1
|
Ji G, Presto P, Kiritoshi T, Chen Y, Navratilova E, Porreca F, Neugebauer V. Chemogenetic Manipulation of Amygdala Kappa Opioid Receptor Neurons Modulates Amygdala Neuronal Activity and Neuropathic Pain Behaviors. Cells 2024; 13:705. [PMID: 38667320 PMCID: PMC11049235 DOI: 10.3390/cells13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | - Yong Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Chohan MO, Fein H, Mirro S, O'Reilly KC, Veenstra-VanderWeele J. Repeated chemogenetic activation of dopaminergic neurons induces reversible changes in baseline and amphetamine-induced behaviors. Psychopharmacology (Berl) 2023; 240:2545-2560. [PMID: 37594501 PMCID: PMC10872888 DOI: 10.1007/s00213-023-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
RATIONALE Repeated chemogenetic stimulation is often employed to study circuit function and behavior. Chronic or repeated agonist administration can result in homeostatic changes, but this has not been extensively studied with designer receptors exclusively activated by designer drugs (DREADDs). OBJECTIVES We sought to evaluate the impact of repeated DREADD activation of dopaminergic (DA) neurons on basal behavior, amphetamine response, and spike firing. We hypothesized that repeated DREADD activation would mimic compensatory effects that we observed with genetic manipulations of DA neurons. METHODS Excitatory hM3D(Gq) DREADDs were virally expressed in adult TH-Cre and WT mice. In a longitudinal design, clozapine N-oxide (CNO, 1.0 mg/kg) was administered repeatedly. We evaluated basal and CNO- or amphetamine (AMPH)-induced locomotion and stereotypy. DA neuronal activity was assessed using in vivo single-unit recordings. RESULTS Acute CNO administration increased locomotion, but basal locomotion decreased after repeated CNO exposure in TH-CrehM3Dq mice relative to littermate controls. Further, after repeated CNO administration, AMPH-induced hyperlocomotion and stereotypy were diminished in TH-CrehM3Dq mice relative to controls. Repeated CNO administration reduced DA neuronal firing in TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the decreases in basal locomotion and AMPH response. CONCLUSIONS We found that repeated DREADD activation of DA neurons evokes homeostatic changes that should be factored into the interpretation of chronic DREADD applications and their impact on circuit function and behavior. These effects are likely to also be seen in other neuronal systems and underscore the importance of studying neuroadaptive changes with chronic or repeated DREADD activation.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Halli Fein
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Sarah Mirro
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
3
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology (Berl) 2023; 240:2101-2110. [PMID: 37530882 PMCID: PMC10794001 DOI: 10.1007/s00213-023-06429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Yang L, Zhang M, Wang Y, Chen Z. Chemogenetic Therapeutics: A Powerful Tool to Control Cortical Seizures in Non-human Primates. Neurosci Bull 2023; 39:1601-1604. [PMID: 37266903 PMCID: PMC10533432 DOI: 10.1007/s12264-023-01078-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengdi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534429. [PMID: 37034819 PMCID: PMC10081263 DOI: 10.1101/2023.03.27.534429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rationale Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, most commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. Objectives Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. Methods Male and female TH:Cre+ rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons in TH:Cre+ rats. Rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in a counterbalanced order. Results All three CNO doses reduced operant food seeking in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest tested J60 dose significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre+ rats were correlated and were present in both sexes. Conclusions Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| |
Collapse
|
6
|
Curia G, Estrada-Camarena E, Manjarrez E, Mizuno H. Editorial: In vivo investigations on neurological disorders: From traditional approaches to forefront technologies. Front Neurosci 2022; 16:1052089. [PMID: 36330344 PMCID: PMC9623258 DOI: 10.3389/fnins.2022.1052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Giulia Curia
| | - Erika Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Neuroscience, National Institute of Psychiatry Ramon de la Fuente Muñiz (INPRFM), Mexico City, Mexico
| | - Elias Manjarrez
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Nentwig TB, Obray JD, Vaughan DT, Chandler LJ. Behavioral and slice electrophysiological assessment of DREADD ligand, deschloroclozapine (DCZ) in rats. Sci Rep 2022; 12:6595. [PMID: 35449195 PMCID: PMC9023443 DOI: 10.1038/s41598-022-10668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have become a premier neuroscience research tool for enabling reversible manipulations of cellular activity following experimenter-controlled delivery of a DREADD-specific ligand. However, several DREADD ligands, e.g., clozapine-N-oxide (CNO), have metabolic and off-target effects that may confound experimental findings. New DREADD ligands aim to reduce metabolic and potential off-target effects while maintaining strong efficacy for the designer receptors. Recently a novel DREADD ligand, deschloroclozapine (DCZ), was shown to induce chemogenetic-mediated cellular and behavioral effects in mice and monkeys without detectable side effects. The goal of the present study was to examine the effectiveness of systemic DCZ for DREADD-based chemogenetic manipulations in behavioral and slice electrophysiological applications in rats. We demonstrate that a relatively low dose of DCZ (0.1 mg/kg) supports excitatory DREADD-mediated cFos induction, DREADD-mediated inhibition of a central amygdala-dependent behavior, and DREADD-mediated inhibition of neuronal activity in a slice electrophysiology preparation. In addition, we show that this dose of DCZ does not alter gross locomotor activity or induce a place preference/aversion in control rats without DREADD expression. Together, our findings support the use of systemic DCZ for DREADD-based manipulaations in rats, and provide evidence that DCZ is a superior alternative to CNO.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA
