothalamic nuclei involved in feeding behavior and vegetative functions, as well as in subcortical nuclei related to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey.
| | | | - Aslisah Ozgen
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gulendam Ozbeg
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Eda Coban Ercan
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
33
|
Cisneros-Larios B, Elias CF. Sex differences in the coexpression of prokineticin receptor 2 and gonadal steroids receptors in mice. Front Neuroanat 2023; 16:1057727. [PMID: 36686573 PMCID: PMC9853983 DOI: 10.3389/fnana.2022.1057727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Loss-of-function mutations in prokineticin 2 (PROK2) and the cognate receptor prokineticin receptor 2 (PROKR2) genes have been implicated in reproductive deficits characteristic of Kallmann Syndrome (KS). Knock out of Prokr2 gene produces the KS-like phenotype in mice resulting in impaired migration of gonadotropin releasing hormone (GnRH) neurons, olfactory bulb dysgenesis, and infertility. Beyond a developmental role, pharmacological and genetic studies have implicated PROKR2 in the control of the estrous cycle in mice. However, PROKR2 is expressed in several reproductive control sites but the brain nuclei associated with reproductive control in adult mice have not been defined. We set out to determine if ProkR2 neurons in both male and female mouse brains directly sense changes in the gonadal steroids milieu. We focused on estrogen receptor α (ERα) and androgen receptor (AR) due to their well-described function in reproductive control via actions in the brain. We found that the ProkR2-Cre neurons in the posterior nucleus of the amygdala have the highest colocalization with ERα and AR in a sex-specific manner. Few colocalization was found in the lateral septum and in the bed nucleus of the stria terminalis, and virtually no colocalization was observed in the medial amygdala. Our findings indicate that the posterior nucleus of the amygdala is the main site where PROKR2 neurons may regulate aspects of the reproductive function and social behavior in adult mice.
Collapse
Affiliation(s)
- Brenda Cisneros-Larios
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Gynecology and Obstetrics, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Ivanova D, Li XF, McIntyre C, O’Byrne KT. Posterodorsal Medial Amygdala Urocortin-3, GABA, and Glutamate Mediate Suppression of LH Pulsatility in Female Mice. Endocrinology 2022; 164:6852761. [PMID: 36445688 PMCID: PMC9761574 DOI: 10.1210/endocr/bqac196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Inhibition of MePD urocortin-3 (Ucn3) neurons prevents psychological stress-induced suppression of luteinizing hormone (LH) pulsatility while blocking the stress-induced elevations in corticosterone (CORT) secretion in female mice. We explore the neurotransmission and neural circuitry suppressing the gonadotropin-releasing hormone (GnRH) pulse generator by MePD Ucn3 neurons and we further investigate whether MePD Ucn3 efferent projections to the hypothalamic paraventricular nucleus (PVN) control CORT secretion and LH pulsatility. Ucn3-cre-tdTomato female ovariectomized (OVX) mice were unilaterally injected with adeno-associated virus (AAV)-channelrhodopsin 2 (ChR2) and implanted with optofluid cannulae targeting the MePD. We optically activated Ucn3 neurons in the MePD with blue light at 10 Hz and monitored the effect on LH pulses. Next, we combined optogenetic stimulation of MePD Ucn3 neurons with pharmacological antagonism of GABAA or GABAB receptors with bicuculline or CGP-35348, respectively, as well as a combination of NMDA and AMPA receptor antagonists, AP5 and CNQX, respectively, and observed the effect on pulsatile LH secretion. A separate group of Ucn3-cre-tdTomato OVX mice with 17β-estradiol replacement were unilaterally injected with AAV-ChR2 in the MePD and implanted with fiber-optic cannulae targeting the PVN. We optically stimulated the MePD Ucn3 efferent projections in the PVN with blue light at 20 Hz and monitored the effect on CORT secretion and LH pulses. We reveal for the first time that activation of Ucn3 neurons in the MePD inhibits GnRH pulse generator frequency via GABA and glutamate signaling within the MePD, while MePD Ucn3 projections to the PVN modulate the HPG and HPA axes.
