1
|
Malta G, Albano GD, Lavanco G, Brancato A, Cannizzaro C, Argo A, Contorno S, Plescia F, Zerbo S. Acute cannabis intoxication among the paediatric population. FRONTIERS IN TOXICOLOGY 2025; 7:1558721. [PMID: 40296894 PMCID: PMC12034656 DOI: 10.3389/ftox.2025.1558721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
This narrative review synthesizes the toxicological, clinical and medico-legal aspects of paediatric cannabis intoxication. By providing a comprehensive overview, it aims to inform future research, guide policymaking, and enhance clinical and toxicological practice in addressing this growing public health concern. The pharmacokinetics of cannabinoid ingestion in children are significantly influenced by the immaturity of their gastrointestinal tract and metabolic enzyme systems, resulting in altered oral bioavailability. Clinical data indicate that Δ9-tetrahydrocannabinol (THC)-related effects in paediatricpaediatric patients typically emerge within 2 hours of ingestion, with more severe symptoms developing within 4 hours. The endocannabinoid system (ECS) undergoes significant developmental changes, with marked differences in cannabinoid receptor expression and distribution across fetal, neonatal, and adult brains. During neurodevelopment, CB1 receptors exhibit unique expression patterns, including transient localization in brainstem regions critical for neurovegetative functions. These developmental dynamics likely explain children's heightened sensitivity to THC's neurological and neurovegetative effects, often resulting in more severe outcomes compared to adults. The reliable detection of cannabinoids involves integrating screening methods with confirmatory analytical techniques. Urine immunoassay testing is widely considered an helpful toolto assess a previous exposure, becoming positive within 3-4 h of ingestion. However, this method is prone to false positives. Plasma THC concentration, when measured close to the event, offers valuable insights into the quantity ingested and the correlation between exposure and clinical outcomes in the impairment window. Hair analysis, while useful for distinguishing between acute and chronic use, is susceptible to various biases. The rising incidence of acute cannabis intoxication in children underscores the urgent need for targeted public health interventions and stricter regulatory frameworks. Preventive measures such as child-resistant packaging, public education campaigns, and cannabis use screening during pregnancy are essential to mitigate risks. Clinicians should consider THC exposure in the differential diagnosis of children presenting with unexplained neurological, immune, or metabolic symptoms.
Collapse
Affiliation(s)
- Ginevra Malta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Institute of Forensic and Legal Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Davide Albano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Institute of Forensic and Legal Medicine, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pharmacology Department, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pharmacology Department, University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pharmacology Department, University of Palermo, Palermo, Italy
| | - Antonina Argo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Institute of Forensic and Legal Medicine, University of Palermo, Palermo, Italy
| | - Simona Contorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Institute of Forensic and Legal Medicine, University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pharmacology Department, University of Palermo, Palermo, Italy
| | - Stefania Zerbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Institute of Forensic and Legal Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Alsema AM, Puvogel S, Kracht L, Webster MJ, Shannon Weickert C, Eggen BJL, Sommer IEC. Schizophrenia-associated changes in neuronal subpopulations in the human midbrain. Brain 2025; 148:1374-1388. [PMID: 39397771 PMCID: PMC11969452 DOI: 10.1093/brain/awae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Dysfunctional GABAergic and dopaminergic neurons are thought to exist in the ventral midbrain of patients with schizophrenia, yet transcriptional changes underpinning these abnormalities have not yet been localized to specific neuronal subsets. In the ventral midbrain, control over dopaminergic activity is maintained by both excitatory (glutamate) and inhibitory (GABA) input neurons. To elucidate neuron pathology at the single-cell level, we characterized the transcriptional diversity of distinct NEUN+ populations in the human ventral midbrain and then tested for schizophrenia-associated changes in neuronal subset proportions and gene activity changes within neuronal subsets. Combining single nucleus RNA-sequencing with fluorescence-activated sorting of NEUN+ nuclei, we analysed 31 669 nuclei. Initially, we detected 18 transcriptionally distinct neuronal populations in the human ventral midbrain, including two 'mixed' populations. The presence of neuronal populations in the midbrain was orthogonally validated with immunohistochemical stainings. 'Mixed' populations contained nuclei expressing transcripts for vesicular glutamate transporter 2 (SLC17A6) and glutamate decarboxylase 2 (GAD2), but these transcripts were not typically co-expressed by the same nucleus. Upon more fine-grained subclustering of the two 'mixed' populations, 16 additional subpopulations were identified that were transcriptionally classified as excitatory or inhibitory. In the midbrains of individuals with schizophrenia, we observed potential differences in the proportions of two (sub)populations of excitatory neurons, two subpopulations of inhibitory neurons, one 'mixed' subpopulation, and one subpopulation of TH-expressing neurons. This may suggest that transcriptional changes associated with schizophrenia broadly affect excitatory, inhibitory, and dopamine neurons. We detected 99 genes differentially expressed in schizophrenia compared to controls within neuronal subpopulations identified from the two 'mixed' populations, with most (67) changes within small GABAergic neuronal subpopulations. Overall, single-nucleus transcriptomic analyses profiled a high diversity of GABAergic neurons in the human ventral midbrain, identified putative shifts in the proportion of neuronal subpopulations, and suggested dysfunction of specific GABAergic subpopulations in schizophrenia, providing directions for future research.