| | - J Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay St, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
Doucette WT, Smedley EB, Ruiz-Jaquez M, Khokhar JY, Smith KS. Chronic Chemogenetic Manipulation of Ventral Pallidum Targeted Neurons in Male Rats Fed an Obesogenic Diet. Brain Res 2022; 1784:147886. [DOI: 10.1016/j.brainres.2022.147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
|
10
|
Nakata KG, Yin E, Sutlief E, Ferguson SM. Chemogenetic modulation reveals distinct roles of the subthalamic nucleus and its afferents in the regulation of locomotor sensitization to amphetamine in rats. Psychopharmacology (Berl) 2022; 239:353-364. [PMID: 34549316 DOI: 10.1007/s00213-021-05985-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
The subthalamic nucleus (STN) is a key node in cortico-basal-ganglia thalamic circuits, guiding behavioral output through its position as an excitatory relay of the striatal indirect pathway and its direct connections with the cortex. There have been conflicting results regarding the role of the STN in addiction-related behavior to psychostimulants, and little is known with respect to the role of STN afferents. To address this, we used viral vectors to express DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in the STN of rats in order to bidirectionally manipulate STN activity during the induction of amphetamine sensitization. In addition, we used a Cre-recombinase dependent Gi/o-coupled DREADD approach to transiently inhibit afferents from ventral pallidum (a subcomponent of the striatal indirect pathway) or the prelimbic cortex (a subcomponent of the cortico-STN hyperdirect pathway). Despite inducing mild hyperactivity in non-drug controls, stimulation of STN neurons with Gq-DREADDs blocked the development and persistence of amphetamine sensitization as well as conditioned responding. In contrast, inhibition of STN neurons with Gi/o-DREADDs enhanced the induction of sensitization without altering its persistence or conditioned responding. Chemogenetic inhibition of afferents from ventral pallidum had no effect on amphetamine sensitization but blocked conditioned responding whereas chemogenetic inhibition of afferents from prelimbic cortex attenuated the persistence of sensitization as well as conditioned responding. These results suggest the STN and its afferents play complex roles in the regulation of amphetamine sensitization and highlight the need for further characterization of how integration of inputs within STN guide behavior.
Collapse
Affiliation(s)
- K G Nakata
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - E Yin
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - E Sutlief
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Susan M Ferguson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, 98195, USA. .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA. .,Addictions, Drug & Alcohol Insitute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
11
|
A Novel Three-Choice Touchscreen Task to Examine Spatial Attention and Orienting Responses in Rodents. eNeuro 2021; 8:ENEURO.0032-20.2021. [PMID: 33789926 PMCID: PMC8272401 DOI: 10.1523/eneuro.0032-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
Mammalian orienting behavior consists of coordinated movements of the eyes, head, pinnae, vibrissae, or body to attend to an external stimulus. The present study aimed to develop a novel operant task using a touch-screen system to measure spatial attention. In this task, rats were trained to nose-poke a light stimulus presented in one of three locations. The stimulus was presented more frequently in the center location to develop spatial attention bias toward the center stimulus. Changes in orienting responses were detected by measuring the animals' response accuracy and latency to stimuli at the lateral locations, following reversible unilateral chemogenetic inactivation of the superior colliculus (SC). Additionally, spontaneous turning and rotation behavior was measured using an open-field test (OFT). Our results show that right SC inactivation significantly increased the whole body turn angle in the OFT, in line with previous literature that indicated an ipsiversive orientating bias and the presence of contralateral neglect following unilateral SC lesions. In the touch screen orienting task, unilateral SC inactivation significantly increased bias toward the ipsilateral side, as measured by response frequency in various experimental conditions, and a very large left-shift of a respective psychometric function. Our results demonstrate that this novel touchscreen task is able to detect changes in spatial attention and orienting responses because of e.g. experimental manipulations or injury with very high sensitivity, while taking advantage of the touch screen technology that allows for high transferability of the task between labs and for open-source data sharing through https://www.mousebytes.ca.
