1
|
Zdrojowy-Wełna A, Valassi E. Cushing's Syndrome in the Elderly. Exp Clin Endocrinol Diabetes 2024; 132:705-711. [PMID: 38698635 DOI: 10.1055/a-2317-8821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Management of Cushing's syndrome (CS) can be particularly challenging in older patients, compared with younger individuals, due to the lack of several clinical features associated with cortisol excess along with a greater burden of associated comorbidities. Moreover, the interpretation of diagnostic tests could be influenced by age-related physiological changes in cortisol secretion. While mortality is higher and quality of life is more impaired in the elderly with CS as compared with the younger, there is currently no agreement on the most effective therapeutic options in aged individuals, and safety data concerning medical treatment are scanty. In this review, we summarize the current knowledge about age-related differences in CS etiology, clinical presentation, treatment, and outcomes and describe the potential underlying mechanisms.
Collapse
Affiliation(s)
- Aleksandra Zdrojowy-Wełna
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wroclaw, Poland
- Endocrinology Department, Wroclaw University Hospital, Wroclaw, Poland
| | - Elena Valassi
- Endocrinology and Nutrition Department, Germans Trias i Pujol Hospital and Research Institute, Badalona, Spain
- School of Medicine, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| |
Collapse
|
2
|
Kim MH, Schwartz GL. Foreclosure, memory decline, and dementia probability: A longitudinal cohort study. Alzheimers Dement 2024; 20:6517-6526. [PMID: 39072906 PMCID: PMC11497684 DOI: 10.1002/alz.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Housing insecurity is rising among older adults; health researchers know little about how this may impact their cognitive health. We investigated links between foreclosure and older adults' memory and probability of dementia. METHODS Using the Health and Retirement Study (2008 to 2018), we fit mixed models comparing the memory and dementia probability scores of 249 older adults who experienced foreclosure (treated) with 15,645 who did not. Baseline covariates included sociodemographics and health. Models were stratified by age group. RESULTS Foreclosure was associated with faster memory decline among middle-aged (50 to 64) older adults (-0.007 standard deviations/year, 95% confidence interval: -0.13, -0.001). Compared to average memory decline among middle-aged older adults who were stably housed, foreclosure equated to 3.7 additional years of aging over 10 years. Among those 65+, differences between those who were and were not foreclosed upon were short-lived and less clear, potentially driven by depletion-of-susceptibles bias. DISCUSSION Foreclosure may endanger older adults' memory. HIGHLIGHTS Housing instability is a key determinant of cognitive aging. We examined foreclosure and levels and changes in memory and dementia probability scores in the US older adult population. Foreclosure was associated with faster memory decline among middle-aged (50 to 64) older adults, equivalent to 3.7 additional years of cognitive aging over 10 years. Foreclosure yielded sharp memory declines and increases in dementia probability among older adults 65 and above. Foreclosure imposes a greater risk for older adults' cognitive decline.
Collapse
Affiliation(s)
- Min Hee Kim
- Philip R. Lee Institute for Health Policy StudiesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Gabriel L. Schwartz
- Philip R. Lee Institute for Health Policy StudiesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Urban Health Collaborative and Department of Health Management & PolicyDrexel University Dornsife School of Public HealthPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Bian X, Yang W, Lin J, Jiang B, Shao X. Hypothalamic-Pituitary-Adrenal Axis and Epilepsy. J Clin Neurol 2024; 20:131-139. [PMID: 38330420 PMCID: PMC10921057 DOI: 10.3988/jcn.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024] Open
Abstract
Epilepsy is a recurrent, transient seizure disorder of the nervous system that affects the intellectual development, life and work, and psychological health of patients. People with epilepsy worldwide experience great suffering. Stressful stimuli such as infection, mental stress, and sleep deprivation are important triggers of epilepsy, and chronic stressful stimuli can lead to frequent seizures and comorbidities. The hypothalamic-pituitary-adrenal (HPA) axis is the most important system involved in the body's stress response, and dysfunction thereof is thought to be associated with core epilepsy symptoms and related psychopathology. This article explores the intrinsic relationships of corticotropin-releasing hormone, adrenocorticotropic hormone, and glucocorticoids with epilepsy in order to reveal the role of the HPA axis in the pathogenesis of epilepsy. We hope that this information will yield future possible directions and ideas for fully understanding the pathogenesis of epilepsy and developing antiepileptic drugs.
Collapse
Affiliation(s)
- Xueying Bian
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Wenxian Yang
- Department of Pediatrics, Yiwu Central Hospital, Yiwu, China
| | - Jiannan Lin
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Biao Jiang
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaoli Shao
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
4
|
Ruge D, Pedroarena-Leal N, Trenado C. Leadership in Education, Medical Education and Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5730. [PMID: 35565125 PMCID: PMC9104542 DOI: 10.3390/ijerph19095730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
We observe the impact of quality of leadership in our daily lives [...].
