1
|
de Sousa RD, Zagalo DM, Costa T, de Almeida JMC, Canhão H, Rodrigues A. Exploring depression in adults over a decade: a review of longitudinal studies. BMC Psychiatry 2025; 25:378. [PMID: 40234864 PMCID: PMC11998219 DOI: 10.1186/s12888-025-06828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Depression, as a prevalent global mental health disorder, stands as one of the main causes of disability worldwide, imposing significant individual, societal, and economic burdens. While its heterogeneous nature is well recognized, growing evidence highlights the importance of understanding depression trajectories, which describe the long-term course and variability of depressive symptoms over time. These trajectories are shaped by a complex interplay of biological, psychological, and social factors. However, despite extensive research on depression's prevalence and risk factors, a comprehensive synthesis of trajectory patterns, their determinants, and their long-term implications remains limited. This review systematically examines the existing literature on depression trajectories in adults, identifying key influences such as age, gender, socioeconomic status, early life experiences, social support, physical health, lifestyle factors, and external stressors, including pandemics. By integrating findings from longitudinal and epidemiological studies, this review provides novel insights into the bidirectional relationship between depression and chronic health conditions, underscoring the need for a holistic, trajectory-based approach to mental health care. The findings have important implications for clinical practice, public health, and future research. Recognizing distinct trajectory patterns may facilitate earlier identification of high-risk individuals, inform the development of personalized interventions, and optimize the allocation of mental health resources. Furthermore, by elucidating the complex interconnections between depression and broader health determinants, this review establishes a foundation for advancing targeted, evidence-based interventions aimed at reducing the long-term burden of depression, particularly among vulnerable populations.
Collapse
Affiliation(s)
- Rute Dinis de Sousa
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisbon, 1169 - 056, Portugal.
- Episaúde - Associação Científica, Évora, Portugal.
| | - Daniela Mariana Zagalo
- CHRC, LA-REAL, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Teresa Costa
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Miguel Caldas de Almeida
- CHRC, Lisbon Institute of Global Mental Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Helena Canhão
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisbon, 1169 - 056, Portugal
- Episaúde - Associação Científica, Évora, Portugal
- CHRC, LA-REAL, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Rodrigues
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisbon, 1169 - 056, Portugal
- Episaúde - Associação Científica, Évora, Portugal
- CHRC, LA-REAL, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Brenner M, Zink C, Witzinger L, Keller A, Hadamek K, Bothe S, Neuenschwander M, Villmann C, von Kries JP, Schindelin H, Jeanclos E, Gohla A. 7,8-Dihydroxyflavone is a direct inhibitor of human and murine pyridoxal phosphatase. eLife 2024; 13:RP93094. [PMID: 38856179 PMCID: PMC11164532 DOI: 10.7554/elife.93094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.
Collapse
Affiliation(s)
- Marian Brenner
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Christoph Zink
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Linda Witzinger
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Angelika Keller
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Sebastian Bothe
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | | | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of WürzburgWürzburgGermany
| | | | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| |
Collapse
|
3
|
Cui T, Liu Z, Li Z, Han Y, Xiong W, Qu Z, Zhang X. Serum brain-derived neurotrophic factor concentration is different between autism spectrum disorders and intellectual disability children and adolescents. J Psychiatr Res 2024; 170:355-360. [PMID: 38215646 DOI: 10.1016/j.jpsychires.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
PURPOSE Recent studies showed that mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF are associated with autism spectrum disorders (ASD). Whether their levels are different between ASD and intellectual disability (ID) subjects is not clear. The aim of this study is to compare the serum mBDNF and proBDNF concentration, and mBNDF/proBDNF ratio in ASD and ID volunteers. METHODS Children and adolescents with ASD or ID between the ages of 4 and 22 were recruited in Tianjin, China. Serum mBDNF and proBDNF level were tested and Wechsler Preschool and Primary Scale of Intelligence (WPPSI), Wechsler Intelligence Scale for Children (WISC), and Childhood Autism Rating Scale (CARS) evaluations were conducted. RESULTS Serum mBDNF concentration and the ratio of mBDNF to proBDNF was higher in ASD subjects than that in ID subjects (P = 0.035 and P < 0.001, respectively), while serum proBDNF of ASD participants was lower compared to that of ID participants (P < 0.001). CARS score was positively correlated with serum mBDNF level (r = 0.33, P = 0.004) and m/p ratio (r = 0.39, P < 0.001), and negatively correlated with serum proBDNF level (r = -0.39, <0.001) after adjusting for age and IQ. The AUC of mBDNF, proBDNF, and m/p ratio were 0.741, 0.790, and 0.854, respectively, after adjusted for age and IQ. CONCLUSION Serum mBDNF, proBDNF and m/p ratio were different between ASD and ID group. The three biomarkers displayed good diagnostic values for classification of ASD and ID subjects.
Collapse
Affiliation(s)
- Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhao Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Zagrebelsky M, Korte M. Are TrkB receptor agonists the right tool to fulfill the promises for a therapeutic value of the brain-derived neurotrophic factor? Neural Regen Res 2024; 19:29-34. [PMID: 37488840 PMCID: PMC10479861 DOI: 10.4103/1673-5374.374138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor signaling via its receptor tropomyosin receptor kinase B regulates several crucial physiological processes. It has been shown to act in the brain, promoting neuronal survival, growth, and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism. Due to its crucial and very pleiotropic activity, reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases. However, because of its poor bioavailability and pharmacological properties, brain-derived neurotrophic factor itself has a very low therapeutic value. Moreover, the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects. Therefore, developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research. Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules. In this review, we give a comprehensive description of the different tropomyosin receptor kinase B receptor agonist drugs developed so far and of the results of their application in animal models of several neurological diseases. Moreover, we discuss the main benefits of tropomyosin receptor kinase B receptor agonists, concentrating especially on the new tropomyosin receptor kinase B agonist antibodies. The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity. Moreover, tropomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor. Therefore, while, based on the current knowledge, the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reverse the disease pathology per se, promoting brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling still has a very high therapeutic relevance.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| |
Collapse
|
5
|
Jhaveri DJ, McGonigal A, Becker C, Benoliel JJ, Nandam LS, Soncin L, Kotwas I, Bernard C, Bartolomei F. Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management. eNeuro 2023; 10:ENEURO.0200-23.2023. [PMID: 37923391 PMCID: PMC10626502 DOI: 10.1523/eneuro.0200-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Stress has been identified as a major contributor to human disease and is postulated to play a substantial role in epileptogenesis. In a significant proportion of individuals with epilepsy, sensitivity to stressful events contributes to dynamic symptomatic burden, notably seizure occurrence and frequency, and presence and severity of psychiatric comorbidities [anxiety, depression, posttraumatic stress disorder (PTSD)]. Here, we review this complex relationship between stress and epilepsy using clinical data and highlight key neurobiological mechanisms including the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, altered neuroplasticity within limbic system structures, and alterations in neurochemical pathways such as brain-derived neurotrophic factor (BNDF) linking epilepsy and stress. We discuss current clinical management approaches of stress that help optimize seizure control and prevention, as well as psychiatric comorbidities associated with epilepsy. We propose that various shared mechanisms of stress and epilepsy present multiple avenues for the development of new symptomatic and preventative treatments, including disease modifying therapies aimed at reducing epileptogenesis. This would require close collaborations between clinicians and basic scientists to integrate data across multiple scales, from genetics to systems biology, from clinical observations to fundamental mechanistic insights. In future, advances in machine learning approaches and neuromodulation strategies will enable personalized and targeted interventions to manage and ultimately treat stress-related epileptogenesis.
Collapse
Affiliation(s)
- Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Aileen McGonigal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Epilepsy Unit, Department of Neurosciences, Mater Hospital, Brisbane, QLD 4101, Australia
| | - Christel Becker
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
| | - Jean-Jacques Benoliel
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
- Site Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologie, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, 75651, France
| | - L Sanjay Nandam
- Turner Inst for Brain & Mental Health, Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Melbourne, 3800, Australia
| | - Lisa Soncin
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Côte d'Azur University, Nice, 06300, France
| | - Iliana Kotwas
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| | - Christophe Bernard
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| |
Collapse
|
6
|
Wiest A, Chung S. Exploring non-rapid eye movement sleep substages in rats to develop biomarkers for depression. Sleep 2023; 46:zsad117. [PMID: 37084776 PMCID: PMC10334478 DOI: 10.1093/sleep/zsad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 04/23/2023] Open
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Sun YX, Su YA, Wang Q, Zheng JY, Zhang CC, Wang T, Liu X, Ma YN, Li XX, Zhang XQ, Xie XM, Wang XD, Li JT, Si TM. The causal involvement of the BDNF-TrkB pathway in dentate gyrus in early-life stress-induced cognitive deficits in male mice. Transl Psychiatry 2023; 13:173. [PMID: 37225683 DOI: 10.1038/s41398-023-02476-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Cognitive dysfunction is a significant, untreated clinical need in patients with psychiatric disorders, for which preclinical studies are needed to understand the underlying mechanisms and to identify potential therapeutic targets. Early-life stress (ELS) leads to long-lasting deficits of hippocampus-dependent learning and memory in adult mice, which may be associated with the hypofunction of the brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB). In this study, we carried out eight experiments using male mice to examine the causal involvement of the BDNF-TrkB pathway in dentate gyrus (DG) and the therapeutic effects of the TrkB agonist (7,8-DHF) in ELS-induced cognitive deficits. Adopting the limited nesting and bedding material paradigm, we first demonstrated that ELS impaired spatial memory, suppressed BDNF expression and neurogenesis in the DG in adult mice. Downregulating BDNF expression (conditional BDNF knockdown) or inhibition of the TrkB receptor (using its antagonist ANA-12) in the DG mimicked the cognitive deficits of ELS. Acute upregulation of BDNF (exogenous human recombinant BDNF microinjection) levels or activation of TrkB receptor (using its agonist, 7,8-DHF) in the DG restored ELS-induced spatial memory loss. Finally, acute and subchronic systemic administration of 7,8-DHF successfully restored spatial memory loss in stressed mice. Subchronic 7,8-DHF treatment also reversed ELS-induced neurogenesis reduction. Our findings highlight BDNF-TrkB system as the molecular target of ELS-induced spatial memory deficits and provide translational evidence for the intervention at this system in the treatment of cognitive deficits in stress-related psychiatric disorders, such as major depressive disorder.
