1
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
2
|
Ning K, Fan D, Liu Y, Sun Y, Liu Y, Lin Y. Neurite Orientation Dispersion and Density Imaging (NODDI) reveals white matter microstructural changes in Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) patients with cognitive impairment. Magn Reson Imaging 2024; 114:110234. [PMID: 39288886 DOI: 10.1016/j.mri.2024.110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE This study aimed to assess changes in white matter microstructure among patients undergoing obstructive sleep apnea hypopnea syndrome (OSAHS) complicated by cognitive impairment through neurite orientation dispersion and density imaging (NODDI), and evaluate the relationship to cognitive impairment as well as the diagnostic performance in early intervention. METHODS Totally 23 OSAHS patients, 43 OSAHS patients complicated by cognitive impairment, and 15 healthy controls were enrolled in OSA, OSACI and HC groups of this work. NODDI toolbox and FMRIB's Software Library (FSL) were used to calculate neurite density index (NDI), Fractional anisotropy (FA), volume fraction of isotropic water molecules (Viso), and orientation dispersion index (ODI). Tract-based spatial statistics (TBSS) were carried out to examine the above metrics with one-way ANOVA. This study explored the correlations of the above metrics with mini-mental state examination (MMSE), and montreal cognitive assessment (MoCA) scores. Furthermore, receiver operating characteristic (ROC) curves were plotted. Meanwhile, area under curve (AUC) values were calculated to evaluate the diagnostic performance of the above metrics. RESULTS NDI, ODI, Viso, and FA were significantly different among different brain white matter regions, among which, difference in NDI showed the greatest statistical significance. In comparison with HC group, OSA group had reduced NDI and ODI, whereas elevated Viso levels. Conversely, compared to the OSA group, the OSACI group displayed a slight increase in NDI and ODI values, which remained lower than HC group, viso values continued to rise. Post-hoc analysis highlighted significant differences in these metrics, except for FA, which showed no notable changes or correlations with neuropsychological tests. ROC analysis confirmed the diagnostic efficacy of NDI, ODI, and Viso with AUCs of 0.6908, 0.6626, and 0.6363, respectively, whereas FA's AUC of 0.5042, indicating insufficient diagnostic efficacy. CONCLUSIONS This study confirmed that NODDI effectively reveals microstructural changes in white matter of OSAHS patients with cognitive impairment, providing neuroimaging evidence for early clinical diagnosis and intervention.
Collapse
Affiliation(s)
- Ke Ning
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dechao Fan
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhu Liu
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yubing Sun
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yajie Liu
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Yongzhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Tosolini AP, Abatecola F, Negro S, Sleigh JN, Schiavo G. The node of Ranvier influences the in vivo axonal transport of mitochondria and signaling endosomes. iScience 2024; 27:111158. [PMID: 39524336 PMCID: PMC11544082 DOI: 10.1016/j.isci.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient long-range axonal transport is essential for maintaining neuronal function, and perturbations in this process underlie severe neurological diseases. Nodes of Ranvier (NoR) are short, specialized unmyelinated axonal domains with a unique molecular and structural composition. Currently, it remains unresolved how the distinct molecular structures of the NoR impact axonal transport dynamics. Using intravital time-lapse microscopy of sciatic nerves in live, anesthetized mice, we reveal (1) similar morphologies of the NoR in fast and slow motor axons, (2) signaling endosomes and mitochondria accumulate specifically at the distal node, and (3) unique axonal transport profiles of signaling endosomes and mitochondria transiting through the NoR. Collectively, these findings provide important insights into the fundamental physiology of peripheral nerve axons, motor neuron subtypes, and diverse organelle dynamics at the NoR. Furthermore, this work has relevance for several pathologies affecting peripheral nerves and the NoR.
Collapse
Affiliation(s)
- Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Federico Abatecola
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Do Carmo S, Kautzmann MAI, Bhattacharjee S, Jun B, Steinberg C, Emmerson JT, Malcolm JC, Bonomo Q, Bazan NG, Cuello AC. Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer-like pathology. J Neuroinflammation 2024; 21:185. [PMID: 39080670 PMCID: PMC11290283 DOI: 10.1186/s12974-024-03184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aβ plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aβ plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Carolyn Steinberg
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Janice C Malcolm
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada
| | - Quentin Bonomo
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada
| | - Nicolas G Bazan
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada.