Collapse
Affiliation(s)
- Diane Ruge
- Laboratoire de Recherche en Neurosciences Cliniques (LRENC), 34725 Montpellier, France;
- Institute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK
| | - Nicole Pedroarena-Leal
- Laboratoire de Recherche en Neurosciences Cliniques (LRENC), 34725 Montpellier, France;
- Institute of Neurology, University College London (UCL), Queen Square, London WC1N 3BG, UK
| | - Carlos Trenado
- Laboratoire de Recherche en Neurosciences Cliniques (LRENC), 34725 Montpellier, France;
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
| |
Collapse
|
5
|
Tesic V, Ciric J, Jovanovic Macura I, Zogovic N, Milanovic D, Kanazir S, Perovic M. Corticosterone and Glucocorticoid Receptor in the Cortex of Rats during Aging-The Effects of Long-Term Food Restriction. Nutrients 2021; 13:nu13124526. [PMID: 34960078 PMCID: PMC8703853 DOI: 10.3390/nu13124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Irena Jovanovic Macura
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia;
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
- Correspondence:
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| |
Collapse
|
6
|
Khataei T, Romig-Martin SA, Harding AMS, Radley JJ, Benson CJ. Comparison of murine behavioural and physiological responses after forced exercise by electrical shock versus manual prodding. Exp Physiol 2021; 106:812-819. [PMID: 33527606 DOI: 10.1113/ep089117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Forced treadmill exercise using electrical shock is the most common technique in rodent exercise studies. Here, we examined how the use of electrical shock during forced treadmill exercise affects behavioural and physiological responses in comparison to a novel non-electrical shock technique. What is the main finding and its importance? In comparison to mice that underwent traditional treadmill running induced by electrical shock, mice that underwent forced running using a novel technique involving gentle prodding to induce running showed: (i) higher locomotor activity; (ii) less anxiety-like behaviour; and (iii) altered exercise-induced muscle pain immediately after exercise. ABSTRACT Animal models of exercise have been useful to understand underlying cellular and molecular mechanisms. Many studies have used methods of exercise that are unduly stressful (e.g., electrical shock to force running), potentially skewing results. Here, we compared physiological and behavioural responses of mice after exercise induced using a prodding technique that avoids electrical shock versus a traditional protocol using electrical shock. We found that exercise performance was similar for both techniques; however, the shock group demonstrated significantly lower locomotor activity and higher anxiety-like behaviour. We also observed divergent effects on muscle pain; the prodding group showed hyperalgesia immediately after exercise, whereas the shock group showed hypoalgesia. Corticosterone concentrations were elevated to a similar extent for both groups. In conclusion, mice that were exercised without shock generated similar maximal exercise performance, but postexercise these mice showed an increase in locomotor activity, less anxiety-like behaviour and altered muscle pain in comparison to mice that exercised with shock. Our data suggest that running of mice without the use of electrical shock is potentially less stressful and might be a better technique to study the physiological and behavioural responses to exercise.
Collapse
Affiliation(s)
- Tahsin Khataei
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Healthcare System, Iowa City, Iowa, USA
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, Neuroscience Program, University of Iowa, Iowa City, Iowa, USA
| | - Anne Marie S Harding
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Healthcare System, Iowa City, Iowa, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, Neuroscience Program, University of Iowa, Iowa City, Iowa, USA
| | - Christopher J Benson
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Healthcare System, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Anderson RM, Johnson SB, Lingg RT, Hinz DC, Romig-Martin SA, Radley JJ. Evidence for Similar Prefrontal Structural and Functional Alterations in Male and Female Rats Following Chronic Stress or Glucocorticoid Exposure. Cereb Cortex 2020; 30:353-370. [PMID: 31184364 PMCID: PMC7029687 DOI: 10.1093/cercor/bhz092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Previous work of ours and others has documented regressive changes in neuronal architecture and function in the medial prefrontal cortex (mPFC) of male rats following chronic stress. As recent focus has shifted toward understanding whether chronic stress effects on mPFC are sexually dimorphic, here we undertake a comprehensive analysis to address this issue. First, we show that chronic variable stress (14-day daily exposure to different challenges) resulted in a comparable degree of adrenocortical hyperactivity, working memory impairment, and dendritic spine loss in mPFC pyramidal neurons in both sexes. Next, exposure of female rats to 21-day regimen of corticosterone resulted in a similar pattern of mPFC dendritic spine attrition and increase in spine volume. Finally, we examined the effects of another widely used regimen, chronic restraint stress (CRS, 21-day of daily 6-h restraint), on dendritic spine changes in mPFC in both sexes. CRS resulted in response decrements in adrenocortical output (habituation), and induced a pattern of consistent, but less widespread, dendritic spine loss similar to the foregoing challenges. Our data suggest that chronic stress or glucocorticoid exposure induces a relatively undifferentiated pattern of structural and functional alterations in mPFC in both males and females.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Shane B Johnson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ryan T Lingg