Collapse
Affiliation(s)
- Deyana Ivanova
- Correspondence: Deyana Ivanova, PhD, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, 2.92W Hodgkin Building, Guy's Campus, London SE1 1UL, UK. ; or Kevin T. O’Byrne, PhD, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, 2.92W Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Xiao-Feng Li
- Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 1UL, UK
| | | | - Kevin T O’Byrne
- Correspondence: Deyana Ivanova, PhD, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, 2.92W Hodgkin Building, Guy's Campus, London SE1 1UL, UK. ; or Kevin T. O’Byrne, PhD, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Science and Medicine, King's College London, 2.92W Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
35
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
36
|
McFalls AJ, Jenney C, Stanford RS, Woodward E, Hajnal A, Grigson PS, Vrana KE. Greater avoidance of a saccharin cue paired with passive delivery of heroin is associated with a select increase in expression of CRFR2 and CRFbp in the hippocampus in rats. Brain Res Bull 2022; 191:48-60. [DOI: 10.1016/j.brainresbull.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
|
37
|
McIntyre C, Li XF, de Burgh R, Ivanova D, Lass G, O’Byrne KT. GABA Signaling in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2022; 164:6855642. [PMID: 36453253 PMCID: PMC9757692 DOI: 10.1210/endocr/bqac197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
Psychological stress is linked to infertility by suppressing the hypothalamic GnRH pulse generator. The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream regulator of GnRH pulse generator activity and displays increased neuronal activation during psychological stress. The MePD is primarily a GABAergic nucleus with a strong GABAergic projection to hypothalamic reproductive centers; however, their functional significance has not been determined. We hypothesize that MePD GABAergic signalling mediates psychological stress-induced suppression of pulsatile LH secretion. We selectively inhibited MePD GABA neurons during psychological stress in ovariectomized (OVX) Vgat-cre-tdTomato mice to determine the effect on stress-induced suppression of pulsatile LH secretion. MePD GABA neurons were virally infected with inhibitory hM4DGi-designer receptor exclusively activated by designer drugs (DREADDs) to selectively inhibit MePD GABA neurons. Furthermore, we optogenetically stimulated potential MePD GABAergic projection terminals in the hypothalamic arcuate nucleus (ARC) and determined the effect on pulsatile LH secretion. MePD GABA neurons in OVX female Vgat-cre-tdTomato mice were virally infected to express channelrhodopsin-2 and MePD GABAergic terminals in the ARC were selectively stimulated by blue light via an optic fiber implanted in the ARC. DREADD-mediated inhibition of MePD GABA neurons blocked predator odor and restraint stress-induced suppression of LH pulse frequency. Furthermore, sustained optogenetic stimulation at 10 and 20 Hz of MePD GABAergic terminals in the ARC suppressed pulsatile LH secretion. These results show for the first time that GABAergic signalling in the MePD mediates psychological stress-induced suppression of pulsatile LH secretion and suggest a functionally significant MePD GABAergic projection to the hypothalamic GnRH pulse generator.
Collapse
Affiliation(s)
| | | | | | - Deyana Ivanova
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Geffen Lass
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kevin T O’Byrne
- Correspondence: Kevin T. O’Byrne, PhD, Department of Women and Children's Health, Faculty of Life Sciences and Medicine, Guy's Campus, King's College London, 2.92W Hodgkin Building, London, SE1 1UL, UK. kevin.o'
| |
Collapse
|
38
|
Smiley KO, Brown RSE, Grattan DR. Prolactin Action Is Necessary for Parental Behavior in Male Mice. J Neurosci 2022; 42:8308-8327. [PMID: 36163141 PMCID: PMC9653282 DOI: 10.1523/jneurosci.0558-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Parental care is critical for successful reproduction in mammals. Recent work has implicated the hormone prolactin in regulating male parental behavior, similar to its established role in females. Male laboratory mice show a mating-induced suppression of infanticide (normally observed in virgins) and onset of paternal behavior 2 weeks after mating. Using this model, we sought to investigate how prolactin acts in the forebrain to regulate paternal behavior. First, using c-fos immunoreactivity in prolactin receptor (Prlr) Prlr-IRES-Cre-tdtomato reporter mouse sires, we show that the circuitry activated during paternal interactions contains prolactin-responsive neurons in multiple sites, including the medial preoptic nucleus, bed nucleus of the stria terminalis, and medial amygdala. Next, we deleted Prlr from three prominent cell types found in these regions: glutamatergic, GABAergic, and CaMKIIα. Prlr deletion from CaMKIIα, but not glutamatergic or GABAergic cells, had a profound effect on paternal behavior as none of these KO males completed the pup-retrieval task. Prolactin was increased during mating, but not in response to pups, suggesting that the mating-induced secretion of prolactin is important for establishing the switch from infanticidal to paternal behavior. Pharmacological blockade of prolactin secretion at mating, however, had no effect on paternal behavior. In contrast, suppressing prolactin secretion at the time of pup exposure resulted in failure to retrieve pups, with exogenous prolactin administration rescuing this behavior. Together, our data show that paternal behavior in sires is dependent on basal levels of circulating prolactin acting at the time of interaction with pups, mediated through Prlr on CaMKIIα-expressing neurons.SIGNIFICANCE STATEMENT Parental care is critical for offspring survival. Compared with maternal care, however, the neurobiology of paternal care is less well understood. Here we show that the hormone prolactin, which is most well known for its female-specific role in lactation, has a role in the male brain to promote paternal behavior. In the absence of prolactin signaling specifically during interactions with pups, father mice fail to show normal retrieval behavior of pups. These data demonstrate that prolactin has a similar action in both males and females to promote parental care.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Anatomy, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Physiology, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Anatomy, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| |