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK.
| |
Collapse
|
5
|
Phipps AJ, Dwyer S, Collins JM, Kabir F, Atkinson RAK, Chowdhury MA, Matthews L, Dixit D, Terry RS, Smith J, Gueven N, Bennett W, Cook AL, King AE, Perry S. HDAC6 inhibition as a mechanism to prevent neurodegeneration in the mSOD1 G93A mouse model of ALS. Heliyon 2024; 10:e34587. [PMID: 39130445 PMCID: PMC11315133 DOI: 10.1016/j.heliyon.2024.e34587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The loss of upper and lower motor neurons, and their axons is central to the loss of motor function and death in amyotrophic lateral sclerosis (ALS). Due to the diverse range of genetic and environmental factors that contribute to the pathogenesis of ALS, there have been difficulties in developing effective therapies for ALS. One emerging dichotomy is that protection of the neuronal cell soma does not prevent axonal vulnerability and degeneration, suggesting the need for targeted therapeutics to prevent axon degeneration. Post-translational modifications of protein acetylation can alter the function, stability and half-life of individual proteins, and can be enzymatically modified by histone acetyltransferases (HATs) and histone deacetyltransferases (HDACs), which add, or remove acetyl groups, respectively. Maintenance of post-translational microtubule acetylation has been suggested as a mechanism to stabilize axons, prevent axonal loss and neurodegeneration in ALS. This study used an orally dosed potent HDAC6 inhibitor, ACY-738, prevent deacetylation and stabilize microtubules in the mSOD1G93A mouse model of ALS. Co-treatment with riluzole was performed to determine any effects or drug interactions and potentially enhance preclinical research translation. This study shows ACY-738 treatment increased acetylation of microtubules in the spinal cord of mSOD1G93A mice, reduced lower motor neuron degeneration in female mice, ameliorated reduction in peripheral nerve axon puncta size, but did not prevent overt motor function decline. The current study also shows peripheral nerve axon puncta size to be partially restored after treatment with riluzole and highlights the importance of co-treatment to measure the potential effects of therapeutics in ALS.
Collapse
Affiliation(s)
- Andrew J. Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Samuel Dwyer
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Fariha Kabir
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Rachel AK. Atkinson
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Md Anisuzzaman Chowdhury
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Lyzette Matthews
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Deepika Dixit
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Rhiannon S. Terry
- School of Natural Sciences (Chemistry), College of Sciences and Engineering, University of Tasmania, Australia
| | - Jason Smith
- School of Natural Sciences (Chemistry), College of Sciences and Engineering, University of Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Australia
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Australia
| |
Collapse
|
6
|
Mutschler C, Fazal SV, Schumacher N, Loreto A, Coleman MP, Arthur-Farraj P. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell-neuron cocultures. J Cell Sci 2023; 136:jcs261557. [PMID: 37642648 PMCID: PMC10546878 DOI: 10.1242/jcs.261557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.
Collapse
Affiliation(s)
- Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Andrea Loreto
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michael P. Coleman
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
7
|
Chiricosta L, D’Angiolini S, Gugliandolo A, Salamone S, Pollastro F, Mazzon E. Transcriptomic Profiling after In Vitro Δ 8-THC Exposure Shows Cytoskeletal Remodeling in Trauma-Injured NSC-34 Cell Line. Pharmaceuticals (Basel) 2023; 16:1268. [PMID: 37765076 PMCID: PMC10535185 DOI: 10.3390/ph16091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Neuronal cell death is a physiological process that, when uncontrollable, leads to neurodegenerative disorders like spinal cord injury (SCI). SCI represents one of the major causes of trauma and disabilities worldwide for which no effective pharmacological intervention exists. Herein, we observed the beneficial effects of Δ8-Tetrahydrocannabinol (Δ8-THC) during neuronal cell death recovery. We cultured NSC-34 motoneuron cell line performing three different experiments. A traumatic scratch injury was caused in two experiments. One of the scratched was pretreated with Δ8-THC to observe the role of the cannabinoid following the trauma. An experimental control group was neither scratched nor pretreated. All the experiments underwent RNA-seq analysis. The effects of traumatic injury were observed in scratch against control comparison. Comparison of scratch models with or without pretreatment highlighted how Δ8-THC counteracts the traumatic event. Our results shown that Δ8-THC triggers the cytoskeletal remodeling probably due to the activation of the Janus Kinase Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway and the signaling cascade operated by the Mitogen-Activated Protein (MAP) Kinase signaling pathway. In light of this evidence, Δ8-THC could be a valid pharmacological approach in the treatment of abnormal neuronal cell death occurring in motoneuron cells.
Collapse
Affiliation(s)
- Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
8
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Ciocanel MV, Jung P, Brown A. A mechanism for neurofilament transport acceleration through nodes of Ranvier. Mol Biol Cell 2020; 31:640-654. [PMID: 32023144 PMCID: PMC7202067 DOI: 10.1091/mbc.e19-09-0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurofilaments are abundant space-filling cytoskeletal polymers in axons that are transported along microtubule tracks. Neurofilament transport is accelerated at nodes of Ranvier, where axons are locally constricted. Strikingly, these constrictions are accompanied by sharp decreases in neurofilament number, no decreases in microtubule number, and increases in the packing density of these polymers, which collectively bring nodal neurofilaments closer to their microtubule tracks. We hypothesize that this leads to an increase in the proportion of time that the filaments spend moving and that this can explain the local acceleration. To test this, we developed a stochastic model of neurofilament transport that tracks their number, kinetic state, and proximity to nearby microtubules in space and time. The model assumes that the probability of a neurofilament moving is dependent on its distance from the nearest available microtubule track. Taking into account experimentally reported numbers and densities for neurofilaments and microtubules in nodes and internodes, we show that the model is sufficient to explain the local acceleration of neurofilaments within nodes of Ranvier. This suggests that proximity to microtubule tracks may be a key regulator of neurofilament transport in axons, which has implications for the mechanism of neurofilament accumulation in development and disease.