Collapse
|
12
|
Copits BA, Gowrishankar R, O'Neill PR, Li JN, Girven KS, Yoo JJ, Meshik X, Parker KE, Spangler SM, Elerding AJ, Brown BJ, Shirley SE, Ma KKL, Vasquez AM, Stander MC, Kalyanaraman V, Vogt SK, Samineni VK, Patriarchi T, Tian L, Gautam N, Sunahara RK, Gereau RW, Bruchas MR. A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 2021; 109:1791-1809.e11. [PMID: 33979635 PMCID: PMC8194251 DOI: 10.1016/j.neuron.2021.04.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Optical manipulations of genetically defined cell types have generated significant insights into the dynamics of neural circuits. While optogenetic activation has been relatively straightforward, rapid and reversible synaptic inhibition has proven more elusive. Here, we leveraged the natural ability of inhibitory presynaptic GPCRs to suppress synaptic transmission and characterize parapinopsin (PPO) as a GPCR-based opsin for terminal inhibition. PPO is a photoswitchable opsin that couples to Gi/o signaling cascades and is rapidly activated by pulsed blue light, switched off with amber light, and effective for repeated, prolonged, and reversible inhibition. PPO rapidly and reversibly inhibits glutamate, GABA, and dopamine release at presynaptic terminals. Furthermore, PPO alters reward behaviors in a time-locked and reversible manner in vivo. These results demonstrate that PPO fills a significant gap in the neuroscience toolkit for rapid and reversible synaptic inhibition and has broad utility for spatiotemporal control of inhibitory GPCR signaling cascades.
Collapse
Affiliation(s)
- Bryan A Copits
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Raaj Gowrishankar
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Jun-Nan Li
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kasey S Girven
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Judy J Yoo
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xenia Meshik
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle E Parker
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skylar M Spangler
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail J Elerding
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Bobbie J Brown
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sofia E Shirley
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Kelly K L Ma
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexis M Vasquez
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - M Christine Stander
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sherri K Vogt
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay K Samineni
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Robert W Gereau
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Ozawa A, Arakawa H. Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behav Brain Res 2021; 406:113234. [PMID: 33741409 PMCID: PMC8110310 DOI: 10.1016/j.bbr.2021.113234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Recent developments in chemogenetic approaches to the investigation of brain function have ushered in a paradigm change in the strategy for drug and behavior research and clinical drug-based medications. As the nature of the drug action is based on humoral regulation, it is a challenge to identify the neuronal mechanisms responsible for the expression of certain targeted behavior induced by drug application. The development of chemogenetic approaches has allowed researchers to control neural activities in targeted neurons through a toolbox, including engineered G protein-coupled receptors or ligand-gated ion channels together with exogenously inert synthetic ligands. This review provides a brief overview of the chemogenetics toolbox with an emphasis on the DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) technique used in rodent models, which is applicable to the investigation of how specific neural circuits regulate behavioral processes. The use of chemogenetics has had a significant impact on basic neuroscience for a better understanding of the relationships between brain activity and the expression of behaviors with cell- and circuit-specific orders. Furthermore, chemogenetics is potentially a useful tool to deconstruct the neuropathological mechanisms of mental diseases and its regulation by drug, and provide us with transformative therapeutics with medication. We also review recent findings in the use of chemogenetic techniques to uncover functional circuit connections of serotonergic neurons in rodent models.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Hiroyuki Arakawa
- Department of Psychology, Tokiwa University, Mito, Ibaraki, Japan; Department of Systems Physiology, University of Ryukyus, Faculty of Medicine, Nakagami District, Okinawa, Japan.