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Dalton C Hinz
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Cruz-Topete D, Oakley RH, Cidlowski JA. Glucocorticoid Signaling and the Aging Heart. Front Endocrinol (Lausanne) 2020; 11:347. [PMID: 32528419 PMCID: PMC7266971 DOI: 10.3389/fendo.2020.00347] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023] Open
Abstract
A decline in normal physiological functions characterizes the aging process. While some of these changes are benign, the decrease in the function of the cardiovascular system that occurs during aging leads to the activation of pathological processes associated with an increased risk for heart disease and its complications. Imbalances in endocrine function are also common occurrences during the aging process. Glucocorticoids are primary stress hormones and are critical regulators of energy metabolism, inflammation, and cardiac function. Glucocorticoids exert their actions by binding the glucocorticoid receptor (GR) and, in some instances, to the mineralocorticoid receptor (MR). GR and MR are members of the nuclear receptor family of ligand-activated transcription factors. There is strong evidence that imbalances in GR and MR signaling in the heart have a causal role in cardiac disease. The extent to which glucocorticoids play a role in the aging heart, however, remains unclear. This review will summarize the positive and negative direct and indirect effects of glucocorticoids on the heart and the latest molecular and physiological evidence on how alterations in glucocorticoid signaling lead to changes in cardiac structure and function. We also briefly discuss the effects of other hormones systems such as estrogens and GH/IGF-1 on different cardiovascular cells during aging. We will also review the link between imbalances in glucocorticoid levels and the molecular processes responsible for promoting cardiomyocyte dysfunction in aging. Finally, we will discuss the potential for selectively manipulating glucocorticoid signaling in cardiomyocytes, which may represent an improved therapeutic approach for preventing and treating age-related heart disease.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, Shreveport, LA, United States
- *Correspondence: Diana Cruz-Topete
| | - Robert H. Oakley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - John A. Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- John A. Cidlowski
| |
Collapse
|
9
|
Structural and molecular correlates of cognitive aging in the rat. Sci Rep 2019; 9:2005. [PMID: 30765864 PMCID: PMC6376121 DOI: 10.1038/s41598-019-39645-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with cognitive decline. Herein, we studied a large cohort of old age and young adult male rats and confirmed that, as a group, old rats display poorer spatial learning and behavioral flexibility than younger adults. Surprisingly, when animals were clustered as good and bad performers, our data revealed that while in younger animals better cognitive performance was associated with longer dendritic trees and increased levels of synaptic markers in the hippocampus and prefrontal cortex, the opposite was found in the older group, in which better performance was associated with shorter dendrites and lower levels of synaptic markers. Additionally, in old, but not young individuals, worse performance correlated with increased levels of BDNF and the autophagy substrate p62, but decreased levels of the autophagy complex protein LC3. In summary, while for younger individuals “bigger is better”, “smaller is better” is a more appropriate aphorism for older subjects.
Collapse
|
10
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
11
|
Greathouse KM, Boros BD, Deslauriers JF, Henderson BW, Curtis KA, Gentry EG, Herskowitz JH. Distinct and complementary functions of rho kinase isoforms ROCK1 and ROCK2 in prefrontal cortex structural plasticity. Brain Struct Funct 2018; 223:4227-4241. [PMID: 30196430 PMCID: PMC6252131 DOI: 10.1007/s00429-018-1748-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1+/- and ROCK2+/- mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. Increased apical and basal dendritic length and intersections were observed in ROCK1+/- but not ROCK2+/- mice. Although dendritic spine densities were comparable among genotypes, apical spine length was decreased in ROCK1+/- but increased in ROCK2+/- mice. Spine head and neck diameter were reduced similarly in ROCK1+/- and ROCK2+/- mice; however, certain spine morphologic subclasses were more affected than others in a genotype-dependent manner. Biochemical analyses of ROCK substrates in synaptic fractions revealed that phosphorylation of LIM kinase and cofilin were reduced in ROCK1+/- and ROCK2+/- mice, while phosphorylation of myosin light chain was decreased exclusively in ROCK1+/- mice. Collectively, these observations implicate ROCK1 as a novel regulatory factor of neuronal dendritic structure and detail distinct and complementary roles of ROCKs in mPFC dendritic spine structure.