Collapse
|
39
|
Lass G, Li XF, Voliotis M, Wall E, de Burgh RA, Ivanova D, McIntyre C, Lin X, Colledge WH, Lightman SL, Tsaneva‐Atanasova K, O'Byrne KT. GnRH pulse generator frequency is modulated by kisspeptin and GABA-glutamate interactions in the posterodorsal medial amygdala in female mice. J Neuroendocrinol 2022; 34:e13207. [PMID: 36305576 PMCID: PMC10078155 DOI: 10.1111/jne.13207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
Kisspeptin neurons in the arcuate nucleus of the hypothalamus generate gonadotrophin-releasing hormone (GnRH) pulses, and act as critical initiators of functional gonadotrophin secretion and reproductive competency. However, kisspeptin in other brain regions, most notably the posterodorsal subnucleus of the medial amygdala (MePD), plays a significant modulatory role over the hypothalamic kisspeptin population; our recent studies using optogenetics have shown that low-frequency light stimulation of MePD kisspeptin results in increased luteinsing hormone pulse frequency. Nonetheless, the neurochemical pathways that underpin this regulatory function remain unknown. To study this, we have utilised an optofluid technology, precisely combining optogenetic stimulation with intra-nuclear pharmacological receptor antagonism, to investigate the neurotransmission involved in this circuitry. We have shown experimentally and verified using a mathematical model that functional neurotransmission of both GABA and glutamate is a requirement for effective modulation of the GnRH pulse generator by amygdala kisspeptin neurons.
Collapse
Affiliation(s)
- Geffen Lass
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Xiao Feng Li
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Ellen Wall
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Reproductive Physiology Group, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Ross A. de Burgh
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Deyana Ivanova
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Caitlin McIntyre
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Xian‐Hua Lin
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - William H. Colledge
- Reproductive Physiology Group, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, The Dorothy Hodgkin BuildingUniversity of BristolBristolUK
| | - Krasimira Tsaneva‐Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Kevin T. O'Byrne
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
40
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Pałasz A, Obuchowicz E. Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation. AIMS Neurosci 2022; 9:395-422. [PMID: 36329901 PMCID: PMC9581731 DOI: 10.3934/neuroscience.2022022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 07/05/2024] Open
Abstract
Neuropeptide S (NPS), which is a peptide that is involved in the regulation of the stress response, seems to be relevant to the mechanism of action of antidepressants that have anxiolytic properties. However, to date, there have been no reports regarding the effect of long-term treatment with escitalopram or venlafaxine on the NPS system under stress conditions. This study aimed to investigate the effects of the above-mentioned antidepressants on the NPS system in adult male Wistar rats that were exposed to neonatal maternal separation (MS). Animals were exposed to MS for 360 min. on postnatal days (PNDs) 2-15. MS causes long-lasting behavioral, endocrine and neurochemical consequences that mimic anxiety- and depression-related features. MS and non-stressed rats were given escitalopram or venlafaxine (10mg/kg) IP from PND 69 to 89. The NPS system was analyzed in the brainstem, hypothalamus, amygdala and anterior olfactory nucleus using quantitative RT-PCR and immunohistochemical methods. The NPS system was vulnerable to MS in the brainstem and amygdala. In the brainstem, escitalopram down-regulated NPS and NPS mRNA in the MS rats and induced a tendency to reduce the number of NPS-positive cells in the peri-locus coeruleus. In the MS rats, venlafaxine insignificantly decreased the NPSR mRNA levels in the amygdala and a number of NPSR cells in the basolateral amygdala, and increased the NPS mRNA levels in the hypothalamus. Our data show that the studied antidepressants affect the NPS system differently and preliminarily suggest that the NPS system might partially mediate the pharmacological effects that are induced by these drugs.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
41
|
Tsui KC, Roy J, Chau SC, Wong KH, Shi L, Poon CH, Wang Y, Strekalova T, Aquili L, Chang RCC, Fung ML, Song YQ, Lim LW. Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:964336. [PMID: 35966777 PMCID: PMC9371463 DOI: 10.3389/fnagi.2022.964336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aβ) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aβ plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aβ plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aβ plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aβ plaques were located in the amygdala, and the cerebellum; but no Aβ plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aβ plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aβ deposition in the brain and its inter-regional correlation. This suggests an association between Aβ plaque deposition and specific brain regions in AD pathogenesis.