Collapse
Affiliation(s)
- Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qi Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Ya Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Meng Xie
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Tassou A, Thouaye M, Gilabert D, Jouvenel A, Leyris JP, Sonrier C, Diouloufet L, Mechaly I, Mallié S, Bertin J, Chentouf M, Neiveyans M, Pugnière M, Martineau P, Robert B, Capdevila X, Valmier J, Rivat C. Activation of neuronal FLT3 promotes exaggerated sensorial and emotional pain-related behaviors facilitating the transition from acute to chronic pain. Prog Neurobiol 2023; 222:102405. [PMID: 36646299 DOI: 10.1016/j.pneurobio.2023.102405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders. Here, we evaluated the emotional and sensorial components of pain after a single (SI) or double paw incision (DI) and the implication of FLT3. DI mice showed an anxiodepressive-like phenotype associated with extended mechanical pain hypersensitivity and spontaneous pain when compared to SI mice. Behavioral exaggeration was associated with peripheral and spinal changes including increased microglia activation after DI versus SI. Intrathecal microglial inhibitors not only eliminated the exaggerated pain hypersensitivity produced by DI but also prevented anxiodepressive-related behaviors. Behavioral and cellular changes produced by DI were blocked in Flt3 knock-out animals and recapitulated by repeated intrathecal FL injections in naive animals. Finally, humanized antibodies against FLT3 reduced DI-induced behavioral and microglia changes. Altogether our results show that the repetition of peripheral lesions facilitate not only exaggerated nociceptive behaviors but also induced anxiodepressive disorders supported by spinal central changes that can be blocked by targeting peripheral FLT3.
Collapse
Affiliation(s)
- Adrien Tassou
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Damien Gilabert
- Univ Montpellier, Montpellier, France; CNRS UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Antoine Jouvenel
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jean-Philippe Leyris
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Corinne Sonrier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Lucie Diouloufet
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Ilana Mechaly
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Sylvie Mallié
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Juliette Bertin
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Myriam Chentouf
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Madeline Neiveyans
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Martine Pugnière
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Pierre Martineau
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Bruno Robert
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Xavier Capdevila
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; Département d'anesthésiologie, Hôpital Universitaire Lapeyronie, Montpellier, France
| | - Jean Valmier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Cyril Rivat
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Progressive disruption of neurodevelopment by mid-gestation exposure to lipopolysaccharides and the ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment. ENVIRONMENTAL TOXICOLOGY 2023; 38:49-69. [PMID: 36125228 DOI: 10.1002/tox.23661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effect of lipopolysaccharide (LPS)-induced maternal immune activation used as a model for producing neurodevelopmental disorders on hippocampal neurogenesis and behaviors in rat offspring by exploring the antioxidant effects of alpha-glycosyl isoquercitrin (AGIQ). Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (50 μg/kg body weight) at gestational days 15 and 16. AGIQ was administered in the diet to dams at 0.5% (w/w) from gestational day 10 until weaning at postnatal day 21 and then to offspring until adulthood at postnatal day 77. During postnatal life, offspring of LPS-injected animals did not show neuroinflammation or oxidative stress in the brain. At weaning, LPS decreased the numbers of type-2b neural progenitor cells (NPCs) and PCNA+ proliferating cells in the subgranular zone, FOS-expressing granule cells, and GAD67+ hilar interneurons in the dentate gyrus. In adulthood, LPS decreased type-1 neural stem cells, type-2a NPCs, and GAD67+ hilar interneurons, and downregulated Dpysl3, Sst, Fos, Mapk1, Mapk3, Grin2a, Grin2b, Bdnf, and Ntrk2. In adults, LPS suppressed locomotor activity in the open field test and suppressed fear memory acquisition and fear extinction learning in the contextual fear conditioning test. These results indicate that mid-gestation LPS injections disrupt programming of normal neurodevelopment resulting in progressive suppression of hippocampal neurogenesis and synaptic plasticity of newborn granule cells by suppressing GABAergic and glutamatergic neurotransmitter signals and BDNF/TrkB signaling to result in adult-stage behavioral deficits. AGIQ ameliorated most aberrations in hippocampal neurogenesis and synaptic plasticity, as well as behavioral deficits. Effective amelioration by continuous AGIQ treatment starting before LPS injections may reflect both anti-inflammatory and anti-oxidative stress effects during gestation and neuroprotective effects of continuous exposure through adulthood.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., Osaka, Japan
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Loureirin C and Xanthoceraside Prevent Abnormal Behaviors Associated with Downregulation of Brain Derived Neurotrophic Factor and AKT/mTOR/CREB Signaling in the Prefrontal Cortex Induced by Chronic Corticosterone Exposure in Mice. Neurochem Res 2022; 47:2865-2879. [DOI: 10.1007/s11064-022-03694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
|
11
|
Kang SS, Wu Z, Liu X, Edgington-Mitchell L, Ye K. Treating Parkinson's Disease via Activation of BDNF/TrkB Signaling Pathways and Inhibition of Delta-Secretase. Neurotherapeutics 2022; 19:1283-1297. [PMID: 35595958 PMCID: PMC9587159 DOI: 10.1007/s13311-022-01248-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with motor disorders as the key clinical features. BDNF/TrkB neurotrophic signalings are progressively reduced, whereas δ-secretase, a protease that cleaves α-synuclein (α-Syn) at N103 and promotes its aggregation and neurotoxicity, is gradually escalated in PD patient brains, associated with dopaminergic neuronal loss in the Substantia Nigra. Here, we show that stimulation of deficient BDNF/TrkB signalings with its small molecular agonist CF3CN displays the promising therapeutic effect, and blockade of δ-secretase with an optimal specific inhibitor #11A exhibits marked therapeutic effect, and combination of both demonstrates additive restorative efficacy in MPTP-induced human SNCA transgenic PD mice. Upon oral administration, CF3CN robustly activates TrkB-mediated neurotrophic pathway in the brains of SNCA mice and decreases α-Syn N103 cleavage by δ-secretase, and #11A strongly blocks δ-secretase and reduces α-Syn N103 fragmentation, increasing TH-positive dopaminergic neurons. The mixture of CF3CN and #11A shows the maximal TH and dopamine levels with demonstrable BDNF as compared to negligible BDNF in vehicle-treated MPTP/SNCA mice, leading to the climaxed motor functions. Notably, both compounds possess the appropriate in vivo PK profiles. Hence, our findings support that CF3CN and #11A are promising therapeutic pharmaceutical agents for treating PD.
Collapse
Affiliation(s)
- Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhourui Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, 200072, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Laura Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
12
|
Gao C, Wu M, Du Q, Deng J, Shen J. Naringin Mediates Adult Hippocampal Neurogenesis for Antidepression via Activating CREB Signaling. Front Cell Dev Biol 2022; 10:731831. [PMID: 35478969 PMCID: PMC9037031 DOI: 10.3389/fcell.2022.731831] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The brain-derived neurotrophic factor/tropomyosin receptor kinase B/cAMP response element-binding protein (BDNF/TrkB/CREB) signaling pathway is a critical therapeutic target for inducing adult hippocampal neurogenesis and antidepressant therapy. In this study, we tested the hypothesis that naringin, a natural medicinal compound, could promote adult hippocampal neurogenesis and improve depression-like behaviors via regulating the BDNF/TrkB/CREB signaling pathway. We first investigated the effects of naringin on promoting adult hippocampal neurogenesis in both normal and chronic corticosterone (CORT)-induced depressive mice. Under physiological condition, naringin treatment enhanced the proliferation of neural stem/progenitor cells (NSPCs) and accelerated neuronal differentiation. In CORT-induced depression mouse model, naringin treatment promoted neuronal differentiation and maturation of NSPCs for hippocampal neurogenesis. Forced swim test, tail suspension test, and open field test confirmed the antidepressant and anxiolytic effects of naringin. Co-treatment of temozolomide (TMZ), a neurogenic inhibitor, abolished these antidepressant and anxiolytic effects. Meanwhile, naringin treatment increased phosphorylation of cAMP response element binding protein (CREB) but had no effect on the expression of brain-derived neurotrophic factor and phosphorylation of TrkB in the hippocampus of CORT-induced depressive mice. Co-treatment of CREB inhibitor 666-15, rather than TrkB inhibitor Cyc-B, abolished the neurogenesis-promoting and antidepressant effects of naringin. Taken together, naringin has antidepressant and anxiolytic effects, and the underlying mechanisms could be attributed to enhance hippocampal neurogenesis via activating CREB signaling.