Collapse
Affiliation(s)
- Astrid M Alsema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Sofía Puvogel
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
- Department of Biomedical Sciences, Section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen 9713 AW, The Netherlands
| | - Laura Kracht
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville, MD 20850, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW 2033, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen 9713 AW, The Netherlands
| |
Collapse
|
3
|
Al-Husinat L, Obeidat S, Azzam S, Al-Gwairy Y, Obeidat F, Al Sharie S, Haddad D, Haddad F, Rekatsina M, Leoni MLG, Varrassi G. Role of Cannabis in the Management of Chronic Non-Cancer Pain: A Narrative Review. Clin Pract 2025; 15:16. [PMID: 39851799 PMCID: PMC11764316 DOI: 10.3390/clinpract15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic non-cancer pain, defined by the Center for Disease Control and Prevention (CDC) as lasting beyond three months, significantly affects individuals' quality of life and is often linked to various medical conditions or injuries. Its management is complex. Cannabis, containing the key compounds Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), has garnered interest for its potential in pain management, though it remains controversial due to its psychoactive effects and illegal status in many countries. THC provides pain relief by blocking nociceptive stimuli but has psychoactive effects and may potentially induce dependency. CBD has calming and antipsychotic properties. The inhalation of cannabis offers quick relief but poses respiratory risks, while its oral administrations are safer but act more slowly. Short-term cannabis use can impair cognition and motor skills, while long-term use may lead to dependency and cognitive decline, especially if used from an early age. Adverse effects vary by gender and prior use, with addiction mainly linked to THC and influenced by genetics. Despite these risks, patients often report more benefits, such as improved quality of life and reduced opioid use, although the evidence remains inconclusive. The legal landscape for medical cannabis varies globally, with some positive public health outcomes like reduced opioid-related issues in areas where it is legalized. Cannabis shows promise in managing chronic pain, but its psychoactive effects and dependency risks necessitate cautious use. Future research should prioritize long-term clinical trials to establish optimal dosing, efficacy, and safety, aiding in the development of informed guidelines for safe cannabis use in chronic pain management. This review examines the use of cannabis in managing chronic non-cancer pain, focusing on its benefits, drawbacks, mechanisms, delivery methods, and impact on quality of life.
Collapse
Affiliation(s)
- Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Shrouq Obeidat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Yara Al-Gwairy
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Fatima Obeidat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan
| | - Deema Haddad
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Fadi Haddad
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Martina Rekatsina
- Department of Anesthesia, University of Athens, 11528 Athens, Greece;
| | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, “La Sapienza” University of Rome, 00100 Rome, Italy;
| | | |
Collapse
|
4
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
5
|
Saito H, Yokoyama T, Nakamuta N, Yamamoto Y. Immunohistochemical distribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2) in the rat carotid body. Acta Histochem 2024; 126:152205. [PMID: 39405990 DOI: 10.1016/j.acthis.2024.152205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
The carotid body is a hypoxia-sensitive chemoreceptor that induces sensory long-term facilitation after exposure to chronic intermittent hypoxia. However, the mechanisms underlying synaptic plasticity in the carotid body remain unknown. In the present study, we examined the immunohistochemical distribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2), which are candidate molecules involved in the modulation of synaptic transmission. Dot-like CB1 immunoreactivity was distributed in the perinuclear cytoplasm of chemoreceptor cells immunoreactive for the catecholamine-synthesizing enzymes, tyrosine hydroxylase and dopamine beta-hydroxylase. Furthermore, CB1 immunoreactivity was observed in sensory nerve endings immunoreactive for P2X3 purinoceptors that colocalized with vesicular glutamate transporter 2. On the other hand, immunoreactivity for CB2 was mainly distributed in chemoreceptor cells, and was weakly observed in sensory nerve endings immunoreactive for P2X2 purinoceptors. The present results suggest that CB1 and CB2 regulate the release of catecholamines and glutamate from chemoreceptor cells and sensory nerve endings, respectively. Therefore, CB1 and CB2 may be involved in synaptic plasticity in the carotid body.
