1
|
Nakagawa N. The neuronal Golgi in neural circuit formation and reorganization. Front Neural Circuits 2024; 18:1504422. [PMID: 39703196 PMCID: PMC11655203 DOI: 10.3389/fncir.2024.1504422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration. Moreover, neuronal activity-dependent remodeling of the Golgi structure enables morphological changes in neurons, which provides the cellular basis of circuit reorganization during postnatal critical period. In this review, I summarize recent findings illustrating the unique Golgi positioning and its developmental dynamics in various types of neurons. I also discuss the upstream regulators for the Golgi positioning in neurons, and functional roles of the Golgi in neural circuit formation and reorganization. Elucidating how Golgi apparatus sculpts neuronal connectivity would deepen our understanding of the cellular/molecular basis of neural circuit development and plasticity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
2
|
Schlett K, Oueslati Morales CO, Bencsik N, Hausser A. Getting smart - Deciphering the neuronal functions of protein kinase D. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119812. [PMID: 39147241 DOI: 10.1016/j.bbamcr.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that play important roles in various signalling pathways in cells, including neuronal cells. In the nervous system, PKD has been shown to be involved in learning and memory formation by regulating neurotransmitter release, neurite outgrowth and dendrite development, synapse formation and synaptic plasticity. In addition, PKD has been implicated in pain perception or neuroprotection during oxidative stress. Dysregulation of PKD expression and activity has been linked to several neurological disorders, including autism and epilepsy. In this review, we summarize the current knowledge on the function of the PKD family members in neuronal cells, including the spatial regulation of their downstream signalling pathways. We will further discuss the potential role of PKD in the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Katalin Schlett
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Carlos O Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Norbert Bencsik
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
3
|
Duarte VN, Lam VT, Rimicci DS, Thompson-Peer KL. Calcium plays an essential role in early-stage dendrite injury detection and regeneration. Prog Neurobiol 2024; 239:102635. [PMID: 38825174 PMCID: PMC11305834 DOI: 10.1016/j.pneurobio.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.
Collapse
Affiliation(s)
- Vinicius N Duarte
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Vicky T Lam
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Dario S Rimicci
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Katherine L Thompson-Peer
- Dept of Developmental and Cell Biology, University of California, Irvine, United States; Center for the Neurobiology of Learning and Memory, Irvine, CA, United States; Sue and Bill Gross Stem Cell Research Center, Irvine, CA, United States; Reeve-Irvine Research Center, Irvine, CA, United States.
| |
Collapse
|
4
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Connelly JA, Zhang X, Chen Y, Chao Y, Shi Y, Jacob TC, Wang QJ. Protein kinase D2 confers neuroprotection by promoting AKT and CREB activation in ischemic stroke. Neurobiol Dis 2023; 187:106305. [PMID: 37730136 PMCID: PMC10836334 DOI: 10.1016/j.nbd.2023.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Ischemic stroke, constituting 80-90% of all strokes, is a leading cause of death and long-term disability in adults. There is an urgent need to discover new targets and therapies for this devastating condition. Protein kinase D (PKD), as a key target of diacylglycerol involved in ischemic responses, has not been well studied in ischemic stroke, particularly PKD2. In this study, we found that PKD2 expression and activity were significantly upregulated in the ipsilateral side of the brain after transient focal cerebral ischemia, which coincides with the upregulation of PKD2 in primary neurons in response to in vitro ischemia, implying a potential role of PKD2 in neuronal survival in ischemic stroke. Using kinase-dead PKD2 knock-in (PKD2-KI) mice, we examined whether loss of PKD2 activity affected stroke outcomes in mice subjected to 1 h of transient middle cerebral artery occlusion (tMCAO) and 24 h of reperfusion. Our data demonstrated that PKD2-KI mice exhibited larger infarction volumes and worsened neurological scores, indicative of increased brain injury, as compared to the wild-type (WT) mice, confirming a neuroprotective role of PKD2 in ischemia/reperfusion (I/R) injury. Mouse primary neurons obtained from PKD2-KI mice also exhibited increased cell death as compared to the WT neurons when subjected to in vitro ischemia. We have further identified AKT and CREB as two main signaling nodes through which PKD2 regulates neuronal survival during I/R injury. In summary, PKD2 confers neuroprotection in ischemic stroke by promoting AKT and CREB activation and targeted activation of PKD2 may benefit neuronal survival in ischemic stroke.
Collapse
Affiliation(s)
- Jaclyn A Connelly
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Xuejing Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Yuzhou Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Yapeng Chao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
6
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Lu G, Zhang Y, Xia H, He X, Xu P, Wu L, Li D, Ma L, Wu J, Peng Q. Identification of a de novo mutation of the FOXG1 gene and comprehensive analysis for molecular factors in Chinese FOXG1-related encephalopathies. Front Mol Neurosci 2022; 15:1039990. [PMID: 36568277 PMCID: PMC9768341 DOI: 10.3389/fnmol.2022.1039990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background FOXG1-related encephalopathy, also known as FOXG1 syndrome or FOXG1-related disorder, affects most aspects of development and causes microcephaly and brain malformations. This syndrome was previously considered to be the congenital variant of Rett syndrome. The abnormal function or expression of FOXG1, caused by intragenic mutations, microdeletions or microduplications, was considered to be crucial pathological factor for this disorder. Currently, most of the FOXG1-related encephalopathies have been identified in Europeans and North Americans, and relatively few Chinese cases were reported. Methods Array-Comparative Genomic Hybridization (Array-CGH) and whole-exome sequencing (WES) were carried out for the proband and her parent to detect pathogenic variants. Results A de novo nonsense mutation (c.385G>T, p.Glu129Ter) of FOXG1 was identified in a female child in a cohort of 73 Chinese children with neurodevelopmental disorders/intellectual disorders (NDDs/IDs). In order to have a comprehensive view of FOXG1-related encephalopathy in China, relevant published reports were browsed and twelve cases with mutations in FOXG1 or copy number variants (CNVs) involving FOXG1 gene were involved in the analysis eventually. Feeding difficulties, seizures, delayed speech, corpus callosum hypoplasia and underdevelopment of frontal and temporal lobes occurred in almost all cases. Out of the 12 cases, eight patients (66.67%) had single-nucleotide mutations of FOXG1 gene and four patients (33.33%) had CNVs involving FOXG1 (3 microdeletions and 1 microduplication). The expression of FOXG1 could also be potentially disturbed by deletions of several brain-active regulatory elements located in intergenic FOXG1-PRKD1 region. Further analysis indicated that PRKD1 might be a cooperating factor to regulate the expression of FOXG1, MECP2 and CDKL5 to contribute the RTT/RTT-like disorders. Discussion This re-analysis would broaden the existed knowledge about the molecular etiology and be helpful for diagnosis, treatment, and gene therapy of FOXG1-related disorders in the future.