Collapse
Affiliation(s)
- Chong Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
| | - Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
- *Correspondence: Jiangang Shen,
| |
Collapse
|
13
|
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M. Carnitine and Depression. Front Nutr 2022; 9:853058. [PMID: 35369081 PMCID: PMC8964433 DOI: 10.3389/fnut.2022.853058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental diseases in the world, but the understanding of its pathogenesis, diagnosis and treatments remains insufficient. Carnitine is a natural substance that exists in organisms, which can be synthesized in vivo or supplemented by intake. Relationships of carnitine with depression, bipolar disorder and other mental diseases have been reported in different studies. Several studies show that the level of acylcarnitines (ACs) changes significantly in patients with depression compared with healthy controls while the supplementation of acetyl-L-carnitine is beneficial to the treatment of depression. In this review, we aimed to clarify the effects of ACs in depressive patients and to explore whether ACs might be the biomarkers for the diagnosis of depression and provide new ideas to treat depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| |
Collapse
|
14
|
Riveros ME, Ávila A, Schruers K, Ezquer F. Antioxidant Biomolecules and Their Potential for the Treatment of Difficult-to-Treat Depression and Conventional Treatment-Resistant Depression. Antioxidants (Basel) 2022; 11:540. [PMID: 35326190 PMCID: PMC8944633 DOI: 10.3390/antiox11030540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Major depression is a devastating disease affecting an increasing number of people from a young age worldwide, a situation that is expected to be worsened by the COVID-19 pandemic. New approaches for the treatment of this disease are urgently needed since available treatments are not effective for all patients, take a long time to produce an effect, and are not well-tolerated in many cases; moreover, they are not safe for all patients. There is solid evidence showing that the antioxidant capacity is lower and the oxidative damage is higher in the brains of depressed patients as compared with healthy controls. Mitochondrial disfunction is associated with depression and other neuropsychiatric disorders, and this dysfunction can be an important source of oxidative damage. Additionally, neuroinflammation that is commonly present in the brain of depressive patients highly contributes to the generation of reactive oxygen species (ROS). There is evidence showing that pro-inflammatory diets can increase depression risk; on the contrary, an anti-inflammatory diet such as the Mediterranean diet can decrease it. Therefore, it is interesting to evaluate the possible role of plant-derived antioxidants in depression treatment and prevention as well as other biomolecules with high antioxidant and anti-inflammatory potential such as the molecules paracrinely secreted by mesenchymal stem cells. In this review, we evaluated the preclinical and clinical evidence showing the potential effects of different antioxidant and anti-inflammatory biomolecules as antidepressants, with a focus on difficult-to-treat depression and conventional treatment-resistant depression.
Collapse
Affiliation(s)
- María Eugenia Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile
| | - Alba Ávila
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Koen Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| |
Collapse
|
15
|
Roddy D, Kelly JR, Farrell C, Doolin K, Roman E, Nasa A, Frodl T, Harkin A, O'Mara S, O'Hanlon E, O'Keane V. Amygdala substructure volumes in Major Depressive Disorder. NEUROIMAGE-CLINICAL 2021; 31:102781. [PMID: 34384996 PMCID: PMC8361319 DOI: 10.1016/j.nicl.2021.102781] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 11/27/2022]
Abstract
The role of the amygdala in the experience of emotional states and stress is well established. Connections from the amygdala to the hypothalamus activate the hypothalamic-pituitaryadrenal (HPA) axis and the cortisol response. Previous studies have failed to find consistent whole amygdala volume changes in Major Depressive Disorder (MDD), but differences may exist at the smaller substructural level of the amygdala nuclei. High-resolution T1 and T2-weighted-fluid-attenuated inversion recovery MRIs were compared between 80 patients with MDD and 83 healthy controls (HC) using the automated amygdala substructure module in FreeSurfer 6.0. Volumetric assessments were performed for individual nuclei and three anatomico-functional composite groups of nuclei. Salivary cortisol awakening response (CAR), as a measure of HPA responsivity, was measured in a subset of patients. The right medial nucleus volume was larger in MDD compared to HC (p = 0.002). Increased right-left volume ratios were found in MDD for the whole amygdala (p = 0.004), the laterobasal composite (p = 0.009) and in the central (p = 0.003) and medial (p = 0.014) nuclei. The CAR was not significantly different between MDD and HC. Within the MDD group the left corticoamygdaloid transition area was inversely correlated with the CAR, as measured by area under the curve (AUCg) (p ≤ 0.0001). In conclusion, our study found larger right medial nuclei volumes in MDD compared to HC and relatively increased right compared to left whole and substructure volume ratios in MDD. The results suggest that amygdala substructure volumes may be involved in the pathophysiology of depression.
Collapse
Affiliation(s)
- Darren Roddy
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - John R Kelly
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland.
| | - Chloë Farrell
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Kelly Doolin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Roman
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Anurag Nasa
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Frodl
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Veronica O'Keane
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
16
|
Netzer F, Sévoz-Couche C. Rostral cuneiform nucleus and the defence reaction: Direct and indirect midbrain-medullary 5-HT mechanisms in baroreflex inhibition. Br J Pharmacol 2021; 178:1819-1835. [PMID: 33543768 DOI: 10.1111/bph.15406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/23/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the defence reaction inhibits the baroreflex response via the intermediate rostro-ventromedial medulla (B3 raphé) and nucleus tractus solitarius (NTS). Our aim was to determine whether and how baroreflex inhibition, induced by the disinhibition of the rostral cuneiform nucleus (part of the defence pathway), involves 5-HT neurons in B3 and 5-HT3 receptors in the NTS. EXPERIMENTAL APPROACH We performed immunohistochemistry and anatomical experiments to determine whether raphé 5-HT cells expressing Fos were directly targeted by the rostral cuneiform nucleus. The effect of blocking raphé 5-HT neurotransmission and NTS 5-HT3 receptors on cuneiform-induced inhibition of the baroreflex cardiac response were also analysed. KEY RESULTS Bicuculline, microinjected into the rostral cuneiform nucleus, induced an increase of double-labelled Fos-5-HT-IR cells in both the lateral paragigantocellular nucleus (LPGi) and raphé magnus. The anterograde tracer Phaseolus vulgaris leucoaggutinin injected into the rostral cuneiform nucleus revealed a dense projection to the LPGi but not raphé magnus. Cuneiform-induced baroreflex inhibition was prevented by B3 injection of 8-OH-DPAT, a selective 5-HT1A receptor agonist. Cuneiform disinhibition also failed to inhibit the baroreflex bradycardia after NTS microinjection of the 5-HT3 receptor antagonist granisetron and in 5-HT3 receptor knockout mice. CONCLUSION AND IMPLICATIONS The rostral cuneiform nucleus participates in the defence inhibition of the baroreflex bradycardia via direct activation of the LPGi and via a projection to the raphé magnus to activate NTS 5-HT3 receptors and inhibit second-order baroreflex neurons. These data bring new insights in primary and secondary mechanisms involved in vital baroreflex prevention during stress.
Collapse
Affiliation(s)
- Florence Netzer
- INSERM U894, Centre of Psychiatry and Neurosciences, Paris, France
| | - Caroline Sévoz-Couche
- Sorbonne Université, INSERM, UMRS1158, Neurophysiologie Respiratoire, Expérimentale et Clinique, Paris, France
| |
Collapse
|
17
|
Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem Int 2021; 148:105068. [PMID: 34022252 DOI: 10.1016/j.neuint.2021.105068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022]
Abstract
7,8-dihydroxyflavone (DHF), a naturally-occurring plant-based flavone, is a high-affinity tyrosine kinase receptor B (TrkB) agonist and a bioactive molecule of therapeutic interest for neuronal survival, differentiation, synaptic plasticity and neurogenesis. In the family of neurotrophic factors, this small BDNF-mimetic molecule has attracted considerable attention due to its oral bioavailability and ability to cross the blood-brain barrier. Recent evidences have shed light on the neuroprotective role of this pleiotropic flavone against several neurological disorders, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, and other CNS disorders. DHF also elicits potent protective actions against toxins-induced insults to brain and neuronal cells. DHF shows promising anti-oxidant and anti-inflammatory properties in ameliorating the neurodegenerative processes affecting the CNS. This review provides an overview of the significant neuroprotective potentials of DHF and discusses how it exerts its multitudinous beneficial effects by modulating different pathways linked with the pathophysiology of CNS disorders, and thus proposes it to be a nutraceutical against a broad spectrum of neurological disorders.
Collapse
|
18
|
Li S, Liu J, Huang J, Luo D, Wu Q, Ning B, Chen L, Liu J, Fu WB. Acupuncture for comorbid mild-moderate depression and chronic musculoskeletal pain: study protocol for a randomized controlled trial. Trials 2021; 22:315. [PMID: 33926511 PMCID: PMC8082965 DOI: 10.1186/s13063-021-05260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Depression and chronic musculoskeletal pain (CMSP) are the leading causes of years lived with disabling diseases worldwide. Moreover, they often commonly coexist, which makes diagnosis and treatment difficult. A safe and effective treatment is urgently needed. Previous studies have shown that acupuncture is a cost-effective treatment for simple depression or CMSP. However, there is limited evidence that acupuncture is effective for depression comorbid with CMSP. Methods This is a randomized, sham acupuncture-controlled trial with three arms: real acupuncture (RA), sham acupuncture (SA), and healthy control (HC). Forty-eight depression combined CMSP participants and 12 healthy people will be recruited from GDTCM hospital and randomized 2:2:1 to the RA, SA, and HC groups. The patients will receive RA or SA intervention for 8 weeks, and HC will not receive any intervention. Upon completion of the intervention, there will be a 4-week follow-up. The primary outcome measures will be the severity of depression and pain, which will be assessed by the Hamilton Depression Rating Scale (HAMD-17) and Brief Pain Inventory (BPI), respectively. The secondary outcome measures will be cognitive function and quality of life, which will be measured by the Montreal Cognitive Assessment (MoCA), P300, and World Health Organization Quality of Life (WHOQOL-BREF). In addition, the correlation between brain-derived neurotrophic factor (BDNF) and symptoms will also be determined. Discussion The aim of this study is to evaluate the clinical efficacy and underlying mechanism of acupuncture in depression comorbid with CMSP. This study could provide evidence for a convenient and cost-effective means of future prevention and treatment of combined depression and CMSP. Trial registration Chinese Clinical Trial Registry ChiCTR1800014754. Preregistered on 2 February 2018. The study is currently recruiting.