| |
Collapse
|
14
|
Boehm MA, Bonaventura J, Gomez JL, Solís O, Stein EA, Bradberry CW, Michaelides M. Translational PET applications for brain circuit mapping with transgenic neuromodulation tools. Pharmacol Biochem Behav 2021; 204:173147. [PMID: 33549570 PMCID: PMC8297666 DOI: 10.1016/j.pbb.2021.173147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Transgenic neuromodulation tools have transformed the field of neuroscience over the past two decades by enabling targeted manipulation of neuronal populations and circuits with unprecedented specificity. Chemogenetic and optogenetic neuromodulation systems are among the most widely used and allow targeted control of neuronal activity through the administration of a selective compound or light, respectively. Innovative genetic targeting strategies are utilized to transduce specific cells to express transgenic receptors and opsins capable of manipulating neuronal activity. These allow mapping of neuroanatomical projection sites and link cellular manipulations with brain circuit functions and behavior. As these tools continue to expand knowledge of the nervous system in preclinical models, developing translational applications for human therapies is becoming increasingly possible. However, new strategies for implementing and monitoring transgenic tools are needed for safe and effective use in translational research and potential clinical applications. A major challenge for such applications is the need to track the location and function of chemogenetic receptors and opsins in vivo, and new developments in positron emission tomography (PET) imaging techniques offer promising solutions. The goal of this review is to summarize current research combining transgenic tools with PET for in vivo mapping and manipulation of brain circuits and to propose future directions for translational applications.
Collapse
Affiliation(s)
- Matthew A Boehm
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Neuroscience, Brown University, Providence, RI 02906, United States.
| | - Jordi Bonaventura
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Juan L Gomez
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Oscar Solís
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Charles W Bradberry
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Michael Michaelides
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
15
|
Meister J, Wang L, Pydi SP, Wess J. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. J Neurochem 2021; 158:603-620. [PMID: 33540469 DOI: 10.1111/jnc.15314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
16
|
Tran FH, Spears SL, Ahn KJ, Eisch AJ, Yun S. Does chronic systemic injection of the DREADD agonists clozapine-N-oxide or Compound 21 change behavior relevant to locomotion, exploration, anxiety, and depression in male non-DREADD-expressing mice? Neurosci Lett 2020; 739:135432. [PMID: 33080350 DOI: 10.1016/j.neulet.2020.135432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are chemogenetic tools commonly-used to manipulate brain activity. The most widely-used synthetic DREADD ligand, clozapine-N-oxide (CNO), is back-metabolized to clozapine which can itself activate endogenous receptors. Studies in non-DREADD-expressing rodents suggest CNO or a DREADD agonist that lacks active metabolites, such as Compound 21 (C21), change rodent behavior (e.g. decrease locomotion), but chronic injection of CNO does not change locomotion. However, it is unknown if chronic CNO changes behaviors relevant to locomotion, exploration, anxiety, and depression, or if chronic C21 changes any aspect of mouse behavior. Here non-DREADD-expressing mice received i.p. Vehicle (Veh), CNO, or C21 (1 mg/kg) 5 days/week for 16 weeks and behaviors were assessed over time. Veh, CNO, and C21 mice had similar weight gain over the 16-week-experiment. During the 3rd injection week, CNO and C21 mice explored more than Veh mice in a novel context and had more open field center entries; however, groups were similar in other measures of locomotion and anxiety. During the 14th-16th injection weeks, Veh, CNO, and C21 mice had similar locomotion and anxiety-like behaviors. We interpret these data as showing chronic Veh, CNO, and C21 injections given to male non-DREADD-expressing mice largely lack behavioral effects. These data may be helpful for behavioral neuroscientists when study design requires repeated injection of these DREADD agonists.
Collapse
Affiliation(s)
- Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA.
| | - Stella L Spears
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA; University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kyung J Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA.