Collapse
Affiliation(s)
- Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Josue F Deslauriers
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Benjamin W Henderson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Erik G Gentry
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
McQuail JA, Krause EG, Setlow B, Scheuer DA, Bizon JL. Stress-induced corticosterone secretion covaries with working memory in aging. Neurobiol Aging 2018; 71:156-160. [PMID: 30144648 DOI: 10.1016/j.neurobiolaging.2018.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
A substantial literature details the relationship between age-related changes to the hypothalamic-pituitary-adrenal axis and deterioration of mnemonic functions that depend on the hippocampus. The relationship between adrenocortical status and other forms of memory that depend on the prefrontal cortex is less well understood in the context of advanced age. Here, we characterized performance of young adult and aged F344 rats on a prefrontal cortex-dependent working memory task and subsequently measured corticosterone (CORT) levels over the diurnal cycle and during exposure to an acute stressor. Our analyses revealed that aged rats with better working memory mounted a greater CORT response during acute stress exposure than either young adults or age-matched rats with impaired working memory. We also observed that age-related elevation of basal CORT levels is not associated with working memory performance. Jointly, these data reveal that the hypothalamic-pituitary-adrenal axis-mediated response to acute stress is positively associated with working memory in aging.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Xu Y, Zhu N, Xu W, Ye H, Liu K, Wu F, Zhang M, Ding Y, Zhang C, Zhang H, O'Donnell J, Pan J. Inhibition of Phosphodiesterase-4 Reverses Aβ-Induced Memory Impairment by Regulation of HPA Axis Related cAMP Signaling. Front Aging Neurosci 2018; 10:204. [PMID: 30087608 PMCID: PMC6066959 DOI: 10.3389/fnagi.2018.00204] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Beta amyloid peptides (Aβ) are found to be associated with dysfunction of hypothalamic-pituitary-adrenal axis (HPA axis) that leads to memory and cognitive deficits in patients with Alzheimer's disease (AD). Phosphodiesterase 4 (PDE4) inhibitors increase the intracellular cAMP activities, which may ameliorate cognitive deficits associated with AD. However, it remains unclear whether PDE4-mediated reversal of cognitive impairment in mouse model of AD is related to HPA axis and downstream cAMP-dependent pathway. The present study investigated the effects of PDE4 inhibitor rolipram on Aβ1-42-induced cognitive dysfunction and its underlying mechanisms. The step-down passive avoidance (PA) and Morris water-maze (MWM) tests were conducted 1 week (1 W), 2 months (2 M), and 6 months (6 M) after intracerebroventricular microjection (i.c.v.) of Aβ1-42. The results suggested that memory impairment emerged as early as 1 W, peaked at 2 M, and lasted until 6 M after injection. Chronic treatment with rolipram (0.1, 0.5, 1.0 mg/kg/d, i.p.) for 2 weeks (i.e., treatment started at 1.5 months after Aβ1-42 microinjection) dose-dependently improved memory performance in both MWM and PA tests. Moreover, rolipram reversed the Aβ-induced increases in serum corticosterone (CORT), corticotropin-releasing factor, and glucocorticoid receptors (CRF-R and GR) levels, whereas it decreases in brain-derived neurotropic factor (BDNF) and the ratio of pCREB to CREB expression. These effects of rolipram were prevented by pre-treatment with PKA inhibitor H89. The findings indicated that the protective effects of rolipram against Aβ1-42-induced memory deficits might involve HPA axis and cAMP-CREB-BDNF signaling.
Collapse
Affiliation(s)
- Ying Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Naping Zhu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen Xu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Han Ye
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Kaiping Liu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Feiyan Wu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Meixi Zhang
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, China
| | - Yun Ding
- Hangzhou Geriatric Hospital, Hangzhou, China
| | - Chong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Hanting Zhang
- Departments of Behavioral Medicine, Psychiatry and Physiology, and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - James O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jiangchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Portero-Tresserra M, Martí-Nicolovius M, Tarrés-Gatius M, Candalija A, Guillazo-Blanch G, Vale-Martínez A. Intra-hippocampal D-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology (Berl) 2018; 235:1463-1477. [PMID: 29492616 DOI: 10.1007/s00213-018-4858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aging is characterized by a decrease in N-methyl-D-aspartate receptors (NMDARs) in the hippocampus, which might be one of the factors involved in the age-dependent cognitive decline. D-Cycloserine (DCS), a partial agonist of the NMDAR glycine recognition site, could improve memory deficits associated to neurodegenerative disorders and cognitive deficits observed in normal aging. OBJECTIVES AND METHODS