Collapse
Affiliation(s)
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, OH 45701
| | - Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Abdullahi D, Ahmad Annuar A, Sanusi J. Neuroprotective potential of Spirulina platensis on lesioned spinal cord corticospinal tract under experimental conditions in rat models. Ultrastruct Pathol 2019; 43:273-289. [PMID: 31779507 DOI: 10.1080/01913123.2019.1695693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) results from penetrating or compressive traumatic injury to the spine in humans or by the surgical compression of the spinal cord in experimental animals. In this study, the neuroprotective potential of Spirulina platensis was investigated on ultrastructural and functional recovery of the spinal cord following surgical-induced injury. Twenty-four Sprague-Dawley rats were divided into three groups; sham group, control (trauma) group, and experimental (S. platensis) group (180 mg/kg) of eight rats each. For each group, the rats were then subdivided into two groups to allow measurement at two different timepoints (day 14 and 28) for the microscopic analysis. Rats in the control and experimental S. platensis groups were subjected to partial crush injury at the level of T12 with Inox number 2 modified forceps by compressing on the spinal cord for 30 s. Pairwise comparisons of ultrastructural grading mean scores difference between the control and experimental S. platensis groups reveals that there were significant differences on the axonal ultrastructure, myelin sheath and BBB Score on Day 28; these correlate with the functional locomotor recovery at this timepoint. The results suggest that supplementation with S. platensis induces functional recovery and effective preservation of the spinal cord ultrastructure after SCI. These findings will open new potential avenue for further research into the mechanism of S. platensis-mediated spinal cord repair.
Collapse
Affiliation(s)
- Dauda Abdullahi
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Human Anatomy, College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, Bauchi, Nigeria
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Junedah Sanusi
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J Neurosci 2018; 39:663-677. [PMID: 30541916 DOI: 10.1523/jneurosci.2272-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
Myelinated axons are constricted at nodes of Ranvier. These constrictions are important physiologically because they increase the speed of saltatory nerve conduction, but they also represent potential bottlenecks for the movement of axonally transported cargoes. One type of cargo are neurofilaments, which are abundant space-filling cytoskeletal polymers that function to increase axon caliber. Neurofilaments move bidirectionally along axons, alternating between rapid movements and prolonged pauses. Strikingly, axon constriction at nodes is accompanied by a reduction in neurofilament number that can be as much as 10-fold in the largest axons. To investigate how neurofilaments navigate these constrictions, we developed a transgenic mouse strain that expresses a photoactivatable fluorescent neurofilament protein in neurons. We used the pulse-escape fluorescence photoactivation technique to analyze neurofilament transport in mature myelinated axons of tibial nerves from male and female mice of this strain ex vivo Fluorescent neurofilaments departed the activated region more rapidly in nodes than in flanking internodes, indicating that neurofilament transport is faster in nodes. By computational modeling, we showed that this nodal acceleration can be explained largely by a local increase in the duty cycle of neurofilament transport (i.e., the proportion of the time that the neurofilaments spend moving). We propose that this transient acceleration functions to maintain a constant neurofilament flux across nodal constrictions, much as the current increases where a river narrows its banks. In this way, neurofilaments are prevented from piling up in the flanking internodes, ensuring a stable neurofilament distribution and uniform axonal morphology across these physiologically important axonal domains.SIGNIFICANCE STATEMENT Myelinated axons are constricted at nodes of Ranvier, resulting in a marked local decrease in neurofilament number. These constrictions are important physiologically because they increase the efficiency of saltatory nerve conduction, but they also represent potential bottlenecks for the axonal transport of neurofilaments, which move along axons in a rapid intermittent manner. Imaging of neurofilament transport in mature myelinated axons ex vivo reveals that neurofilament polymers navigate these nodal axonal constrictions by accelerating transiently, much as the current increases where a river narrows its banks. This local acceleration is necessary to ensure a stable axonal morphology across nodal constrictions, which may explain the vulnerability of nodes of Ranvier to neurofilament accumulations in animal models of neurotoxic neuropathies and neurodegenerative diseases.
Collapse
|
12
|
Tateshita T, Ueda K, Kajikawa A. End-to-end and end-to-side neurorrhaphy between thick donor nerves and thin recipient nerves: an axon regeneration study in a rat model. Neural Regen Res 2018; 13:699-703. [PMID: 29722323 PMCID: PMC5950681 DOI: 10.4103/1673-5374.230296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During nerve reconstruction, nerves of different thicknesses are often sutured together using end-to-side neurorrhaphy and end-to-end neurorrhaphy techniques. In this study, the effect of the type of neurorrhaphy on the number and diameter of regenerated axon fibers was studied in a rat facial nerve repair model. An inflow-type end-to-side and end-to-end neurorrhaphy model with nerve stumps of different thicknesses (2:1 diameter ratio) was created in the facial nerve of 14 adult male Sprague-Dawley rats. After 6 and 12 weeks, nerve regeneration was evaluated in the rats using the following outcomes: total number of myelinated axons, average minor axis diameter of the myelinated axons in the central and peripheral sections, and axon regeneration rate. End-to-end neurorrhaphy resulted in a significantly greater number of regenerated myelinated axons and rate of regeneration after 6 weeks than end-to-side neurorrhaphy; however, no such differences were observed at 12 weeks. While the regenerated axons were thicker at 12 weeks than at 6 weeks, no significant differences in axon fiber thickness were detected between end-to-end and end-to-side neurorrhaphy. Thus, end-to-end neurorrhaphy resulted in greater numbers of regenerated axons and increased axon regeneration rate during the early postoperative period. As rapid reinnervation is one of the most important factors influencing the restoration of target muscle function, we conclude that end-to-end neurorrhaphy is desirable when suturing thick nerves to thin nerves.