Collapse
Affiliation(s)
- Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lei Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingyi Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Normal Physiology and Laboratory of Psychiatric Neurobiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, WA, Australia
| | - Raymond Chuen-Chung Chang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Man-Lung Fung,
| | - You-qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- You-qiang Song,
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Lee Wei Lim,
| |
Collapse
|
42
|
Zhang L, Bian Z, Liu Q, Deng B. Dealing With Stress in Cats: What Is New About the Olfactory Strategy? Front Vet Sci 2022; 9:928943. [PMID: 35909687 PMCID: PMC9334771 DOI: 10.3389/fvets.2022.928943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic cats are descended from solitary wild species and rely heavily on the olfaction system and chemical signals for daily activities. Cats kept as companion animals may experience stress due to a lack of predictability in their physical or social environment. The olfactory system is intimately connected to the brain regions controlling stress response, thus providing unique opportunities for olfactory strategies to modify stress and related behavioral problems in cats. However, the olfactory intervention of stress in cats has been mainly focused on several analog chemical signals and studies often provide inconsistent and non-replicable results. Supportive evidence in the literature for the potentially effective olfactory stimuli (e.g., cheek and mammary gland secretions, and plant attractants) in treating stress in cats was reviewed. Limitations with some of the work and critical considerations from studies with natural or negative results were discussed as well. Current findings sometimes constitute weak evidence of a reproducible effect of cat odor therapy for stress. The welfare application of an olfactory stimulus in stress alleviation requires a better understanding of its biological function in cats and the mechanisms at play, which may be achieved in future studies through methodological improvement (e.g., experiment pre-registration and appropriate control setting) and in-depth investigation with modern techniques that integrate multisource data. Contributions from individual and environmental differences should be considered for the stress response of a single cat and its sensitivity to olfactory manipulation. Olfactory strategies customized for specific contexts and individual cats can be more effective in improving the welfare of cats in various stressful conditions.
Collapse
|
43
|
Biggs LM, Meredith M. Functional connectivity of intercalated nucleus with medial amygdala: A circuit relevant for chemosignal processing. IBRO Neurosci Rep 2022; 12:170-181. [PMID: 35199098 PMCID: PMC8850325 DOI: 10.1016/j.ibneur.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Medial amygdala processes social/reproductive chemosensory input, and its projections to preoptic and hypothalamic areas evoke appropriate behavioral and physiological responses. We and others have shown that different chemosensory signals elicit differential responses in medial amygdala subregions and in adjacent main intercalated nucleus (mICN). The largely GABAergic mICN receives no direct chemosensory input but, as we show, mICN has functional circuit connections with medial amygdala that could be responsible both for mICN chemosensitivity and for a feedforward inhibitory effect on posterior medial amygdala; which, in turn would affect chemosignal response. mICN is subject to inhibition by dopamine and is probably regulated by neuropeptides and input from frontal cortex. Thus, mICN is in position to modify chemosensory processing in medial amygdala and behavioral responses to social signals, according to internal brain state. Patch-clamp recordings from neurons in each relevant nucleus in horizontal brain-slices, with electrical stimulation in adjacent nuclei, reveal multiple functional connections between medial amygdala subregions and mICN. We highlight a triangular circuit which may underlie mICN chemosensitivity and its potential for modifying chemosensory information transmitted to basal forebrain. Anterior medial amygdala, which receives most of the chemosensory input, connects to posterior medial amygdala directly and both areas send information on to basal forebrain. Anterior medial amygdala can also modulate posterior medial amygdala indirectly via the mICN side-loop, which also provides a pathway for modulation by cortical input or, when inhibited by dopamine, could allow a more automatic response - as proposed for other amygdala circuits with similar ICN side loops.