Collapse
Affiliation(s)
- Sheng Li
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Liu
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianpeng Huang
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ding Luo
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qian Wu
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Baile Ning
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling Chen
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianhua Liu
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Wen-Bin Fu
- Department of Acupuncture and Moxibustion, the 2nd clinical hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
20
|
Nie LJ, Liang J, Shan F, Wang BS, Mu YY, Zhou XH, Xia QR. L-Carnitine and Acetyl-L-Carnitine: Potential Novel Biomarkers for Major Depressive Disorder. Front Psychiatry 2021; 12:671151. [PMID: 34658942 PMCID: PMC8514700 DOI: 10.3389/fpsyt.2021.671151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
The lack of biomarkers greatly limits the diagnosis and treatment of major depressive disorder (MDD). Endogenous L-carnitine (LC) and its derivative acetyl-L-carnitine (ALC) play antidepressant roles by improving brain energy metabolism, regulating neurotransmitters and neural plasticity. The levels of ALC in people and rodents with depression are significantly reduced. It is necessary to determine whether serum LC and ALC might be used as novel biomarkers for the diagnosis of MDD. Here, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the concentration of LC and ALC in the serum of healthy controls and patients with MDD; among the latter, in patients who were responsive (effective group) and non-responsive (ineffective group) after 2 weeks of treatment. The diagnostic value of serum LC and ALC for MDD was assessed. Compared with healthy controls, the serum LC and ALC concentrations in patients with MDD were significantly decreased (P < 0.001). Pearson correlation analysis shows that the HDRS-24 score was negatively associated with serum ALC (r = -0.325, P = 0.007). Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.801 with 83.1% sensitivity and 66.3% specificity for LC, and an AUC of 0.898 with 88.8% sensitivity and 76.4% specificity for ALC, differentiating patients with MDD from healthy controls. Furthermore, the concentration of LC and ALC in patients with depression was significantly increased in the effective treatment group, and no significant change was observed in the ineffective treatment group. These results suggest that serum LC and ALC may be novel biomarkers for the diagnosis of MDD.
Collapse
Affiliation(s)
- Li-Juan Nie
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| | - Bao-Shi Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| | - Yuan-Yuan Mu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| | - Xie-Hai Zhou
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| | - Qing-Rong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.,Anhui Clinical Research Center for Mental Diseases, Hefei, China
| |
Collapse
|
21
|
Nobis A, Zalewski D, Waszkiewicz N. Peripheral Markers of Depression. J Clin Med 2020; 9:E3793. [PMID: 33255237 PMCID: PMC7760788 DOI: 10.3390/jcm9123793] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a high medical and socioeconomic burden. There is a growing interest in the biological underpinnings of depression, which are reflected by altered levels of biological markers. Among others, enhanced inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory markers-C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor. Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis, along with increased cortisol levels, have also been reported in MDD. Alterations in growth factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD. Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder, common co-morbidities and low specificity of biomarkers. The construction of biomarker panels and their evaluation with use of new technologies may have the potential to overcome the above mentioned obstacles.
Collapse
Affiliation(s)
- Aleksander Nobis
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (D.Z.); (N.W.)
| | | | | |
Collapse
|
22
|
Brain-derived neurotrophic factor Val66Met polymorphism affects cortical thickness of rostral anterior cingulate in patients with major depressive disorder. Neuroreport 2020; 31:1146-1153. [PMID: 32991522 DOI: 10.1097/wnr.0000000000001528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The neuro-anatomical substrates of major depressive disorder (MDD) remain poorly understood. Brain-derived neurotrophic factor (BDNF) gene polymorphism (Val66Met/rs6265) is associated with neuro-plasticity and development. In the present study, we explore the influence of BDNF gene polymorphism on cortical thickness in nonelderly, first episode, drug-naive patients with MDD. METHODS Two hundred and sixteen participants (105 MDD patients and 111 healthy controls) were divided into subgroups based on the BDNF genotype. High-resolution MRI was obtained in all participants. A relationship of BDNF Val66Met gene polymorphism and cortical thickness was investigated. RESULTS The significant main effect of diagnosis was identified in the left rostal anterior cingulate (rACC), right inferior temporal and right lateral orbitofrontal (lOFC). The main effect of the genotype was observed in the left posterior cingulate cortex. The diagnosis-by-genotype interaction effect was found located in the left rACC. MDD patients who were Met-carriers exhibited thinner cortical thickness in the left rACC than healthy controls Met-carriers. Neither the symptom severity nor the illness duration was correlated significantly with cortical thickness. CONCLUSION Our findings suggested that the BDNF gene polymorphism was associated with cortical thickness alterations of the left rACC in MDD patients, and genotype that carries Met may serve as a vulnerability factor in MDD regarding the cortical thickness loss in the left rACC. This finding can be considered as a supportive evidence for the neurotrophic factor hypothesis of depression.
Collapse
|
23
|
Nie LJ, Liang J, Shan F, Xu YY, Yan CY, Zhou X, Cheng ZY, Xia QR. A UPLC-MS/MS method for determination of endogenous l-carnitine and acetyl-l-carnitine in serum of patients with depression. Biomed Chromatogr 2020; 35:e4991. [PMID: 33119931 DOI: 10.1002/bmc.4991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 11/06/2022]
Abstract
A simple, rapid, and selective ultra-performance liquid chromatography-tandem mass spectrometry method for determination of l-carnitine (LC) and acetyl-l-carnitine (ALC) in human serum was developed. Acetyl-l-carnitine-d3 (ALC-d3 ) was selected as internal standard (IS). After protein precipitation with acetonitrile-water (1 mL, 2:1, v/v), the analytes and IS were separated on a 2.5-μm XSelect HSS T3 C18 column by gradient elution with methanol-water (containing 0.01% ammonia water) as the mobile phase at a flow rate of 0.2 mL/min. Analytes were detected with multiple reaction monitoring using a positive scan mode with electrospray ionization. Good linearity (R2 > 0.999) was observed in the concentration range for LC and ALC. The inter- and intra-day values of relative error were -10.4% to 10.0% with CVs less than 9.84%. The average recoveries of the two analytes were 91.29%-98.23%. Blood samples containing LC and ALC were stable under various storage conditions. Normal, haemolytic, and hyperlipidaemic serum had no significant effect on the quantification of LC and ALC. This method was successfully applied to study the concentrations of endogenous LC and ALC in the serum of patients with first-episode depression.
Collapse
Affiliation(s)
- Li-Juan Nie
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Feng Shan
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Ya-Yun Xu
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Chun-Yu Yan
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Xuan Zhou
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Zhuo-Yu Cheng
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| |
Collapse
|
24
|
Brouillard C, Carrive P, Sévoz-Couche C. Social defeat: Vagal reduction and vulnerability to ventricular arrhythmias. Neurobiol Stress 2020; 13:100245. [PMID: 33344701 PMCID: PMC7739042 DOI: 10.1016/j.ynstr.2020.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, a sub-population of defeated anesthetized rats (Dlow) was characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF) at day 29 and autonomic alteration at day 30 after social challenge, while the other population (Dhigh) was similar to non-defeated (ND) animals. The aims of this study were to determine the time-course of autonomic dysfunction in awake animals, and whether Dhigh and/or Dlow were vulnerable to cardiac events. Defeated animals were exposed to four daily episodes of social defeats from day 1 to day 4. At day 30, anesthetized Dlow displayed decreased experimental and spontaneous reflex responses reflecting lower parasympathetic efficiency. In addition, Dlow but not Dhigh were characterized by left ventricular hypertrophy at day 30. Telemetric recordings revealed that Dlow had increased low frequency-to-high frequency ratio (LF/HF) and diastolic (DBP) and systolic (SBP) blood pressure, associated with decreased HF and spontaneous baroreflex responses (BRS) from day 3 to day 29. LF/HF, DBP and SBP recovered at day 5, and HF and BRS recovered at day 15 in Dhigh. Ventricular premature beats (VPBs) occurred in Dlow and Dhigh animals from day 5. Time course of VBP fluctuations in Dhigh mirrored that of HF and BRS, but not that of LF/HF, DBP and SBP. These results suggest that a psychosocial stress associated to low serum BDNF levels can lead to vulnerability to persistent autonomic dysfunction, cardiac hypertrophy and ventricular ectopic beats. The parasympathetic recovery seen in Dhigh may provide protection against cardiac events in this population.
Collapse
Affiliation(s)
- Charly Brouillard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Sévoz-Couche
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|
25
|
Acute and Chronic Mental Stress Both Influence Levels of Neurotransmitter Precursor Amino Acids and Derived Biogenic Amines. Brain Sci 2020; 10:brainsci10060322. [PMID: 32466550 PMCID: PMC7349276 DOI: 10.3390/brainsci10060322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic mental stress are both linked to somatic and psychiatric morbidity, however, the neurobiological pathways of these associations are still not fully elucidated. Mental stress is known to be immunomodulatory, which is one of the basic concepts of psychoneuroimmunology. In the present study, neurotransmitter precursor amino acid levels and derived biogenic amines were analyzed prior to and at 0, 30 and 60 min following an acute mental stress test (with/without chronic mental stress) in 53 healthy subjects. Psychometric measurements of mental stress, depression and anxiety were collected. Kynurenine/tryptophan was influenced by the factor acute mental stress (KYN/TRP increase), no influence of the factor chronic mental stress or any interaction was found. Phenylalanine/tyrosine was influenced by the factor acute mental stress (PHE/TYR increase) as well as by chronic mental stress (PHE/TYR decrease). Interactions were not significant. KYN/TRP correlated with state anxiety values, while PHE/TYR correlated negatively with chronic stress parameters. Kynurenic acid was significantly reduced in the acute and quinolinic acid in the chronic mental stress condition. In conclusion, neurotransmitter precursor amino acid levels and derived biogenic amines are influenced by acute and chronic mental stress. Mechanisms beyond direct immunological responses may be relevant for the modulation of neurotransmitter metabolism such as effects on enzyme function through cofactor availability or stress hormones.