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Seo DO, Motard LE, Bruchas MR. Contemporary strategies for dissecting the neuronal basis of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106835. [PMID: 29550367 PMCID: PMC6138573 DOI: 10.1016/j.nlm.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
Great efforts in clinical and basic research have shown progress in understanding the neurobiological mechanisms of neurodevelopmental disorders, such as autism, schizophrenia, and attention-deficit hyperactive disorders. Literature on this field have suggested that these disorders are affected by the complex interaction of genetic, biological, psychosocial and environmental risk factors. However, this complexity of interplaying risk factors during neurodevelopment has prevented a complete understanding of the causes of those neuropsychiatric symptoms. Recently, with advances in modern high-resolution neuroscience methods, the neural circuitry analysis approach has provided new solutions for understanding the causal relationship between dysfunction of a neural circuit and behavioral alteration in neurodevelopmental disorders. In this review we will discuss recent progress in developing novel optogenetic and chemogenetic strategies to investigate neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dong-Oh Seo
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Laura E Motard
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Michael R Bruchas
- Departmentof Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
19
|
Salvi SS, Pati S, Chaudhari PR, Tiwari P, Banerjee T, Vaidya VA. Acute Chemogenetic Activation of CamKIIα-Positive Forebrain Excitatory Neurons Regulates Anxiety-Like Behaviour in Mice. Front Behav Neurosci 2019; 13:249. [PMID: 31736725 PMCID: PMC6828652 DOI: 10.3389/fnbeh.2019.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 01/12/2023] Open
Abstract
Anxiety disorders are amongst the most prevalent mental health disorders. Several lines of evidence have implicated cortical regions such as the medial prefrontal cortex, orbitofrontal cortex, and insular cortex along with the hippocampus in the top–down modulation of anxiety-like behaviour in animal models. Both rodent models of anxiety, as well as treatment with anxiolytic drugs, result in the concomitant activation of multiple forebrain regions. Here, we sought to examine the effects of chemogenetic activation or inhibition of forebrain principal neurons on anxiety and despair-like behaviour. We acutely activated or inhibited Ca2+/calmodulin-dependent protein kinase II α (CamKIIα)-positive forebrain excitatory neurons using the hM3Dq or the hM4Di Designer Receptor Exclusively Activated by Designer Drug (DREADD) respectively. Circuit activation was confirmed via an increase in expression of the immediate early gene, c-Fos, within both the hippocampus and the neocortex. We then examined the influence of DREADD-mediated activation of forebrain excitatory neurons on behavioural tests for anxiety and despair-like behaviour. Our results indicate that acute hM3Dq DREADD activation of forebrain excitatory neurons resulted in a significant decline in anxiety-like behaviour on the open field, light–dark avoidance, and the elevated plus maze test. In contrast, hM3Dq DREADD activation of forebrain excitatory neurons did not alter despair-like behaviour on either the tail suspension or forced swim tests. Acute hM4Di DREADD inhibition of CamKIIα-positive forebrain excitatory neurons did not modify either anxiety or despair-like behaviour. Taken together, our results demonstrate that chemogenetic activation of excitatory neurons in the forebrain decreases anxiety-like behaviour in mice.
Collapse
Affiliation(s)
- Sonali S Salvi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sthitapranjya Pati
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pratik R Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Praachi Tiwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Toshali Banerjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
20
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
21
|
Muir J, Lopez J, Bagot RC. Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology 2019; 44:1013-1026. [PMID: 30555161 PMCID: PMC6461994 DOI: 10.1038/s41386-018-0291-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
The advent of optogenetics and chemogenetics has revolutionized the study of neural circuit mechanisms of behavioral dysregulation in psychiatric disease. These powerful technologies allow manipulation of specific neurons to determine causal relationships between neuronal activity and behavior. Optogenetic tools have been key to mapping the circuitry underlying depression-like behavior in animal models, clarifying the contribution of the ventral tegmental area, nucleus accumbens, medial prefrontal cortex, ventral hippocampus, and other limbic areas, to stress susceptibility. In comparison, chemogenetics have been relatively underutilized, despite offering unique advantages for probing long-term effects of manipulating neuronal activity. The ongoing development of optogenetic tools to probe in vivo function of ever-more specific circuits, combined with greater integration of chemogenetic tools and recent advances in vivo imaging techniques will continue to advance our understanding of the circuit mechanisms of depression.