The aim of the present study was to explore whether DCS would reverse age-dependent memory deficits and decreases in NMDA receptor subunits (GluN1, GluN2A, and GluN2B) and the presynaptic protein synaptophysin in Wistar rats. We investigated the effects of pre-training infusions of DCS (10 μg/hemisphere) in the ventral hippocampus on two hippocampal-dependent learning tasks, the social transmission of food preference (STFP), and the Morris water maze (MWM). RESULTS The results revealed that infusions of DCS administered before the acquisition sessions rescued deficits in the STFP retention and MWM reversal learning in old rats. DCS also significantly increased the hippocampal levels of synaptophysin in old rats, which correlated with STFP and MWM performance in all tests. Moreover, although the levels of the GluN1 subunit correlated with the MWM acquisition and reversal, DCS did not enhance the expression of such synaptic protein. CONCLUSIONS The present behavioral results support the role of DCS as a cognitive enhancer and suggest that enhancing the function of NMDARs and synaptic plasticity in the hippocampus may be related to improvement in social memory and spatial learning reversal in aged animals.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mireia Tarrés-Gatius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Candalija
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
McCluney CL, Schmitz LL, Hicken MT, Sonnega A. Structural racism in the workplace: Does perception matter for health inequalities? Soc Sci Med 2018; 199:106-114. [PMID: 28552294 PMCID: PMC5696122 DOI: 10.1016/j.socscimed.2017.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/13/2023]
Abstract
Structural racism has been linked to racial health inequalities and may operate through an unequal labor market that results in inequalities in psychosocial workplace environments (PWE). Experiences of the PWE may be a critical but understudied source of racial health disparities as most adults spend a large portion of their lives in the workplace, and work-related stress affects health outcomes. Further, it is not clear if the objective characteristics of the workplace are important for health inequalities or if these inequalities are driven by the perception of the workplace. Using data from the 2008 to 2012 waves of the Health and Retirement Study (HRS), a probability-based sample of US adults 50 years of age and older and the Department of Labor's Occupational Information Network (O*NET), we examine the role of both standardized, objective (O*NET) and survey-based, subjective (as in HRS) measures of PWEs on health and Black-White health inequalities. We find that Blacks experience more stressful PWEs and have poorer health as measured by self-rated health, episodic memory function, and mean arterial pressure. Mediation analyses suggest that these objective O*NET ratings, but not the subjective perceptions, partially explain the relationship between race and health. We discuss these results within the extant literature on workplace and health and health inequalities. Furthermore, we discuss the use of standardized objective measures of the PWE to capture racial inequalities in workplace environment.
Collapse
Affiliation(s)
- Courtney L McCluney
- University of Virginia, Darden School of Business, 100 Darden Blvd, Charlottesville, VA 22903, United States.
| | - Lauren L Schmitz
- University of Michigan, Population Studies Center, Institute for Social Research, 426 Thompson Street, Ann Arbor, MI 48104, United States.
| | - Margaret T Hicken
- University of Michigan, Survey Research Center, Institute for Social Research, 426 Thompson Street, Ann Arbor, MI 48104, United States
| | - Amanda Sonnega
- University of Michigan, Health and Retirement Study, Institute for Social Research, 426 Thompson Street, Ann Arbor, MI 48104, United States
| |
Collapse
|
16
|
Molumby MJ, Anderson RM, Newbold DJ, Koblesky NK, Garrett AM, Schreiner D, Radley JJ, Weiner JA. γ-Protocadherins Interact with Neuroligin-1 and Negatively Regulate Dendritic Spine Morphogenesis. Cell Rep 2017; 18:2702-2714. [PMID: 28297673 DOI: 10.1016/j.celrep.2017.02.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/18/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022] Open
Abstract
The 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules are critical for the elaboration of complex dendritic arbors in the cerebral cortex. Here, we provide evidence that the γ-Pcdhs negatively regulate synapse development by inhibiting the postsynaptic cell adhesion molecule, neuroligin-1 (Nlg1). Mice lacking all γ-Pcdhs in the forebrain exhibit significantly increased dendritic spine density in vivo, while spine density is significantly decreased in mice overexpressing one of the 22 γ-Pcdh isoforms. Co-expression of γ-Pcdhs inhibits the ability of Nlg1 to increase spine density and to induce presynaptic differentiation in hippocampal neurons in vitro. The γ-Pcdhs physically interact in cis with Nlg1 both in vitro and in vivo, and we present evidence that this disrupts Nlg1 binding to its presynaptic partner neurexin1β. Together with prior work, these data identify a mechanism through which γ-Pcdhs could coordinate dendrite arbor growth and complexity with spine maturation in the developing brain.