Collapse
Affiliation(s)
- Tohru Tateshita
- Department of Plastic and Reconstructive Surgery, St. Marianna Medical University, Kawasaki City, Japan
| | - Kazuki Ueda
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University, Fukushima Perfecture, Japan
| | - Akiyoshi Kajikawa
- Department of Plastic and Reconstructive Surgery, St. Marianna Medical University, Kawasaki City, Japan
| |
Collapse
|
13
|
Lee JY, Kim MJ, Li L, Velumian AA, Aui PM, Fehlings MG, Petratos S. Nogo receptor 1 regulates Caspr distribution at axo-glial units in the central nervous system. Sci Rep 2017; 7:8958. [PMID: 28827698 PMCID: PMC5567129 DOI: 10.1038/s41598-017-09405-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022] Open
Abstract
Axo-glial units are highly organised microstructures propagating saltatory conduction and are disrupted during multiple sclerosis (MS). Nogo receptor 1 (NgR1) has been suggested to govern axonal damage during the progression of disease in the MS-like mouse model, experimental autoimmune encephalomyelitis (EAE). Here we have identified that adult ngr1 -/- mice, previously used in EAE and spinal cord injury experiments, display elongated paranodes, and nodes of Ranvier. Unstructured paranodal regions in ngr1 -/- mice are matched with more distributed expression pattern of Caspr. Compound action potentials of optic nerves and spinal cords from naïve ngr1 -/- mice are delayed and reduced. Molecular interaction studies revealed enhanced Caspr cleavage. Our data suggest that NgR1 may regulate axo-myelin ultrastructure through Caspr-mediated adhesion, regulating the electrophysiological signature of myelinated axons of central nervous system (CNS).
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
- ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Lijun Li
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexander A Velumian
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pei Mun Aui
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Michael G Fehlings
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
14
|
Etxeberria A, Hokanson KC, Dao DQ, Mayoral SR, Mei F, Redmond SA, Ullian EM, Chan JR. Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity. J Neurosci 2016; 36:6937-48. [PMID: 27358452 PMCID: PMC4926240 DOI: 10.1523/jneurosci.0908-16.2016] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.
Collapse
Affiliation(s)
- Ainhoa Etxeberria
- Department of Neurology, University of California, San Francisco, California 94158
| | - Kenton C Hokanson
- Department of Ophthalmology, University of California, San Francisco, California 94143, and Program in Neuroscience, University of California, San Francisco, California 94158
| | - Dang Q Dao
- Department of Ophthalmology, University of California, San Francisco, California 94143, and
| | - Sonia R Mayoral
- Department of Neurology, University of California, San Francisco, California 94158
| | - Feng Mei
- Department of Neurology, University of California, San Francisco, California 94158
| | - Stephanie A Redmond
- Department of Neurology, University of California, San Francisco, California 94158, Program in Neuroscience, University of California, San Francisco, California 94158
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, California 94143, and Program in Neuroscience, University of California, San Francisco, California 94158
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, California 94158, Program in Neuroscience, University of California, San Francisco, California 94158
| |
Collapse
|
15
|
Kirkcaldie MTK, Collins JM. The axon as a physical structure in health and acute trauma. J Chem Neuroanat 2016; 76:9-18. [PMID: 27233660 DOI: 10.1016/j.jchemneu.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
The physical structure of neurons - dendrites converging on the soma, with an axon conveying activity to distant locations - is uniquely tied to their function. To perform their role, axons need to maintain structural precision in the soft, gelatinous environment of the central nervous system and the dynamic, flexible paths of nerves in the periphery. This requires close mechanical coupling between axons and the surrounding tissue, as well as an elastic, robust axoplasm resistant to pinching and flattening, and capable of sustaining transport despite physical distortion. These mechanical properties arise primarily from the properties of the internal cytoskeleton, coupled to the axonal membrane and the extracellular matrix. In particular, the two large constituents of the internal cytoskeleton, microtubules and neurofilaments, are braced against each other and flexibly interlinked by specialised proteins. Recent evidence suggests that the primary function of neurofilament sidearms is to structure the axoplasm into a linearly organised, elastic gel. This provides support and structure to the contents of axons in peripheral nerves subject to bending, protecting the relatively brittle microtubule bundles and maintaining them as transport conduits. Furthermore, a substantial proportion of axons are myelinated, and this thick jacket of membrane wrappings alters the form, function and internal composition of the axons to which it is applied. Together these structures determine the physical properties and integrity of neural tissue, both under conditions of normal movement, and in response to physical trauma. The effects of traumatic injury are directly dependent on the physical properties of neural tissue, especially axons, and because of axons' extreme structural specialisation, post-traumatic effects are usually characterised by particular modes of axonal damage. The physical realities of axons in neural tissue are integral to both normal function and their response to injury, and require specific consideration in evaluating research models of neurotrauma.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