Collapse
Affiliation(s)
- Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Strategic Support Force Medical Center, Beijing, China
| | - Huiyun Xia
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xiaoyan He
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Pei Xu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Lianying Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Ding Li
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People's Hospital, Deyang, China
- Key Laboratory of Tumor Molecular Research of Deyang, Deyang, China
| | - Qiongling Peng
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
8
|
Wang F, Yin XS, Lu J, Cen C, Wang Y. Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Sci Signal 2022; 15:eabd0033. [PMID: 35104164 DOI: 10.1126/scisignal.abd0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social memory enables one to recognize and distinguish specific individuals. It is fundamental to social behaviors that can be mediated by the oxytocin receptor (OXTR), such as forming relationships. We investigated the molecular regulation and function of OXTR in animal behavior involving social memory. We found that Ser261 in OXTR was phosphorylated by protein kinase D1 (PKD1). Neuronal Ca2+ signaling and behavior analyses revealed that rats expressing a mutated form of OXTR that cannot be phosphorylated at this residue (OXTR S261A) in the medial amygdala (MeA) exhibited impaired long-term social memory (LTSM). Blocking the phosphorylation of wild-type OXTR in the MeA using an interfering peptide in rats or through conditional knockout of Pkd1 in mice reduced social memory retention, whereas expression of a phosphomimetic mutant of OXTR rescued it. In HEK293A cells, the PKD1-mediated phosphorylation of OXTR promoted its binding to Gq protein and, in turn, OXTR-mediated phosphorylation of PKD1, indicating a positive feedback loop. In addition, OXTR with a single-nucleotide polymorphism found in humans (rs200362197), which has a mutation in the conserved recognition region in the PKD1 phosphorylation site, showed impaired activation and signaling in vitro and in HEK293A cells similar to that of the S216A mutant. Our findings describe a phosphoregulatory loop for OXTR and its critical role in social behavior that might be further explored in associated disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Jie Lu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Cheng Cen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Oueslati Morales CO, Ignácz A, Bencsik N, Sziber Z, Rátkai AE, Lieb WS, Eisler SA, Szűcs A, Schlett K, Hausser A. Protein kinase D promotes activity-dependent AMPA receptor endocytosis in hippocampal neurons. Traffic 2021; 22:454-470. [PMID: 34564930 DOI: 10.1111/tra.12819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity-induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1-containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.
Collapse
Affiliation(s)
- Carlos O Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Attila Ignácz
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Norbert Bencsik
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Zsofia Sziber
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Anikó Erika Rátkai
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Wolfgang S Lieb
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Attila Szűcs
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Katalin Schlett
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Guo H, Li JJ, Lu Q, Hou L. Detecting local genetic correlations with scan statistics. Nat Commun 2021; 12:2033. [PMID: 33795679 PMCID: PMC8016883 DOI: 10.1038/s41467-021-22334-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic correlation analysis has quickly gained popularity in the past few years and provided insights into the genetic etiology of numerous complex diseases. However, existing approaches oversimplify the shared genetic architecture between different phenotypes and cannot effectively identify precise genetic regions contributing to the genetic correlation. In this work, we introduce LOGODetect, a powerful and efficient statistical method to identify small genome segments harboring local genetic correlation signals. LOGODetect automatically identifies genetic regions showing consistent associations with multiple phenotypes through a scan statistic approach. It uses summary association statistics from genome-wide association studies (GWAS) as input and is robust to sample overlap between studies. Applied to seven phenotypically distinct but genetically correlated neuropsychiatric traits, we identify 227 non-overlapping genome regions associated with multiple traits, including multiple hub regions showing concordant effects on five or more traits. Our method addresses critical limitations in existing analytic strategies and may have wide applications in post-GWAS analysis.
Collapse
Affiliation(s)
- Hanmin Guo
- Center for Statistical Science, Tsinghua University, Beijing, China
- Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Lin Hou
- Center for Statistical Science, Tsinghua University, Beijing, China.
- Department of Industrial Engineering, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
12
|
Shang P, Zheng F, Han F, Song Y, Pan Z, Yu S, Zhuang X, Chen S. Lipin1 mediates cognitive impairment in fld mice via PKD-ERK pathway. Biochem Biophys Res Commun 2020; 525:286-291. [PMID: 32087966 DOI: 10.1016/j.bbrc.2020.02.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/20/2023]
Abstract
Lipin1 is important in lipid synthesis because of its phosphatidate phosphatase activity, and it also functions as transcriptional coactivators to regulate the expression of genes involved in lipid metabolism. We found that fld mice exhibit cognitive impairment, and it is related to the DAG-PKD-ERK pathway. We used fld mice to explore the relationship between lipin1 and cognitive function. Our results confirmed the presence of cognitive impairment in the hippocampus of lipin1-deficient mice. As shown in behavioral test, the spatial learning and memory ability of fld mice was much worse than that of wild-type mice. Electron microscopy results showed that the number of synapses in hippocampus of fld mice was significantly reduced. BDNF,SYP, PSD95 were significantly reduced. These results suggest that lipin1 impairs synaptic plasticity. Hence,a deficiency of lipin1 leads to decreased DAG levels and inhibits PKD activation, thereby affecting the phosphorylation of ERK and the CREB.
Collapse
Affiliation(s)
- Pan Shang
- School of Medicine,Shandong University, Jinan, Shandong, 250012, China; Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Fengjie Zheng
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Feng Han
- The People's Hospital of Zhangqiu Area, Jinan, Shandong, 250200, China
| | - Yuwen Song
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Zhe Pan
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Shuyan Yu
- Department of Physiology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
| |
Collapse
|
13
|
Matsumura K, Baba M, Nagayasu K, Yamamoto K, Kondo M, Kitagawa K, Takemoto T, Seiriki K, Kasai A, Ago Y, Hayata-Takano A, Shintani N, Kuriu T, Iguchi T, Sato M, Takuma K, Hashimoto R, Hashimoto H, Nakazawa T. Autism-associated protein kinase D2 regulates embryonic cortical neuron development. Biochem Biophys Res Commun 2019; 519:626-632. [PMID: 31540692 DOI: 10.1016/j.bbrc.2019.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by impaired social interaction, repetitive behavior and restricted interests. Although the molecular etiology of ASD remains largely unknown, recent studies have suggested that de novo mutations are significantly involved in the risk of ASD. We and others recently identified spontaneous de novo mutations in PKD2, a protein kinase D family member, in sporadic ASD cases. However, the biological significance of the de novo PKD2 mutations and the role of PKD2 in brain development remain unclear. Here, we performed functional analysis of PKD2 in cortical neuron development using in utero electroporation. PKD2 is highly expressed in cortical neural stem cells in the developing cortex and regulates cortical neuron development, including the neuronal differentiation of neural stem cells and migration of newborn neurons. Importantly, we determined that the ASD-associated de novo mutations impair the kinase activity of PKD2, suggesting that the de novo PKD2 mutations can be a risk factor for the disease by loss of function of PKD2. Our current findings provide novel insight into the molecular and cellular pathogenesis of ASD.