Collapse
Affiliation(s)
- Michael J Molumby
- Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Rachel M Anderson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | - Dillan J Newbold
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Norah K Koblesky
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew M Garrett
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Dietmar Schreiner
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | - Joshua A Weiner
- Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Rubin LH, Cook JA, Springer G, Weber KM, Cohen MH, Martin EM, Valcour VG, Benning L, Alden C, Milam J, Anastos K, Young MA, Gustafson DR, Sundermann EE, Maki PM. Perceived and post-traumatic stress are associated with decreased learning, memory, and fluency in HIV-infected women. AIDS 2017; 31:2393-1401. [PMID: 28857823 PMCID: PMC5831482 DOI: 10.1097/qad.0000000000001625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Psychological risk factors (PRFs) are associated with impaired learning and memory in HIV-infected (HIV+) women. We determined the dynamic nature of the effects of PRFs and HIV serostatus on learning and memory over time. DESIGN Multi-center, prospective cohort study METHODS:: Every two years between 2009 and 2013 (3 times), 646 HIV+ and 300 demographically-similar HIV-uninfected (HIV-) women from the Women's Interagency HIV Study completed neuropsychological (NP) testing and questionnaires measuring PRFs (perceived stress, post-traumatic stress disorder (PTSD) symptoms, depressive symptoms). Using mixed-effects regressions, we examined separate and interactive associations between HIV-serostatus and PRFs on performance over time. RESULTS HIV+ and HIV- women had similar rates of PRFs. Fluency was the only domain where performance over time depended on the combined influence of HIV-serostatus and stress or PTSD (p's < 0.05); not depression. In HIV, higher stress and PTSD were associated with a greater cognitive decline in performance (p's < 0.05) versus lower stress and PTSD. Irrespective of time, performance on learning and memory depended on the combined influence of HIV-serostatus and stress or PTSD (p's ≤ 0.05). In the context of HIV, stress and PTSD were negatively associated with performance. Effects were pronounced on learning among HIV+ women without effective treatment or viral suppression. Regardless of time or HIV-serostatus, all PRFs were associated with lower speed, global NP, and executive function. CONCLUSIONS More than depression, perceived stress and PTSD symptoms are treatment targets to potentially improve fluency, learning, and memory in women living with HIV particularly when HIV treatment is not optimal.
Collapse
Affiliation(s)
- Leah H Rubin
- aDepartment of Psychiatry, University of Illinois at Chicago, Chicago, IL bDepartment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD cDepartment of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD dCook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago IL eDepartments of Medicine Stroger Hospital and Rush University, Chicago IL fDepartment of Psychiatry, Rush University Medical Center, Chicago, IL gMemory and Aging Center, Department of Neurology, University of California, San Francisco hInstitute for Health Promotion & Disease Prevention Research, University of Southern California, Los Angeles, CA iDepartments of Medicine and Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY jDepartment of Medicine, Georgetown University, Washington, DC kDepartment of Neurology, SUNY-Downstate Medical Center, Brooklyn, NY lUniversity of California San Diego School of Medicine, La Jolla, CA mDepartment of Psychology, University of Illinois at Chicago, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Antistress effects of N-stearoylethanolamine in rats with chronic social stress. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.04.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Nicholson R, O'Brien C. Impact of the Educational Boost Your Brain and Memory Program Among Senior Living Residents. Int J Aging Hum Dev 2017; 85:456-471. [PMID: 28537133 DOI: 10.1177/0091415017709789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This random assignment waitlist control intervention study examined an implementation of the educational Boost Your Brain and Memory cognitive fitness intervention in 12 senior living organizations. Older adult participants ( n = 166) completed measures of brain health knowledge, use of memory techniques, physical and intellectual activity, and mindfulness, at baseline and after the intervention group's completion of the course. Changes in knowledge scores and in self-reported physical and intellectual activity increased significantly more for intervention participants than for waitlist controls at the conclusion of the course. There were no significant changes between the groups in mindfulness or use of memory techniques. This suggests that in senior living settings Boost Your Brain and Memory is effective in educating participants about brain healthy behaviors and in motivating behavioral change in the areas of physical and intellectual activity.