16
|
N98S mutation in NEFL gene is dominantly inherited with a phenotype of polyneuropathy and cerebellar atrophy. J Neurol Sci 2016; 365:46-7. [PMID: 27206872 DOI: 10.1016/j.jns.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022]
|
17
|
Fieremans E, Burcaw LM, Lee HH, Lemberskiy G, Veraart J, Novikov DS. In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. Neuroimage 2016; 129:414-427. [PMID: 26804782 DOI: 10.1016/j.neuroimage.2016.01.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/11/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
The presence of micrometer-level restrictions leads to a decrease of diffusion coefficient with diffusion time. Here we investigate this effect in human white matter in vivo. We focus on a broad range of diffusion times, up to 600 ms, covering diffusion length scales up to about 30 μm. We perform stimulated echo diffusion tensor imaging on 5 healthy volunteers and observe a relatively weak time-dependence in diffusion transverse to major fiber tracts. Remarkably, we also find notable time-dependence in the longitudinal direction. Comparing models of diffusion in ordered, confined and disordered media, we argue that the time-dependence in both directions can arise due to structural disorder, such as axonal beads in the longitudinal direction, and the random packing geometry of fibers within a bundle in the transverse direction. These time-dependent effects extend beyond a simple picture of Gaussian compartments, and may lead to novel markers that are specific to neuronal fiber geometry at the micrometer scale.
Collapse
Affiliation(s)
- Els Fieremans
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Lauren M Burcaw
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hong-Hsi Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Gregory Lemberskiy
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA; iMinds Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
RBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function. Sci Rep 2015; 5:17383. [PMID: 26619789 PMCID: PMC4664964 DOI: 10.1038/srep17383] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/14/2015] [Indexed: 11/08/2022] Open
Abstract
RBFOX3 mutations are linked to epilepsy and cognitive impairments, but the underlying pathophysiology of these disorders is poorly understood. Here we report replication of human symptoms in a mouse model with disrupted Rbfox3. Rbfox3 knockout mice displayed increased seizure susceptibility and decreased anxiety-related behaviors. Focusing on hippocampal phenotypes, we found Rbfox3 knockout mice showed increased expression of plasticity genes Egr4 and Arc, and the synaptic transmission and plasticity were defective in the mutant perforant pathway. The mutant dentate granules cells exhibited an increased frequency, but normal amplitude, of excitatory synaptic events, and this change was associated with an increase in the neurotransmitter release probability and dendritic spine density. Together, our results demonstrate anatomical and functional abnormality in Rbfox3 knockout mice, and may provide mechanistic insights for RBFOX3-related human brain disorders.
Collapse
|
19
|
Zhu F, Gatti DL, Yang KH. Nodal versus Total Axonal Strain and the Role of Cholesterol in Traumatic Brain Injury. J Neurotrauma 2015; 33:859-70. [PMID: 26393780 DOI: 10.1089/neu.2015.4007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a health threat that affects every year millions of people involved in motor vehicle and sporting accidents, and thousands of soldiers in battlefields. Diffuse axonal injury (DAI) is one of the most frequent types of TBI leading to death. In DAI, the initial traumatic event is followed by a cascade of biochemical changes that take time to develop in full, so that symptoms may not become apparent until days or weeks after the original injury. Hence, DAI is a dynamic process, and the opportunity exists to prevent its progression provided the initial trauma can be predicted at the molecular level. Here, we present preliminary evidence from micro-finite element (FE) simulations that the mechanical response of central nervous system myelinated fibers is dependent on the axonal diameter, the ratio between axon diameter and fiber diameter (g-ratio), the microtubules density, and the cholesterol concentration in the axolemma and myelin. A key outcome of the simulations is that there is a significant difference between the overall level of strain in a given axonal segment and the level of local strain in the Ranvier nodes contained in that segment, with the nodal strain being much larger than the total strain. We suggest that the acquisition of this geometric and biochemical information by means of already available high resolution magnetic resonance imaging techniques, and its incorporation in current FE models of the brain will enhance the models capacity to predict the site and magnitude of primary axonal damage upon TBI.