Collapse
Affiliation(s)
- Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan; Research Fellowships for Young Scientists of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Masayuki Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kana Yamamoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoka Kondo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoya Takemoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Kuriu
- Osaka Medical College, Research and Development Center, Takatsuki, Osaka, 569-8686, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Sato
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Research Center for Child Mental Development, University of Fukui, Yoshida-gun, Fukui, 910-1193, Japan
| | - Kazuhiro Takuma
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8553, Japan; Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Abstract
Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| | - Cyril Hanus
- Institute for Psychiatry and Neurosciences of Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 75014 Paris, France;
| |
Collapse
|
15
|
Liu J, He J, Huang Y, Xiao H, Jiang Z, Hu Z. The Golgi apparatus in neurorestoration. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The central role of the Golgi apparatus in critical cellular processes such as the transport, processing, and sorting of proteins and lipids has placed it at the forefront of cell science. Golgi apparatus dysfunction caused by primary defects within the Golgi or pharmacological and oxidative stress has been implicated in a wide range of neurodegenerative diseases. In addition to participating in disease progression, the Golgi apparatus plays pivotal roles in angiogenesis, neurogenesis, and synaptogenesis, thereby promoting neurological recovery. In this review, we focus on the functions of the Golgi apparatus and its mediated events during neurorestoration.
Collapse
|
16
|
Umeda K, Negishi M, Katoh H. RasGRF1 mediates brain-derived neurotrophic factor-induced axonal growth in primary cultured cortical neurons. Biochem Biophys Rep 2018; 17:56-64. [PMID: 30582008 PMCID: PMC6295856 DOI: 10.1016/j.bbrep.2018.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/01/2022] Open
Abstract
The appropriate development and regulation of neuronal morphology are important to establish functional neuronal circuits and enable higher brain function of the central nervous system. R-Ras, a member of the Ras family of small GTPases, plays crucial roles in the regulation of axonal morphology, including outgrowth, branching, and guidance. GTP-bound activated R-Ras reorganizes actin filaments and microtubules through interactions with its downstream effectors, leading to the precise control of axonal morphology. However, little is known about the upstream regulatory mechanisms for R-Ras activation in neurons. In this study, we found that brain-derived neurotrophic factor (BDNF) has a positive effect on endogenous R-Ras activation and promotes R-Ras-mediated axonal growth. RNA interference knockdown and overexpression experiments revealed that RasGRF1, a guanine nucleotide exchange factor (GEF) for R-Ras, is involved in BDNF-induced R-Ras activation and the promotion of axonal growth. Phosphorylation of RasGRF1 by protein kinase A at Ser916/898 is needed for the full activation of its GEF activity and to facilitate Ras signaling. We observed that BDNF treatment markedly increased this phosphorylation. Our results suggest that BDNF is one of the critical extrinsic regulators for R-Ras activation, and that RasGRF1 is an intrinsic key mediator for BDNF-induced R-Ras activation and R-Ras-mediated axonal morphological regulation.
Collapse
Affiliation(s)
- Kentaro Umeda
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Bollag WB, Ding KH, Choudhary V, Xu J, Zhong Q, Elsayed R, Bailey LJ, Elsalanty M, Yu K, Johnson MH, McGee-Lawrence ME, Isales CM. Protein kinase D1 conditional null mice show minimal bone loss following ovariectomy. Mol Cell Endocrinol 2018; 474. [PMID: 29530783 PMCID: PMC6733406 DOI: 10.1016/j.mce.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously found that 3- and 6-month-old male mice with conditional ablation of protein kinase D1 (PRKD1) in osteoprogenitor cells (expressing Osterix) exhibited reduced bone mass. Others have demonstrated similar effects in young female PRKD1-deficient mice. Here we examined the bone resorptive response of adult female floxed control and conditional knockout (cKO) mice undergoing sham surgery or ovariectomy (OVX). Femoral and tibial bone mineral density (BMD) values were significantly reduced upon OVX in control, but not cKO, females compared to the respective sham-operated mice. Micro-CT analysis showed that OVX significantly increased trabecular number and decreased trabecular spacing in cKO but not control mice. Finally, in control mice serum levels of a marker of bone resorption (pyridinoline crosslinks) and the osteoclast activator RANKL significantly increased upon OVX; however, no such OVX-induced increase was observed in cKO mice. Our results suggest the potential importance of PRKD1 in response to estrogen loss in bone.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Physiology, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States.
| | - Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Augusta University, Augusta, GA 30912, United States
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Ranya Elsayed
- Department of Oral Biology, Augusta University, Augusta, GA 30912, United States
| | - Lakiea J Bailey
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mohammed Elsalanty
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Oral Biology, Augusta University, Augusta, GA 30912, United States
| | - Kanglun Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| | - Meghan E McGee-Lawrence
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
18
|
Bollag WB, Choudhary V, Zhong Q, Ding KH, Xu J, Elsayed R, Yu K, Su Y, Bailey LJ, Shi XM, Elsalanty M, Johnson MH, McGee-Lawrence ME, Isales CM. Deletion of protein kinase D1 in osteoprogenitor cells results in decreased osteogenesis in vitro and reduced bone mineral density in vivo. Mol Cell Endocrinol 2018; 461:22-31. [PMID: 28811183 PMCID: PMC5756499 DOI: 10.1016/j.mce.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023]
Abstract
Protein kinase D1 (PRKD1) is thought to play a role in a number of cellular functions, including proliferation and differentiation. We hypothesized that PRKD1 in bone marrow-derived mesenchymal stem cells (BMMSC) could modulate osteogenesis. In BMMSCs from floxed PRKD1 mice, PRKD1 ablation with adenovirus-mediated Cre-recombinase expression inhibited BMMSC differentiation in vitro. In 3- and 6-month-old conditional knockout mice (cKO), in which PRKD1 was ablated in osteoprogenitor cells by osterix promoter-driven Cre-recombinase, bone mineral density (BMD) was significantly reduced compared with floxed control littermates. Microcomputed tomography analysis also demonstrated a decrease in trabecular thickness and bone volume fraction in cKO mice at these ages. Dynamic bone histomorphometry suggested a mineralization defect in the cKO mice. However, by 9 months of age, the bone appeared to compensate for the lack of PRKD1, and BMD was not different. Taken together, these results suggest a potentially important role for PRKD1 in bone formation.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Physiology, Augusta University, 30912, United States; Department of Orthopaedic Surgery, Augusta University, 30912, United States; Department of Medicine, Augusta University, 30912, United States; Department of Oral Biology, Augusta University, 30912, United States; Department of Cellular Biology and Anatomy, Augusta University, 30912, United States.
| | - Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Augusta University, 30912, United States
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| | - Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| | - Ranya Elsayed
- Department of Oral Biology, Augusta University, 30912, United States
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Augusta University, 30912, United States
| | - Yun Su
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| | - Lakiea J Bailey
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| | - Xing-Ming Shi
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Orthopaedic Surgery, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| | - Mohammed Elsalanty
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Oral Biology, Augusta University, 30912, United States
| | - Maribeth H Johnson
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States; Department of Biostatistics and Epidemiology, Augusta University, 30912, United States
| | - Meghan E McGee-Lawrence
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Orthopaedic Surgery, Augusta University, 30912, United States; Department of Cellular Biology and Anatomy, Augusta University, 30912, United States
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Augusta University, 30912, United States; Department of Orthopaedic Surgery, Augusta University, 30912, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, 30912, United States
| |
Collapse
|
19
|
Tortosa E, Hoogenraad CC. Polarized trafficking: the palmitoylation cycle distributes cytoplasmic proteins to distinct neuronal compartments. Curr Opin Cell Biol 2018; 50:64-71. [DOI: 10.1016/j.ceb.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
|
20
|
Cen C, Luo LD, Li WQ, Li G, Tian NX, Zheng G, Yin DM, Zou Y, Wang Y. PKD1 Promotes Functional Synapse Formation Coordinated with N-Cadherin in Hippocampus. J Neurosci 2018; 38:183-199. [PMID: 29133434 PMCID: PMC6705812 DOI: 10.1523/jneurosci.1640-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Functional synapse formation is critical for the wiring of neural circuits in the developing brain. The cell adhesion molecule N-cadherin plays important roles in target recognition and synaptogenesis. However, the molecular mechanisms that regulate the localization of N-cadherin and the subsequent effects remain poorly understood. Here, we show that protein kinase D1 (PKD1) directly binds to N-cadherin at amino acid residues 836-871 and phosphorylates it at Ser 869, 871, and 872, thereby increasing the surface localization of N-cadherin and promoting functional synapse formation in primary cultured hippocampal neurons obtained from embryonic day 18 rat embryos of either sex. Intriguingly, neuronal activity enhances the interactions between N-cadherin and PKD1, which are critical for the activity-dependent growth of dendritic spines. Accordingly, either disruption the binding between N-cadherin and PKD1 or preventing the phosphorylation of N-cadherin by PKD1 in the hippocampal CA1 region of male rat leads to the reduction in synapse number and impairment of LTP. Together, this study demonstrates a novel mechanism of PKD1 regulating the surface localization of N-cadherin and suggests that the PKD1-N-cadherin interaction is critical for synapse formation and function.SIGNIFICANCE STATEMENT Defects in synapse formation and function lead to various neurological diseases, although the mechanisms underlying the regulation of synapse development are far from clear. Our results suggest that protein kinase D1 (PKD1) functions upstream of N-cadherin, a classical synaptic adhesion molecule, to promote functional synapse formation. Notably, we identified a crucial binding fragment to PKD1 at C terminus of N-cadherin, and this fragment also contains PKD1 phosphorylation sites. Through this interaction, PKD1 enhances the stability of N-cadherin on cell membrane and promotes synapse morphogenesis and synaptic plasticity in an activity-dependent manner. Our study reveals the role of PKD1 and the potential downstream mechanism in synapse development, and contributes to the research for neurodevelopment and the therapy for neurological diseases.
Collapse
Affiliation(s)
- Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Wen-Qi Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Ge Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China, and
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China,
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Liliom H, Tárnok K, Ábrahám Z, Rácz B, Hausser A, Schlett K. Protein kinase D exerts neuroprotective functions during oxidative stress via nuclear factor kappa B-independent signaling pathways. J Neurochem 2017; 142:948-961. [DOI: 10.1111/jnc.14131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Hanna Liliom
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Zsófia Ábrahám
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
| | - Bence Rácz
- Department of Anatomy and Histology; University of Veterinary Medicine; Budapest Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology; University Stuttgart; Stuttgart Germany
- Stuttgart Research Center Systems Biology; University of Stuttgart; Stuttgart Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology; Eötvös Loránd University; Budapest Hungary
- MTA-ELTE-NAP B - Neuronal Cell Biology Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
22
|
STK16 regulates actin dynamics to control Golgi organization and cell cycle. Sci Rep 2017; 7:44607. [PMID: 28294156 PMCID: PMC5353726 DOI: 10.1038/srep44607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 11/30/2022] Open
Abstract
STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression.
Collapse
|
23
|
Extent of pre-translational regulation for the control of nucleocytoplasmic protein localization. BMC Genomics 2016; 17:472. [PMID: 27342569 PMCID: PMC4919871 DOI: 10.1186/s12864-016-2854-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Appropriate protein subcellular localization is essential for proper cellular function. Central to the regulation of protein localization are protein targeting motifs, stretches of amino acids serving as guides for protein entry in a specific cellular compartment. While the use of protein targeting motifs is modulated in a post-translational manner, mainly by protein conformational changes and post-translational modifications, the presence of these motifs in proteins can also be regulated in a pre-translational manner. Here, we investigate the extent of pre-translational regulation of the main signals controlling nucleo-cytoplasmic traffic: the nuclear localization signal (NLS) and the nuclear export signal (NES). Results Motif databases and manual curation of the literature allowed the identification of 175 experimentally validated NLSs and 120 experimentally validated NESs in human. Following mapping onto annotated transcripts, these motifs were found to be modular, most (73 % for NLS and 88 % for NES) being encoded entirely in only one exon. The presence of a majority of these motifs is regulated in an alternative manner at the transcript level (61 % for NLS and 72 % for NES) while the remaining motifs are present in all coding isoforms of their encoding gene. NLSs and NESs are pre-translationally regulated using four main mechanisms: alternative transcription/translation initiation, alternative translation termination, alternative splicing of the exon encoding the motif and frameshift, the first two being by far the most prevalent mechanisms. Quantitative analysis of the presence of these motifs using RNA-seq data indicates that inclusion of these motifs can be regulated in a tissue-specific and a combinatorial manner, can be altered in disease states in a directed way and that alternative inclusion of these motifs is often used by proteins with diverse interactors and roles in diverse pathways, such as kinases. Conclusions The pre-translational regulation of the inclusion of protein targeting motifs is a prominent and tightly-regulated mechanism that adds another layer in the control of protein subcellular localization. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2854-4) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Tsutsuki H, Yahiro K, Ogura K, Ichimura K, Iyoda S, Ohnishi M, Nagasawa S, Seto K, Moss J, Noda M. Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation. Cell Microbiol 2016; 18:1024-40. [PMID: 26749168 PMCID: PMC10068837 DOI: 10.1111/cmi.12565] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory, Research Institute, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Kimitoshi Ichimura
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Seto
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Zhu YB, Gao W, Zhang Y, Jia F, Zhang HL, Liu YZ, Sun XF, Yin Y, Yin DM. Astrocyte-derived phosphatidic acid promotes dendritic branching. Sci Rep 2016; 6:21096. [PMID: 26883475 PMCID: PMC4756377 DOI: 10.1038/srep21096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/18/2016] [Indexed: 01/24/2023] Open
Abstract
Astrocytes play critical roles in neural circuit formation and function. Recent studies have revealed several secreted and contact-mediated signals from astrocytes which are essential for neurite outgrowth and synapse formation. However, the mechanisms underlying the regulation of dendritic branching by astrocytes remain elusive. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphatidic acid (PA) and choline, has been implicated in the regulation of neurite outgrowth. Here we showed that knockdown of PLD1 selectively in astrocytes reduced dendritic branching of neurons in neuron-glia mixed culture. Further studies from sandwich-like cocultures and astrocyte conditioned medium suggested that astrocyte PLD1 regulated dendritic branching through secreted signals. We later demonstrated that PA was the key mediator for astrocyte PLD1 to regulate dendritic branching. Moreover, PA itself was sufficient to promote dendritic branching of neurons. Lastly, we showed that PA could activate protein kinase A (PKA) in neurons and promote dendritic branching through PKA signaling. Taken together, our results demonstrate that astrocyte PLD1 and its lipid product PA are essential regulators of dendritic branching in neurons. These results may provide new insight into mechanisms underlying how astrocytes regulate dendrite growth of neurons.