Collapse
|
26
|
Yang SS, Chang H, Chang S. Does ketamine ameliorate the social stress‐related bladder dysfunction in mice? Neurourol Urodyn 2020; 39:935-944. [DOI: 10.1002/nau.24324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen Shei‐Dei Yang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
- School of MedicineBuddhist Tzu Chi UniversityHualien Taiwan
| | - Hsi‐Hsien Chang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
| | - Shang‐Jen Chang
- Division of Urology, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei Taiwan
- School of MedicineBuddhist Tzu Chi UniversityHualien Taiwan
| |
Collapse
|
27
|
Lozano L, Christian CA. Show Me the Meaning of Being Lonely (and Its Effects on Seizure Burden and Comorbidities). Epilepsy Curr 2019; 20:48-50. [PMID: 31786949 PMCID: PMC7020528 DOI: 10.1177/1535759719890618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy Manouze H, Ghestem A, Poillerat V, Bennis M, Ba-M’hamed S, Benoliel JJ, Becker C, Bernard C. eNeuro. 2019;6(4). doi:10.1523/ENEURO.0179-18.2019. Many experimental approaches require housing rodents in individual cages, including in epilepsy research. However, rats and mice are social animals; and individual housing constitutes a stressful situation. The goal of the present study was to determine the effects of individual housing as compared to conditions maintaining social contact on stress markers and epilepsy. Control male mice socially housed during pretest and then transferred to individual cages for 6 weeks displayed anhedonia, increased anxiety, and biological markers of stress as compared to pretest values or mice kept socially housed during 6 weeks. Pilocarpine (pilo)-treated mice housed together showed increased levels of anhedonia, anxiety, and stress markers as well as decreased cognitive performance as compared to the control group. The differences were more significant in pilo-treated mice housed individually. Anxiety correlated linearly with cognitive performance and stress markers independently of the experimental conditions. In the male rat pilo model, seizures were 16 times more frequent in singly housed animals as compared to animals kept in pairs. Daily interactions with an experimenter in otherwise singly housed animals was sufficient to produce results identical to those found in animals kept in pairs. We propose that social isolation produces a severe phenotype in terms of stress and seizure frequency as compared to animals maintaining social contact (at least in these 2 models), a factor that needs to be taken into account for data interpretation, in particular for preclinical studies.
Collapse
|
28
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
29
|
Zappettini S, Faivre E, Ghestem A, Carrier S, Buée L, Blum D, Esclapez M, Bernard C. Caffeine Consumption During Pregnancy Accelerates the Development of Cognitive Deficits in Offspring in a Model of Tauopathy. Front Cell Neurosci 2019; 13:438. [PMID: 31680863 PMCID: PMC6797851 DOI: 10.3389/fncel.2019.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Psychoactive drugs used during pregnancy can affect the development of the brain of offspring, directly triggering neurological disorders or increasing the risk for their occurrence. Caffeine is the most widely consumed psychoactive drug, including during pregnancy. In Wild type mice, early life exposure to caffeine renders offspring more susceptible to seizures. Here, we tested the long-term consequences of early life exposure to caffeine in THY-Tau22 transgenic mice, a model of Alzheimer’s disease-like Tau pathology. Caffeine exposed mutant offspring developed cognitive earlier than water treated mutants. Electrophysiological recordings of hippocampal CA1 pyramidal cells in vitro revealed that early life exposure to caffeine changed the way the glutamatergic and GABAergic drives were modified by the Tau pathology. We conclude that early-life exposure to caffeine affects the Tau phenotype and we suggest that caffeine exposure during pregnancy may constitute a risk-factor for early onset of Alzheimer’s disease-like pathology.
Collapse
Affiliation(s)
- Stefania Zappettini
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Emilie Faivre
- Inserm, CHU Lille, LabEx DISTALZ, UMR-S 1172 - JPArc, Université de Lille, Lille, France
| | - Antoine Ghestem
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Sébastien Carrier
- Inserm, CHU Lille, LabEx DISTALZ, UMR-S 1172 - JPArc, Université de Lille, Lille, France
| | - Luc Buée
- Inserm, CHU Lille, LabEx DISTALZ, UMR-S 1172 - JPArc, Université de Lille, Lille, France
| | - David Blum
- Inserm, CHU Lille, LabEx DISTALZ, UMR-S 1172 - JPArc, Université de Lille, Lille, France
| | - Monique Esclapez
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Christophe Bernard
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
30
|
Weisbrod AS, Barry ES, Graham AM, Eklund M, Grunberg NE. Decreased BDNF in female but not male rats after exposure to stress: a sex-sensitive rat model of stress? Stress 2019; 22:581-591. [PMID: 31134851 DOI: 10.1080/10253890.2019.1617692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The literature has consistently emphasized a relationship between chronic stress and depression as well as the involvement of brain-derived neurotrophic factor (BDNF). It is also well known that there are gender disparities with regard to depression. However, there has been a lack of biobehavioral experimental investigations of these relationships with regard to the role of BDNF in sex differences in response to stress. It was hypothesized that stress (chronic unpredictable mild stress [CUMS], shock stress [SS]) would result in greater deleterious alterations in behavior (open field activity [OFA]) and biological (serum BDNF, body weight [BW]) indices of depression for female rats as compared to male rats. Subjects consisted of 79 Sprague-Dawley rats with 11-16 rats per each condition. CUMS consisted of 14 d of stress whereby on each stress day, rats were exposed to 20-min periods of predator stress and unpredictable environmental stress. SS consisted of a 2-h per day session of immobilization and tail-shocks repeated for three consecutive days. Serum BDNF was collected via trunk blood and quantitated using commercial enzyme-linked immunosorbent assay (ELISA). There were pronounced sex differences with regard to stress-induced behavioral and biological alterations. Both stressors decreased vertical activity (VA) (i.e. increased depressive-related behavior) and SS decreased serum BDNF in female rats, but not in male rats. Findings indicate a potential relationship between depressive-like behaviors and BDNF after exposure to stress. The clear sex differences in stress responding emphasize the need for more stress research that involves male and female subjects. Lay summary Stress decreased vertical activity (VA) in female but not male rats while shock stress (SS) decreased serum BDNF in female but not male rats. VA was positively correlated with serum BDNF for female rats. These findings suggest sex differences in response to stress.
Collapse
Affiliation(s)
- Aaron S Weisbrod
- a Department Medical & Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Erin S Barry
- b Department of Military & Emergency Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Alice M Graham
- a Department Medical & Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Michael Eklund
- c Department of Anatomy, Physiology, & Genetics, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Neil E Grunberg
- a Department Medical & Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
- b Department of Military & Emergency Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
31
|
Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy. eNeuro 2019; 6:ENEURO.0179-18.2019. [PMID: 31331937 PMCID: PMC6709207 DOI: 10.1523/eneuro.0179-18.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Many experimental approaches require housing rodents in individual cages, including in epilepsy research. However, rats and mice are social animals; and individual housing constitutes a stressful situation. The goal of the present study was to determine the effects of individual housing as compared to conditions maintaining social contact on stress markers and epilepsy. Control male mice socially housed during pretest and then transferred to individual cages for six weeks displayed anhedonia, increased anxiety and biological markers of stress as compared to pretest values or mice kept socially housed during six weeks. Pilocarpine (pilo)-treated mice housed together showed increased levels of anhedonia, anxiety and stress markers as well as decreased cognitive performance as compared to the control group. The differences were more significant in pilo-treated mice housed individually. Anxiety correlated linearly with cognitive performance and stress markers independently of the experimental conditions. In the male rat pilo model, seizures were sixteen times more frequent in singly housed animals as compared to animals kept in pairs. Daily interactions with an experimenter in otherwise singly housed animals was sufficient to produce results identical to those found in animals kept in pairs. We propose that social isolation produces a severe phenotype in terms of stress and seizure frequency as compared to animals maintaining social contact (at least in these two models), a factor that needs to be taken into account for data interpretation, in particular for preclinical studies.
Collapse
|
32
|
Brown SSG, Rutland JW, Verma G, Feldman RE, Alper J, Schneider M, Delman BN, Murrough JM, Balchandani P. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with Major Depressive Disorder symptom severity. Sci Rep 2019; 9:10166. [PMID: 31308432 PMCID: PMC6629636 DOI: 10.1038/s41598-019-46687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Subcortical volumetric changes in major depressive disorder (MDD) have been purported to underlie depressive symptomology, however, the evidence to date remains inconsistent. Here, we investigated limbic volumes in MDD, utilizing high-resolution structural images to allow segmentation of the hippocampus and amygdala into their constituent substructures. Twenty-four MDD patients and twenty matched controls underwent structural MRI at 7T field strength. All participants completed the Montgomery-Asberg Depression Rating Scale (MADRS) to quantify depressive symptomology. For the MDD group, volumes of the amygdala right lateral nucleus (p = 0.05, r2 = 0.24), left cortical nucleus (p = 0.032, r2 = 0.35), left accessory basal nucleus (p = 0.04, r2 = 0.28) and bilateral corticoamygdaloid transition area (right hemisphere p = 0.032, r2 = 0.38, left hemisphere p = 0.032, r2 = 0.35) each displayed significant negative associations with MDD severity. The bilateral centrocortical (right hemisphere p = 0.032, r2 = 0.31, left hemisphere p = 0.032, r2 = 0.32) and right basolateral complexes (p = 0.05, r2 = 0.24) also displayed significant negative relationships with depressive symptoms. Using high-field strength MRI, we report the novel finding that MDD severity is consistently negatively associated with amygdala nuclei, linking volumetric reductions with worsening depressive symptoms.