Collapse
Affiliation(s)
- Feng Zhu
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| | - Domenico L Gatti
- 2 Department of Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan.,3 CardioVascular Research Institute, Wayne State University , Detroit, Michigan
| | - King H Yang
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| |
Collapse
|
20
|
Pisciotta C, Bai Y, Brennan KM, Wu X, Grider T, Feely S, Wang S, Moore S, Siskind C, Gonzalez M, Zuchner S, Shy ME. Reduced neurofilament expression in cutaneous nerve fibers of patients with CMT2E. Neurology 2015; 85:228-34. [PMID: 26109717 DOI: 10.1212/wnl.0000000000001773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/18/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effects of NEFL Glu396Lys mutation on the expression and assembly of neurofilaments (NFs) in cutaneous nerve fibers of patients with Charcot-Marie-Tooth disease type 2E (CMT2E). METHODS A large family with CMT2E underwent clinical, electrophysiologic, and skin biopsy studies. Biopsies were processed by indirect immunofluorescence (IF), electron microscopy (EM), and Western blot analysis. RESULTS The clinical features demonstrated intrafamilial phenotypic variability, and the electrophysiologic findings revealed nerve conductions that were either slow or in the intermediate range. All patients had reduced or absent compound muscular action potential amplitudes. Skin biopsies showed axons labeled with the axonal markers protein gene product 9.5 and α-tubulin, but not with NFs. The results of Western blot analysis were consistent with those of IF, showing reduced or absent NFs and normal expression of α-tubulin. EM revealed clusters of regenerated fibers, in absence of myelin sheath abnormalities. Both IF and EM failed to show NF aggregates in dermal axons. The morphometric analysis showed a smaller axonal caliber in patients than in controls. The study of the nodal/paranodal architecture demonstrated that sodium channels and Caspr were correctly localized in patients with CMT2E. CONCLUSIONS Decrease in NF abundance may be a pathologic marker of CMT2E. The lack of NF aggregates, consistent with prior studies, suggests that they occur proximally leading to subsequent alterations in the axonal cytoskeleton. The small axonal caliber, along with the normal molecular architecture of nodes and paranodes, explain the reduced velocities detected in patients with CMT2E. Our results also demonstrate that skin biopsy can provide evidence of pathologic and pathogenic abnormalities in patients with CMT2E.
Collapse
Affiliation(s)
- Chiara Pisciotta
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL.
| | - Yunhong Bai
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Kathryn M Brennan
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Xingyao Wu
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Tiffany Grider
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Shawna Feely
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Suola Wang
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Steven Moore
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Carly Siskind
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Michael Gonzalez
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Stephan Zuchner
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| | - Michael E Shy
- From the Departments of Neurology (C.P., Y.B., K.M.B., X.W., T.G., S.F., S.W., M.E.S.) and Pathology (S.M.), University of Iowa Hospitals and Clinics, Iowa City; Departments of Neurology (C.S.), Stanford University, CA; Dr. John T. Macdonald Foundation Department of Human Genetics (M.G., S.Z.), University of Miami Miller School of Medicine, FL
| |
Collapse
|
21
|
Normand EA, Rasband MN. Subcellular patterning: axonal domains with specialized structure and function. Dev Cell 2015; 32:459-68. [PMID: 25710532 DOI: 10.1016/j.devcel.2015.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Myelinated axons are patterned into discrete and often-repeating domains responsible for the efficient and rapid transmission of electrical signals. These domains include nodes of Ranvier and axon initial segments. Disruption of axonal patterning leads to nervous system dysfunction. In this review, we introduce the concept of subcellular patterning as applied to axons and discuss how these patterning events depend on both intrinsic, cytoskeletal mechanisms and extrinsic, myelinating glia-dependent mechanisms.
Collapse
Affiliation(s)
- Elizabeth A Normand
- Department of Neuroscience Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew N Rasband
- Department of Neuroscience Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Li J. Molecular regulators of nerve conduction - Lessons from inherited neuropathies and rodent genetic models. Exp Neurol 2015; 267:209-18. [PMID: 25792482 DOI: 10.1016/j.expneurol.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 11/15/2022]
Abstract
Myelinated nerve fibers are highly compartmentalized. Helically wrapped lipoprotein membranes of myelin are integrated with subsets of proteins specifically in each compartment to shape the physiological behavior of these nerve fibers. With the advance of molecular biology and genetics, many functions of these proteins have been revealed over the past decade. In this review, we will first discuss how action potential propagation has been understood by classical electrophysiological studies. In particular, the discussion will be concentrated on how the geometric dimensions of myelinated nerve fibers (such as internodal length and myelin thickness) may affect nerve conduction velocity. This discussion will then extend into how specific myelin proteins may shape these geometric parameters, thereby regulating action potential propagation. For instance, periaxin may specifically affect the internodal length, but not other parameters. In contrast, neuregulin-1 may affect myelin thickness, but not axon diameter or internodal length. Finally, we will discuss how these basic neurobiological observations can be applied to inherited peripheral nerve diseases.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, Center for Human Genetic Research, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, Nashville VA, Nashville, TN, USA.