Collapse
Affiliation(s)
- Yan-Bing Zhu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weizhen Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Zhang
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Long Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying-Zi Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xue-Fang Sun
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuhua Yin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
26
|
Franco-Villanueva A, Wandosell F, Antón IM. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav 2015; 5:e00359. [PMID: 26664784 PMCID: PMC4667760 DOI: 10.1002/brb3.359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Neuronal morphogenesis is governed mainly by two interconnected processes, cytoskeletal reorganization, and signal transduction. The actin-binding molecule WIP (Wiskott-Aldrich syndrome protein [WASP]-interacting protein) was identified as a negative regulator of neuritogenesis. Although WIP controls activity of the actin-nucleation-promoting factor neural WASP (N-WASP) during neuritic differentiation, its implication in signal transduction remains unknown. METHODS Using primary neurons from WIP-deficient and wild-type mice we did an immunofluorescence, morphometric, and biochemical analysis of the signaling modified by WIP deficiency. RESULTS Here, we describe the WIP contribution to the regulation of neuritic elaboration and ramification through modification in phosphorylation levels of several kinases that participate in the mammalian target of rapamycin complex 1 (mTORC1)-p70S6K (phosphoprotein 70 ribosomal protein S6 kinase, S6K) intracellular signaling pathway. WIP deficiency induces an increase in the number of neuritic bifurcations and filopodial protrusions in primary embryonic neurons. This phenotype is not due to modifications in the activity of the phosphoinositide 3 kinase (PI3K)-Akt pathway, but to reduced phosphorylation of the S6K residues Ser(411) and Thr(389). The resulting decrease in kinase activity leads to reduced S6 phosphorylation in the absence of WIP. Incubation of control neurons with pharmacological inhibitors of mTORC1 or Abl, two S6K regulators, conferred a morphology resembling that of WIP-deficient neurons. Moreover, the preferential co-distribution of phospho-S6K with polymerized actin is altered in WIP-deficient neurons. CONCLUSION These experiments identify WIP as a member of a signaling cascade comprised of Abl family kinases, mTORC1 and S6K, which regulates neuron development and specifically, neuritic branching and complexity. Thus, we postulated a new role for WIP protein.
Collapse
Affiliation(s)
- Ana Franco-Villanueva
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin 3 Campus Cantoblanco 28049 Madrid Spain ; CIBERNED, Centro Investigación Biomédica en Red de Enfermedades Neurodegenerativas Madrid Spain
| | - Francisco Wandosell
- CIBERNED, Centro Investigación Biomédica en Red de Enfermedades Neurodegenerativas Madrid Spain ; Centro de Biología Molecular Severo Ochoa (CBMSO) (CSIC-UAM) Nicolás Cabrera 1 Campus Cantoblanco 28049 Madrid Spain
| | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin 3 Campus Cantoblanco 28049 Madrid Spain ; CIBERNED, Centro Investigación Biomédica en Red de Enfermedades Neurodegenerativas Madrid Spain
| |
Collapse
|
27
|
Calcyon stimulates neuregulin 1 maturation and signaling. Mol Psychiatry 2015; 20:1251-60. [PMID: 25349163 DOI: 10.1038/mp.2014.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/27/2014] [Accepted: 08/21/2014] [Indexed: 01/02/2023]
Abstract
Neuregulin1 (NRG1) is a single transmembrane protein that plays a critical role in neural development and synaptic plasticity. Both NRG1 and its receptor, ErbB4, are well-established risk genes of schizophrenia. The NRG1 ecto-domain (ED) binds and activates ErbB4 following proteolytic cleavage of pro-NRG1 precursor protein. Although several studies have addressed the function of NRG1 in brain, very little is known about the cleavage and shedding mechanism. Here we show that the neuronal vesicular protein calcyon is a potent activator and key determinant of NRG1 ED cleavage and shedding. Calcyon stimulates clathrin-mediated endocytosis and endosomal targeting; and its levels are elevated in postmortem brains of schizophrenics. Overexpression of calcyon stimulates NRG1 cleavage and signaling in vivo, and as a result, GABA transmission is enhanced in calcyon overexpressing mice. Conversely, NRG1 cleavage, ErbB4 activity and GABA transmission are decreased in calcyon null mice. Moreover, stimulation of NRG1 cleavage by calcyon was recapitulated in HEK 293 cells suggesting the mechanism involved is cell-autonomous. Finally, studies with site-specific mutants in calcyon and inhibitors for the major sheddases indicate that the stimulatory effects of calcyon on NRG1 cleavage and shedding depend on clathrin-mediated endocytosis, β-secretase 1, and interaction with clathrin adaptor proteins. Together these results identify a novel mechanism for NRG1 cleavage and shedding.
Collapse
|
28
|
Avriyanti E, Atik N, Kunii M, Furumoto N, Iwano T, Yoshimura SI, Harada R, Harada A. Functional redundancy of protein kinase D1 and protein kinase D2 in neuronal polarity. Neurosci Res 2015; 95:12-20. [PMID: 25639845 DOI: 10.1016/j.neures.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 11/25/2022]
Abstract
Mammalian protein kinase D (PKD) isoforms have been proposed to regulate diverse biological processes, including the establishment and maintenance of neuronal polarity. To investigate the function of PKD in neuronal polarization in vivo, we generated PKD knockout (KO) mice. Here, we show that the brain, particularly the hippocampus, of both PKD1 KO and PKD2 KO mice was similar to that of control animals. Neurite length in cultured PKD1 KO and PKD2 KO hippocampal neurons was similar to that of wild-type neurons. However, hippocampal neurons deficient in both PKD1 and PKD2 genes showed a reduction in axonal elongation and an increase in the percentage of neurons with multiple axons relative to control neurons. These results reveal that whereas PKD1 and PKD2 are essential for neuronal polarity, there exists a functional redundancy between the two proteins.
Collapse
Affiliation(s)
- Erda Avriyanti
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; Department of Anatomy and Cell Biology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Naomi Furumoto
- Laboratory for Molecular Traffic, Department of Cellular and Molecular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Tomohiko Iwano
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Reiko Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; Department of Judo Therapy, Takarazuka University of Medical and Health Care, Takarazuka, 666-0162, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; Laboratory for Molecular Traffic, Department of Cellular and Molecular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan.
| |
Collapse
|
29
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Zhou X, Xue P, Yang M, Shi H, Lu D, Wang Z, Shi Q, Hu J, Xie S, Zhan W, Yu R. Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 2014; 355:121-9. [PMID: 25218347 DOI: 10.1016/j.canlet.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Protein kinase D2 (PKD2) has been demonstrated to promote tumorigenesis in many types of cancers. However, how PKD2 regulates cancer cell growth is largely unknown. In this study, we found that over-expression of PKD2 promoted glioma cell growth but down-regulation of PKD2 inhibited it. Further investigation indicated that PKD2 down-regulation decreased the protein level of Golgi phosphoprotein 3(GOLPH3) as well as p-AKT level. On the contrary, over-expression of PKD2 increased the protein level of GOLPH3 and p-AKT. In addition, GOLPH3 exhibited similar effect on glioma cell growth to that of PKD2. Importantly, GOLPH3 down-regulation partially abolished glioma cell proliferation induced by PKD2 over-expression, while over-expression of GOLPH3 also partially rescued the inhibition effect of PKD2 down-regulation on glioma cell growth. Interestingly, the level of PKD2 and GOLPH3 significantly increased and was positively correlated in a cohort of glioma patients, as well as in patients from TCGA database. Taken together, these results reveal that PKD2 promotes glioma cell proliferation by regulating GOLPH3 and then AKT activation. Our findings indicate that both PKD2 and GOLPH3 play important roles in the progression of human gliomas and PKD2-GOLPH3-AKT signaling pathway might be a potential glioma therapeutic target.