Collapse
Affiliation(s)
| | - Michael Meredith
- Program in Neuroscience and Dept. Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
44
|
Baleisyte A, Schneggenburger R, Kochubey O. Stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsins yields opposite behavioral outcomes. Cell Rep 2022; 39:110850. [PMID: 35613578 DOI: 10.1016/j.celrep.2022.110850] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/20/2021] [Accepted: 04/30/2022] [Indexed: 12/11/2022] Open
Abstract
The medial amygdala (MeA) receives pheromone information about conspecifics and has crucial functions in social behaviors. A previous study showed that activation of GABA neurons in the postero-dorsal MeA (MeApd) with channelrhodopsin-2H134R (ChR2) stimulates inter-male aggression. When performing these experiments using the faster channelrhodopsinH134R,E123T (ChETA), we find the opposite behavioral outcome. A systematic comparison between the two channelrhodopsin variants reveals that optogenetic activation of MeApd GABA neurons with ChETA suppresses aggression, whereas activation under ChR2 increases aggression. Although the mechanism for this paradoxical difference is not understood, we observe that activation of MeApd GABA neurons with ChR2 causes larger plateau depolarizations, smaller action potentials, and larger local inhibition than with ChETA. Thus, the channelrhodopsin variant used for in vivo optogenetic experiments can radically influence the behavioral outcome. Future work should continue to study the role of specific sub-populations of MeApd GABA neurons in aggression control.
Collapse
Affiliation(s)
- Aiste Baleisyte
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Ivanova D, Li X, Liu Y, McIntyre C, Fernandes C, Lass G, Kong L, O’Byrne KT. Role of Posterodorsal Medial Amygdala Urocortin-3 in Pubertal Timing in Female Mice. Front Endocrinol (Lausanne) 2022; 13:893029. [PMID: 35655799 PMCID: PMC9152449 DOI: 10.3389/fendo.2022.893029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Post-traumatic stress disorder impedes pubertal development and disrupts pulsatile LH secretion in humans and rodents. The posterodorsal sub-nucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator, pubertal timing, as well as emotional processing and anxiety. Psychosocial stress exposure alters neuronal activity within the MePD increasing the expression of Urocortin3 (Ucn3) and its receptor corticotropin-releasing factor type-2 receptor (CRFR2) while enhancing the inhibitory output from the MePD to key hypothalamic reproductive centres. We test the hypothesis that psychosocial stress, processed by the MePD, is relayed to the hypothalamic GnRH pulse generator to delay puberty in female mice. We exposed C57Bl6/J female mice to the predator odor, 2,4,5-Trimethylthiazole (TMT), during pubertal transition and examined the effect on pubertal timing, pre-pubertal LH pulses and anxiety-like behaviour. Subsequently, we virally infected Ucn3-cre-tdTomato female mice with stimulatory DREADDs targeting MePD Ucn3 neurons and determined the effect on pubertal timing and pre-pubertal LH pulse frequency. Exposure to TMT during pubertal development delayed puberty, suppressed pre-pubertal LH pulsatility and enhanced anxiety-like behaviour, while activation of MePD Ucn3 neurons reduced LH pulse frequency and delayed puberty. Early psychosocial stress exposure decreases GnRH pulse generator frequency delaying puberty while inducing anxiety-behaviour in female mice, an effect potentially involving Ucn3 neurons in the MePD.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - XiaoFeng Li
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caitlin McIntyre
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Geffen Lass
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Kevin T. O’Byrne
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
46
|
Fan P, Song Y, Lu B, Wang Y, Dai Y, Xie J, He E, Xu Z, Yang G, Mo F, Liu J, Wang M, Cai X. PtNPs/PEDOT:PSS-Modified Microelectrode Arrays Reveal Electrophysiological Activities of Different Neurons in Medial Amygdala of Mice Under Innate Fear. Front Neurosci 2022; 16:868235. [PMID: 35620664 PMCID: PMC9127061 DOI: 10.3389/fnins.2022.868235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
The medial amygdala (MA) plays an important role in the innate fear circuit. However, the electrophysiological mechanism of MA for processing innate fear needs to be further explored. In this study, we fabricated microelectrode arrays (MEAs) with detecting sites arranged to match the location and shape of MA in mice and detected the electrophysiology in freely behaving mice under 2-methyl-2-thiazoline (2MT)-induced fear. The detection performance of MEA is improved by modifying metal nanoparticles and conductive polymers (PtNPs/PEDOT:PSS). After modification, the impedance magnitude and phase of electrodes were decreased to 27.0 ± 2.3 kΩ and −12.30 ± 0.52°, respectively, leading to a signal-to-noise ratio of 10. Its electrochemical stability and mechanical stability were also verified by cyclic voltammetry (CV) sweeping and ultrasonic vibration. MEAs were then implanted into the MA of mice, and the electrophysiology and behavioral characteristics were synchronously recorded and analyzed. The results showed that 2MT induced strong defensive behaviors in mice, accompanied by increases in the average spike firing rate and local field potential (LFP) power of MA neurons. According to principles commonly applied to cortical extracellular recordings, the recorded neurons are divided into two classes based on waveforms. Statistics showed that about 37% of type 1 neurons (putative GABAergic neurons) and 87% of type 2 neurons (putative glutamatergic neurons) were significantly activated under innate fear. At the same time, the firing rate of some activated neurons had a good linear correlation with the freezing rate.