Collapse
Affiliation(s)
- S S G Brown
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States.
| | - J W Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - G Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - R E Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Alper
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M Schneider
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - B N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J M Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - P Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
33
|
Vitaliti G, Pavone P, Marino S, Saporito MAN, Corsello G, Falsaperla R. Molecular Mechanism Involved in the Pathogenesis of Early-Onset Epileptic Encephalopathy. Front Mol Neurosci 2019; 12:118. [PMID: 31156384 PMCID: PMC6529508 DOI: 10.3389/fnmol.2019.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that neurologic inflammation may both precipitate and sustain seizures, suggesting that inflammation may be involved not only in epileptogenesis but also in determining the drug-resistant profile. Extensive literature data during these last years have identified a number of inflammatory markers involved in these processes of "neuroimmunoinflammation" in epilepsy, with key roles for pro-inflammatory cytokines such as: IL-6, IL-17 and IL-17 Receptor (IL-17R) axis, Tumor-Necrosis-Factor Alpha (TNF-α) and Transforming-Growth-Factor Beta (TGF-β), all responsible for the induction of processes of blood-brain barrier (BBB) disruption and inflammation of the Central Nervous System (CNS) itself. Nevertheless, many of these inflammatory biomarkers have also been implicated in the pathophysiologic process of other neurological diseases. Future studies will be needed to identify the disease-specific biomarkers in order to distinguish epilepsies from other neurological diseases, as well as recognize different epileptic semiology. In this context, biological markers of BBB disruption, as well as those reflecting its integrity, can be useful tools to determine the pathological process of a variety of neurological diseases. However; how these molecules may help in the diagnosis and prognostication of epileptic disorders remains yet to be determined. Herein, authors present an extensive literature review on the involvement of both, systemic and neuronal immune systems, in the early onset of epileptic encephalopathy.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Marco Andrea Nicola Saporito
- Neonatal Intensive Care Unit, Santo Bambino Hospital of Catania, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| |
Collapse
|
34
|
Becker C, Mancic A, Ghestem A, Poillerat V, Claverie D, Bartolomei F, Brouillard F, Benoliel JJ, Bernard C. Antioxidant treatment after epileptogenesis onset prevents comorbidities in rats sensitized by a past stressful event. Epilepsia 2019; 60:648-655. [PMID: 30866060 DOI: 10.1111/epi.14692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Unresolved past stressful events can induce a state of vulnerability to epilepsy and comorbidities. Using an experimental model of stress-induced vulnerability to depression, we tested whether an antioxidant treatment applied after the onset of epileptogenesis was disease modifying and could prevent the occurrence of comorbidities. METHODS We used social defeat (SD) to trigger a state of vulnerability in half of the SD-exposed population of rats. One month after SD, we used repeated injections of kainic acid to trigger status epilepticus (SE). One subset of animals was treated after SE during 2 weeks with Tempol, a strong antioxidant. Supradural 24/7 recordings were used to assess the development of epilepsy. We assessed spatial and nonspatial memory as well as a depressionlike profile 6 weeks after SE. RESULTS Serum brain-derived neurotrophic factor (BDNF) levels decreased after SD in all animals and recovered to pre-SD levels 1 month later in half of them (SDN group). The other half kept low serum BDNF levels (SDL group). At that stage, SDN and SDL animals do not present a depressionlike profile. The SDL group was more sensitive than the SDN group to epileptogenic conditions. Following SE, the SDL group displayed accelerated epileptogenesis, a depressionlike profile, and severe cognitive deficits as compared to SDN rats. Transient Tempol treatment was disease-modifying, reducing the number of seizures, and prevented the development of comorbidities in the SDL group. Tempol treatment normalized oxidative stress in the SDL group to SDN levels. SIGNIFICANCE This study illustrates the disease-modifying effect of antioxidant treatment after the onset of epileptogenesis in a population rendered vulnerable by past stressful events. The transient treatment decreased seizure burden and had long-term effects, preventing the occurrence of a depressionlike profile and cognitive deficits. We propose that vulnerability to comorbidities can be reversed after the onset of epilepsy.
Collapse
Affiliation(s)
- Christel Becker
- INSERM UMR-S 1124, Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Paris, France
| | - Angelina Mancic
- INSERM UMR-S 1124, Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Paris, France
| | - Antoine Ghestem
- INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France
| | - Victoria Poillerat
- INSERM UMR-S 1124, Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Paris, France
| | - Damien Claverie
- INSERM UMR-S 1124, Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Paris, France.,Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | - Fabrice Bartolomei
- INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France.,Service de Neurophysiologie Clinique, CHU Timone AP-HM, Marseille, France
| | - Franck Brouillard
- INSERM UMR-S 1124, Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Paris, France
| | - Jean-Jacques Benoliel
- INSERM UMR-S 1124, Paris Descartes University, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Paris, France.,Service de Biochimie Endocrinienne et Oncologique, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christophe Bernard
- INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France
| |
Collapse
|
35
|
Abstract
Stress is an adaptive response to environment aversive stimuli and a common life experience of one's daily life. Chronic or excessive stress especially that happened in early life is found to be deleterious to individual's physical and mental health, which is highly related to depressive disorders onset. Stressful life events are consistently considered to be the high-risk factors of environment for predisposing depressive disorders. In linking stressful life events with depressive disorder onset, dysregulated HPA axis activity is supposed to play an important role in mediating aversive impacts of life stress on brain structure and function. Increasing evidence have indicated the strong association of stress, especially the chronic stress and early life stress, with depressive disorders development, while the association of stress with depression is moderated by genetic risk factors, including polymorphism of SERT, BDNF, GR, FKBP5, MR, and CRHR1. Meanwhile, stressful life experience particularly early life stress will exert epigenetic modification in these risk genes via DNA methylation and miRNA regulation to generate long-lasting effects on these genes expression, which in turn cause brain structural and functional alteration, and finally increase the vulnerability to depressive disorders. Therefore, the interaction of environment with gene, in which stressful life exposure interplay with genetic risk factors and epigenetic modification, is essential in predicting depressive disorders development. As the mediator of environmental risk factors, stress will function together with genetic and epigenetic mechanism to influence brain structure and function, physiology and psychology, and finally the vulnerability to depressive disorders.
Collapse
|
36
|
Jeanneteau F, Borie A, Chao MV, Garabedian MJ. Bridging the Gap between Brain-Derived Neurotrophic Factor and Glucocorticoid Effects on Brain Networks. Neuroendocrinology 2019; 109:277-284. [PMID: 30572337 DOI: 10.1159/000496392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
Behavioral choices made by the brain during stress depend on glucocorticoid and brain-derived neurotrophic factor (BDNF) signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation areas may compromise the integration of signals. Glucocorticoid receptor phosphorylation upon BDNF signaling in neurons represents one mechanism underlying the integration of BDNF and glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural plasticity in the mesocorticolimbic system. This provides a novel molecular framework for understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge receptive neuronal fields in temporal domains defined by behavioral experience, and in mood disorders.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France,
| | - Amélie Borie
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
37
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
38
|
Liu C, Zhang Y, Liu Q, Jiang L, Li M, Wang S, Long T, He W, Kong X, Qin G, Chen L, Zhang Y, Zhou J. P2X4-receptor participates in EAAT3 regulation via BDNF-TrkB signaling in a model of trigeminal allodynia. Mol Pain 2018; 14:1744806918795930. [PMID: 30146940 PMCID: PMC6111400 DOI: 10.1177/1744806918795930] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective Previous studies of neuropathic pain have suggested that the P2X4
purinoceptor (P2X4R) in spinal microglia is essential for
maintaining allodynia following nerve injury. However, little is
known about its role in inflammatory soup-induced trigeminal
allodynia, which closely mimics chronic migraine status. Here,
we determined the contributions of P2X4R and related signaling
pathways in an inflammatory soup-induced trigeminal allodynia
model. Methods P2X4R gene and protein levels in the trigeminal nucleus caudalis
were analyzed following repeated dural inflammatory soup
infusions. p38, brain-derived neurotrophic factor, excitatory
amino acid transporter 3, c-Fos, and calcitonin gene-related
peptide protein levels in the trigeminal nucleus caudalis, as
well as trigeminal sensitivity, were assessed among the
different groups. Immunofluorescence staining was used to detect
protein localization and expression in the trigeminal nucleus
caudalis. Results Repeated inflammatory dural stimulation induced trigeminal
hyperalgesia and the upregulation of P2X4R. Immunofluorescence
revealed that P2X4R was expressed in trigeminal nucleus caudalis
microglial cells. Blockage of P2X4R produced an anti-nociceptive
effect, which was associated with an inhibition of inflammatory
soup-induced increases in p38, brain-derived neurotrophic
factor, excitatory amino acid transporter 3, c-Fos, and
calcitonin gene-related peptide protein levels. The tyrosine
receptor kinase B antagonist ANA-12 reversed trigeminal
allodynia and the upregulation of excitatory amino acid
transporter 3, c-Fos, and calcitonin gene-related peptide,
whereas the agonist 7,8-dihydroxyflavone exacerbated these
effects. Double immunostaining indicated that p38 and
brain-derived neurotrophic factor were mainly expressed in
microglial cells, whereas excitatory amino acid transporter 3
was primarily expressed in trigeminal nucleus caudalis
neurons. Conclusions These data indicate that microglial P2X4R is involved in the
regulation of excitatory amino acid transporter 3 via
brain-derived neurotrophic factor-tyrosine receptor kinase B
signaling following repeated inflammatory dural stimulation.