Collapse
Affiliation(s)
- Xiuping Zhou
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Pengfei Xue
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Minglin Yang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dong Lu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinxia Hu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shao Xie
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
31
|
Sánchez-Ruiloba L, Aicart-Ramos C, García-Guerra L, Pose-Utrilla J, Rodríguez-Crespo I, Iglesias T. Protein kinase D interacts with neuronal nitric oxide synthase and phosphorylates the activatory residue serine 1412. PLoS One 2014; 9:e95191. [PMID: 24740233 PMCID: PMC3989272 DOI: 10.1371/journal.pone.0095191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/24/2014] [Indexed: 12/20/2022] Open
Abstract
Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration.
Collapse
Affiliation(s)
- Lucía Sánchez-Ruiloba
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Lucía García-Guerra
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail: (IRC); (TI)
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (IRC); (TI)
| |
Collapse
|
32
|
Berto GE, Iobbi C, Camera P, Scarpa E, Iampietro C, Bianchi F, Gai M, Sgrò F, Cristofani F, Gärtner A, Dotti CG, Di Cunto F. The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. PLoS One 2014; 9:e93721. [PMID: 24695496 PMCID: PMC3973554 DOI: 10.1371/journal.pone.0093721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/06/2014] [Indexed: 01/10/2023] Open
Abstract
In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.
Collapse
Affiliation(s)
- Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| | - Cristina Iobbi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Scarpa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Flavio Cristofani
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annette Gärtner
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
| | - Carlos G. Dotti
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| |
Collapse
|
33
|
Wang N, Su P, Zhang Y, Lu J, Xing B, Kang K, Li W, Wang Y. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses. Neuropsychopharmacology 2014; 39:1290-301. [PMID: 24362306 PMCID: PMC3957125 DOI: 10.1038/npp.2013.341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances.
Collapse
Affiliation(s)
- Ning Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ping Su
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Baoming Xing
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Kai Kang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Wenqi Li
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing, China,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China, Tel/Fax: +86 10 82801119, E-mail:
| |
Collapse
|
34
|
Li G, Wang Y. Protein kinase D: a new player among the signaling proteins that regulate functions in the nervous system. Neurosci Bull 2014; 30:497-504. [PMID: 24526660 DOI: 10.1007/s12264-013-1403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/07/2013] [Indexed: 10/25/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily-conserved family of protein kinases. It has structural, regulatory, and enzymatic properties quite different from the PKC family. Many stimuli induce PKD signaling, including G-protein-coupled receptor agonists and growth factors. PKD1 is the most studied member of the family. It functions during cell proliferation, differentiation, secretion, cardiac hypertrophy, immune regulation, angiogenesis, and cancer. Previously, we found that PKD1 is also critically involved in pain modulation. Since then, a series of studies performed in our lab and by other groups have shown that PKDs also participate in other processes in the nervous system including neuronal polarity establishment, neuroprotection, and learning. Here, we discuss the connections between PKD structure, enzyme function, and localization, and summarize the recent findings on the roles of PKD-mediated signaling in the nervous system.
Collapse
Affiliation(s)
- Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | | |
Collapse
|
35
|
Atik N, Kunii M, Avriyanti E, Furumoto N, Inami K, Yoshimura SI, Harada R, Harada A. The role of PKD in cell polarity, biosynthetic pathways, and organelle/F-actin distribution. Cell Struct Funct 2014; 39:61-77. [PMID: 24492625 DOI: 10.1247/csf.13020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein Kinase D (PKD) 1, 2, and 3 are members of the PKD family. PKDs influence many cellular processes, including cell polarity, structure of the Golgi, polarized transport from the Golgi to the basolateral plasma membrane, and actin polymerization. However, the role of the PKD family in cell polarity has not yet been elucidated in vivo. Here, we show that KO mice displayed similar localization of the apical and basolateral proteins, transport of VSV-G and a GPI-anchored protein, and similar localization of actin filaments. As DKO mice were embryonic lethal, we generated MEFs that lacked all PKD isoforms from the PKD1 and PKD2 double floxed mice using Cre recombinase and PKD3 siRNA. We observed a similar localization of various organelles, a similar time course in the transport of VSV-G and a GPI-anchored protein, and a similar distribution of F-actin in the PKD-null MEFs. Collectively, our results demonstrate that the complete deletion of PKDs does not affect the transport of VSV-G or a GPI-anchored protein, and the distribution of F-actin. However, simultaneous deletion of PKD1 and PKD2 affect embryonic development, demonstrating their functional redundancy during development.
Collapse
Affiliation(s)
- Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu P, Rosen KM, Hedstrom K, Rey O, Guha S, Hart C, Corfas G. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway. Glia 2013; 61:1029-1040. [PMID: 23553603 PMCID: PMC4165612 DOI: 10.1002/glia.22491] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/06/2013] [Indexed: 12/22/2022]
Abstract
Upon peripheral nerve injury, specific molecular events, including increases in the expression of selected neurotrophic factors, are initiated to prepare the tissue for regeneration. However, the mechanisms underlying these events and the nature of the cells involved are poorly understood. We used the injury-induced upregulation of glial cell-derived neurotrophic factor (GDNF) expression as a tool to gain insights into these processes. We found that both myelinating and nonmyelinating Schwann cells are responsible for the dramatic increase in GDNF expression after injury. We also demonstrate that the GDNF upregulation is mediated by a signaling cascade involving activation of Schwann cell purinergic receptors, followed by protein kinase C signaling which activates protein kinase D (PKD), which leads to increased GDNF transcription. Given the potent effects of GDNF on survival and repair of injured peripheral neurons, we propose that targeting these pathways may yield therapeutic tools to treat peripheral nerve injury and neuropathies.