Collapse
Affiliation(s)
- Jessie Muir
- 0000 0004 1936 8649grid.14709.3bIntegrated Program in Neuroscience, McGill University, Montréal, QC Canada
| | - Joëlle Lopez
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychology, McGill University, Montréal, QC Canada
| | - Rosemary C. Bagot
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychology, McGill University, Montréal, QC Canada ,Ludmer Center for Neuroinformatics and Mental Health, Montréal, QC Canada
| |
Collapse
|
22
|
Fernandez SP, Broussot L, Marti F, Contesse T, Mouska X, Soiza-Reilly M, Marie H, Faure P, Barik J. Mesopontine cholinergic inputs to midbrain dopamine neurons drive stress-induced depressive-like behaviors. Nat Commun 2018; 9:4449. [PMID: 30361503 PMCID: PMC6202358 DOI: 10.1038/s41467-018-06809-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/19/2018] [Indexed: 11/18/2022] Open
Abstract
Stressful life events are primary environmental factors that markedly contribute to depression by triggering brain cellular maladaptations. Dysregulation of ventral tegmental area (VTA) dopamine neurons has been causally linked to the appearance of social withdrawal and anhedonia, two classical manifestations of depression. However, the relevant inputs that shape these dopamine signals remain largely unknown. We demonstrate that chronic social defeat (CSD) stress, a preclinical paradigm of depression, causes marked hyperactivity of laterodorsal tegmentum (LDTg) excitatory neurons that project to the VTA. Selective chemogenetic-mediated inhibition of cholinergic LDTg neurons prevent CSD-induced VTA DA neurons dysregulation and depressive-like behaviors. Pro-depressant outcomes are replicated by pairing activation of LDTg cholinergic terminals in the VTA with a moderate stress. Prevention of CSD outcomes are recapitulated by blocking corticotropin-releasing factor receptor 1 within the LDTg. These data uncover a neuro-circuitry of depressive-like disorders and demonstrate that stress, via a neuroendocrine signal, profoundly dysregulates the LDTg.
Collapse
Affiliation(s)
- Sebastian P Fernandez
- Université Côte d'Azur, Nice, 06560, France.
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France.
| | - Loïc Broussot
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Fabio Marti
- Université Pierre et Marie Curie, Paris, 75005, France
- Neurosciences Paris Seine, INSERM U1130, CNRS, UMR 8246, Paris, France
| | - Thomas Contesse
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Xavier Mouska
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Mariano Soiza-Reilly
- Université Pierre et Marie Curie, Paris, 75005, France
- Institut du Fer à Moulin, INSERM, UMRS-839, Paris, France
| | - Hélène Marie
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Philippe Faure
- Université Pierre et Marie Curie, Paris, 75005, France
- Neurosciences Paris Seine, INSERM U1130, CNRS, UMR 8246, Paris, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, 06560, France.
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France.
| |
Collapse
|
23
|
Thompson KJ, Khajehali E, Bradley SJ, Navarrete JS, Huang XP, Slocum S, Jin J, Liu J, Xiong Y, Olsen RHJ, Diberto JF, Boyt KM, Pina MM, Pati D, Molloy C, Bundgaard C, Sexton PM, Kash TL, Krashes MJ, Christopoulos A, Roth BL, Tobin AB. DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs in Vitro and in Vivo. ACS Pharmacol Transl Sci 2018; 1:61-72. [PMID: 30868140 PMCID: PMC6407913 DOI: 10.1021/acsptsci.8b00012] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 02/07/2023]
Abstract
![]()
Chemogenetic tools such as designer
receptors exclusively activated
by designer drugs (DREADDs) are routinely used to modulate neuronal
and non-neuronal signaling and activity in a relatively noninvasive
manner. The first generation of DREADDs were templated from the human
muscarinic acetylcholine receptor family and are relatively insensitive
to the endogenous agonist acetylcholine but instead are activated
by clozapine-N-oxide (CNO). Despite the undisputed
success of CNO as an activator of muscarinic DREADDs, it has been
known for some time that CNO is subject to a low rate of metabolic
conversion to clozapine, raising the need for alternative chemical
actuators of muscarinic-based DREADDs. Here we show that DREADD agonist 21 (C21) (11-(1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine)
is a potent and selective agonist at both excitatory (hM3Dq) and inhibitory
(hM4Di) DREADDs and has excellent bioavailability, pharmacokinetic
properties, and brain penetrability. We also show that C21-induced
activation of hM3Dq and hM4Di in vivo can modulate
bidirectional feeding in defined circuits in mice. These results indicate
that C21 represents an alternative to CNO for in vivo studies where metabolic conversion of CNO to clozapine is a concern.