Microglial P2X4R activation and microglia–neuron interactions in
the trigeminal nucleus caudalis may play a role in the
pathogenesis of migraine chronicity, and the modulation of P2X4R
activation might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chaoyang Liu
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Zhang
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing Liu
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Jiang
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Maolin Li
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Sha Wang
- 2 Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Long
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei He
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xueying Kong
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guangcheng Qin
- 2 Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lixue Chen
- 2 Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuhong Zhang
- 3 The Clinical Molecular Diagnostics Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiying Zhou
- 1 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
39
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
40
|
Birklein F, Ibrahim A, Schlereth T, Kingery WS. The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. THE JOURNAL OF PAIN 2018; 19:1102.e1-1102.e19. [PMID: 29684510 PMCID: PMC6163066 DOI: 10.1016/j.jpain.2018.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
Distal limb fracture is the most common cause of complex regional pain syndrome (CRPS), thus the rodent tibia fracture model (TFM) was developed to study CRPS pathogenesis. This comprehensive review summarizes the published TFM research and compares these experimental results with the CRPS literature. The TFM generated spontaneous and evoked pain behaviors, inflammatory symptoms (edema, warmth), and trophic changes (skin thickening, osteoporosis) resembling symptoms in early CRPS. Neuropeptides, inflammatory cytokines, and nerve growth factor (NGF) have been linked to pain behaviors, inflammation, and trophic changes in the TFM model and proliferating keratinocytes were identified as the primary source of cutaneous cytokines and NGF. Tibia fracture also activated spinal glia and upregulated spinal neuropeptide, cytokine, and NGF expression, and in the brain it changed dendritic architecture. B cell-expressed immunoglobulin M antibodies also contributed to pain behavior, indicating a role for adaptive immunity. These results modeled many findings in early CRPS, but significant differences were also noted. PERSPECTIVE Multiple neuroimmune signaling mechanisms contribute to the pain, inflammation, and trophic changes observed in the injured limb of the rodent TFM. This model replicates many of the symptoms, signs, and pathophysiology of early CRPS, but most post-fracture changes resolve within 5 months and may not contribute to perpetuating chronic CRPS.
Collapse
Affiliation(s)
- Frank Birklein
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Alaa Ibrahim
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Tanja Schlereth
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
41
|
Park YM, Lee BH. Alterations in Serum BDNF and GDNF Levels after 12 Weeks of Antidepressant Treatment in Female Outpatients with Major Depressive Disorder. Psychiatry Investig 2018; 15:818-823. [PMID: 29945425 PMCID: PMC6111227 DOI: 10.30773/pi.2018.03.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/31/2018] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Some clinical studies have found alterations in the levels of serum brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) after applying antidepressant treatment in patients with major depressive disorder (MDD). We evaluated the serum BDNF and GDNF levels before and after 12 weeks of antidepressant treatment in MDD outpatients. METHODS Serum BDNF and GDNF levels were measured in 23 female MDD outpatients at baseline and after 12 weeks of treatment. The severity of depression was measured with the Hamilton Depression Rating Scale-17 (HAMD-17). Remission of MDD to the treatment was defined as a posttreatment HAMD-17 score of <7. RESULTS Among MDD patients, 19 (82.6%) subjects were in mild to moderate depression. The whole MDD patients had significantly higher serum BDNF and GDNF levels at baseline than those after 12 weeks of antidepressant treatment. The baseline serum BDNF and GDNF levels did not significantly between the remission and nonremission groups. The significant alteration in both BDNF and GDNF levels after antidepressant treatment were observed in patients with remission. CONCLUSION The present study suggests that the baseline serum BDNF and GDNF levels are higher than the posttreatment levels in some mild-to-moderate MDD outpatients and the significant alteration in BDNF and GDNF level after treatment were observed in patients with remission.
Collapse
Affiliation(s)
- Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Bun-Hee Lee
- Maum & Maum Psychiatric Clinic, Seoul, Republic of Korea
| |
Collapse
|
42
|
Sanna MD, Quattrone A, Galeotti N. Antidepressant-like actions by silencing of neuronal ELAV-like RNA-binding proteins HuB and HuC in a model of depression in male mice. Neuropharmacology 2018; 135:444-454. [PMID: 29626565 DOI: 10.1016/j.neuropharm.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022]
Abstract
Currently available antidepressant drugs often fail to achieve full remission and patients might evolve to treatment resistance, showing the need to achieve a better therapy of depressive disorders. Increasing evidence supports that post-transcriptional regulation of gene expression is important in neuronal development and survival and a relevant role is played by RNA binding proteins (RBP). To explore new therapeutic strategies, we investigated the role of the neuron-specific ELAV-like RBP (HuB, HuC, HuD) in a mouse model of depression. In this study, a 4-week unpredictable chronic mild stress (UCMS) protocol was applied to mice to induce a depressive-like phenotype. In the last 2 weeks of the UCMS regimen, silencing of HuB, HuC or HuD was performed by using specific antisense oligonucleotides (aODN). Treatment of UCMS-exposed mice with anti-HuB and anti-HuC aODN improved both anhedonia and behavioural despair, used as measures of depressive-like behaviour, without modifying the response of stressed mice to an anxiety-inducing environment. On the contrary, HuD silencing promoted an anxiolytic-like behaviour in UCMS-exposed mice without improving depressive-like behaviours. The antidepressant-like phenotype of anti-HuB and anti-HuC mice was not shown concurrently with the promotion of adult hippocampal neurogenesis in the dentate gyrus, and no increase in the BDNF and CREB content was detected. Conversely, in the CA3 hippocampal region, projection area of newly born neurons, HuB and HuC silencing increased the number of BrdU/NeuN positive cells. These results give the first indication of a role of nELAV in the modulation of emotional states in a mouse model of depression.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Nicoletta Galeotti
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| |
Collapse
|
43
|
Ashokan A, Hegde A, Balasingham A, Mitra R. Housing environment influences stress-related hippocampal substrates and depression-like behavior. Brain Res 2018; 1683:78-85. [DOI: 10.1016/j.brainres.2018.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/14/2023]
|
44
|
García-Díaz Barriga G, Giralt A, Anglada-Huguet M, Gaja-Capdevila N, Orlandi JG, Soriano J, Canals JM, Alberch J. 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington's disease mouse model through specific activation of the PLCγ1 pathway. Hum Mol Genet 2018; 26:3144-3160. [PMID: 28541476 DOI: 10.1093/hmg/ddx198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease with motor, cognitive and psychiatric impairment. Dysfunctions in HD models have been related to reduced levels of striatal brain-derived neurotrophic factor (BDNF) and imbalance between its receptors TrkB and p75(NTR). Thus, molecules with activity on the BDNF/TrkB/p75 system can have therapeutic potential. 7,8-Dihydroxyflavone (7,8-DHF) was described as a TrkB agonist in several models of neuro-degenerative diseases, however, its TrkB activation profile needs further investigation due to its pleiotropic properties and divergence from BDNF effect. To investigate this, we used in vitro and in vivo models of HD to dissect TrkB activation upon 7,8-DHF treatment. 7,8-DHF treatment in primary cultures showed phosphorylation of TrkBY816 but not TrkBY515 with activation of the PLCγ1 pathway leading to morphological and functional improvements. Chronic administration of 7,8-DHF delayed motor deficits in R6/1 mice and reversed deficits on the Novel Object Recognition Test (NORT) at 17 weeks. Morphological and biochemical analyses revealed improved striatal levels of enkephalin, and prevention of striatal volume loss. We found a TrkBY816 but not TrkBY515 phosphorylation recovery in striatum concordant with in vitro results. Additionally, 7,8-DHF normalized striatal levels of induced and neuronal nitric oxide synthase (iNOS and nNOS, respectively) and ameliorated the imbalance of p75/TrkB. Our results provide new insights into the mechanism of action of 7,8-DHF suggesting that its effect through the TrkB receptor in striatum is via selective phosphorylation of its Y816 residue and activation of PLCγ1 pathway, but pleiotropic effects of the drug also contribute to its therapeutic potential.