Collapse
Affiliation(s)
- Pin Xu
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, MA 02115 USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115 USA
| | - Kenneth M. Rosen
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, MA 02115 USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115 USA
| | - Kristian Hedstrom
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, MA 02115 USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115 USA
| | - Osvaldo Rey
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, CA 90095 USA
- INIGEM-CONICET-UBA, C1120AAR-Buenos Aires-Argentina
| | - Sushovan Guha
- Division of Gastroenterology, Hepatology, and Nutrition, UT Health-UT Health Science Center and Medical School at Houston, Houston, TX 77030
| | - Courtney Hart
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, MA 02115 USA
| | - Gabriel Corfas
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, MA 02115 USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115 USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
37
|
Fujishima K, Horie R, Mochizuki A, Kengaku M. Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development 2012; 139:3442-55. [PMID: 22912417 PMCID: PMC3491647 DOI: 10.1242/dev.081315] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons develop dendritic arbors in cell type-specific patterns. Using growing Purkinje cells in culture as a model, we performed a long-term time-lapse observation of dendrite branch dynamics to understand the rules that govern the characteristic space-filling dendrites. We found that dendrite architecture was sculpted by a combination of reproducible dynamic processes, including constant tip elongation, stochastic terminal branching, and retraction triggered by contacts between growing dendrites. Inhibition of protein kinase C/protein kinase D signaling prevented branch retraction and significantly altered the characteristic morphology of long proximal segments. A computer simulation of dendrite branch dynamics using simple parameters from experimental measurements reproduced the time-dependent changes in the dendrite configuration in live Purkinje cells. Furthermore, perturbation analysis to parameters in silico validated the important contribution of dendritic retraction in the formation of the characteristic morphology. We present an approach using live imaging and computer simulations to clarify the fundamental mechanisms of dendrite patterning in the developing brain.
Collapse
Affiliation(s)
- Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
38
|
Iwasawa N, Negishi M, Oinuma I. R-Ras controls axon branching through afadin in cortical neurons. Mol Biol Cell 2012; 23:2793-804. [PMID: 22593211 PMCID: PMC3395666 DOI: 10.1091/mbc.e12-02-0103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/02/2012] [Accepted: 05/11/2012] [Indexed: 01/06/2023] Open
Abstract
Regulation of axon growth, guidance, and branching is essential for constructing a correct neuronal network. R-Ras, a Ras-family small GTPase, has essential roles in axon formation and guidance. During axon formation, R-Ras activates a series of phosphatidylinositol 3-kinase signaling, inducing activation of a microtubule-assembly promoter-collapsin response mediator protein-2. However, signaling molecules linking R-Ras to actin cytoskeleton-regulating axonal morphology remain obscure. Here we identify afadin, an actin-binding protein harboring Ras association (RA) domains, as an effector of R-Ras inducing axon branching through F-actin reorganization. We observe endogenous interaction of afadin with R-Ras in cortical neurons during the stage of axonal development. Ectopic expression of afadin increases axon branch number, and the RA domains and the carboxyl-terminal F-actin binding domain are required for this action. RNA interference knockdown experiments reveal that knockdown of endogenous afadin suppressed both basal and R-Ras-mediated axon branching in cultured cortical neurons. Subcellular localization analysis shows that active R-Ras-induced translocation of afadin and its RA domains is responsible for afadin localizing to the membrane and inducing neurite development in Neuro2a cells. Overall, our findings demonstrate a novel signaling pathway downstream of R-Ras that controls axon branching.
Collapse
Affiliation(s)
- Nariaki Iwasawa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Uesugi A, Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Robaye B, Boeynaems JM, Inoue K. Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis. Glia 2012; 60:1094-105. [PMID: 22488958 DOI: 10.1002/glia.22337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 03/13/2012] [Indexed: 11/09/2022]
Abstract
The clearance of tissue debris by microglia is a crucial component of maintaining brain homeostasis. Microglia continuously survey the brain parenchyma and utilize extracellular nucleotides to trigger the initiation of their dynamic responses. Extracellular uridine diphosphate (UDP), which leaks or is released from damaged neurons, has been reported to stimulate the phagocytotic activity of microglia through P2Y(6) receptor activation. However, the intracellular mechanisms underlying microglial P2Y(6) receptor signals have not been identified. In this study, we demonstrated that UDP stimulation induced immediate and long-lasting dynamic movements in the cell membrane. After 60 min of UDP stimulation, there was an upregulation in the number of large vacuoles formed in the cell that incorporate extracellular fluorescent-labeled dextran, which indicates microglial macropinocytosis. In addition, UDP-induced vacuole formation and continuous membrane motility were suppressed by the protein kinase D (PKD) inhibitors, Gö6976 and CID755673, unlike Gö6983, which is far less sensitive to PKD. The inhibition of PKD also reduced UDP-induced incorporation of fluorescent-labeled dextran and soluble β-amyloid and phagocytosis of microspheres. UDP induced rapid phosphorylation and membrane translocation of PKD, which was abrogated by the inhibition of protein kinase C (PKC) with Gö6983. However, Gö6983 failed to suppress UDP-induced incorporation of microspheres. Finally, we found that inhibition of PKD by CID755673 significantly suppressed UDP-induced engulfment of IgG-opsonized microspheres. These data suggest that a PKC-independent function of PKD regulates UDP-induced membrane movement and contributes to the increased uptake of extracellular fluid and microspheres in microglia.
Collapse
Affiliation(s)
- Ayumi Uesugi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The Transient receptor potential (TRP) family of cation channels is a large protein family, which is mainly structurally uniform. Proteins consist typically of six transmembrane domains and mostly four subunits are necessary to form a functional channel. Apart from this, TRP channels display a wide variety of activation mechanisms (ligand binding, G-protein coupled receptor dependent, physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles (from highly Ca(2+) selective to non-selective for cations). They have been described now in almost every tissue of the body, including peripheral and central neurons. Especially in the sensory nervous system the role of several TRP channels is already described on a detailed level. This review summarizes data that is currently available on their role in the central nervous system. TRP channels are involved in neurogenesis and brain development, synaptic transmission and they play a key role in the development of several neurological diseases.
Collapse
|
41
|
de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72:22-40. [PMID: 21982366 DOI: 10.1016/j.neuron.2011.09.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century, neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems.
Collapse
Affiliation(s)
- Luis de la Torre-Ubieta
- Department of Neurobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
The Role of the Golgi-Resident SPCA Ca2+/Mn2+ Pump in Ionic Homeostasis and Neural Function. Neurochem Res 2011; 37:455-68. [DOI: 10.1007/s11064-011-0644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 12/23/2022]
|
43
|
Abstract
The Golgi is essential for processing proteins and sorting them, as well as plasma membrane components, to their final destinations. Not surprisingly, this organelle, a major compartment of the secretory pathway, is an important venue for regulating many aspects of development in both invertebrates and vertebrates. Through its role as a site for protein cleavage and glycosylation as well as through changes in its spatial organization and secretory trafficking, the Golgi exerts highly specific effects on cellular differentiation and morphogenesis by spatially and temporally constraining developmental pathways.
Collapse
|
44
|
Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem Sci 2011; 36:593-603. [PMID: 21798744 DOI: 10.1016/j.tibs.2011.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022]
Abstract
Diacylglycerol signals by binding and activating C1 domain-containing proteins expressed principally in neuronal and immune tissues. This restricted expression profile suggests that diacylglycerol-regulated signals are particularly relevant in cell-cell communication processes in which active endocytosis and exocytosis take place. Not surprisingly, various experimental approaches have demonstrated a crucial role for diacylglycerol effectors and metabolizing enzymes in the control of immune responses, neuron communication and phagocytosis. Current research delineates a scenario in which coordinated decoding of diacylglycerol signals is translated into complex biological responses such as neuronal plasticity, T cell development or cytolytic killing. Diacylglycerol functions reach maximal diversity in these highly specialized systems in which signal intensity directly regulates distinct biological outcomes. This review brings together the most recent studies, emphasizing the contribution of compartmentalized DAG metabolism to orientated signaling events.