Collapse
Affiliation(s)
- Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yilin Song
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing, China
- Xinxia Cai
| |
Collapse
|
47
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
48
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
49
|
Rescue of Vasopressin Synthesis in Magnocellular Neurons of the Supraoptic Nucleus Normalises Acute Stress-Induced Adrenocorticotropin Secretion and Unmasks an Effect on Social Behaviour in Male Vasopressin-Deficient Brattleboro Rats. Int J Mol Sci 2022; 23:ijms23031357. [PMID: 35163282 PMCID: PMC8836014 DOI: 10.3390/ijms23031357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.
Collapse
|
50
|
Shao YF, Wang C, Rao XP, Wang HD, Ren YL, Li J, Dong CY, Xie JF, Yang XW, Xu FQ, Hou YP. Neuropeptide S Attenuates the Alarm Pheromone-Evoked Defensive and Risk Assessment Behaviors Through Activation of Cognate Receptor-Expressing Neurons in the Posterior Medial Amygdala. Front Mol Neurosci 2022; 14:752516. [PMID: 35002616 PMCID: PMC8739225 DOI: 10.3389/fnmol.2021.752516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Neuropeptide S (NPS) acts by activating its cognate receptor (NPSR). High level expression of NPSR in the posterior medial amygdala suggests that NPS-NPSR system should be involved in regulation of social behaviors induced by social pheromones. The present study was undertaken to investigate the effects of central administration of NPS or with NPSR antagonist on the alarm pheromone (AP)-evoked defensive and risk assessment behaviors in mice. Furthermore, H129-H8, a novel high-brightness anterograde multiple trans-synaptic virus, c-Fos and NPSR immunostaining were employed to reveal the involved neurocircuits and targets of NPS action. The mice exposed to AP displayed an enhancement in defensive and risk assessment behaviors. NPS (0.1–1 nmol) intracerebroventricular (i.c.v.) injection significantly attenuated the AP-evoked defensive and risk assessment behaviors. NPSR antagonist [D-Val5]NPS at the dose of 40 nmol completely blocked the effect of 0.5 nmol of NPS which showed the best effective among dose range. The H129-H8-labeled neurons were observed in the bilateral posterodorsal medial amygdala (MePD) and posteroventral medial amygdala (MePV) 72 h after the virus injection into the unilateral olfactory bulb (OB), suggesting that the MePD and MePV receive olfactory information inputs from the OB. The percentage of H129-H8-labeled neurons that also express NPSR were 90.27 ± 3.56% and 91.67 ± 2.46% in the MePD and MePV, respectively. NPS (0.5 nmol, i.c.v.) remarkably increased the number of Fos immunoreactive (-ir) neurons in the MePD and MePV, and the majority of NPS-induced Fos-ir neurons also expressed NPSR. The behavior characteristic of NPS or with [D-Val5]NPS can be better replicated in MePD/MePV local injection within lower dose. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the posterior medial amygdala, attenuates the AP-evoked defensive and risk assessment behaviors in mice.
Collapse
Affiliation(s)
- Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| | - Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Ping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hua-Dong Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Yu Dong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xing-Wen Yang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fu-Qiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|