Collapse
Affiliation(s)
- Hiroki Saito
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
6
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Xu J, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. SCIENCE ADVANCES 2024; 10:eadq4779. [PMID: 39612328 PMCID: PMC11606496 DOI: 10.1126/sciadv.adq4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments as a complement to opioid-based treatments. Here, we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by cannabinoid receptor 1 (CB1R) within the VTA, as VTA CB1R conditional knockout counteracts JZL184's effects. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together, these findings reveal that 2-AG diminishes the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Soler-Cedeño O, Alton H, Bi GH, Linz E, Ji L, Makriyannis A, Xi ZX. AM6527, a neutral CB1 receptor antagonist, suppresses opioid taking and seeking, as well as cocaine seeking in rodents without aversive effects. Neuropsychopharmacology 2024; 49:1678-1688. [PMID: 38600154 PMCID: PMC11399149 DOI: 10.1038/s41386-024-01861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.
Collapse
Affiliation(s)
- Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Postdoctoral Research Associate Training (PRAT) Fellow, National Institute of General Medical Sciences, Bethesda, MD, USA
| | - Hannah Alton
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Emily Linz
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lipin Ji
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
9
|
Zhao S, Gu ZL, Yue YN, Zhang X, Dong Y. Cannabinoids and monoaminergic system: implications for learning and memory. Front Neurosci 2024; 18:1425532. [PMID: 39206116 PMCID: PMC11349573 DOI: 10.3389/fnins.2024.1425532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cannabinoids and the endocannabinoid system (ECS) have been intensively studied for their neuroregulatory roles in the central nervous system (CNS), especially in regulating learning and memory. However, many experimental and clinical studies obtained conflicting results indicating a complex network of interaction underlying the regulation of learning and memory by different cannabinoids and the ECS. The ECS influences neuronal synaptic communications, and therefore may exert different regulation via their different impact on other neurotransmitters. The monoaminergic system includes a variety of neurotransmitters, such as dopamine, norepinephrine, and serotonin, which play important roles in regulating mood, cognition, and reward. The interaction among cannabinoids, ECS and the monoaminergic system has drawn particular attention, especially their contributions to learning and memory. In this review, we summarized the current understanding of how cannabinoids, ECS and the monoaminergic system contribute to the process of learning and memory, and discussed the influences of monoaminergic neurotransmission by cannabinoids and ECS during this process.
Collapse
Affiliation(s)
- Sha Zhao
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhao-Liang Gu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya-Nan Yue
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Jiu JX, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.585967. [PMID: 38766079 PMCID: PMC11101127 DOI: 10.1101/2024.04.02.585967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Jin X Jiu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Anjali M. Rajadhyaksha
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Song R, Soler-Cedeño O, Xi ZX. Optical Intracranial Self-Stimulation (oICSS): A New Behavioral Model for Studying Drug Reward and Aversion in Rodents. Int J Mol Sci 2024; 25:3455. [PMID: 38542425 PMCID: PMC10970671 DOI: 10.3390/ijms25063455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models-dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug's rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders.