Collapse
|
45
|
Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 2011; 26:23-33. [PMID: 21357900 DOI: 10.1152/physiol.00037.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily conserved protein kinase family with structural, enzymological, and regulatory properties different from the PKC family members. Signaling through PKD is induced by a remarkable number of stimuli, including G-protein-coupled receptor agonists and polypeptide growth factors. PKD1, the most studied member of the family, is increasingly implicated in the regulation of a complex array of fundamental biological processes, including signal transduction, cell proliferation and differentiation, membrane trafficking, secretion, immune regulation, cardiac hypertrophy and contraction, angiogenesis, and cancer. PKD mediates such a diverse array of normal and abnormal biological functions via dynamic changes in its spatial and temporal localization, combined with its distinct substrate specificity. Studies on PKD thus far indicate a striking diversity of both its signal generation and distribution and its potential for complex regulatory interactions with multiple downstream pathways, often regulating the subcellular localization of its targets.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
46
|
Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA, Olson EC, Howell BW. Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 2010; 143:826-36. [PMID: 21111240 DOI: 10.1016/j.cell.2010.10.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/27/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment. Reelin stimulation of cultured neurons induces the extension of the Golgi into dendrites, which is suppressed by Stk25 overexpression. In vivo, Reelin and Dab1 are required for the normal extension of the Golgi apparatus into the apical dendrites of hippocampal and neocortical pyramidal neurons. This demonstrates that the balance between Reelin-Dab1 signaling and LKB1-Stk25-GM130 regulates Golgi dispersion, axon specification, and dendrite growth and provides insights into the importance of the Golgi apparatus for cell polarization.
Collapse
Affiliation(s)
- Tohru Matsuki
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Guha S, Tanasanvimon S, Sinnett-Smith J, Rozengurt E. Role of protein kinase D signaling in pancreatic cancer. Biochem Pharmacol 2010; 80:1946-1954. [PMID: 20621068 PMCID: PMC2974013 DOI: 10.1016/j.bcp.2010.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with dismal survival rates. Its intransigence to conventional therapy renders PDAC an aggressive disease with early metastatic potential. Thus, novel targets for PDAC therapy are urgently needed. Multiple signal transduction pathways are implicated in progression of PDAC. These pathways stimulate production of intracellular messengers in their target cells to modify their behavior, including the lipid-derived diacylglycerol (DAG). One of the prominent intracellular targets of DAG is the protein kinase C (PKC) family. However, the mechanisms by which PKC-mediated signals are decoded by the cell remain incompletely understood. Protein kinase D1 (PKD or PKD1, initially called atypical PKCμ), is the founding member of a novel protein kinase family that includes two additional protein kinases that share extensive overall homology with PKD, termed PKD2, and PKD3. The PKD family occupies a unique position in the signal transduction pathways initiated by DAG and PKC. PKD lies downstream of PKCs in a novel signal transduction pathway implicated in the regulation of multiple fundamental biological processes. We and others have shown that PKD-mediated signaling pathways promote mitogenesis and angiogenesis in PDAC. Our recent observations demonstrate that PKD also potentiates chemoresistance and invasive potential of PDAC cells. This review will briefly highlight diverse biological roles of PKD family in multiple neoplasias including PDAC. Further, this review will underscore our latest advancement with the development of a potent PKD family inhibitor and its effect both in vitro and in vivo in PDAC.
Collapse
Affiliation(s)
- Sushovan Guha
- Department of Gastroenetrology, Hepatology, and Nutrition, the UT MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
48
|
Krueger DD, Osterweil EK, Bear MF. Activation of mGluR5 induces rapid and long-lasting protein kinase D phosphorylation in hippocampal neurons. J Mol Neurosci 2010; 42:1-8. [PMID: 20177824 PMCID: PMC2914130 DOI: 10.1007/s12031-010-9338-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Dilja D Krueger
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, 46-3301, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
49
|
Irannejad R, Wedegaertner PB. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. J Biol Chem 2010; 285:32393-404. [PMID: 20720014 DOI: 10.1074/jbc.m110.154963] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Observations of Golgi fragmentation upon introduction of G protein βγ (Gβγ) subunits into cells have implicated Gβγ in a pathway controlling the fission at the trans-Golgi network (TGN) of plasma membrane (PM)-destined transport carriers. However, the subcellular location where Gβγ acts to provoke Golgi fragmentation is not known. Additionally, a role for Gβγ in regulating TGN-to-PM transport has not been demonstrated. Here we report that constitutive or inducible targeting of Gβγ to the Golgi, but not other subcellular locations, causes phospholipase C- and protein kinase D-dependent vesiculation of the Golgi in HeLa cells; Golgi-targeted β(1)γ(2) also activates protein kinase D. Moreover, the novel Gβγ inhibitor, gallein, and the Gβγ-sequestering protein, GRK2ct, reveal that Gβγ is required for the constitutive PM transport of two model cargo proteins, VSV-G and ss-HRP. Importantly, Golgi-targeted GRK2ct, but not a PM-targeted GRK2ct, also blocks protein transport to the PM. To further support a role for Golgi-localized Gβγ, endogenous Gβ was detected at the Golgi in HeLa cells. These results are the first to establish a role for Golgi-localized Gβγ in regulating protein transport from the TGN to the cell surface.
Collapse
Affiliation(s)
- Roshanak Irannejad
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
50
|
Carrasquero LMG, Delicado EG, Sánchez-Ruiloba L, Iglesias T, Miras-Portugal MT. Mechanisms of protein kinase D activation in response to P2Y(2) and P2X7 receptors in primary astrocytes. Glia 2010; 58:984-95. [PMID: 20222145 DOI: 10.1002/glia.20980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that can be activated by many stimuli via protein kinase C in a variety of cells. This is the first report where PKD activation and localization is studied in glial cells. Herein, we demonstrate that P2Y(2) and P2X7 receptor stimulation of primary rat cerebellar astrocytes rapidly increases PKD1/2 phosphorylation and activity. P2Y(2) receptor response evokes a PKD1/2 activation that is dependent on a pertussis toxin-insensitive G protein, phospholipase C (PLC)-mediated generation of diacylglycerol, and protein kinase C. This mechanism is similar to the one described for other G-protein coupled receptors. In contrast, the way the ionotropic P2X7 receptor activates PKD1/2 is significantly different. Importantly, this response is not dependent on calcium entry, but depends on the activity of several phospholipases, including phosphoinositide-phospholipase C (PI-PLC), phosphatidylcholine-phospholipase C (PC-PLC) and also phospholipase D (PLD). Immunoblot and confocal microscopy analysis show that PKD1/2 activation by nucleotides is transient. The active kinase first moves to and concentrates in certain plasma membrane domains. Then, phosphorylated-PKD1/2 translocates to intracellular vesicles, where it remains active. All together, our results open the perspective of PKD1/2 being involved in many physiological functions where nucleotides play important roles not only in astrocytes but in other cell types bearing these receptors.
Collapse
Affiliation(s)
- Luz María G Carrasquero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|