Collapse
Affiliation(s)
- Karen J Thompson
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sophie J Bradley
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom
| | - Jovana S Navarrete
- Diabetes, Endocrinology, and Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.,National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Xi Ping Huang
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Samuel Slocum
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Jing Liu
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Yan Xiong
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Jeffrey F Diberto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Kristen M Boyt
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Melanie M Pina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Dipanwita Pati
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Colin Molloy
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom
| | - Christoffer Bundgaard
- Neuroscience, Eli Lilly & Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas L Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.,National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina NC2751, United States
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom
| |
Collapse
|
24
|
Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2018; 2:475-484. [PMID: 30948828 DOI: 10.1038/s41551-018-0258-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
Neurological and psychiatric disorders are often characterized by dysfunctional neural circuits in specific regions of the brain. Existing treatment strategies, including the use of drugs and implantable brain stimulators, aim to modulate the activity of these circuits. However, they are not cell-type-specific, lack spatial targeting or require invasive procedures. Here, we report a cell-type-specific and non-invasive approach based on acoustically targeted chemogenetics that enables the modulation of neural circuits with spatiotemporal specificity. The approach uses ultrasound waves to transiently open the blood-brain barrier and transduce neurons at specific locations in the brain with virally encoded engineered G-protein-coupled receptors. The engineered neurons subsequently respond to systemically administered designer compounds to activate or inhibit their activity. In a mouse model of memory formation, the approach can modify and subsequently activate or inhibit excitatory neurons within the hippocampus, with selective control over individual brain regions. This technology overcomes some of the key limitations associated with conventional brain therapies.
Collapse
Affiliation(s)
- Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Lue
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
25
|
Reichenbach A, Mequinion M, Bayliss JA, Lockie SH, Lemus MB, Mynatt RL, Stark R, Andrews ZB. Carnitine Acetyltransferase in AgRP Neurons Is Required for the Homeostatic Adaptation to Restricted Feeding in Male Mice. Endocrinology 2018; 159:2473-2483. [PMID: 29697769 PMCID: PMC6692886 DOI: 10.1210/en.2018-00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Jacqueline A Bayliss
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Randall L Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Transgenic Core Facility, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Romana Stark
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Robins MT, Chiang T, Mores KL, Alongkronrusmee D, van Rijn RM. Critical Role for G i/o-Protein Activity in the Dorsal Striatum in the Reduction of Voluntary Alcohol Intake in C57Bl/6 Mice. Front Psychiatry 2018; 9:112. [PMID: 29686629 PMCID: PMC5900748 DOI: 10.3389/fpsyt.2018.00112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
The transition from non-dependent alcohol use to alcohol dependence involves increased activity of the dorsal striatum. Interestingly, the dorsal striatum expresses a large number of inhibitory G-protein-coupled receptors (GPCRs), which when activated may inhibit alcohol-induced increased activity and can decrease alcohol consumption. Here, we explore the hypothesis that dorsal striatal Gi/o-protein activation is sufficient to reduce voluntary alcohol intake. Using a voluntary, limited-access, two-bottle choice, drink-in-the-dark model of alcohol (10%) consumption, we validated the importance of Gi/o signaling in this region by locally expressing neuron-specific, adeno-associated-virus encoded Gi/o-coupled muscarinic M4 designer receptors exclusively activated by designer drugs (DREADD) in the dorsal striatum and observed a decrease in alcohol intake upon DREADD activation. We validated our findings by activating Gi/o-coupled delta-opioid receptors (DORs), which are natively expressed in the dorsal striatum, using either a G-protein biased agonist or a β-arrestin-biased agonist. Local infusion of TAN-67, an in vitro-determined Gi/o-protein biased DOR agonist, decreased voluntary alcohol intake in wild-type and β-arrestin-2 knockout (KO) mice. SNC80, a β-arrestin-2 biased DOR agonist, increased alcohol intake in wild-type mice; however, SNC80 decreased alcohol intake in β-arrestin-2 KO mice, thus resulting in a behavioral outcome generally observed for Gi/o-biased agonists and suggesting that β-arrestin recruitment is required for SNC80-increased alcohol intake. Overall, these results suggest that activation Gi/o-coupled GPCRs expressed in the dorsal striatum, such as the DOR, by G-protein biased agonists may be a potential strategy to decrease voluntary alcohol consumption and β-arrestin recruitment is to be avoided.