| |
Collapse
|
23
|
Reichert P, Kiełbowicz Z, DziĘgiel P, Puła B, Kuryszko J, Gosk J, Bocheńska A. The Rabbit Brachial Plexus as a Model for Nerve Repair Surgery-Histomorphometric Analysis. Anat Rec (Hoboken) 2014; 298:444-54. [DOI: 10.1002/ar.23058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Paweł Reichert
- Department of Traumatology; Clinic of Traumatology and Hand Surgery, Wroclaw Medical University; ul. Borowska 213 50-556 Wrocław Poland
| | - Zdzisław Kiełbowicz
- Department of Surgery; the Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences; pl. Grunwaldzki 51 50-366 Wrocław Poland
| | - Piotr DziĘgiel
- Department of Histology and Embryology; Wroclaw Medical University; ul. Chałubińskiego 6a 50-368 Wrocław Poland
| | - Bartosz Puła
- Department of Histology and Embryology; Wroclaw Medical University; ul. Chałubińskiego 6a 50-368 Wrocław Poland
| | - Jan Kuryszko
- Department of Animal Physiology and Biostructure; Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences; ul. Norwida 31 50-373 Wroclaw Poland
| | - Jerzy Gosk
- Department of Traumatology; Clinic of Traumatology and Hand Surgery, Wroclaw Medical University; ul. Borowska 213 50-556 Wrocław Poland
| | - Aneta Bocheńska
- Department of Internal Medicine; Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 14 10-718 Olsztyn Poland
| |
Collapse
|
24
|
Abstract
Axons in the vertebrate nervous system only expand beyond ∼ 1 μm in diameter if they become myelinated. This expansion is due in large part to the accumulation of space-filling cytoskeletal polymers called neurofilaments, which are cargoes of axonal transport. One possible mechanism for this accumulation is a decrease in the rate of neurofilament transport. To test this hypothesis, we used a fluorescence photoactivation pulse-escape technique to compare the kinetics of neurofilament transport in contiguous myelinated and unmyelinated segments of axons in long-term myelinating cocultures established from the dorsal root ganglia of embryonic rats. The myelinated segments contained more neurofilaments and had a larger cross-sectional area than the contiguous unmyelinated segments, and this correlated with a local slowing of neurofilament transport. By computational modeling of the pulse-escape kinetics, we found that this slowing of neurofilament transport could be explained by an increase in the proportion of the time that the neurofilaments spent pausing and that this increase in pausing was sufficient to explain the observed neurofilament accumulation. Thus we propose that myelinating cells can regulate the neurofilament content and morphology of axons locally by modulating the kinetics of neurofilament transport.
Collapse
|
25
|
Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 2013; 33:8990-9002. [PMID: 23699510 DOI: 10.1523/jneurosci.5528-12.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathological mechanisms underlying neurological deficits observed in individuals born prematurely are not completely understood. A common form of injury in the preterm population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate PWMI, there is an urgent need to understand the pathological mechanism(s) involved on a neurobiological, structural, and functional level. Recent clinical data suggest that a percentage of premature infants experience relative hyperoxia. Using a hyperoxic model of premature brain injury, we have previously demonstrated that neonatal hyperoxia exposure in the mouse disrupts development of the white matter (WM) by delaying the maturation of the oligodendroglial lineage. In the present study, we address the question of how hyperoxia-induced alterations in WM development affect overall WM integrity and axonal function. We show that neonatal hyperoxia causes ultrastructural changes, including: myelination abnormalities (i.e., reduced myelin thickness and abnormal extramyelin loops) and axonopathy (i.e., altered neurofilament phosphorylation, paranodal defects, and changes in node of Ranvier number and structure). This disruption of axon-oligodendrocyte integrity results in the lasting impairment of conduction properties in the adult WM. Understanding the pathology of premature PWMI injury will allow for the development of interventional strategies to preserve WM integrity and function.
Collapse
|
26
|
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY 10962, USA.
| | | | | | | |
Collapse
|
27
|
Innocenti GM, Vercelli A, Caminiti R. The diameter of cortical axons depends both on the area of origin and target. ACTA ACUST UNITED AC 2013; 24:2178-88. [PMID: 23529006 DOI: 10.1093/cercor/bht070] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In primates, different cortical areas send axons of different diameters into comparable tracts, notably the corpus callosum (Tomasi S, Caminiti R, Innocenti GM. 2012. Areal differences in diameter and length of corticofugal projections. Cereb Cortex. 22:1463-1472). We now explored if an area also sends axons of different diameters to different targets. We find that the parietal area PEc sends thicker axons to area 4 and 6, and thinner ones to the cingulate region (area 24). Areas 4 and 9, each sends axons of different diameters to the nucleus caudatus, to different levels of the internal capsule, and to the thalamus. The internal capsule receives the thickest axon, followed by thalamus and nucleus caudatus. The 2 areas (4 and 9) differ in the diameter and length of axons to corresponding targets. We calculated how diameter determines conduction velocity of the axons and together with pathway length determines transmission delays between different brain sites. We propose that projections from and within the cerebral cortex consist of a complex system of lines of communication with different geometrical and time computing properties.