Collapse
Affiliation(s)
- Roscoe Nicholson
- 1 Mather LifeWays Instititute on Aging, Evanston, IL, USA.,2 Department of Comparative Human Development, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
20
|
Anderson RM, Glanz RM, Johnson SB, Miller MM, Romig-Martin SA, Radley JJ. Prolonged corticosterone exposure induces dendritic spine remodeling and attrition in the rat medial prefrontal cortex. J Comp Neurol 2016; 524:3729-3746. [PMID: 27113541 PMCID: PMC5063662 DOI: 10.1002/cne.24027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
The stress-responsive hypothalamo-pituitary-adrenal (HPA) axis plays a central role in promoting adaptations acutely, whereas adverse effects on physiology and behavior following chronic challenges may result from overactivity of this system. Elevations in glucocorticoids, the end-products of HPA activation, play roles in adaptive and maladaptive processes by targeting cognate receptors throughout neurons in limbic cortical networks to alter synaptic functioning. Because previous work has shown that chronic stress leads to functionally relevant regressive alterations in dendritic spine shape and number in pyramidal neurons in the medial prefrontal cortex (mPFC), this study examines the capacity of sustained increases in circulating corticosterone (B) alone to alter dendritic spine morphology and density in this region. Subcutaneous B pellets were implanted in rats to provide continuous exposure to levels approximating the circadian mean or peak of the steroid for 1, 2, or 3 weeks. Pyramidal neurons in the prelimbic area of the mPFC were selected for intracellular fluorescent dye filling, followed by high-resolution three-dimensional imaging and analysis of dendritic arborization and spine morphometry. Two or more weeks of B exposure decreased dendritic spine volume in the mPFC, whereas higher dose exposure of the steroid resulted in apical dendritic retraction and spine loss in the same cell population, with thin spine subtypes showing the greatest degree of attrition. Finally, these structural alterations were noted to persist following a 3-week washout period and corresponding restoration of circadian HPA rhythmicity. These studies suggest that prolonged disruptions in adrenocortical functioning may be sufficient to induce enduring regressive structural and functional alterations in the mPFC. J. Comp. Neurol. 524:3729-3746, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Ryan M Glanz
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Shane B Johnson
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Mary M Miller
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242
| | - Jason J Radley
- Department of Psychological and Brain Sciences and Program in Neuroscience, University of Iowa, Iowa City, Iowa, 52242.
| |
Collapse
|
21
|
De Jesús-Cortés H, Lu Y, Anderson RM, Khan MZ, Nath V, McDaniel L, Lutter M, Radley JJ, Pieper AA, Cui H. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice. Neuroscience 2016; 329:66-73. [PMID: 27155145 PMCID: PMC8916097 DOI: 10.1016/j.neuroscience.2016.04.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/09/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice.
Collapse
Affiliation(s)
- Héctor De Jesús-Cortés
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Yuan Lu
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rachel M Anderson
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael Z Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Varun Nath
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Latisha McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew A Pieper
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA; Free Radical & Radiation Biology Program, Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Huxing Cui
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
22
|
The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation. J Neurosci 2015; 35:11897-910. [PMID: 26311772 DOI: 10.1523/jneurosci.4961-14.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic cocaine self-administration in rats leads to decrements in medial prefrontal structural and functional plasticity. Notably, these impairments were largely accounted for in rats that self-administered cocaine compared with yoked counterparts. Moreover, we verified previous reports showing that adrenocortical output is augmented by cocaine administration and is more protracted in rats that were permitted to receive the drug contingently instead of passively. These studies suggest that increased adrenocortical activity resulting from cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity.
Collapse
|
23
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
24
|
Abstract
The prevalence of Alzheimer's disease (AD) is projected to grow dramatically, but efforts to treat its progression have been unsuccessful. Fear of AD among older persons is greater than fear of cancer, and lingering worries about developing AD can be detrimental to well-being. Yet, much remains to be known about such worries and their precursors. This study, based on data from the Health and Retirement Survey, examines correlates of worry. Results of multivariate analyses show the following to be independent and significant correlates: present memory ratings, perceived changes in memory, personal familiarity with AD, belief that being a first-degree relative of someone with AD heightens the chance of developing AD, and age. Interaction analyses show that memory ratings and perceived changes in memory functioning are associated with worry regardless of personal familiarity. These findings will enable practitioners to identify patients and clients at risk of being worried about getting AD.
Collapse
Affiliation(s)
- Stephen J Cutler
- Department of Sociology, University of Vermont, Burlington, VT, USA Faculty of Sociology and Social Work, University of Bucharest, Bucharest, Romania
| |
Collapse
|
25
|
McQuail JA, Frazier CJ, Bizon JL. Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 2015; 21:450-60. [PMID: 26070271 DOI: 10.1016/j.molmed.2015.05.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-aminobutyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFC)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Zambrano E, Reyes-Castro LA, Nathanielsz PW. Aging, glucocorticoids and developmental programming. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9774. [PMID: 25953670 PMCID: PMC4424198 DOI: 10.1007/s11357-015-9774-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Glucocorticoids are pleiotropic regulators of multiple cell types with critical roles in physiological systems that change across the life-course. Although glucocorticoids have been associated with aging, available data on the aging trajectory in basal circulating glucocorticoids are conflicting. A literature search reveals sparse life-course data. We evaluated (1) the profile of basal circulating corticosterone across the life-course from weaning (postnatal day-PND 21), young adult PND 110, adult PND 450, mature adult PND 650 to aged phase PND 850 in a well-characterized homogeneous rat colony to determine existence of significant changes in trajectory in the second half of life; (2) sex differences; and (3) whether developmental programming of offspring by exposure to maternal obesity during development alters the later-life circulating corticosterone trajectory. We identified (1) a fall in corticosterone between PND 450 and 650 in both males and females (p < 0.05) and (2) higher female than male concentrations (p < 0.05). (3) Using our five life-course time-point data set, corticosterone fell at a similar age but from higher levels in male and female offspring of obese mothers. In all four groups studied, there was a second half of life fall in corticosterone. Higher corticosterone levels in offspring of obese mothers may play a role in their shorter life-span, but the age-associated fall occurs at a similar time to control offspring. Although even more life-course time-points would be useful, a five life-course time-point analysis provides important new information on normative and programmed aging of circulating corticosterone.