Collapse
Affiliation(s)
- Gerardo García-Díaz Barriga
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Anglada-Huguet
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nuria Gaja-Capdevila
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier G Orlandi
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Josep-Maria Canals
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
45
|
Liang J, Yue Y, Jiang H, Geng D, Wang J, Lu J, Li S, Zhang K, Wu A, Yuan Y. Genetic variations in the p11/tPA/BDNF pathway are associated with post stroke depression. J Affect Disord 2018; 226:313-325. [PMID: 29028593 DOI: 10.1016/j.jad.2017.09.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/20/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The effects of BDNF on post stroke depression (PSD) may be influenced by genetic variations in intracellular signal transduction pathways, such as the p11/tPA/BDNF pathway. In this study, we aimed to determine the association of polymorphisms in candidate genes of the gene transduction pathway with PSD, as well as the effects of the interactions between genes in our Chinese sample. METHODS Two-hundred-fifty-four Chinese samples with acute ischaemic stroke included 122 PSD patients and 132 nonPSD patients. Sixty-five single nucleotide polymorphisms (SNPs) in six genes (p11, tPA, PAI-1, BDNF, TrkB and p75NTR) of the p11/tPA/BDNF pathway with minor allele frequencies > 5% were successfully genotyped from an initial series of 76 SNPs. The severity of depressive symptoms was assessed by the 17-item Hamilton Depression Rating scale score. Environmental factors were measured with the life events scale and social support rating scale for all patients. SNP and haplotype associations were analysed using gPLINK software. Gene-gene interactions were evaluated with generalized multifactor dimensionality reduction software. RESULTS The results showed that TrkB polymorphisms (rs11140793AC genotype, rs7047042CG genotype, rs1221CT genotype, rs2277193TC genotype and rs2277192AG genotype) were significantly associated with PSD. Three haplotypes (AT, GG, and AAT) of TrkB were significantly associated with PSD. Seven haplotypes (GC, AG, ACG, CGC, GCT, ACGC and ACAT) of BDNF were significantly correlated with PSD. We identified significant gene-gene interactions between the p11 (rs11204922 SNP), tPA (rs8178895, rs2020918 SNPs) and BDNF (rs6265, rs2049046, rs16917271, rs727155 SNPs) genes in the PSD group. We also identified significant gene-gene interactions between the BDNF (rs2049046, rs7931247 SNPs) and TrkB (rs7816 SNP) genes with increased occurrence of PSD and sig gene-gene interactions between the BDNF gene (rs6265, rs56164415, rs2049046, rs4923468, rs2883187, rs16917271, rs1491850, rs727155, rs2049048 SNPs) and p75NTR gene (rs2072446, rs11466155) in the PSD group. CONCLUSION These findings provides evidence that the TrkB gene, BDNF and TrkB haplotypes, and gene-gene interactions between p11, tPA and BDNF are all associated with PSD, which suggests that genetic variations in the p11/tPA/BDNF pathway may play a central role in regulating the underlying mechanism of PSD.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, PR China
| | - Jun Wang
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, PR China
| | - Jianxin Lu
- Department of Neurology, The Peoples' Hospital of Gaochun County, Nanjing 211300, PR China
| | - Shenghua Li
- Department of Neurology, Jiangning Nanjing hospital, Nanjing 211100, PR China
| | - Kezhong Zhang
- Department of Neurology, the Affiliated First hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Aiqin Wu
- Department of Psychosomatics, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing 210009, PR China; Institute of Psychosomatics, Medical School of Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
46
|
The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer's disease. Proc Natl Acad Sci U S A 2018; 115:578-583. [PMID: 29295929 DOI: 10.1073/pnas.1718683115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The BDNF mimetic compound 7,8-dihydroxyflavone (7,8-DHF), a potent small molecular TrkB agonist, displays prominent therapeutic efficacy against Alzheimer's disease (AD). However, 7,8-DHF has only modest oral bioavailability and a moderate pharmacokinetic (PK) profile. To alleviate these preclinical obstacles, we used a prodrug strategy for elevating 7,8-DHF oral bioavailability and brain exposure, and found that the optimal prodrug R13 has favorable properties and dose-dependently reverses the cognitive defects in an AD mouse model. We synthesized a large number of 7,8-DHF derivatives via ester or carbamate group modification on the catechol ring in the parent compound. Using in vitro absorption, distribution, metabolism, and excretion assays, combined with in vivo PK studies, we identified a prodrug, R13, that prominently up-regulates 7,8-DHF PK profiles. Chronic oral administration of R13 activated TrkB signaling and prevented Aβ deposition in 5XFAD AD mice, inhibiting the pathological cleavage of APP and Tau by AEP. Moreover, R13 inhibited the loss of hippocampal synapses and ameliorated memory deficits in a dose-dependent manner. These results suggest that the prodrug R13 is an optimal therapeutic agent for treating AD.
Collapse
|
47
|
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol Psychiatry 2017; 82:914-923. [PMID: 28629541 PMCID: PMC5683934 DOI: 10.1016/j.biopsych.2017.05.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hippocampal volume loss is a hallmark of clinical depression. Chronic stress produces volume loss in the hippocampus in humans and atrophy of CA3 pyramidal cells and suppression of adult neurogenesis in rodents. METHODS To investigate the relationship between decreased adult neurogenesis and stress-induced changes in hippocampal structure and volume, we compared the effects of chronic unpredictable restraint stress and inhibition of neurogenesis in a rat pharmacogenetic model. RESULTS Chronic unpredictable restraint stress over 4 weeks decreased total hippocampal volume, reflecting loss of volume in all hippocampal subfields and in both dorsal and ventral hippocampus. In contrast, complete inhibition of adult neurogenesis for 4 weeks led to volume reduction only in the dentate gyrus. With prolonged inhibition of neurogenesis for 8 or 16 weeks, volume loss spread to the CA3 region, but not CA1. Combining stress and inhibition of adult neurogenesis did not have additive effects on the magnitude of volume loss but did produce a volume reduction throughout the hippocampus. One month of chronic unpredictable restraint stress and inhibition of adult neurogenesis led to atrophy of pyramidal cell apical dendrites in dorsal CA3 and to neuronal reorganization in ventral CA3. Stress also significantly affected granule cell dendrites. CONCLUSIONS The findings suggest that adult neurogenesis is required to maintain hippocampal volume but is not responsible for stress-induced volume loss.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| | - Hayley C McCausland
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - H Douglas Morris
- Nuclear Magnetic Resonance Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
48
|
Barfield ET, Gourley SL. Adolescent Corticosterone and TrkB Pharmaco-Manipulations Sex-Dependently Impact Instrumental Reversal Learning Later in Life. Front Behav Neurosci 2017; 11:237. [PMID: 29270114 PMCID: PMC5725412 DOI: 10.3389/fnbeh.2017.00237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Early-life trauma can increase the risk for, and severity of, several psychiatric illnesses. These include drug use disorders, and some correlations appear to be stronger in women. Understanding the long-term consequences of developmental stressor or stress hormone exposure and possible sex differences is critically important. So-called “reversal learning” tasks are commonly used in rodents to model cognitive deficits in stress- and addiction-related illnesses in humans. Here, we exposed mice to the primary stress hormone corticosterone (CORT) during early adolescence (postnatal days 31–42), then tested behavioral flexibility in adulthood using an instrumental reversal learning task. CORT-exposed female, but not male, mice developed perseverative errors. Despite resilience to subchronic CORT exposure, males developed reversal performance impairments following exposure to physical stressors. Administration of a putative tyrosine kinase receptor B (trkB) agonist, 7,8-dihydroxyflavone (7,8-DHF), during adolescence blocked CORT-induced errors in females and improved performance in males. Conversely, blockade of trkB by ANA-12 impaired performance. These data suggest that trkB-based interventions could have certain protective benefits in the context of early-life stressor exposure. We consider the implications of our findings in an extended “Discussion” section.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| |
Collapse
|
49
|
Bouvier E, Brouillard F, Molet J, Claverie D, Cabungcal JH, Cresto N, Doligez N, Rivat C, Do KQ, Bernard C, Benoliel JJ, Becker C. Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry 2017; 22:1701-1713. [PMID: 27646262 DOI: 10.1038/mp.2016.144] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation.
Collapse
Affiliation(s)
- E Bouvier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - F Brouillard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Equipe 34, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - J Molet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - D Claverie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France.,Institut de Recherche Biomédicale des Armées (IRBA), BP 73, Brétigny sur Orge, France
| | - J-H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Prilly-Lausanne, Switzerland
| | - N Cresto
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - N Doligez
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - C Rivat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Prilly-Lausanne, Switzerland
| | - C Bernard
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - J-J Benoliel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologique, Paris, France
| | - C Becker
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
50
|
Kanner AM, Scharfman H, Jette N, Anagnostou E, Bernard C, Camfield C, Camfield P, Legg K, Dinstein I, Giacobbe P, Friedman A, Pohlmann-Eden B. Epilepsy as a Network Disorder (1): What can we learn from other network disorders such as autistic spectrum disorder and mood disorders? Epilepsy Behav 2017; 77:106-113. [PMID: 29107450 PMCID: PMC9835466 DOI: 10.1016/j.yebeh.2017.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 01/16/2023]
Abstract
Epilepsy is a neurologic condition which often occurs with other neurologic and psychiatric disorders. The relation between epilepsy and these conditions is complex. Some population-based studies have identified a bidirectional relation, whereby not only patients with epilepsy are at increased risk of suffering from some of these neurologic and psychiatric disorders (migraine, stroke, dementia, autism, depression, anxiety disorders, Attention deficit hyperactivity disorder (ADHD), and psychosis), but also patients with these conditions are at increased risk of suffering from epilepsy. The existence of common pathogenic mechanisms has been postulated as a potential explanation of this phenomenon. To reassess the relationships between neurological and psychiatric conditions in general, and specifically autism, depression, Alzheimer's disease, schizophrenia, and epilepsy, a recent meeting brought together basic researchers and clinician scientists entitled "Epilepsy as a Network Disorder." This was the fourth in a series of conferences, the "Fourth International Halifax Conference and Retreat". This manuscript summarizes the proceedings on potential relations between Epilepsy on the one hand and autism and depression on the other. A companion manuscript provides a summary of the proceedings about the relation between epilepsy and Alzheimer's disease and schizophrenia, closed by the role of translational research in clarifying these relationships. The review of the topics in these two manuscripts will provide a better understanding of the mechanisms operant in some of the common neurologic and psychiatric comorbidities of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL 33136, USA.
| | - Helen Scharfman
- New York University Langone Medical Center, New York, NY 10016, USA; The Nathan Kline Institute, Orangeburg, NY, USA
| | - Nathalie Jette
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON M4G 1R8, Canada
| | - Christophe Bernard
- NS - Institute de Neurosciences des Systemes, UMR INSERM 1106, Aix-Marseille Université, Equipe Physionet, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Carol Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Peter Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Karen Legg
- Division of Neurology, Department of Medicine, Halifax Infirmary, Halifax B3H4R2, Nova Scotia, Canada
| | - Ilan Dinstein
- Departments of Psychology and Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Peter Giacobbe
- Centre for Mental Health, University of Toronto, University Health Network, Canada
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Departments of Medical Neuroscience and Pediatrics, Faculty of Medicine, Dalhousie University Halifax, NS, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Center, Life Science Research Institute, Dalhousie University, Room 229, PO Box 15000, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|