Collapse
Affiliation(s)
- Meridith T Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
27
|
Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017; 95:504-529. [PMID: 28772120 DOI: 10.1016/j.neuron.2017.06.050] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Reversible silencing of neuronal activity is a powerful approach for isolating the roles of specific neuronal populations in circuit dynamics and behavior. In contrast with neuronal excitation, for which the majority of studies have used a limited number of optogenetic and chemogenetic tools, the number of genetically encoded tools used for inhibition of neuronal activity has vastly expanded. Silencing strategies vary widely in their mechanism of action and in their spatial and temporal scales. Although such manipulations are commonly applied, the design and interpretation of neuronal silencing experiments present unique challenges, both technically and conceptually. Here, we review the most commonly used tools for silencing neuronal activity and provide an in-depth analysis of their mechanism of action and utility for particular experimental applications. We further discuss the considerations that need to be given to experimental design, analysis, and interpretation of collected data. Finally, we discuss future directions for the development of new silencing approaches in neuroscience.
Collapse
Affiliation(s)
- J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Mathias Mahn
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matthias Prigge
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Garcia AF, Nakata KG, Ferguson SM. Viral strategies for targeting cortical circuits that control cocaine-taking and cocaine-seeking in rodents. Pharmacol Biochem Behav 2017; 174:33-41. [PMID: 28552825 DOI: 10.1016/j.pbb.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Addiction to cocaine is a chronic disease characterized by persistent drug-taking and drug-seeking behaviors, and a high likelihood of relapse. The prefrontal cortex (PFC) has long been implicated in the development of cocaine addiction, and relapse. However, the PFC is a heterogeneous structure, and understanding the role of PFC subdivisions, cell types and afferent/efferent connections is critical for gaining a comprehensive picture of the contribution of the PFC in addiction-related behaviors. Here we provide an update on the role of the PFC in cocaine addiction from recent work that used viral-mediated optogenetic and chemogenetic tools to study the role of the PFC in drug-taking and drug-seeking behavior in rodents. Following overviews of rodent PFC neuroanatomy and of viral-mediated optogenetic and chemogenetic techniques, we review studies of manipulations within the PFC, followed by a review of work that utilized targeted manipulations to PFC inputs and outputs.
Collapse
Affiliation(s)
- Aaron F Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Kanichi G Nakata
- Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
29
|
Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. LAB ON A CHIP 2017; 17:1406-1435. [PMID: 28349140 DOI: 10.1039/c7lc00103g] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microfluidic neural probes hold immense potential as in vivo tools for dissecting neural circuit function in complex nervous systems. Miniaturization, integration, and automation of drug delivery tools open up new opportunities for minimally invasive implants. These developments provide unprecedented spatiotemporal resolution in fluid delivery as well as multifunctional interrogation of neural activity using combined electrical and optical modalities. Capitalizing on these unique features, microfluidic technology will greatly advance in vivo pharmacology, electrophysiology, optogenetics, and optopharmacology. In this review, we discuss recent advances in microfluidic neural probe systems. In particular, we will highlight the materials and manufacturing processes of microfluidic probes, device configurations, peripheral devices for fluid handling and packaging, and wireless technologies that can be integrated for the control of these microfluidic probe systems. This article summarizes various microfluidic implants and discusses grand challenges and future directions for further developments.
Collapse
Affiliation(s)
- Joo Yong Sim
- Electronics and Telecommunications Research Institute, Bio-Medical IT Convergence Research Department, Daejeon, 34129, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Spangler SM, Bruchas MR. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr Opin Pharmacol 2017; 32:56-70. [PMID: 27875804 PMCID: PMC5395328 DOI: 10.1016/j.coph.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
Optogenetics has revolutionized neuroscience by providing means to control cell signaling with spatiotemporal control in discrete cell types. In this review, we summarize four major classes of optical tools to manipulate neuromodulatory GPCR signaling: opsins (including engineered chimeric receptors); photoactivatable proteins; photopharmacology through caging-photoswitchable molecules; fluorescent protein based reporters and biosensors. Additionally, we highlight technologies to utilize these tools in vitro and in vivo, including Cre dependent viral vector expression and two-photon microscopy. These emerging techniques targeting specific members of the GPCR signaling pathway offer an expansive base for investigating GPCR signaling in behavior and disease states, in addition to paving a path to potential therapeutic developments.
Collapse
Affiliation(s)
- Skylar M Spangler
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Basic Research Division, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|