Collapse
Affiliation(s)
- E. Zambrano
- />Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14000 Mexico
| | - L. A. Reyes-Castro
- />Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14000 Mexico
| | - P. W. Nathanielsz
- />Department of Animal Science, University of Wyoming, Laramie, WY 82071-3684 USA
| |
Collapse
|
27
|
A Golgi study of the plasticity of dendritic spines in the hypothalamic ventromedial nucleus during the estrous cycle of female rats. Neuroscience 2015; 298:74-80. [PMID: 25892700 DOI: 10.1016/j.neuroscience.2015.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
Estradiol-induced plasticity involves changes in dendritic spine density and in the relative proportions of the different dendritic spine types that influence neurons and neural circuits. Such events affect brain structures that control the timing of neuroendocrine and behavioral processes, influencing both reproductive and cognitive functions during the estrous cycle. Accordingly, to investigate the dendritic spine-related plastic changes that may affect the neural processes involved in mating, estradiol-mediated dendritic spine plasticity was studied in type II cells situated in the ventrolateral portion of the ventromedial hypothalamic nucleus (VMN) of female, adult rats. The rats were assigned to four different groups (n=6) in function of their stage in the estrous cycle: proestrus, estrus, metaestrus, and diestrus. Dendritic spine density and the proportions of the different spine types on type II neurons were analyzed in the ventrolateral region of the VMN of these animals. Dendritic spine density on primary dendrites of VMN type II neurons was significantly lower in metaestrus than in diestrus, proestrus and estrus (with no differences between these latter stages). However, a significant variation in the proportional density of the different spine types was found, with a higher proportion of thin spines in diestrus, proestrus and estrus than in metaestrus. Likewise, a higher proportion of mushroom spines was seen in diestrus and proestrus than in metaestrus, and a higher proportion of stubby spines in estrus than in diestrus and metaestrus. Very few branched spines were found during proestrus and they were not detected during estrus or metaestrus. The different types of dendritic spines in non-projection neurons of the VMN could serve to maintain greater synaptic excitatory activity when receptivity and estradiol levels are maximal. However, they may also fulfill an additional functional role when receptivity and estradiol decline. To date specific roles of the different types of spines in neural hypothalamic activity during the estrous cycle remain unknown and they clearly deserve further study.
Collapse
|
28
|
Crespo I, Esther GM, Santos A, Valassi E, Yolanda VG, De Juan-Delago M, Webb SM, Gómez-Ansón B, Resmini E. Impaired decision-making and selective cortical frontal thinning in Cushing's syndrome. Clin Endocrinol (Oxf) 2014; 81:826-33. [PMID: 25052342 DOI: 10.1111/cen.12564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Abstract
CONTEXT AND OBJECTIVE Cushing's syndrome (CS) is caused by a glucocorticoid excess. This hypercortisolism can damage the prefrontal cortex, known to be important in decision-making. Our aim was to evaluate decision-making in CS and to explore cortical thickness. SUBJECTS AND METHODS Thirty-five patients with CS (27 cured, eight medically treated) and thirty-five matched controls were evaluated using Iowa gambling task (IGT) and 3 Tesla magnetic resonance imaging (MRI) to assess cortical thickness. The IGT evaluates decision-making, including strategy and learning during the test. Cortical thickness was determined on MRI using freesurfer software tools, including a whole-brain analysis. RESULTS There were no differences between medically treated and cured CS patients. They presented an altered decision-making strategy compared to controls, choosing a lower number of the safer cards (P < 0·05). They showed more difficulties than controls to learn the correct profiles of wins and losses for each card group (P < 0·05). In whole-brain analysis, patients with CS showed decreased cortical thickness in the left superior frontal cortex, left precentral cortex, left insular cortex, left and right rostral anterior cingulate cortex, and right caudal middle frontal cortex compared to controls (P < 0·001). CONCLUSIONS Patients with CS failed to learn advantageous strategies and their behaviour was driven by short-term reward and long-term punishment, indicating learning problems because they did not use previous experience as a feedback factor to regulate their choices. These alterations in decision-making and the decreased cortical thickness in frontal areas suggest that chronic hypercortisolism promotes brain changes which are not completely reversible after endocrine remission.
Collapse
Affiliation(s)
- Iris Crespo
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unidad 747), ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|