Collapse
Affiliation(s)
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Department of Neuroscience, University of Turin, Turin, Italy and
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
28
|
|
29
|
Cassereau J, Nicolas G, Lonchampt P, Pinier M, Barthelaix A, Eyer J, Letournel F. Axonal regeneration is compromised in NFH-LacZ transgenic mice but not in NFH-GFP mice. Neuroscience 2013; 228:101-8. [DOI: 10.1016/j.neuroscience.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/26/2022]
|
30
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
31
|
Rasband MN. The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 2010; 11:552-62. [PMID: 20631711 DOI: 10.1038/nrn2852] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ion channel clustering at the axon initial segment (AIS) and nodes of Ranvier has been suggested to be a key evolutionary innovation that enabled the development of the complex vertebrate nervous system. This innovation epitomizes a signature feature of neurons, namely polarity. The mechanisms that establish neuronal polarity, channel clustering and axon-dendrite identity during development are becoming clearer. However, much less is known about how polarity is maintained throughout life. Here, I review the role of the AIS in the development and maintenance of neuronal polarity and discuss how disrupted polarity may be a common component of many diseases and injuries that affect the nervous system.
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| |
Collapse
|
32
|
Li X, Lu Y, Li L, Chai X, Ren Q. Multi-channel visual evoked potential as an ancillary tool to diagnose intraorbital optic nerve lesions. Vet Ophthalmol 2010; 13:131-5. [PMID: 20447034 DOI: 10.1111/j.1463-5224.2010.00769.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multi-channel visual evoked potential (MVEP) recording method was used to assist in diagnosing a 4-month-old Chinese Albino rabbit with an intraorbital mass. Subcutaneous MVEP of its both eyes were recorded simultaneously using 16 electrodes (4 x 4) multi-channel array. Analysis of the cortical potential landscapes (CPL) showed that the conduction function of right eye was remarkably impaired in terms of decreased amplitudes and prolonged latencies. Specific side-dominant distribution asymmetry of the decreased MVEP amplitudes indicated that the temporal side of the optic nerve (ON) was severely involved. Overall prolonged latencies of the CPL without side differences suggested that the functional impairment could have been caused by the mechanical compression exerted by an intraorbital mass. Surgical removal procedures confirmed that the mass was located temporally to the ON. Pathological examination provided a final diagnosis of a giant polycystic mucocele. Beyond its significance as a standard tool to assess functional changes of the visual pathway, MVEP recordings might assist locating intraorbital lesions that involve the ON by careful analysis of abnormal CPLs.
Collapse
Affiliation(s)
- Xiaoliang Li
- Department of Biomedical Engineering, School of Life Science and Technology, Shanghai Jiao Tong University, 800# Dongchuan Rd, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
33
|
Abstract
Patients with PMP22 deficiency present with focal sensory and motor deficits when peripheral nerves are stressed by mechanical force. It has been hypothesized that these focal deficits are due to mechanically induced conduction block (CB). To test this hypothesis, we induced 60-70% CB (defined by electrophysiological criteria) by nerve compression in an authentic mouse model of hereditary neuropathy with liability to pressure palsies (HNPP) with an inactivation of one of the two pmp22 alleles (pmp22(+/-)). Induction time for the CB was significantly shorter in pmp22(+/-) mice than that in pmp22(+/+) mice. This shortened induction was also found in myelin-associated glycoprotein knock-out mice, but not in the mice with deficiency of myelin protein zero, a major structural protein of compact myelin. Pmp22(+/-) nerves showed intact tomacula with no segmental demyelination in both noncompressed and compressed conditions, normal molecular architecture, and normal concentration of voltage-gated sodium channels by [(3)H]-saxitoxin binding assay. However, focal constrictions were observed in the axonal segments enclosed by tomacula, a pathological hallmark of HNPP. The constricted axons increase axial resistance to action potential propagation, which may hasten the induction of CB in Pmp22 deficiency. Together, these results demonstrate that a function of Pmp22 is to protect the nerve from mechanical injury.
Collapse
|
34
|
Szaro BG, Strong MJ. Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci 2010; 33:27-37. [DOI: 10.1016/j.tins.2009.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 09/21/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022]
|
35
|
Chomiak T, Hu B. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 2009; 4:e7754. [PMID: 19915661 PMCID: PMC2771903 DOI: 10.1371/journal.pone.0007754] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/16/2009] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space. METHODOLOGY/PRINCIPAL FINDINGS In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (approximately 0.77). Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (approximately 0.6). CONCLUSIONS/SIGNIFICANCE These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints.
Collapse
Affiliation(s)
- Taylor Chomiak
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
36
|
Abstract
Neurofilaments assemble from three intermediate-filament proteins, contribute to the radial growth of axons, and are exceptionally stable. Microtubules are dynamic structures that assemble from tubulin dimers to support intracellular transport of molecules and organelles. We show here that neurofilaments, and other intermediate-filament proteins, contain motifs in their N-terminal domains that bind unassembled tubulin. Peptides containing such motifs inhibit the in vitro polymerization of microtubules and can be taken up by cultured cells in which they disrupt microtubules leading to altered cell shapes and an arrest of division. In transgenic mice in which neurofilaments are withheld from the axonal compartment, axonal tubulin accumulation is normal but microtubules assemble in excessive numbers. These observations suggest a model in which axonal neurofilaments modulate local microtubule assembly. This capacity also suggests novel mechanisms through which inherited or acquired disruptions in intermediate filaments might contribute to pathogenesis in multiple conditions.
Collapse
|
37
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|