Collapse
Affiliation(s)
- Rui Song
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology (BIPT), 27th Taiping Road, Beijing 100850, China
| | - Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224, USA;
| |
Collapse
|
13
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
14
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
15
|
Hempel B, Crissman M, Pari S, Klein B, Bi GH, Alton H, Xi ZX. PPARα and PPARγ are expressed in midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice. Mol Psychiatry 2023; 28:4203-4214. [PMID: 37479780 PMCID: PMC10799974 DOI: 10.1038/s41380-023-02182-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate gene expression. Δ9-tetrahydrocannabinol (Δ9-THC) is a PPARγ agonist and some endocannabinoids are natural activators of PPARα and PPARγ. However, little is known regarding their cellular distributions in the brain and functional roles in cannabinoid action. Here, we first used RNAscope in situ hybridization and immunohistochemistry assays to examine the cellular distributions of PPARα and PPARγ expression in the mouse brain. We found that PPARα and PPARγ are expressed in ~70% of midbrain dopamine (DA) neurons. In the amygdala, PPARα is expressed in ~60% of glutamatergic neurons, while PPARγ is expressed in ~60% of GABA neurons. However, no PPARα/γ signal was detected in GABA neurons in the nucleus accumbens. We then used a series of behavioral assays to determine the functional roles of PPARα/γ in the CNS effects of Δ9-THC. We found that optogenetic stimulation of midbrain DA neurons was rewarding as assessed by optical intracranial self-stimulation (oICSS) in DAT-cre mice. Δ9-THC and a PPARγ (but not PPARα) agonist dose-dependently inhibited oICSS. Pretreatment with PPARα or PPARγ antagonists attenuated the Δ9-THC-induced reduction in oICSS and Δ9-THC-induced anxiogenic effects. In addition, a PPARγ agonist increased, while PPARα or PPARγ antagonists decreased open-field locomotion. Pretreatment with PPARα or PPARγ antagonists potentiated Δ9-THC-induced hypoactivity and catalepsy but failed to alter Δ9-THC-induced analgesia, hypothermia and immobility. These findings provide the first anatomical and functional evidence supporting an important role of PPARα/γ in DA-dependent behavior and cannabinoid action.
Collapse
Affiliation(s)
- Briana Hempel
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Madeline Crissman
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Sruti Pari
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Benjamin Klein
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Hannah Alton
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
- Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
16
|
Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci 2023; 44:495-506. [PMID: 37331914 PMCID: PMC10524660 DOI: 10.1016/j.tips.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Zuzana Justinova
- Division of Pharmacology, Physiology, and Biological Chemistry (PPBC), National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
17
|
McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, Hillard CJ, Mantsch JR. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology 2023; 48:1121-1132. [PMID: 37188846 PMCID: PMC10267161 DOI: 10.1038/s41386-023-01589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Pharmacology & Systems Physiology and Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Colten P Wolf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Dylan M Starck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob C Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Rebecca Schaps
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Leslie A Krause
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Xi ZX, Hempel B, Crissman M, Pari S, Klein B, Bi GH, Alton H. PPARα and PPARγ are expressed in midbrain dopamine neurons and modulate dopamine- and cannabinoid-mediated behavior in mice. RESEARCH SQUARE 2023:rs.3.rs-2614714. [PMID: 36909477 PMCID: PMC10002816 DOI: 10.21203/rs.3.rs-2614714/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate gene expression. Δ 9 -tetrahydrocannabinol (Δ 9 -THC) is a PPARg agonist and some endocannabinoids are natural activators of PPAR a and PPARg. Therefore, both the receptors are putative cannabinoid receptors. However, little is known regarding their cellular distributions in the brain and functional roles in cannabinoid action. Here we first used RNAscope in situ hybridization and immunohistochemistry assays to examine the cellular distributions of PPARα and PPARγ expression in the mouse brain. We found that PPARα and PPARγ are highly expressed in ~70% midbrain dopamine (DA) neurons and in ~50% GABAergic and ~50% glutamatergic neurons in the amygdala. However, no PPARα/γ signal was detected in GABAergic neurons in the nucleus accumbens. We then used a series of behavioral assays to determine the functional roles of PPARα/γ in the CNS effects of Δ 9 -THC. We found that optogenetic stimulation of midbrain DA neurons was rewarding as assessed by optical intracranial self-stimulation (oICSS) in DAT-cre mice. Δ 9 -THC and a PPARγ (but not PPARα) agonist dose-dependently inhibited oICSS, suggesting that dopaminergic PPARγ modulates DA-dependent behavior. Surprisingly, pretreatment with PPARα or PPARγ antagonists dose-dependently attenuated the Δ 9 -THC-induced reduction in oICSS and anxiogenic effects. In addition, a PPARγ agonist increased, while PPARa or PPARγ antagonists decreased open-field locomotion. Pretreatment with PPARa or PPARγ antagonists potentiated Δ 9 -THC-induced hypoactivity and catalepsy but failed to alter Δ 9 -THC-induced analgesia, hypothermia and immobility. These findings provide the first anatomical and functional evidence supporting an important role of PPARa/g in DA-dependent behavior and cannabinoid action.
Collapse
|